陕西2017年高考理科数学试题及答案
陕西2017年高考理科数学试题及答案
1陕西省2017年高考理科数学试题及答案(Word 版)(考试时间:(考试时间:120120分钟分钟 试卷满分:试卷满分:试卷满分:150150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 31i i+=+( ))A .12i +B B..12i -C C..2i +D D..2i -2. 2. 设集合设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )) A .{}1,3- B B..{}1,0 C C..{}1,3 D D..{}1,5 3. 3. 我国古代数学名著《算法统宗》中有如下问题:我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯(倍,则塔的顶层共有灯( )) A .1盏 B B..3盏 C C..5盏 D D..9盏 4. 4. 如图,网格纸上小正方形的边长为如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为(分所得,则该几何体的体积为( )) A .90p B B..63p C .42p D D..36p5. 5. 设设x ,y 满足约束条件2330233030x y x y y +-£ìï-+³íï+³î,则2z x y =+的最小值是(的最小值是( ))A .15-B B..9-C C..1D D..96. 6. 安排安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有(有( ))A .12种B B..18种C C..24种D D..36种7. 7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则(我还是不知道我的成绩.根据以上信息,则( ))A .乙可以知道四人的成绩.乙可以知道四人的成绩B .丁可以知道四人的成绩.丁可以知道四人的成绩中C .乙、丁可以知道对方的成绩.乙、丁可以知道对方的成绩D D.乙、丁可以知道自己的成绩.乙、丁可以知道自己的成绩8. 8. 执行右面的程序框图,如果输入的执行右面的程序框图,如果输入的1a =-,则输出的S =( ))A .2 B 2 B..3 C 3 C..4 D 4 D..59. 9. 若双曲线若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为(离心率为( ))A .2B 2 B..3C C..2D D..23310. 10. 已知直三棱柱已知直三棱柱111C C AB -A B 中,C 120ÐAB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为(所成角的余弦值为( ))A .32 B B..155 C C..105D D..33 11. 11. 若若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为(的极小值为( ))A.1-B.32e -- C.35e - D.112. 12. 已知已知ABC D 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ×+的最小值是( ))A.2-B.32- $$来C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2017年高考理科数学全国2卷-含答案,推荐文档
输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2B .3C .2D .2310.已知直三棱柱111C C AB -A B 中,C 120∠AB =o,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为()ABCD11.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
2017年全国二卷理科数学高考真题及详解(附带答案精美版)
2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签 字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写 的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.=++i1i 3A .i 21+B .i 21-C .i 2+D .i 2-2. 设集合{}4 2 1,,=A ,{}042=+-=m x x B ,若{}1=B A I ,则=B A .{}3 1-, B. .{}0 1, C .{}3 1, D .{}5 1, 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π365.设y x 、满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C . 24种D .36种理科数学试题 第1页(共4页)7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1-=a ,则输出的=S A .2B .3C .4D .59.若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .33210.已知直三棱柱111C B A ABC -中,ο120=∠ABC , 2=AB , 11==CC BC , 则异面直线1AB 与1BC 所成角的余弦值为A .23 B .515 C .510 D .33 11.若2-=x 是函数12)1()(--+=x e ax x x f 的极值点,则)(x f 的极小值为A .1-B .32--eC .35-eD .112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(+⋅的最小值是A .2-B .23-C .34- D .1-二、填空题:本题共4小题,每小题5分,共20分。
(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)
绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1 •答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2 •作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3•非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4 •考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
X1.已知集合A={x|x<1} , B={x|3 1},则A. AI B {x|x 0}B. AUB RC. AUB {x|x 1}D. AI B2 .如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是3.设有下面四个命题P1 :若复数z满足丄 R,则z R ;zP2:若复数z满足z2R,则z R ;P3:若复数N,Z2满足Z1Z2 R,则zi Z2 ;P 4:若复数z R ,则z R .其中的真命题为1 6 2—)(1 x)6展开式中X 2的系数为 X7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A . A>1 000 和 n=n+1A . P l , P 3B . P l , P 4C . P 2,P 3D . P 2, P 44 •记S 为等{a n }的前n 项和.若a 4a524,Ss 48,则{a n }的公差为C . 45.函数f (X )在()单调递减,且为奇函数.若 f(1)1,则满足 1 f(x 2) 1的X 的取值范围[2,2]B .[ 1,1]C •[0,4]D . [1,3]6 . (1A . 15B . 20C . 30D . 352,俯视图为等腰直角三角形A . 10B . 12 8 .右面程序框图是为了求出满足C . 14D . 163n -2n >1000的最小偶数n ,那么在號「詞和=两个空白框中,可以分别填入B . A>1 000 和n=n+2C . A 1 000 和n=n+1D . A 1 000 和n=n+29.已知曲线C1: y=cos x,C2:2 ny=s in (2x+ ),则下面结论正确的是到曲线C 2到曲线C 2到曲线C 2得到曲线C 2x y z11.设xyz 为正数,且23 5,则二、填空题:本题共 4小题,每小题5分,共20分。
2017年全国二卷理科数学高考真题及详解(附带答案精美版)
2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘 贴在条形码区域内。
2. 选择题必须使用2B 铅笔填涂;非选择题必须使用 0.5毫米黑色字迹的签 字笔书写,字体工整、笔迹清楚。
3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写 的答案无效;在草稿纸、试卷上答题无效。
4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、 刮纸刀。
有一项是符合题目要求的 1.3. 我国古代数学名著《算法统宗》中有如下问题: 远望巍巍塔七层,红光点点倍加 增,共灯三百八十一,请问尖头几盏灯? ”意思是:一座7层塔共挂了 381盏灯, 且相邻两层中的下一层灯数是上一层灯数的 2倍,则塔的顶层共有灯4. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A . 90 B . 63 C . 42 D . 36理科数学试题第1页(共4页)2x 3y 3 0,5 .设x 、y 满足约束条件 2x 3y 3 0,则z 2x y 的最小值是y 3 0,A . 15 B. 9C. 1D. 9 6.安排3名志愿者完成 4项工作, 每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A . 12 种B. 18 种C. 24 种D. 36 种、选择题:本题共12小题,每小题5分, 共60分。
在每小题给出的四个选项中,只A . 1 2i B. 1 2i22.设集合 A 1,2,4,B x 4x mA. 1,3B. . 1,0C. 2 iD. 2 i0,若 A B 1 ,则 BC. 1,3D. 1,5理科数学试题第2页(共4页)7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩 .老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲 的成绩.看后甲对大家说:我还是不知道我的成绩•根据以上信息,则 A •乙可以知道四人的成绩 C •乙、丁可以知道对方的成绩 8. 执行右面的程序框图,如果输入的 A. 2B. 3C. 4D. 5、填空题:本题共4小题,每小题5分,共20分13 . 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取 100 次,X 表示抽到二等品件数,则 DX __ .16. 已知F 是抛物线C:y 2 8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N . 若M 为FN 的中点,贝U FN| _________________ .B. 丁可以知道四人的成绩 D.乙、丁可以知道自己的成绩 a 1,则输出的S 开始2 2 9.若双曲线C:Xy爲1(aa b长为2,则C 的离心率为0,b 0)的一条渐近线被圆(X 2)2 y 24所截得的弦10.已知直三棱柱 ABC AB 1C 1中, 线AB 与BG 所成角的余弦值为C.2 ABC 120 , AB 2,BC D.2.3 3CC 1 1, 则异面直11. 若x 2是函数f (x) (x 2 axB.2e 31)e x 1的极值点,贝U f (x)的极小值为C. 5e 3D. 112 .已知ABC 是边长为2的等边三角形,最小值是P 为平面ABC 内一点,贝U PA (PB PC)的B. C.D. 114 .函数 f (x)・2sin x3cosx ;(x[0,])的最大值是15 .等差数列a n 的前n 项和为S n ,a 33, S 410,则 k1S k输入a 'S=0 , K=1 a= - a K=K+ 1 输岀S5C. D.三、解答题:共70分。
(完整版)2017年普通高等学校招生全国统一考试理科数学试题及答案-全国1卷
绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|1{|31}xA x xB x =<=<,,则A .{|0}AB x x =<I B .A B =R UC .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .8π C .12D .4π 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A .10 B .12 C .14 D .168.右面程序框图是为了求出满足321000nn->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9.已知曲线122:cos ,:sin(2)3C y x C y x π==+,则下面结论正确的是A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<12.几位大学生响应国家的创业号召,开发了一款应用软件。
(完整word)2017年高考理科数学全国2卷-含答案,推荐文档
2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共要求的。
12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目3 i 八1 iA. 1 2iB. 1 2iC. 22.设集合1,2,4 , x 2 x4x m 0 .若D. 2 i1 ,则()A. 1, 3B. 1,0C. 1,3D. 1,53. 我国古代数学名著《算法统宗》中有如下问题:请问尖头几盏灯?”意思是:一座7层塔共挂了倍,则塔的顶层共有灯()A. 1盏B. 3盏C. 5盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A. 90B. 63C.422x 5.设x , y满足约束条件2x 3y3y3 (0,则z"远望巍巍塔七层,红光点点倍加增,共灯三百八^一,381盏灯,且相邻两层中的下一层灯数是上一层灯数的2D. 9盏2xD. 36y的最小值是()A. 15B.6. 安排3名志愿者完成4项工作,则不同的安排方式共有()A. 12 种B. 18 种C.每人至少完成1项,D. 9每项工作由1人完成,C. 24 种D.36种你们四人中7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩C.乙、丁可以知道对方的成绩8. 执行右面的程序框图,如果输入的A. 2B. 3C.B. 丁可以知道四人的成绩D.乙、丁可以知道自己的成绩1,则输出的S ()D. 59.若双曲线0)的一条渐近线被圆2 y2得的弦长为2,贝U C的离心率为()A. 2B. 3 C. D .10•已知直三棱柱C 1 1C1 中, C 120o,CC1面直线1与C1所成角的余弦值为()A .B. fC.卫 D .仝25 5311 若X 2是函数f (x) (x 2ax 1)e x 1的极值点,贝Uf (x )的极小值为()A .1B .2e 3C.5e 3D.1uuu uuu uuu12. 已知 ABC 是边长为2的等边三角形,P 为平面ABC 内一点,贝U PA (PB PC )的最小值是()3 4 ’A. 2B.C.D. 123二、填空题:本题共 4小题,每小题5分,共20分。
2017陕西高考真题数学理(含解析)
2017年普通高等学校招生全国统一考试(陕西卷)理一、选择题1.设集合,,则().... .2.某中学初中部共有名教师,高中部共有名教师,其性别比例如图所示,则该校女教师的人数为(). ... .3.如图,某港口一天时到时的水深变化曲线近似满足函数,据此函数可知,这段时间水深(单位:m)的最大值为().. . . .4.二项式的展开式中的系数为15,则()....5.一个几何体的三视图如图所示,则该几何体的表面积为().....6.“”是“”的().A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要7.对任意向量,下列关系式中不恒成立的是().....8.根据右边的图,当输入为时,输出的().. . . .9.设,,,,,则下列关系式中正确的是().....10.某企业生产甲乙两种产品均需用,两种原料,已知生产吨每种产品需原料及每天原料的可用限额表所示,如果生产吨甲乙产品可获利润分别为万元、万元,则该企业每天可获得最大利润为().甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8.万元.万元.万元.万元11.设复数,若,则的概率().....12.对二次函数(a为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是()..是的零点.是的极值点.是的极值 .点在曲线上二、填空13.中位数的一组数构成等差数列,其末项为,则该数列的首项__________.14.若抛物线的准线经过双曲线的一个焦点,则__________.15.设曲线在点处的切线与曲线上点p处的切线垂直,则的坐标为__________.16.如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为__________.三、解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤.)17、(本小题满分12分)的内角,,所对的边分别为,,.向量与平行.求;若,求的面积.18、(本小题满分12分)如图,在直角梯形中,,,,,是的中点,是与的交点.将沿折起到的位置,如图.证明:平面;若平面平面,求平面与平面夹角的余弦值.19、(本小题满分12分)设某校新、老校区之间开车单程所需时间为,只与道路畅通状况有关,对其容量为的样本进行统计,结果如下:(分钟)频数(次)求的分布列与数学期望;刘教授驾车从老校区出发,前往新校区做一个分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过分钟的概率.20、(本小题满分12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.求椭圆的离心率;如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.21、(本小题满分12分)设是等比数列,,,,的各项和,其中,,.证明:函数在内有且仅有一个零点(记为),且;设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为,比较与的大小,并加以证明.请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目的题号后的方框涂黑.22、(本小题满分10分)选修4-1:几何证明选讲如图,切于点,直线交于,两点,,垂足为.证明:;若,,求的直径.23、(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,的极坐标方程为.写出的直角坐标方程;为直线上一动点,当到圆心的距离最小时,求的直角坐标.24、(本小题满分10分)选修4-5:不等式选讲已知关于的不等式的解集为.求实数,的值;求的最大值.2017年普通高等学校招生全国统一考试(陕西卷)理一、选择题(满分60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B C C D A B B C D B A二、填空题(满分20分)13. 14.15. 16.三、解答题(满分70分)17. (本小题满分12分)解:(Ⅰ)因为,所以,由正弦定理得,又,从而由于,所以(II)由余弦定理得而,,,得,即因为,所以故的面积为 .18. (本小题满分12分)解:(Ⅰ)在图中,因为 , ,是的中点,, 所以 ,从而平面,又所以平面(II)由已知,平面平面,又由(I)知,, ,所以为二面角的平面角,所以 ,如图,以为圆点,建立空间直角坐标系,因为 , ,所以 , , , ,得 ,设平面的法向量,平面的法向量,平面与平面的夹角为,则得取;则得取;所以所求夹角余弦值为19. (本小题满分12分)解:(Ⅰ)的分布列为:(II)设“刘教授从离开老校区到返回老校区共用时间不超过分钟”为事件. 所以20. (本小题满分12分)解:(Ⅰ)过点,的直线方程为,则原点到该直线的距离,由,得,解得离心率.(II) 由(I)知,椭圆的方程为.依题意,圆心是线段的中点,且,易知,与轴不垂直,设其方程为,代入①得.设,,则,.由,得,解得.从而于是 .由,得,解得.故椭圆的方程为.21. (本小题满分12分)解:(Ⅰ)证明:函数,则,所以在内至少存在一个零点. 又,故在内单调递增,所以在内有且仅有一个零点. 因为是的零点,所以,即,故 .(II)由题设,.设.当时,.当时, .若,.若,所以,在上递增,在上递减,所以,即.综上所述,当时,;当时, .22. (本小题满分10分)解:(Ⅰ)因为为直径,则 ,又 ,所以,从而 .又切于点,得,所以(II)由(Ⅰ)知平分,则, 又, 从而 .所以 , 所以 .由切割线定理得,即,故 , 即直径为3.23. (本小题满分10分)解:(Ⅰ)由,得,从而有,所以.(II)设,又,则故当时,取得最小值.24. (本小题满分10分)解:(Ⅰ)由,得则解得.(II),当且仅当,即时等号成立,故.2017年陕西省高考数学(理科)选填解析1.【答案】【解析】因为,所以故选2.【答案】【解析】故选3. 【答案】【解析】有图知,故,所以故选4.【答案】【解析】有题意得,所以,所以故选5.【答案】【解析】作图如下所以故选6.【答案】【解析】当时,,所以当时,,所以故选7.【答案】【解析】因为,所以C,D正确.又因为,所以A对.设,,所以,.所以B错.故答案选B.8. 【答案】B【解析】由题意知:当输入时,经过次循环,,所以输出的.故答案选B.9. 【答案】【解析】易知为单调递增函数,又,由均值不等式得:由于,故不取等号,所以,,故,所以故选10. 【答案】【解析】设生产甲产品吨,生产乙产品吨,由题意得,求的最大值,作图如下:所以故选11. 【答案】【解析】由题意得,结合,作图如下圆的面积为,圆心到直线的距离,,所以,所以,所以阴影部分面积,所以所求概率为故选12. 【答案】【解析】由选项可得到①,由选项可得到,即②,由选项可得到,即③由选项可得到④假设①和②正确,联立得,代入③得得或,与题意矛盾.代入④得,与题意矛盾.故①和②必有一个错误.假设②正确,将②式代入④得,得,把代入③得,解得满足要求,故假设成立, ②正确.所以①错误.故选二、填空题13.【答案】【解析】由题意得为和的等差中项,所以,所以故答案为14. 【答案】【解析】由题意易知双曲线的焦点坐标为,所以,,所以故答案为15. 【答案】【解析】设,,设,,令,且,故解得所以,所以故答案为16. 【答案】1.2【解析】如图建立平面直角坐标系,可求得抛物线的标准方程为所以由直线与抛物线所围成的图形面积为而梯形的面积,所以即为所求。
2017年高考理科数学全国卷3及答案解析
数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2017年普通高等学校招生全国统一考试(全国卷Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}22(,)1A x y x y =+=│,{}(,)B x y y x ==│,则A B 中元素的个数( )A.3B.2C.1D.0 2.设复数z 满足()1i z 2i +=,则z =( )A.12D.23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.()()5+y 2y x x -的展开式中33y x 的系数为( )A.-80B.-40C.40D.805.已知双曲线2222:1x y C a b-=()00>>a b ,的一条渐近线方程为y x =,且与椭圆221123x y+=有公共焦点,则C 的方程为( ) A.221810x y -= B.22145x y -= C.22154x y -= D.22143x y -= 6.设函数()π3cos ⎛⎫=+ ⎪⎝⎭f x x ,则下列结论错误的是( )A.()f x 的一个周期为2π-B.()f x 的图像关于直线8π=3x 对称 C.()π+f x 的一个零点为π6=x D.()f x 在(π2,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.28.已知圆柱的高为1,它的两个底面的圆周在直径2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4C.π2D.π49.等差数列{}n a 的首项为1,公差不为0.若236a a a ,,成等比数列,则{}n a 前6项的和为 ( ) A.24-B.3-C.3D.810.已知椭圆C :22221x y a b+=()0a b >>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第3页(共18页) 数学试卷 第4页(共18页)D.1311.已知函数211()2(e e )--+=-++x x f x x x a 有唯一零点,则a = ( )A.12-B.13C.12D.112.在矩形ABCD 中,12AB AD ==,,动点P 在以点C 为圆心且与BD 相切的圆上.若AP=AB+AD λμ,则λμ+的最大值为( )A.3D.2二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件y 0,20,0,x x y y -≥⎧⎪+-≤⎨⎪≥⎩则z 34x y =-的最小值为 .14.设等比数列{}n a 满足1213–1,3a a a a +==--,则4=a . 15.设函数1,0,()2,0,xx x f x x +≤⎧=⎨>⎩则满足1()()12f x f x +->的x 的取值范围是 .16.ab ,为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a b ,都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角; ②当直线AB 与a 成60︒角时,AB 与b 成60︒角; ③直线AB 与a 所成角的最小值为45︒; ④直线AB 与a 所成角的最大值为60︒.其中正确的是 .(填写所有正确结论的编号)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin 0=A A,a ,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?19.(12分)如图,四面体ABCD 中,ABC △是正三角形,ACD △是直角三角形,.ABD CBD AB BD ∠=∠=,(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角––D AE C 的余弦值.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)20.(12分)已知抛物线C :22y x =,过点(2,0)的直线l 交C 与,A B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.21.(12分)已知函数1(n )l =--f x a x x . (1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,21111+1+1+222n m ⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭<,求m 的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线1l 的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线2l 的参数方程为2,,x m my k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :()cos si n ρθθ+,M 为3l 与C 的交点,求M 的极径.23.[选修4-5:不等式选讲](10分)已知函数12f x x x =+--(). (1)求不等式1f x ≥()的解集;(2)若不等式2– f x x x m ≥+()的解集非空,求m 的取值范围.2017年普通高等学校招生全国统一考试(全国卷Ⅲ)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共18页) 数学试卷 第8页(共18页)AB 中元素的个数为()1i -,所以3.【答案】A【解析】根据折线图可知,2014年8月到9月、2014年10月到11月等月接待游客量都是减少,所以A 错误. 4.【答案】C【解析】当第一个括号内取x 时,第二个括号内要取含23x y 的项,即()()23352C x y -,当第一个括号内取y 时,第二个括号内要取含32x y 的项,即()()32252C x y -,所以33x y 的系数为()23325522108440C C ⨯-⨯=⨯-=.5.【答案】B【解析】根据双曲线C 的渐近线方程为2y x =,可知2b a = ①,又椭圆221123x y +=的焦点坐标为(3,0)和(3-,0),所以229a b += ②,根据①②可知224,5a b ==,所以选B. 6.【答案】D【解析】根据函数解析式可知函数()f x 的最小正周期为2π ,所以函数的一个周期为π2-,A 正确;当8ππ,3π33=+=x x ,所以πcos 13⎛⎫+=- ⎪⎝⎭x ,所以B 正确;()4cos cos 33ππππ⎛⎫⎛⎫+=++=+ ⎪ ⎪⎝⎭⎝⎭f x x x ,当π6=x 时,4π3π32+=x ,所以()π0+=f x ,所以C 正确;函数()πcos 3⎛⎫=+ ⎪⎝⎭f x x 在(π2,23π)上单调递减;(23π,π)上单调递增,故D 不正确.所以选D . 7.【答案】D【解析】010*******,100911001090,13S M t S M t =+==-==-===,,>;, ,90<91,输出S ,此时,3t =不满足t N ≤,所以输入的正整数N 的最小值为2,故选D. 8.【答案】B【解析】设圆柱的底面半径为r ,则22213=1=24r ⎛⎫-⎪⎝⎭,所以,圆柱的体积33=π1=π44⨯V ,故选B. 9.【答案】A【解析】设等差数列n a 的公差为d ,因为236,,a a a 成等比数列,所以2263a a a =,即()()()211152a d a d a d ++=+,又11a =,所以220d d +=,又0,d ≠则2d =-,所以6159a a d =+=-,所以n a 的前6项的和6196242S -=⨯=-,故选A. 10.【答案】A以线段12A A 为直径的圆的方程为222x y a +=,由原点到直线20bx ay ab -+=的距离==d a ,得223a b =,所以C 的离心率3e ==.11.【答案】C【解析】由()()2112x x f x x x a e e --+=-++,得()()()()()(221212112122224422x x x x x f x x x a e e x x x a e e x x a e --+-----⎡⎤-=---++=-++++=-+⎣⎦,所以()()2f x f x -=,即1x =为()f x 图像的对称轴.由题意()f x 有唯一零点,所以()f x 的零点只能为1x =,即()()2111111210f a e e --+=-⨯++=,解得12a =.故选C. 12.【答案】A【解析】以A 为坐标原点,AB AD ,所在直线分别为x ,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为220x y +-=,点C 到直线BD =,圆C :数学试卷 第9页(共18页) 数学试卷 第10页(共18页)()()224125x y -+-=,因为P 在圆C 上,所以P(1cos 5θ+,25θ+)(1,0)AB =,(0,2)AD =,(,2)AP AB AD λμλμ=+=,所以122{θλθμ==()22sin 3λμθθθα+==++≤,tan 2α=,选A.13.【答案】1-【解析】作出约束条件表示的可行域如图中阴影部分所示,作出直线:340l x y -=,平移直线l ,当直线34z x y =-经过点A (1,1)时,z 取得最小值,最小值为341-=-.14.【答案】8-【解析】设等比数列{}n a 的公比为q ,则121(1)1a a a q +=+=-,2131(1)3a a a q -=-=-,两式相除,得21113q q +=-,解得12,1q a =-=,所以3418a a q ==-.15.【答案】∞1(-,+)4【解析】当0x >,()=21xf x >恒成立,当102x ->,即12x >时,121()=212x f x -->,当102x -≤,即102x ≤<时,111()=222f x x -+>,则不等式1()()12f x f x +->恒成立.当0x ≤时,113()()121222+-=+++=+f x f x x x x >,所以104x -≤<.综上所述,x 的取值范围是(14-,+∞).16.【答案】②③【解析】由题意知,,,a b AC 三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体的棱长为1,则1,AC AB ==AB 以直线AC 为旋转轴旋转,则A点保持不变,B 点的运动轨迹是以C 为圆心,l 为半径的圆.数学试卷 第11页(共18页) 数学试卷 第12页(共18页)以C 为坐标原点,以CD 的方向为x 轴正方向,CB 方向为y 轴正方向,CA 的方向为z 轴正方向建立空间直角坐标系.则D (1,0,0),A (0,0,1), 直线a 的单位方向向量(0,1,0), 1.a a == B 点起始坐标为(0,1,0), 直线b 的单位方向向量b (1,0,0), 1.b == 设B 点在运动过程中的坐标B'(cos ,sin ,0)θθ, 其中θ为'CB 与CD 的夹角,[0,2)θπ∈.那么AB'在运动过程中的向量'(cos ,sin ,1),'2AB AB θθ=-=.设直线AB'与a 所成的夹角为[0,2],απ∈(cos ,sin ,1)(0,1,0)cos a ABθθαθ-⋅==∈ 故[,],42ππα∈所以③正确,④错误. 设直线AB'与b 所成的夹角为β,则[0,2],βπ∈'b cos 'AB b AB β⋅=(cos ,sin ,1)(1,0,0)'b AB θθ-⋅=.θ 当'AB 与a 成60︒角时,=3πα,1sin=322πθα因为22sin+cos =1,θθ所以cos =2θ 所以1cos =.2βθ 因为[0,2],βπ∈所以=3πβ,此时'AB 与b 成60︒角.所以②正确,①错误.三、解答题17.【答案】解:(1)由已知得tan =A 所以2π3A=. 在ABC 中,由余弦定理得22π2844cos3=+-c c ,即2+224=0c c -. 解得c 6=-,(舍去),c =4(2)由题设可得π=2∠CAD ,所以π6∠=∠-∠=BAD BAC CAD .故ABD 面积与ACD 面积的比值为1πsin 26112AB AD AC AD= 又ABC 的面积为142sin 2BAC ⨯⨯∠=所以ABD ∆【解析】(1))先求出角A ,再根据余弦定理求出c 即可;(2)根据ABD ,ACD ,ABC 的面积之间的关系求解即可.18.【答案】解:(1)由题意知,X所有的可能取值为200,300,500,由表格数据知()2162000.290P X +===,数学试卷 第13页(共18页) 数学试卷 第14页(共18页)()363000.490P X ===,()25745000.490P X ++===. 因此X 的分布列为(2200,因此只需考虑200500n ≤≤当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=;若最高气温位于区间[)20,,25,则63002300412002;Y n n n =⨯+--=-() 若最高气温低于20,则6200220048002;Y n n n =⨯+--=-() 因此()20.4120020.480020.26400.4.EY n n n n =⨯+-⨯+-⨯=-() 当200300n <≤时,若最高气温不低于20,则642;Y n n n =-=若最高气温低于20,则6200220048002;Y n n n =⨯+--=-() 因此()()20.40.480020.2160 1.2.EY n n n =⨯++-⨯=+ 所以300n =时,Y 的数学期望达到最大值,最大值为520元.【解析】(1)根据表格提供的数据进行分类求解即可;(2)根据分布列得到关于利润的函数表达式,进而求解最值. 19.解:(1)由题设可得,,ABD CBD ∆≅∆从而AD DC =. 又ACD ∆是直角三角形,所以0=90ACD ∠.取AC 的中点O ,连接,,DO BO 则,.DO AC DO AO ⊥= 又由于ABC ∆是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB ∆中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==,故0∠DOB=90.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA,OB,OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA为单位长,建立如图所示的空间直角坐标系O xyz -,则-(1,0,0),(0(1,0,0),(0,0,1)A B C D .由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得102E ⎛⎫ ⎪ ⎪⎝⎭,,故()()11,0,1,2,0,0,1,2AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭设()=x,y,z n 是平面DAE 的法向量,则0AD AE ⎧=⎪⎨=⎪⎩,,n n即01022x z x y z .-+=⎧⎪⎨-++=⎪⎩,可取113=,⎛⎫⎪ ⎪⎝⎭n .设m 是平面AEC 的法向量,则0,0,AC AE ⎧=⎪⎨=⎪⎩m m 同理可得(01,=-m .则77cos ,==n m n m n m . 所以二面角D AE C --.数学试卷 第15页(共18页) 数学试卷 第16页(共18页)【解析】(1)通过题目中的边角关系证明线线垂直,进而得二面角D AC B --的平面角为DOB ∠,最后利用勾股定理的逆定理得 90DOB ∠=︒,从而得证;(2)根据(1)中得到的垂直关系,建立空间直角坐标系计算即可. 20.【答案】解:(1)设()()11222A x ,y ,B x ,y ,l :x my .=+ 由222x my y x=+⎧⎨=⎩,可得212240则4y my ,y y --==-.又221212==22y y x ,x ,故()21212==44y y x x . 因此OA 的斜率与OB 的斜率之积为12124==14y y x x --,所以OA OB ⊥. 故坐标原点O 在圆M 上.(2)由(1)可得()2121212+=2+=++4=24y y m,x x m y y m +. 故圆心M 的坐标为()2+2,m m ,圆M 的半径r =由于圆M 过点42P -(,),因此0AP BP = ,故()()()()121244220x x y y --+++=,即()()121212124+2200x x x x y y y y -++++= 由(1)可得1212=-4,=4y y x x , 所以2210m m --=,解得11或2m m ==-. 当1m =时,直线l 的方程为20x y --=,圆心M 的坐标为(3,1),圆M 的半径为,圆M 的方程为()()223110x y -+-=.当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91,-42⎛⎫⎪⎝⎭,圆M 的半径为4,圆M 的方程为229185++4216x y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭.【解析】(1)设出l 的方程,通过联立方程,证明直线OA 与OB 的斜率之积为1-即可; (2)根据(1)的结论及P 点的坐标即可求解直线与圆的方程. 21.【答案】解:(1)()f x 的定义域为()0,+∞.①若0a ≤,因为11=-+2<022f a ln ⎛⎫⎪⎝⎭,所以不满足题意; ②若>0a ,由()1a x a f 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x a =是()f x 在()0,+x ∈∞的唯一最小值点.由于()10f =,所以当且仅当1a =时,()0f x ≥. 故1a =.(2)由(1)知当()1,+x ∈∞时,1>0x ln x --. 令1=1+2n x 得111+<22n n ln ⎛⎫ ⎪⎝⎭,从而 2211111111++1+++1+<+++=1-<12222222n n n ln ln ln ⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故21111+1+1+<222n e ⎛⎫⎛⎫⎛⎫⋅⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭而231111+1+1+>2222⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 【解析】(1)通过求函数的导数,对函数的单调性进行研究,求解函数最小值点即可;(2)将问题转化为“和”式不等式,根据数列求和公式求解即可.数学试卷 第17页(共18页) 数学试卷 第18页(共18页)22.【答案】(1)消去参数t 得1l 的普通方程()12l :y k x =-;消去参数m 得2l 的普通方程()212l :y x k=+.设,P x y (),由题设得()()212y k x y x k ⎧=-⎪⎨=+⎪⎩,消去k 得()2240x y y -=≠. 所以C 的普通方程为()2240x y y -=≠. (2)C 的极坐标方程为()()222cossin 40<<2ππ-=≠,.联立()()222cossin 4cos +sin-2=0⎧-=⎪⎨⎪⎩得()cossin =2cos +sin -.故1tan 3=-,从而2291cos =,sin =1010.代入()222cos-sin =4得2=5,所以交点M .【解析】(1)先将两条直线的参数方程化为普通方程,联立,消去k 即可得所求曲线C的普通方程;(2)先将(1)中求得的曲线C 的普通方程化为极坐标方程,再与3l 的极坐标方程联立,求出M 的极径即可.23.【答案】解:(1)()31211232,x f x x ,x ,x .--⎧⎪=--≤≤⎨⎪⎩<,,> 当<1x -时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤ 当>2x 时,由()1f x ≥解得>2x . 所以()1f x ≥的解集为{}1x x ≥.(2)由()2f x x x m ≥-+得212m x x x x ≤+---+,而22212+1+235=+2454x x x x x x x xx ,+---+≤--+⎛⎫-- ⎪⎝⎭≤且当32x =时,2512=4x x x x +---+. 故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.【解析】(1)直接分段讨论即可解决问题;(2)先分离出参数m ,再将问题转化为最值问题,进而求解参数的取值范围.。
2017年高考全国1卷理科数学和答案详解(word版本)(可编辑修改word版)
绝密★启用前2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页,23 小题,满分 150 分。
考试用时 120 分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用 2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4. 考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A ={x |x <1},B ={x | 3x < 1 },则 A . A B = {x | x < 0} C . A B = {x | x > 1}B . A B = R D . A B = ∅2. 如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A . 14C. 123.设有下面四个命题B . π8D . π4p :若复数 z 满足 1∈ R ,则 z ∈ R ; 1zp 2 :若复数 z 满足 z 2 ∈ R ,则 z ∈ R ;p 3 :若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ;p4:若复数 z ∈R,则 z∈R .其中的真命题为A.p1 , p3B.p1 , p4C.p2 , p3D.p2 , p44.记S n 为等差数列{a n } 的前n 项和.若a4 +a5 = 24 ,S6 = 48 ,则{a n } 的公差为A.1 B.2 C.4 D.85.函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1,则满足-1 ≤f (x - 2) ≤ 1的x 的取值范围是A.[-2, 2]B.[-1,1]C.[0, 4]D.[1, 3]6.(1+ 1)(1+x)6展开式中x2的系数为x2A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足3n−2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000 和n=n+2C.A ≤1 000 和n=n+1D.A ≤1 000 和n=n+29.已知曲线C :y=cos x,C :y=sin (2x+ 2π),则下面结论正确的是1 23⎨ ⎩A. 把 C 1 π 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得6到曲线 C 2B. 把 C 1 π上各点的横坐标伸长到原来的2 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得 12 到曲线 C 2C. 把 C 1 1 π 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得26到曲线 C 2D. 把 C 1 1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移2 π个单位长度,12得到曲线 C 210.已知 F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点, 直线 l 2 与 C 交于 D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设 xyz 为正数,且2x = 3y = 5z ,则 A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12. 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4, 8,1,2,4,8,16,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22, 依此类推.求满足如下条件的学科网&最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)
绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学科网&最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。
2017年高考理科数学全国2卷-含答案
输出S K=K+1a =a S =S +a ∙K 是否输入a S =0,K =1结束K ≤6开始2017年普通高等学校招生全国统一考试理科数学(全国2卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
31ii+=+() A .12i + B .12i - C .2i + D .2i -2。
设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53。
我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏 4。
如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5.设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8。
执行右面的程序框图,如果输入的1a =-,则输出的S =() A .2 B .3 C .4 D .59。
2017年全国统一高考真题数学试卷(理科)(新课标ⅲ)(含答案及解析)
2017年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80B.﹣40C.40D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5B.4C.3D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24B.﹣3C.3D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。
2017高考理科数学全国2卷-含答案.pdf
A.1 盏
B. 3 盏
C. 5 盏
D. 9 盏
4.如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,
该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()
A. 90
B. 63
C. 42
D. 36
5.设 x , y 满足约束条件
2x 3y 3 0
2x 3y 3 0
y30
,则 z 2x y 的最小值是()
20.解
uuur NP ( 1)设 P( x,y) ,M ( x0,y0) ,设 N(x0,0) ,
uuuur x x0 , y , NM
0, y0
uuur 由 NP
uuuur 2 NM
得
x 0 =x,
y0
2 y2Biblioteka x2y21
因为 M ( x0,y0)在 C 上,所以 2 2
因此点 P 的轨迹方程为 x2 y2 2
A. 15
B. 9
C. 1
D. 9
6.安排 3 名志愿者完成 4 项工作,每人至少完成 1 项,每项工作由 1 人完成,则不同的安排方式共有()
A.12 种
B. 18 种
C. 24 种
D. 36 种
7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中 有 2 位优秀, 2 位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的
.若
I
1 ,则
()
A. 1, 3
B. 1,0
C. 1,3
D. 1,5
3.我国古代数学名著 《算法统宗》 中有如下问题: “远望巍巍塔七层, 红光点点倍加增, 共灯三百八十一,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省2017年高考理科数学试题及答案(Word 版)(考试时间:120分钟 试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B =I ,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏 4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为( ) A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为( )A .2B .3C .2D .2310. 已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为( )A .3 B .15 C .10 D .3 11. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.112. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A.2-B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
13. 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = .14. 函数()23sin 3cos 4f x x x=+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . 15. 等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 16. 已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .三、解答题:共70分。
解答应写出文字说明、解答过程或演算步骤。
第17~21题为必做题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cos B(2)若6a c += , ABC ∆面积为2,求.b18.(12分)淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率直方图如下:1. 设两种养殖方法的箱产量相互独立,记A 表示事件:旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg,估计A 的概率;2. 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法3.根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)P ()0.050 0.010 0.001 k3.8416.63510.82822()()()()()n ad bc K a b c d a c b d -=++++19.(12分)如图,四棱锥P-ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点.(1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所 成锐角为o 45 ,求二面角M-AB-D 的余弦值20. (12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =u u u r u u u u r .(1) 求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2ef x --<<.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.23.[选修4-5:不等式选讲](10分)已知330,0,2a b a b >>+=,证明: (1)33()()4a b a b ++≥; (2)2a b +≤.参考答案1.D 2.C【解析】1是方程240x x m -+=的解,1x =代入方程得3m =∴2430x x -+=的解为1x =或3x =,∴{}13B =,3.B【解析】设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.4.B【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半.2211π310π3663π22=-=⋅⋅-⋅⋅⋅=V V V 总上5.A【解析】目标区域如图所示,当直线-2y =x+z 取到点()63--,时,所求z 最小值为15-.6.D【解析】只能是一个人完成2份工作,剩下2人各完成一份工作.由此把4份工作分成3份再全排得2343C A 36⋅=7.D【解析】四人所知只有自己看到,老师所说及最后甲说的话.甲不知自己成绩→乙、丙中必有一优一良,(若为两优,甲会知道自己成绩;两良亦然)→乙看了丙成绩,知自己成绩→丁看甲,甲、丁中也为一优一良,丁知自己成绩.8.B【解析】0S =,1k =,1a =-代入循环得,7k =时停止循环,3S =. 9.A【解析】取渐近线by x a =,化成一般式0bx ay -=,圆心()20,= 得224c a =,24e =,2e =.10.C【解析】M ,N ,P 分别为AB ,1BB ,11B C 中点,则1AB ,1BC 夹角为MN 和NP 夹角或其补角(异面线所成角为π02⎛⎤ ⎥⎝⎦,)可知112MN AB =,112NP BC ==, 作BC 中点Q ,则可知PQM △为直角三角形. 1=PQ ,12MQ AC =ABC △中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠14122172⎛⎫=+-⨯⨯⋅-= ⎪⎝⎭,=AC则MQ =MQP △中,MP = 则PMN △中,222cos 2MN NP PM PNM MH NP+-∠=⋅⋅222+-== 又异面线所成角为π02⎛⎤ ⎥⎝⎦,.11.A 【解析】()()2121x f x x a x a e -'⎡⎤=+++-⋅⎣⎦,则()()32422101f a a e a -'-=-++-⋅=⇒=-⎡⎤⎣⎦,则()()211x f x x x e -=--⋅,()()212x f x x x e -'=+-⋅, 令()0f x '=,得2x =-或1x =, 当2x <-或1x >时,()0f x '>, 当21x -<<时,()0f x '<, 则()f x 极小值为()11f =-.12.B【解析】几何法:如图,2PB PC PD +=u u u r u u u r u u u r(D 为BC 中点), 则()2PA PB PC PD PA ⋅+=⋅u u u r u u u r u u u r u u u r u u u r ,要使PA PD ⋅u u u r u u u r 最小,则PA u u u r ,PD u u u r方向相反,即P 点在线段AD 上,则min 22PD PA PA PD ⋅=-⋅u u u r u u u r u u u r u u u r ,即求PD PA ⋅u u u r u u u r最大值,又323PA PD AD +==⨯=u u u r u u u r u u u r ,则223324PA PD PA PD ⎛⎫+⎛⎫⎪⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r≤, 则min 332242PD PA ⋅=-⨯=-u u u r u u u r .解析法:建立如图坐标系,以BC 中点为坐标原点,PD CBA∴()03A ,,()10B -,,()10C ,. 设()P x y ,, ()3PA x y=--u u u r,,()1PB x y =---u u u r,,()1PC x y =--u u u r,,∴()222222PA PB PC x y y ⋅+=-+u u u r u u u r u u u r223324x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,3y =.13.1.96【解析】有放回的拿取,是一个二项分布模型,其中0.02=p ,100n =则()11000.020.98 1.96x D np p =-=⨯⨯= 14.1【解析】()23πsin 3cos 042f x x x x ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,()231cos 3cos 4f x x x =-+-令cos x t =且[]01t ∈, 2134y t t =-++231t ⎛⎫=--+ ⎪ ⎪⎝⎭则当3t =时,()f x 取最大值1. 15.2+1n n 【解析】设{}n a 首项为1a ,公差为d .则3123a a d =+= 414610S a d =+=求得11a =,1d =,则n a n =,()12n n n S +=()()112222122311nk kSn n n n ==++++⨯⨯-+∑L 11111112122311n n n n ⎛⎫=-+-++-+- ⎪-+⎝⎭L122111n n n ⎛⎫=-=⎪++⎝⎭16.6【解析】28y x =则4p =,焦点为()20F ,,准线:2l x =-, 如图,M 为F 、N 中点,故易知线段BM 为梯形AFMC 中位线, ∵2CN =,4AF =, ∴3ME =又由定义ME MF =, 且MN NF =, ∴6NF NM MF =+=17.【解析】(1)依题得:21cos sin 8sin84(1cos )22B B B B -==⋅=-. ∵22sin cos 1B B +=, ∴2216(1cos )cos 1B B -+=, ∴(17cos 15)(cos 1)0B B --=, ∴15cos 17B =, (2)由⑴可知8sin 17B =. ∵2ABC S =△, ∴1sin 22ac B ⋅=, ∴182217ac ⋅=, ∴172ac =, ∵15cos 17B =, l FN M C B AOyx∴22215217a cb ac +-=, ∴22215a c b +-=, ∴22()215a c ac b +--=, ∴2361715b --=, ∴2b =.18.【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B“新养殖法的箱产量不低于50kg ”为事件C而()0.04050.03450.02450.01450.0125P B =⨯+⨯+⨯+⨯+⨯0.62=()0.06850.04650.01050.0085P C =⨯+⨯+⨯+⨯0.66=()()()0.4092P A P B P C == (2)由计算可得2K 的观测值为()222006266383415.70510010096104k ⨯⨯-⨯==⨯⨯⨯∵15.705 6.635> ∴()2 6.6350.001P K ≈≥∴有99%以上的把握产量的养殖方法有关. (3)150.2÷=,()0.20.0040.0200.0440.032-++=80.0320.06817÷=,85 2.3517⨯≈ 50 2.3552.35+=,∴中位数为52.35.19.【解析】zyxM 'MOFPABCDE(1)令PA 中点为F ,连结EF ,BF ,CE .∵E ,F 为PD ,PA 中点,∴EF 为PAD △的中位线,∴12EF AD ∥.又∵90BAD ABC ∠=∠=︒,∴BC AD ∥. 又∵12AB BC AD ==,∴12BC AD ∥,∴EF BC ∥. ∴四边形BCEF 为平行四边形,∴CE BF ∥. 又∵BF PAB ⊂面,∴CE PAB 面∥(2)以AD 中点O 为原点,如图建立空间直角坐标系.设1AB BC ==,则(000)O ,,,(010)A -,,,(110)B -,,,(100)C ,,,(010)D ,,, (00P ,.M 在底面ABCD 上的投影为M ',∴MM BM ''⊥.∵45MBM '∠=︒,∴MBM '△为等腰直角三角形. ∵POC △为直角三角形,OC =,∴60PCO ∠=︒.设MM a '=,CM '=,1OM '=.∴100M ⎛⎫' ⎪ ⎪⎝⎭,,.BM a a '==⇒=.∴11OM'==. ∴100M ⎛⎫'⎪ ⎪⎝⎭,,10M ⎛ ⎝⎭2611AM ⎛⎫=- ⎪ ⎪⎝⎭u u u u r ,,,(100)AB =u u u r ,,.设平面ABM 的法向量11(0)m y z =u r ,,. 1160y z +=,∴(062)m =-u r ,, (020)AD =u u u r ,,,(100)AB =u u u r ,,.设平面ABD 的法向量为2(00)n z =r,,,(001)n =r,,.∴10cos ,m n m n m n⋅<>==⋅u r ru r r u r r . ∴二面角M AB D --的余弦值为10. 20.【解析】 ⑴设()P x y ,,易知(0)N x ,(0)NP y =u u u r ,又1022NM NP ⎛== ⎪⎝⎭u u u u r u u u r ,∴12M x y ⎛⎫⎪⎝⎭,,又M 在椭圆上. ∴22122x += ⎪⎝⎭,即222x y +=. ⑵设点(3)Q Q y -,,()P P P x y ,,(0)Q y ≠,由已知:()(3)1P P P Q P OP PQ x y y y y ⋅=⋅---=u u u r u u u r,,, ()21OP OQ OP OP OQ OP ⋅-=⋅-=u u u r u u u r u u u r u u u r u u u r u u u r ,∴213OP OQ OP ⋅=+=u u u r u u u r u u u r ,∴33P Q P Q P P Q x x y y x y y ⋅+=-+=.设直线OQ :3Q y y x =⋅-,因为直线l 与OQ l 垂直. ∴3l Qk y =故直线l 方程为3()P P Qy x x y y =-+, 令0y =,得3()P Q P y y x x -=-,13P Q P y y x x -⋅=-, ∴13P Q P x y y x =-⋅+,∵33P Q P y y x =+, ∴1(33)13P P x x x =-++=-,若0Q y =,则33P x -=,1P x =-,1P y =±, 直线OQ 方程为0y =,直线l 方程为1x =-, 直线l 过点(10)-,,为椭圆C 的左焦点.21.【解析】 ⑴ 因为()()ln 0f x x ax a x =--≥,0x >,所以ln 0ax a x --≥.令()ln g x ax a x =--,则()10g =,()11ax g x a x x-'=-=, 当0a ≤时,()0g x '<,()g x 单调递减,但()10g =,1x >时,()0g x <; 当0a >时,令()0g x '=,得1x a=. 当10x a <<时,()0g x '<,()g x 单调减;当1x a>时,()0g x '>,()g x 单调增. 若01a <<,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调减,()110g g a ⎛⎫<= ⎪⎝⎭;若1a >,则()g x 在11a ⎛⎫ ⎪⎝⎭,上单调增,()110g g a ⎛⎫<= ⎪⎝⎭;若1a =,则()()min 110g x g g a ⎛⎫=== ⎪⎝⎭,()0g x ≥.综上,1a =.⑵ ()2ln f x x x x x =--,()22ln f x x x '=--,0x >.令()22ln h x x x =--,则()1212x h x x x-'=-=,0x >. 令()0h x '=得12x =, 当102x <<时,()0h x '<,()h x 单调递减;当12x >时,()0h x '>,()h x 单调递增. 所以,()min 112ln 202h x h ⎛⎫==-+< ⎪⎝⎭.因为()22e 2e 0h --=>,()22ln 20h =->,21e 02-⎛⎫∈ ⎪⎝⎭,,122⎛⎫∈+∞ ⎪⎝⎭,,所以在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上,()h x 即()f x '各有一个零点.设()f x '在102⎛⎫ ⎪⎝⎭,和12⎛⎫+∞ ⎪⎝⎭,上的零点分别为02x x ,,因为()f x '在102⎛⎫⎪⎝⎭,上单调减, 所以当00x x <<时,()0f x '>,()f x 单调增;当012x x <<时,()0f x '<,()f x 单调减.因此,0x 是()f x 的极大值点.因为,()f x '在12⎛⎫+∞ ⎪⎝⎭,上单调增,所以当212x x <<时,()0f x '<,()f x 单调减,2x x >时,()f x 单调增,因此2x 是()f x 的极小值点. 所以,()f x 有唯一的极大值点0x .由前面的证明可知,201e 2x -⎛⎫∈ ⎪⎝⎭,,则()()24220e e e e f x f ---->=+>.因为()00022ln 0f x x x '=--=,所以00ln 22x x =-,则 又()()22000000022f x x x x x x x =---=-,因为0102x <<,所以()014f x <. 因此,()201e 4f x -<<. 22.【解析】⑴设()()00M P ρθρθ,,, 则0||OM OP ρρ==,. 000016cos 4ρρρθθθ=⎧⎪=⎨⎪=⎩解得4cos ρθ=,化为直角坐标系方程为()2224x y -+=.()0x ≠⑵连接AC ,易知AOC △为正三角形.||OA 为定值.∴当高最大时,AOB S △面积最大,如图,过圆心C 作AO 垂线,交AO 于H 点 交圆C 于B 点, 此时AOB S △最大 max 1||||2S AO HB =⋅()1||||||2AO HC BC =+2=23.【解析】⑴由柯西不等式得:()()()2255334a b a b a b ++=+=≥1a b ==时取等号. ⑵∵332a b +=∴()()222a b a ab b +-+=∴()()232a b b ab α⎡⎤++-=⎣⎦∴()()332a b ab a b +-+=∴()()323a b aba b +-=+由均值不等式可得:()()32232a b a b ab a b +-+⎛⎫= ⎪+⎝⎭≤ ∴()()32232a b a b a b +-+⎛⎫ ⎪+⎝⎭≤ ∴()()33324a b a b ++-≤∴()3124a b +≤ ∴2a b +≤ 当且仅当1a b ==时等号成立.。