因式分解全章讲义包括练习

合集下载

因式分解ppt讲义

因式分解ppt讲义

整式乘法 整式乘法 因式分解
(5).2πR+ 2πr= 2π(R+r)
因式分解
下列代数式从左到右旳变形是因式分解吗?
(1) a2 a a(a 1)
Байду номын сангаас

(2)(a 3)(a 3) a2 9
不是
(3)4x2 4x 1 (2x 1)2
不是
(4)x2 3x 1 x(x 3) 1
(5) x2 1 x( x 1 ) x
阐明
• 本课是在学生学习了整式乘法旳基础上,研究对整 式旳一种变形即因式分解,是把一种多项式转化成 几种整式相乘旳形式,它与整式乘法是互逆变形旳 关系.
你能发觉这两组等式之间 旳联络和区别吗? 它们旳左 右两边有何特点?
a(a+1)=__a_2+_a_____
a2+a=( a ) ( a+1)
(a+b)(a-b)=__a_2_-_b_2____ a2 - b2= ( a+b) ( a-b )
a2-2ab+b2=(a-b)2
十字相乘法
要点: 一拆(拆常数项), 二乘(十字相乘),
三验(验证十字相乘后旳和是否等于一次项.
x2 px q
x
a
x
b
x2+Px+q=(x+a)(x+b),其中p=a+b,q=ab
一般环节与注意点
1 一般环节: 先提公因式,再利用公式或十字相乘,后分组分 解,最终是重新整顿再分解.
注意: 1、要分解到不能再分为止,括号内合并同 类项后注意把数字因数提出来。
2、因式分解旳成果是连乘式。 3、因式分解旳成果里没有中括号。

因式分解全章教案

因式分解全章教案

因式分解全章教案一、教学目标1. 让学生掌握因式分解的基本概念和方法。

2. 培养学生运用因式分解解决实际问题的能力。

3. 提高学生对数学逻辑思维和运算能力的培养。

二、教学内容1. 因式分解的定义和意义。

2. 常用的因式分解方法:提取公因式法、十字相乘法、分组分解法、公式法等。

3. 因式分解的应用:解决代数方程、不等式等问题。

三、教学重点与难点1. 教学重点:因式分解的方法和技巧。

2. 教学难点:因式分解的应用,特别是解决复杂方程和不等式。

四、教学方法1. 采用讲解法、示范法、练习法、讨论法等相结合的教学方法。

2. 通过例题讲解和练习,让学生熟练掌握因式分解的方法。

3. 组织学生进行小组讨论,培养学生的合作精神和解决问题的能力。

五、教学过程1. 导入:引导学生回顾整式的乘法,引入因式分解的概念。

2. 讲解:讲解因式分解的定义和意义,介绍常用的因式分解方法。

3. 示范:通过例题示范,让学生了解因式分解的步骤和技巧。

4. 练习:布置练习题,让学生巩固因式分解的方法。

5. 讨论:组织学生进行小组讨论,分享解题心得和方法。

7. 作业:布置作业,让学生进一步巩固因式分解的能力。

六、教学评估1. 课堂问答:通过提问学生,了解学生对因式分解概念和方法的理解程度。

2. 练习批改:对学生的练习作业进行批改,了解学生对因式分解技巧的掌握情况。

3. 小组讨论观察:观察学生在小组讨论中的表现,了解学生的合作能力和解决问题的能力。

七、教学拓展1. 邀请数学专家进行专题讲座,深入讲解因式分解的高级技巧和应用。

2. 组织学生参加因式分解竞赛,提高学生的学习兴趣和竞争意识。

3. 开展数学研究性学习,让学生探索因式分解在实际问题中的应用。

八、教学反思2. 学生反馈:收集学生对课堂教学的反馈意见,了解学生的学习需求。

九、教学资源1. 教材:选用权威的数学教材,提供丰富的例题和练习题。

2. 教学课件:制作精美的教学课件,辅助讲解和展示。

因式分解全章教案和练习题

因式分解全章教案和练习题

因式分解全章教案和练习题一、教学目标1. 让学生掌握因式分解的基本概念和方法。

2. 培养学生运用因式分解解决实际问题的能力。

3. 提高学生对数学逻辑思维和运算能力的培养。

二、教学内容1. 因式分解的定义和意义2. 提公因式法3. 公式法4. 交叉相乘法5. 分解因式的应用三、教学重点与难点1. 重点:掌握因式分解的方法和步骤。

2. 难点:灵活运用因式分解解决实际问题。

四、教学方法1. 采用启发式教学,引导学生主动探索因式分解的方法。

2. 通过例题讲解,让学生逐步掌握因式分解的技巧。

3. 设计练习题,巩固所学知识,提高学生应用能力。

五、教学过程1. 导入:回顾整式的相关知识,引出因式分解的概念。

2. 讲解:讲解因式分解的定义、意义及基本方法。

3. 示范:举例子,演示因式分解的步骤和技巧。

4. 练习:让学生独立完成练习题,检验掌握程度。

5. 总结:对本节课的内容进行归纳总结,强调重点和难点。

6. 作业布置:布置课后练习题,巩固所学知识。

教案练习题:1. 请简述因式分解的意义和作用。

3. 分解因式:x^2 5x + 64. 分解因式:x^2 + 2x + 15. 分解因式:x^2 46. 分解因式:3x^2 97. 分解因式:2x^3 8x8. 分解因式:x^2 + 3x + 29. 分解因式:4x^3 16x10. 分解因式:x^2 2x 3答案:1. 因式分解的意义和作用:将一个多项式表示为几个整式的乘积形式,便于理解和计算,可以用来解决一些实际问题,如求解多项式方程等。

2. 因式分解方法:a. 提公因式法:适用于多项式中存在公因式的情况。

b. 公式法:适用于能够运用公式进行分解的情况,如平方差公式、完全平方公式等。

c. 交叉相乘法:适用于两组数或多组数交叉相乘后能够得到原多项式的情况。

3. 分解因式:x^2 5x + 6 = (x 2)(x 3)4. 分解因式:x^2 + 2x + 1 = (x + 1)^25. 分解因式:x^2 4 = (x + 2)(x 2)6. 分解因式:3x^2 9 = 3(x^2 3) = 3(x + √3)(x √3)7. 分解因式:2x^3 8x = 2x(x^2 4) = 2x(x + 2)(x 2)8. 分解因式:x^2 + 3x + 2 = (x + 1)(x + 2)9. 分解因式:4x^3 16x = 4x(x^2 4) = 4x(x + 2)(x 2)10. 分解因式:x^2 2x 3 = (x 3)(x + 1)因式分解全章教案和练习题(续)六、教学内容1. 结合公式法与十字相乘法2. 提公因式与公式法的综合运用3. 分解因式在实际问题中的应用4. 因式分解的进一步拓展七、教学重点与难点1. 重点:掌握不同因式分解方法的组合运用。

整式乘法与因式分解 全章热门考点专练(2个概念3个运算2个公式3个应用4个技巧3种思想)解析版

  整式乘法与因式分解 全章热门考点专练(2个概念3个运算2个公式3个应用4个技巧3种思想)解析版

第9章整式乘法与因式分解全章热门考点专练(2个概念3个运算2个公式3个应用4个技巧3种思想)【知识导图】【知识清单】2个概念【例题1】(22-23八年级上·山东威海·期末)多项式2324223126x y x y x y --的公因式是()A .23x y B .233x y C .223x y D .3xy【答案】C【分析】本题考查了公因式的定义.确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.根据多项式的公因式的确定方法,即可求解.【详解】解:多项式2324223126x y x y x y --的公因式是223x y ,故选C【变式1】(23-24八年级下·山东济南·阶段练习)把多项式33128ab a b +分解因式,应提的公因式是()A .abB .4abC .2abD .24a b【答案】B【分析】本题主要考查了分解因式,观察可知两个单项式的公因式为4ab ,据此可得答案.【详解】解:()3322128432ab a b ab b a +=+,则多项式33128ab a b +分解因式,应提的公因式是4ab ,故选:B【变式2】(23-24七年级下·江苏徐州·期中)把多项式32612x x y -分解因式,应提取的公因式是.【答案】26x 【分析】本题考查了公因式,提公因式26x ,即可求解.【详解】解:把多项式32612x x y -分解因式,应提取的公因式是26x ,故答案为:26x 【变式3】(23-24八年级上·山东东营·阶段练习)()218b a b -与()312a b -的公因式是.【答案】()26a b -【分析】本题考查了公因式;根据公因式的定义,找出系数的最大公约数6,相同因式的最低指数次幂,即可确定公因式.【详解】解:∵18和12的最大公约数是6,∴()218b a b -与()312a b -的公因式是()26a b -,故答案为:()26a b -【例题2】(2023·江苏无锡·模拟预测)下列因式分解正确的是()A .2243(2)1x x x -+=--B .2232(2)()x xy y x y x y -+=--C .42224(2)(2)x x x x x x -=+-D .3244(2)x x x x ++=+【答案】B【分析】此题考查了十字相乘法因式分解,以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.根据十字相乘因式分解,提公因式法与公式法因式分解逐项因式分解判断即可.【详解】解:A 、243(1)(3)x x x x -+=--,故本选项不符合题意;B 、2232(2)()x xy y x y x y -+=--,故本选项符合题意;C 、24222(4)(2(2)4)x x x x x x x =--=+-,故本选项不符合题意;D 、无法因式分解,故本选项不符合题意;故选:B【变式1】(2024·甘肃兰州·一模)因式分解:24a -=()A .()()44a a +-B .()()42a a +-C .()()24a a +-D .()()22a a +-【答案】D【分析】本题考查了因式分解的定义以及运用平方差公式进行因式分解,把一个多项式分解成几个整式的乘积的形式,据此即可作答.【详解】解:24a -=()()22a a +-故选:D【变式2】(23-24八年级下·四川成都·阶段练习)下列等式从左到右的变形,是因式分解的是()A .()22326x x x x-=-B .221234m n m n=⋅C .22111x x x x x x ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭D .()()22x y x y x y -=+-D 、()()22x y x y x y -=+-,是因式分解,故本选项符合题意;故选:D【变式3】(2024·广东中山·一模)下列各式从左到右的变形,因式分解正确的是()A .()2a ab a ab+=+B .()233a ab a a b +-=+-C .()222824ab a a b -=-D .()()22824a a a a --=+-【答案】D【分析】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式叫做因式分解,根据因式分解的定义逐项判断即可.【详解】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .()()()222824222ab a a b a b b -=-=+-,分解不彻底,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D3个运算1.单项式乘单项式【例题3】(2024年上海市普陀区中考二模数学试题)下列运算正确的是()A .234a a a +=B .32a a -=C .233a a a ⋅=D .32a a a÷=【答案】C【分析】本题主要考查合并同类项,单项式乘以单项式以及单项式除以单项式,运用相关运算法则求出各选项的结果,再进行判断即可【详解】解:A.34a a a +=,原选项计算错误,不符合题意;B.32a a a -=,原选项计算错误,不符合题意;C.233a a a ⋅=,计算正确,符合题意;D.33a a ÷=,原选项计算错误,不符合题意;故选:C【变式1】(23-24九年级下·甘肃庆阳·阶段练习)计算:()()326ab a --=.【答案】336a b 【分析】本题主要考查单项式乘单项式,直接根据运算法则进行计算即可.【详解】解:()()326ab a--()()()23=61a a b -⨯-⋅⋅⋅336a b =,故答案为:336a b 【变式2】(23-24七年级下·浙江·期中)计算:223a b a ⋅=.【答案】36a b【分析】本题主要考查了单项式乘单项式,直接利用单项式乘单项式运算法则计算得出答案.【详解】解:23236a b a a b ⋅=.故答案为:36a b【变式3】(2024·甘肃陇南·一模)计算:232x x ⋅=.【答案】52x 【分析】本题主要考查了单项式乘以单项式,熟知相关计算法则是解题的关键.【详解】解:23522x x x ⋅=,故答案为:52x2.单项式乘多项式【例题4】(2024·陕西汉中·一模)计算()()3221m m -⋅+的结果是()A .762m m --B .662m m -+C .752m m --D .652m m --【答案】A【分析】本题考查了幂的乘方以及单项式乘多项式,先算幂的乘方,再算单项式乘多项式,即可作答.【详解】解:()()3221m m -⋅+()626m m =-+6621m m m =-⋅-⋅762m m =--,故选:A【变式1】(22-23七年级下·广西崇左·期中)计算:()21x x -=()A .31x -B .3x x -C .3x x+D .2x x-【答案】B【分析】本题考查了单项式乘多项式,根据单项式乘多项式法则(单项式与多项式的每一项都相乘)计算即可.【详解】解:()231x x x x-=-故选:B【变式2】(23-24七年级下·江苏泰州·期中)计算()2323⋅-=x x .计算:()31x x -=.【答案】518x 233x x -/233x x -+【分析】此题考查了积的乘方和单项式乘以单项式运算,单项式乘以多项式运算,应用积的乘方和单项式乘以单项式运算法则进行计算;利用单项式乘以多项式运算法则求解即可.【详解】()2323x x ⋅-3229x x =⋅518x =;()31x x -233x x =-.故答案为:518x ,233x x-【变式3】(2024七年级下·江苏·专题练习)计算()()223235a ab ab =-⋅-.【答案】3233610a b a b -+【分析】根据单项式乘多项式的运算法则(把多项式的每一项都与单项式相乘),即可求解,本题考查了单项式与多项式的乘法,掌握计算法则是解题的关键.【详解】解:()()2233233235610a ab ab a b a b -⋅-=-+.故答案为:3233610a b a b -+.3.多项式乘多项式【例题5】(23-24七年级下·河南周口·阶段练习)定义()*1a b b a =+,例如()()()2*11121x x x x x x +=++=++.则()()2*2x x -+=()A .24x -B .244x x +-C .24x x +-D .22x x +-【答案】D【分析】本题考查新定义运算,多项式乘多项式,根据定义()*1a b b a =+将()()2*2x x -+变形为()()221x x +-+,再按照多项式乘多项式运算法则计算即可.【详解】解:()()()()2*2221x x x x -+=+-+()()21x x =+-222x x x =-+-22x x =+-,故选D【变式1】(23-24七年级下·江苏无锡·阶段练习)下列计算错误的是()A .()()21454x x x x ++=++B .()()2236m m m m -+=+-C .()()245920y y y y +-=+-D .()()236918x x x x -=--+【答案】C【分析】本题主要考查多项式乘法的运算,掌握多项式乘法的运算法则是解题的关键.根据运算法则,逐一对选项进行分析即可.【详解】解:A .2(1)(4)54x x x x ++=++,正确,故该选项不符合题意;B .()()2236m m m m -+=+-,正确,故该选项不符合题意;C .2(4)(5)20y y y y +-=--,错误,故该选项符合题意;D .()()236918x x x x --=-+,正确,故该选项不符合题意.故选:C【变式2】.(22-23七年级下·四川成都·期中)若()()221222x x x mx -+=+-,则m 的值是.【答案】3【分析】本题考查了多项式与多项式的乘法运算,根据多项式与多项式的乘法法则把等号左边化简,然后与右边比较即可求解.【详解】解:∵()()22221224223222x x x x x x x x mx -++--=+-=+-=,∴3m =.故答案为:3【变式3】(2024七年级下·江苏·专题练习)计算:()()34a b a b +-=.【答案】2212a ab b +-【分析】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加解答.【详解】解:2222(3)(342)1412a b a b a ab ab b a ab b +-=++=---故答案为:2212a ab b+-2个公式1.平方差公式【例题6】(22-23七年级下·四川成都·期中)下列多项式的乘法中,可以用平方差公式进行计算的是()A .()()22a b b a +-B .()()m n m n -+-C .()()22x y x y -+D .()()11n n ++【答案】A【分析】本题主要考查了平方差公式,解题的关键是根据平方差公式()()22a b a b a b +-=-,逐项进行判断即可.【详解】解:A .()()22224a b b a b a +-=-,则A 符合题意;B .()()m n m n -+-不能用平方差公式计算,则B 不符合题意;C .()()22x y x y -+不能用平方差公式计算,则C 不符合题意;D .()()11n n ++不能用平方差公式计算,则D 不符合题意;故选:A【变式1】(20-21七年级下·浙江杭州·期中)一个长方形的宽为2x y -,长为2x y +,则这个长方形的面积是()A .224x y -B .224x y +C .222x y -D .222x y +【答案】A【分析】本题主要考查平方差公式的应用,掌握平方差公式的结构特征是解题的关键.根据长方形的面积公式进行计算即可.【详解】解:由长方形的面积公式可得,22(2)(2)4x y x y x y +-=-.故选:A【变式2】(23-24七年级下·河南周口·阶段练习)如果一个数()()222121a n n =+--,那么我们称这个数a 为“奇差数”.下列数中为“奇差数”的是()A .56B .82C .94D .126【答案】A【分析】本题考查了平方差公式的应用,首先化简()()2221218a n n n =+--=,再看四个选项中,能够整除8的即为答案.理解“奇差数”的定义,正确化简是解题关键.【详解】解: ()()()()222121212121218a n n n n n n n =+--=++-+-+=,∴“奇差数”是8的倍数,A ,7856=÷,能够被8整除,因此56是“奇差数”;B ,828102÷= ,不能够被8整除,因此82不是“奇差数”;C ,948116÷= ,不能够被8整除,因此94不是“奇差数”;D ,1268156÷= ,不能够被8整除,因此126不是“奇差数”;故选:A【变式3】(23-24九年级下·山东聊城·阶段练习)下列计算正确的是()A .235a b ab +=B .()()22a b a b a b+-=-C .2236a b ab ⋅=D .()235a a =【答案】B【分析】本题考查整式的运算,根据合并同类项,平方差公式,单项式乘单项式,幂的乘方的法则,逐一进行计算,判断即可.【详解】解:A 、2,3a b ,不是同类项,不能合并,不符合题意;B 、()()22a b a b a b +-=-,符合题意;C 、22236a b a b ⋅=,不符合题意;D 、()236a a =,不符合题意;故选:B2.完全平方公式【例题7】(23-24七年级下·江苏徐州·期中)下列计算正确的是()A .236a a a ⋅=B .326()x x -=C .632a a a ÷=D .222()x y x y +=+【答案】B【分析】本题考查了同底数幂的乘除法,积的乘方,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A.235a a a ⋅=,故该选项不正确,不符合题意;B.326()x x -=,故该选项正确,符合题意;C.633a a a ÷=,故该选项不正确,不符合题意;D.222()2x y x xy y +=++,故该选项不正确,不符合题意;故选:B【变式1】(23-24八年级下·山东威海·期中)不论x ,y 取何实数,代数式224614x x y y -+-+总是()A .非负数B .正数C .负数D .非正数【答案】B【分析】本题主要考查了完全平方公式的应用,利用完全平方公式把原式变形为()()22231x y -+-+,据此可得答案.【详解】解:224614x x y y -+-+()()2244691x x y y =-++-++()()22231x y =-+-+,∵()()222030x y -≥-≥,,∴()()222311x y -+-+≥,∴224614x x y y -+-+总是正数,故选:B【变式2】(23-24九年级下·河南郑州·期中)下列计算正确的是()A .321a a -=B .()2236m m -=C .2=D .()222244a b a ab b -=-+【答案】D【分析】本题考查了完全平方公式,合并同类项,积的乘方等运算法则,熟练掌握这些法则是解此题的关键.根据合并同类项的法则、积的乘方、完全平方公式进行计算即可.故选D【变式3】(2024·广西桂林·一模)下列运算正确的是()A .()22420x x -=B .()236x x x -⋅=C .()222x y x y +=+D 92=故选:A 3个应用1.应用因式分解解决整除问题【例题8】(2024·浙江嘉兴·一模)若k 为任意整数,则()()222122k k +--的值总能()A .被2整除B .被3整除C .被5整除D .被7整除【答案】B【分析】本题主要考查了因式分解的意义,利用平方差公式把()()222122k k +--因式分解为()341k -,据此可得答案.【详解】解:()()222122k k +--()()()()21222122k k k k =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()341k =-∵k 为任意整数,∴()341k -为整数,∴()341k -一定能被3整除,∴()()222122k k +--的值总能被3整除,故选:B【变式1】(23-24九年级下·河北邯郸·阶段练习)对于任何整数()0a a ≠,多项式()2354a +-都能()A .被9整除B .被a 整除C .被1a +整除D .被1a -整除【答案】C【分析】此题考查了因式分解,利用平方差公式分解,即可做出判断,熟练掌握平方差公式是解本题的关键.【详解】解:原式()()()()3523523371a a a a =+++-=++,则对于任何整数a ,多项式()2354a +-都能被1a +整除.故选:C【变式2】(2024·河南郑州·一模)对任意整数n ,2(21)25n +-都能()A .被3整除B .被4整除C .被5整除D .被6整除【答案】B【分析】根据平方差公式,分解因式后判断,熟练掌握公式法分解因式是解题的关键.【详解】∵()()()()()()2222125215215215432n n n n n n +-=+-=+++-=+-,∴故一定能被4整除,故选B【变式3】(2024·河北邯郸·模拟预测)已知()()844414141-=+-= ,则按此规律推算841-的结果一定能()A .被12整除B .被13整除C .被14整除D .被15整除【答案】D【分析】本题考查了因式分解,根据平方差公式进行因式分解,即可求解.【详解】解:()()()()()()()84442242414141414141414115-=+-=++-=++⨯,故选:D2.应用因式分解解决几何问题【例题9】(23-24七年级下·全国·假期作业)已知,,a b c 为三角形ABC 的三边长,且满足222244b c a c a b -=-,则三角形ABC 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .锐角三角形【答案】A【详解】因为222244b c a c a b -=-,即()()()2222222c b a a b a b -=+-,所以()()()22222220a b a b c b a +---=,()()222220a b a b c -++=,()()()2220a b a b a b c +-++=.因为,,a b c 是三角形的三边长,所以2220,0a b a b c +>++>,所以0a b -=,即a b =,所以三角形ABC 为等腰三角形【变式1】(2024八年级·全国·竞赛)已知ABC 的三边为a 、b 、c ,且满足1111a b c a b c-+=-+,则ABC 的形状为.()()()0a b b c a c ∴--+=,∴a b =或b c =.故答案为:等腰三角形【变式2】(23-24八年级上·全国·课堂例题)(1)若a ,b ,c 是三角形的三边长,且满足关系式2222a bc c ab -=-,试判断这个三角形的形状.(2)若a ,b ,c 是ABC 的三边长,且满足2220a b c ab bc ac ++---=,则ABC 是什么形状?【答案】(1)三角形是等腰三角形;(2)ABC 是等边三角形【分析】本题考查因式分解的应用;(1)把2222a bc c ab -=-通过因式分解求值即可;(2)通过把2222222220a b c ab bc ac ++---=配方后根据非负数的性质判断即可.【详解】(1)∵2222a bc c ab -=-,∴()22220a c ab bc -+-=,∴()()()20a c a c b a c +-+-=,∴()()20a c a c b -++=.∵20a c b ++≠,∴0a c -=,即a c =,∴这个三角形是等腰三角形.(2)∵2220a b c ab bc ac ++---=,∴2222222220a b c ab bc ac ++---=.∴()()()2222222220a b ab b c bc c a ac +-++-++-=,即222()()()0a b b c a c -+-+-=.∴0a b -=,0b c -=,0a c -=,∴a b =,b c =,a c =,∴a b c ==,∴ABC 是等边三角形【变式3】(23-24八年级上·全国·课堂例题)(1)已知ABC 的三边长a ,b ,c 满足22661830a b a b c +--++-=,试判断ABC 的形状.(2)已知a ,b ,c 是ABC 的三边长,且满足2212852a b a b +=+-,求c 的取值范围.∴3.应用因式分解进行简便计算【例题10】(20-21八年级下·陕西汉中·期末)利用因式分解简便计算6999329999⨯+⨯-正确的是()A .()996932991019999⨯+=⨯=B .()9969321991009900⨯+-=⨯=C .()99693219910210098⨯++=⨯=D .()99693299992198⨯+-=⨯=【答案】B【分析】利用提公因式分法将99提公因式进行计算即可判断.【详解】解:69×99+32×99-99=99(69+32-1)=99×100=9900.故选:B .【点睛】本题考查了因式分解的应用,解决本题的关键是掌握因式分解【变式1】(22-23八年级下·贵州贵阳·期中)利用因式分解可以简便计算:5799449999⨯+⨯-分解正确的是()A .()995744⨯+B .()9957441⨯+-C .()9957441⨯++D .()99574499⨯+-【答案】B【分析】利用提取公因式法分解因式即可得.【详解】解:原式57994499199=⨯+⨯-⨯()9957441=⨯+-,故选:B .【点睛】本题考查了因式分解,熟练掌握提取公因式法是解题关键【变式2】(22-23九年级上·广东惠州·开学考试)利用因式分解简便运算:2252.847.2-=.【答案】560【分析】利用平方差法进行因式分解,再进行计算;【详解】原式=()()52.847.252.847.2+⨯-=100 5.6⨯=560.故答案为:560.【点睛】本题考查利用公式法因式分解进行简便运算.熟练掌握公式法因式分解是解题的关键【变式3】(22-23七年级下·湖南怀化·期中)利用因式分解进行简便运算:(1)443424.7 1.365555-⨯+⨯-⨯;(2)22899202899101+⨯+【答案】(1)24-(2)610【分析】(1)运用提公因式法进行因式分解即可求解;(2)运用公式法进行因式分解即可求解.【点睛】本题主要考查因式分解,懂得运用提公因式法和公式法进行因式分解来进行简便运算是解题的关键4个技巧1.巧用乘法公式计算【例题11】(22-23八年级下·河南平顶山·阶段练习)代数式22494610x y x y ++-+中x ,y 取何值时代数式值最小?最小值是多少?【点睛】此题考查了配方法求最值,原式可化为两个完全平方式和一个常数和的形式.利用完全平方公式变形,根据完全平方式恒大于等于0,即可求出最小值,熟练掌握配方法是解题的关键【变式】(22-23七年级下·江苏宿迁·期末)已知2610A x x =-+.(1)当2x =-、0、3时,分别求出A 的值;(2)证明:无论x 取什么值,A 的值都不小于1.【答案】(1)当2x =-时,26A =;当0x =时,10A =;当3x =时,1A =(2)见解析【分析】(1)根据题意可得()2261031A x x x =-+=-+,将2x =-、0、3,分别代入代数式,即可求解;(2)根据题意可得()2261031A x x x =-+=-+,根据平方的非负性,可得1A ≥,即可得证.【详解】(1)解:∵()2261031A x x x =-+=-+∴当2x =-时,()223125126A =--+=+=;当0x =时,()203110A =-+=;当3x =时,()23311A =-+=;(2)证明:∵()2261031A x x x =-+=-+,()230x -≥∴1A ≥,【点睛】本题考查了代数式求值,因式分解的应用,熟练掌握完全平方公式是解题的关键2.先分组在分解【例题12】(21-22八年级下·陕西咸阳·阶段练习)阅读材料:常用的分解因式方法有提公因式法、公式法等.但有的多项式只用上述方法就无法分解,如22424x y x y -+-,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程为:22424x y x y-+-()()22424x y x y =-+-…分组()()()2222x y x y x y =-++-…组内分解因式()()222x y x y =-++…整体思想提公因式这种分解因式的方法叫分组分解法.根据以上材料,解答下列问题:(1)按上述方法因式分解:①22428x y y x --+;②323927m m m --+;(2)已知a ,b ,c 为ABC 的三边,且2222b ab c ac +=+,试判断ABC 的形状并说明理由.【答案】(1)①()()()222y x x --+;②()2(3)3m m -+;(2)ABC 是等腰三角形,理由见解析;【分析】(1)①本题考查因式分解,根据例题分组提取公因式,再结合公式法因式分解即可得到答案;②本题考查因式分解,根据例题分组提取公因式,再结合公式法因式分解即可得到答案;(2)本题考查因式分解的应用,将2222b ab c ac +=+因式分解即可得到积等于0,即可得到答案;【详解】(1)解:①原式()()22424y x x =---()()()()22222y x x x x =-+--+()()()222y x x =--+;②原式()()2393m m m =---()()239m m =--()2(3)3m m =-+;(2)解:ABC 是等腰三角形,理由如下,2222b ab c ac +=+ ,22220b c ab ac ∴-+-=,()()()20b c b c a b c -++-=,()()20a b c b c ++-=,∵a ,b ,c 为ABC 的三边,0a ∴>,0b >,0c >,20a b c ∴++≠,0∴-=b c ,即b c =,ABC ∴ 是等腰三角形【变式1】(2024八年级下·全国·专题练习)因式分解:2221a ab b -+-.【答案】()()11a b a b -+--【分析】本题主要考查了因式分解,解题的关键是熟练掌握完全平方公式和平方差公式,先根据完全平方公式进行因式分解,然后再用平方差公式进行因式分解.【详解】解:2221a ab b -+-()21=--a b ()()11a b a b =-+--【变式2】(23-24八年级上·四川眉山·期中)因式分解(1)224x y -;(2)2291839x xy y x y -++-.【答案】(1)()()22x y x y +-(2)()()363x y x y -++【分析】本题考查了因式分解:(1)运用平方差公式进行因式分解,即可作答.(2)先分组分解,再进行提公因式,即可作答.【详解】(1)解:224x y -()()22x y x y =+-(2)解:2291839x xy y x y-++-222693939x xy y x y xy y =++--++()()()233333x y x y y x y=+-+++()()3333x y y x y =+-++()()363x y x y =-++【变式3】(23-24八年级上·四川眉山·期中)因式分解:(1)2321025xy y x y -++;(2)3223a a b ab b +--.【答案】(1)2(5)y x y -(2)2()()a b a b +-【分析】本题考查的因式分解,熟知分组分解法与提取公因式法、公式法分解因式是解题的关键.(1)先提取公因式,再利用完全平方公式进行因式分解即可;(2)利用分组分解法因式分解即可.【详解】(1)解:2321025xy y x y-++22(1025)y xy y x =-++2(5)y x y =-;(2)解:3223a ab ab b +--3223()()a ab ab b =+-+22()()a ab b a b =+-+22()()a b a b =+-2()()a b a b =+-3.拆项后用公式法【例题13】(22-23八年级上·贵州黔西·期末)我们已经学过将一个多项式分解因式的方法有提公因式法、运用公式法和十字相乘法,其实分解因式的方法还有分组分解法、拆项法,等等.①分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法叫作分组分解法.例如:()()()2222222424()222x xy y x xy y x y x y x y -+-=-+-=--=-+--.②拆项法,将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法叫作拆项法.例如:()()()()222223214(1)2121213x x x x x x x x x +-=++-=+-=+-++=-+(1)仿照以上方法,按照要求分解因式:①(分组分解法)22441x x y +-+;②(拆项法)268x x -+;(2)已知:a ,b ,c 为ABC 的三条边,222446170a b c a b c ++---+=,求ABC 的周长.【答案】(1)()()2121x y x y ++-+①;()()42x x --②(2)ABC 的周长为7【分析】本题主要考查公式法因式分解:(1)①将22441x x y +-+组成为()22441x x y ++-分解即可.②将268x x -+拆项为()2691x x -+-分解即可;(2)分组拆项配成完全平方式的和形式()()()2226944440a b a b c c ++--+++=-,利用非负性计算即可.【详解】(1)22441x x y +-+①()22441x x y =++-2221()x y =+-()()2121x y x y =++-+268x x -+②2691x x =-+-2(3)1x =--()()3131x x =---+()()42x x =--(2)222446170a b c a b c ++---+=Q ,()()()2224444690a a b b c c ∴-++-++-+=.222(2)(2)(3)0a b c ∴-+-+-=.2a ∴=,2b =,3c =.2237a b c ∴++=++=.ABC ∴ 的周长为7【变式1】(23-24八年级上·山东济宁·期末)观察下面因式分解的过程:432233x x x x +++-4322333x x x x x =+-++-()()222131x x x x x =+-++-()()2231x x x =++-上面因式分解过程的第一步把22x 拆成了223x x -+,这种因式分解的方法称为拆项法.请用上面的方法完成下列题目:(1)22268a b a b -++-;(2)42231x x -+.【答案】(1)()()24a b a b +--+(2)()()221515x x x x +++-【分析】本题考查因式分解,理解题中拆项法是解答的关键.(1)将8-拆成19-,然后重新组合,利用完全平方公式和平方差公式分解因式即可;(2)将223x -拆成22225x x -,然后重新组合,利用完全平方公式和平方差公式分解因式即可.【详解】(1)解:22268a b a b -++-222619a b a b =-+++-()()222169a a b b =++--+()()2213a b =+--()()1313a b a b =++-+-+()()24a b a b =+--+;(2)解:42231x x -+2242251x x x =+-+()4222125x x x =++-()()22215x x =+-()()221515x x x x =+++-【变式2】(23-24八年级上·河北张家口·期末)我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法等等.①分组分解法:例如:()()()()2222222424222x xy y x xy y x y x y x y -+-=-+-=--=---+.②拆项法:例如:()()()()()22222321412121213x x x x x x x x x +-=++-=+-=+-++=-+.仿照以上方法分解因式:(1)22441x x y +-+;(2)2223x xy y +-.(3)解决问题:已知a 、b 、c 、为ABC 的三边长,2254210a b ab b +--+=,且ABC 为等腰三角形,求ABC的周长.【答案】(1)()()2121x y x y +++-(2)()()3x y x y +-(3)ABC 的周长是5【分析】本题考查因式分解及其应用,分组分解法,拆项法因式等知识,掌握完全平方公式和平方差公式是解题的关键.(1)运用分别分组分解法将2441x x ++看出一组,再用平方差公式因式分解即可;(2)运用拆项法将23y -拆成224y y -,再运用(1)的方法因式分解即可;(3)将2254210a b ab b +--+=化成平方和等于0的形式,从而求出a 、b ,再运用等腰三角形的定义分类讨论即可得解.【详解】(1)解:22441x x y +-+22441x x y =++-()2221x y =+-()()2121x y x y =+++-;(2)2223x xy y +-22224x xy y y =++-()224x y y =+-()()22x y y x y y =+++-()()3x y x y =+-;(3)2254210a b ab b +--+= ,22244210a ab b b b --∴+++=,22(2)(1)0a b b ∴-+-=,20a b ∴-=,10b -=,2a ∴=,1b =,ABC 是等腰三角形,c 2∴=或1c =(不符合三角形三边关系,舍去)ABC ∴ 的周长2215=++=【变式3】(2023八年级上·全国·专题练习)利用拆项法,解决下列问题:(1)分解因式:265x x -+;(2)分解因式:2245a ab b +-.【答案】(1)()()15x x --;(2)()()5a b a b +-.【分析】(1)将5拆解成94-,再根据完全平方公式得()2232x --,然后利用平方差公式进一步分解;(2)将25b -拆解成2249b b -,再根据完全平方公式得()2229a b b +-,然后利用平方差公式进一步分解.【详解】(1)原式2694x x =-+-,()2232x =--,()()3232x x =---+,()()15x x =--;(2)原式222449a ab b b =++-,()2229a b b =+-,()()2323b a b a b b =+++-,()()5a b a b =+-.【点睛】此题考查了因式分解的应用,解题时要注意在拆项变形的过程中不要改变式子的值4.换元法【例题14】(23-24八年级上·福建福州·期中)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小胡同学用换元法对多项式()()2221234x x x x ---++进行因式分解的过程.解:设22x x y -=,原式()()134y y =-++(第一步)221y y =++(第二步)()21y =+(第三步)()2221x x =-+(第四步)请根据上述材料回答下列问题:(1)小胡同学的解法中,第二步到第三步运用了因式分解的______;A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小胡同学因式分解的结果不彻底,请你写出该因式分解的最后结果;(3)请你用换元法对多项式()()22661881x x x x ++++进行因式分解.【答案】(1)C(2)()41x -(3)()43x +【分析】(1)根据利用完全平方公式()2222a ab b a b ±+=±分解因式即可得;(2)括号里面可以再次用完全平方公式进行因式分解;(3)设26y x x =+,利用换元法和完全平方公式分解因式即可得.【详解】(1)解:()22211y y y ++=+,则第二步到第三步运用了因式分解的完全平方公式法,故选:C .(2)解:原式()2221x x =-+()221x ⎡=⎤⎣⎦-()41x =-,故答案为:()41x -;(3)解:设26y x x =+,()()22661881x x x x ++++则原式()1881y y =++21881y y =++()29y =+()2269x x =++()223x ⎡⎤=+⎣⎦()43x =+.【点睛】本题考查了因式分解——换元法和完全平方公式法,熟练掌握利用公式法分解因式是解题的关键【变式1】(23-24八年级上·全国·课时练习)因式分解:(1)(添项)44x +;(2)(拆项)3234x x -+;(3)(换元)()()2221224x y x y +-+-+.【答案】(1)()()222222x x x x ++-+(2)()()221x x -+(3)()()2268x y x y +-+-【分析】根据分解因式的方法求解即可.【详解】(1)原式()2222222222x x x =+⨯+-⨯()()22222x x =+-()()222222x x x x =++-+.(2)方法一:原式32224x x x =--+()()32224x x x =---()()()2222x x x x =--+-()()222x x x =---()()()221x x x =--+()()221x x =-+.方法二:原式32244x x x =+-+()()()21411x x x x =+--+()()2144x x x =+-+()()212x x =+-.(3)设2x y a +=,则原式()()21224a a =--+21448a a =-+()()68a a =--()()2268x y x y =+-+-.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等【变式2】(22-23七年级下·江苏镇江·阶段练习)【积累经验】小明在分解因式22(21)(23)4x x x x +-+++时,提出了如下的思路:小明:我发现223x x ++比221x x +-多4,若设221x x m +-=,那么223x x ++就可以表示为m +4.则222(21)(23)4(4)444x x x x m m m m +-+++=++=++=2(2)m +.因为221x x m +-=,所以原式=224(21)(1)x x x ++=+.在解决数学问题时,可以将某个式子看作一个整体,用一个字母去代替它,从而使问题得到简化,这样的方法叫做换元法.换元法的关键是设元.上述问题中,不仅能设221x x m +-=,也可以将22x x +或223x x ++或……设为n .请你任选一种设元的方法,分解因式;【灵活应用】(1)()()12320222342023A =+++⋯++++⋯+,()()1232023232022B =+++⋯+++⋯+,探究A 与B 的数量关系,并说明理由;(2)如图,一户人家有一块长方形土地ABCD ,30AB =,24AD =,其内部有一条宽度为a 的L 型种植区域①,其余部分(长方形)AEFG 为种植区域②,测量区域②的面积为340;阿凡提有两块正方形的土地AGHI 与AJKE 跟这户人家的种植区域②相邻,正方形土地的边长分别为AG 与AE .这户人家对阿凡提的两块地垂涎已久,提出要将自己的土地与阿凡提交换,阿凡提有没有损失呢?请你运用所学的数学知识进行解释.【答案】积累经验:4(1)x +;灵活运用:(1)2023A B -=;(2)没有损失,见解析【分析】积累经验:可以设22x x n +=,将原式中的22x x +全部用n 表示,然后分解因式即可;灵活运用:(1)设2342022a +++⋯+=,把A 、B 各部分用a 表示,然后作差,即可求出A 、B 的关系;(2)设AE x =,AG y =,用含a 的式子分别表示出AE 、AG ,然后根据()2222x y x y xy +=+-表示出交换之后土地的面积,在进行比较即可求解.【详解】积累经验:解:设22x x n +=,则2211x x n +-=-,那么2233x x n ++=+.原式()()134n n =-++=2234n n +-+=2(1)n +因为22x x n +=,所以原式224(21)(1)x x x =++=+灵活运用:解:(1)设2342022a +++⋯+=()()21202320242023A a a a a =++=++()2120232024B a a a a=++=+所以2023A B -=.(2)由题意得,设30AE a x =-=,24AG a y =-=,.则6x y =-,340.xy =所以()222236680716x y x y xy +=+=+=-,即阿凡提的两块土地面积之和为716,而四边形ABCD 的面积为3024720716⨯=>.所以交换土地对阿凡提来说没有损失.【点睛】本题考查了因式分解—换元法、完全平方公式的应用,看懂和理解题例是求解的关键【变式3】(22-23八年级下·山东济南·期末)阅读以下材料,并按要求完成相应任务:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式()()2241479x x x x +++++进行因式分解的过程.解:设24x x y +=,则原式()()179y y =+++(第一步)2816y y =++(第二步)()24y =+(第三步)()2244x x =++(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的A .提取公因式法B .平方差公式法C .完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;请你用换元法对多项式()()229639614x x x x -+-+-进行因式分解.【答案】(1)C(2)()42x +,()431x -【分析】(1)根据利用完全平方公式()2222a ab b a b ±+=±分解因式即可得;(2)利用完全平方公式分解因式即可得出最后结果;设296x x y -=,利用换元法和完全平方公式分解因式即可得.【详解】(1)解:()228164y y y ++=+,则第二步到第三步运用了因式分解的完全平方公式法,故选:C .(2)解:设24x x y +=,则原式()()179y y =+++2816y y =++()24y =+()2244x x =++()222x ⎡⎤=+⎣⎦()42x =+,故答案为:()42x +.对多项式()()229639614x x x x -+-+-,设296x x y -=,则原式()()314y y =+-+2234y y =+-+221y y =++()21y =+()22961x x -=+()2231x ⎡⎤=-⎣⎦()431x =-.【点睛】本题考查了因式分解——换元法和完全平方公式法,熟练掌握利用公式法分解因式是解题的关键3种思想1:整体思想【例题15】(22-23八年级下·贵州六盘水·期末)先阅读下列材料,再解答下列问题:材料:因式分解:()()221x y x y ++++.解:将“()x y +”看成整体,令()x y A +=,则原式()22211A A A =++=+.再将“A ”还原,得原式()21x y =++.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:因式分解:()()44a b a b ++-+.【答案】()22a b +-【分析】本题主要考查整体思想的方法进行因式分解,掌握乘法公式,整体思想的方法是解题的关键.根据材料提示,令a b M +=,再结合完全平方公式进行因式分解即可求解.【详解】解:()()44a b a b ++-+令a b M +=,∴原式()44M M =-+。

第4讲 因式分解 讲义

第4讲 因式分解  讲义

八升九数学精品(第4讲 讲义)因式分解专题一 因式分解的意义把一个多项式化成几个整式的积的形式,这种变形叫做因式分解. (1)因式分解专指多项式的恒等变形,即等式的左边必须是多项式.(2)因式分解的要求:分解的结果要以积的形式表示;每个因式必须是整式;因式分解必须分解到每个因式都不能再分解为止.(3)因式分解与整式乘法是互逆变形.如果把整式乘法看做是一个变形过程,那么多项式的因式分解就是它的逆过程;如果把多项式的因式分解看做是一个变形过程,那么整式乘法就是它的逆过程.下面式子从左边到右边的变形是因式分解的是 ( ) A.x 2-x-2=x(x-1)-2 B.(a+b)(a-b)=a 2-b 2C.x 2-4=(x+2)(x-2)D.x 2-)1)(1(12yx y x y -+=【针对训练1】 ①若mx+A 能分解为m(x-y+2),则A= . ②下列式子是因式分解的是 ( )A.x(x-1)=x 2-1B.x 2-x=x(x+1)C.x 2+x=x(x+1)D.x 2-x=(x+1)(x-1) 专题二 提公因式法我们把多项式中各项都含有的相同因式,叫做这个多项式的公因式.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.把下列各式因式分解: (1)3x+x 3; (2)7x 3-21x 2; (3)8a 3b 2-12ab 3c+ab; (4)-24x 3+12x 2-28x.【针对训练2】 把2a(x-y)+6b(y-x)因式分解.【基础巩固】1.把多项式4a 2b+10ab 2分解因式时,应提取的公因式是 .2.因式分解:x 2-3x= .3.分解因式:12x 3y-18x 2y 2+24xy 3= · . 【能力提升】4.把下列各式因式分解.(1)3x 2y-6xy (2)5x 2y 3-25x 3y 2(3)-4m 3+16m 2-26m (4)15x 3y 2+5x 2y-20x 2y 3.专题三 公式法运用平方差公式因式分解: 64(a-b)2-4(a+b)2.【针对训练3】 ①分解因式: 81(a+b)2-4(a-b)2.②尝试将它们的结果分别写成两个因式的乘积:(1)x 2-25= ; (2)9x 2-y 2= ; (3)9m 2-4n 2= .运用完全平方公式因式分解:(a+b)2+10(a+b)+25.【针对训练4】①因式分解:x3y3-2x2y2+xy.②把下列完全平方式因式分解:(1)x2+14x+49;(2)(m+n)2-6(m+n)+9.③分解因式:(a-b)2-4b2= .④分解因式:a3b-4ab= .专题四因式分解的应用39992+3999能被4000整除吗?【针对训练5】计算:1998+19982-19992.将一条400 cm长的金色彩带剪成两段,恰好可用来镶嵌两张大小不同的正方形壁画的边(不计算接头处),已知两张壁画的面积相差4000 cm2.这条金色彩带应剪成多长的两段?【针对训练6】王师傅铸造了如右图所示的一种零件,在边长为10 cm的正方形内部有四个大小不同的圆,它们的直径分别为 1 cm,2 cm,3 cm,4 cm,他想知道阴影部分的面积,请你帮他算一算(π取3.14).专题五易错点对分解因式的方法掌握得不够彻底例7.分解因式:36x2-36x+9.例8.分解因式:9a2-4b2.例9.分解因式:-3m2n+6mn-3n.例10.分解因式:21a2-ab+21b2.。

初中数学因式分解讲义

初中数学因式分解讲义

数学学科辅导讲义a 1a 2c 2c 1a 1c 2 + a 2c 1在二次三项式2(0)ax bx c a ++≠中,如果二次项系数a 可以分解成两个因数之积,即12a a a =⨯,常数项c 可以分解成两个因数之积,即12c c c =⨯,把1a ,2a ,1c ,2c 排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即21122()()ax bx c a x c a x c ++=++.四.分组分解法分组分解方法比较灵活,其关键在于分组要适当,它的分组原则是:①分组后能直接提取公因式;②分组后能直接运用公式。

五.换元法将一个较复杂的代数式中的某一部分看作一个整体,用一个新字母替代它,从而简化运算过程,分解后要注意将字母还原.例如,4223x x --,设2x y =,则原式223y y =--()()31y y =-+,最后再换回来就是()()2222331y y x x =--=-+.六.拆、添项(选讲)将多项式中的某一项拆成两项或多项,或者在多项式中添上两个符号相反的项,使得便于用分组分解法进行分解因式.例如:()()()()2244222224444222222x x x x x x x x x x +=++-=+-=+++-.典型例题题型一:提取公因式例1、 3322222491421a bc a b c ab c +-在分解因式时,应提取的公因式是( ) A . 27abcB . 227ab cC . 2227a b cD . 337a bc例2、 若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( ) A . -2B . 2C . -50D . 50变式1、分解因式:(1)324x x y - (2)324(1)2(1)q p p -+-(3)22x y xy - (4)22x xy -(5)(2x +y)(2x -y)+(2x +y) 2题型二:公式法例1、若多项式x 2+mx+4能用完全平方公式分解因式,则m 的值可以是( ) A . 4B . -4C . ±2D . ±4变式1、分解因式:(1)48610369b x c y - (2)22(2)(2)x y x y +--(3)8881x y - (4)()()223223a b a b +-+(5)16x 4-1 (6)x 2+4x-9y 2+4(7)x 2-4xy+4y 2+6xz-12yz+9z 2题型三:十字相乘例1、把下列多项式因式分解(1)21232x x ++ (2)2109x x ++ (3)2568x x +- (4)26525x x --变式1、(1)2532x x -- (2)2310x x -- (3)22273x xy y -+ (4)22675x xy y --题型四:分组分解法典型例题1、把下列多项式因式分解(1)23442x x x -+- (2)24263a ab a b +++ (3)2244a b a b -+-(4)22944a ab b --- (5)2221693025m a ab b -+- (6)22194m n mn -++变式1、把下列多项式因式分解(1)224484a b a b ab +-+- (2)222xy xz y yz z --+- (3)题型三 换元法典型例题1、分解因式:(1) (2)题型四 拆项填项法典型例题、分解因式:()()224341256x x x x -+--+2(3)5(3)14p p ----441x+随堂检测1.多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1B.x+1C.x2﹣1D.(x﹣1)2 2. 如图中的四边形均为矩形,根据图形,写出一个正确的等式_________.3.分解因式:(1)2249a b-(2)24162516a y b-+4.分解因式:(1)9x2-(2x-y)2;(2)(2x+y)2-(x-2y)2;(3) 9(a+b)2-16(a-b)2;(4) 9(3a+2b)2-25(a-2b)2.5.分解因式:(1)x4-16;(2)(a+b)4-(a-b)4.32265 x x x +--42471 x x-+6.利用因式分解计算:(1)492-512;(2)22201120122010-.7、在计算(x +y )(x -2y )-my (nx -y )(m 、n 均为常数)的值时,把x 、y 的值代入计算,粗心的小晨和小红把y 的值看错了,但结果都等于9.细心的小敏把正确的x 、y 的值代入计算,结果恰好也是9.为了探个究竟,她又把y 的值随机地换成了2006,结果竟然还是9.根据以上情况,请你求出m 、n 和x 的值.8观察:2325331⨯=⨯+⨯2426442⨯=⨯+⨯填空:=⨯+⨯7553___________ =⨯+⨯8664___________ ...用含有n 的代数式表示你的猜想:___________________________ 请说明猜想的正确性:课后练习作业1、如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ) A .22(25)cm a a +;B .2(315)cm a +;C .2(69)cm a + ;D .2(615)cm a +作业2、下列运算正确的是 ( ) A. 22222)(n mn m n m ++=--B. 12)1(422++=+a a a C.()2222b ab a b a ++=+-D.221200420032005-=⨯。

专题4.14 因式分解(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)

专题4.14 因式分解(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)

专题4.14因式分解(全章复习与巩固)(知识讲解)【知识点一】因式分解与整式乘法的识别把一个多项式化成几个整式的积的形式,叫因式分解。

【知识点二】因式分解的方法(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++【知识点三】因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法。

【典型例题】类型一、因式分解的概念✭✭求参数1.下列各式从左到右的变形属于因式分解的是()A .()2212x x x x+=+B .()()2111a a a -=+-C .()()2111x x x +-=-D .()222312a a a -+=-+【答案】B【分析】根据因式分解的定义解答即可.解:A .()2212x x x x +=+不是将多项式化成整式乘积的形式,故A 选项不符合题意;B .()()2111a a a -=+-是将多项式化成整式乘积的形式,故B 选项符合题意;C .()()2111x x x +-=-不是将多项式化成整式乘积的形式,故C 选项不符合题意;D .()222312a a a -+=-+不是将多项式化成整式乘积的形式,故D 选项不符合题意;故选:D .【点拨】本题主要考查了分解因式的定义,掌握定义是解题的关键.即把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式.举一反三:【变式】下列各式,从左到右的变形中,属于因式分解的是()A .()a m n am an+=+B .()()2222a b c a b a b c+-=+--C .()2221x x x x -=-D .()()2166446x x x x -+=+-+【答案】C【分析】根据因式分解的定义去判断即可.解:A 、因为()a m n am an +=+是单项式乘以多项式,不是因式分解,故A 不符合题意;B 、因为()()2222a b c a b a b c +-=+--不是因式乘积的形式,不是因式分解,故B 不符合题意;C 、因为()2221x x x x -=-是因式分解,故C 符合题意;D 、因为()()2166446x x x x -+=+-+不是因式乘积的形式,不是因式分解,故D 不符合题意;故选C .【点拨】本题考查了因式分解即把一个多项式写成几个因式积的形式,熟练掌握定义是解题的关键.2.三个多项式:24x y y -,22x y xy -,244x y xy y -+的最大公因式是()A .()2y x +B .()4y x -C .2(2)y x -D .()2y x -【答案】D【分析】先把三个多项式因式分解,再进行解答即可.解:∵()()2422x y y y x x -=+-,()222x y xy xy x -=-,2244(2)x y xy y y x -+=-,∴最大公因式是()2y x -.故选D .【点拨】本题主要考查了最大公因式,熟练掌握最大公因式的定义,将三个多项式分解因式,是解题的关键.举一反三:【变式】下列各组中,没有公因式的一组是()A .ax bx -与by ay -B .ab ac -与ab bc -C .268xy x y -与43x -+D .()3a b -与()2b ya -【答案】B【分析】将每一组因式分解,找公因式即可解:A.()ax bx x a b -=-,()by ay y a b -=--,有公因式a b -,故不符合题意;B.()ab ac a b c -=-,()ab bc b a c -=-,没有公因式,符合题意;C.()268234xy x y xy x -=-,4334x x -+=-,有公因式34x -,故不符合题意;D.()3a b -与()2b y a -有公因式a b -,故不符合题意;故选:B【点拨】本题考查公因式,熟练掌握因式分解是解决问题的关键类型二、公因式✭✭提取公因式进行因式分解3.若关于x 的二次三项式23x x k -+的因式是()2x -和()1x -,则k 的值是____.【答案】2【分析】先利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k 的值即可.解:由题意得:()()2232132x x k x x x x -+=--=-+,2k ∴=.故答案为:2.【点拨】此题考查了多项式乘以多项式法则,因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.举一反三:【变式】已知多项式4x mx n ++能分解为()()2223x px q x x +++-,则p =______,q =______.【答案】2-;7.【分析】把()()2223x px q x x +++-展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.解:∵()()2223x px q x x +++-432322222333x px qx x px qx x px q=+++++---()()()432223233x p x q p x q p x q=++++-+--4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+-=⎩,解得:27p q =-⎧⎨=⎩.故答案为:2-,7.【点拨】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.4.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;【答案】(1)()24bc a c -;(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点拨】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】把下列多项式因式分解:(1)2x xy x -+;(2)22m n mn mn -+;(2)33322292112x y x y x y -+;(4)()()22x x y y x y -+-.【答案】(1)()1x x y -+;(2)()1mn m n -+;(3)()223374x y xy x -+;(4)()()22x y x y-+【分析】(1)直接提取公因式x ,进而分解因式得出答案;(2)直接提取公因式mn ,进而分解因式得出答案;(3)直接提取公因式223x y ,进而分解因式得出答案;(4)直接提取公因式()x y -,进而分解因式得出答案.(1)解:()21x xy x x x y -+=-+(2)解:()221m n mn mn mn m n -+=-+(3)解:()33322222921123374x y x y x y x y xy x +--=+(4)解:()()()()2222xx y y x y x y x y -+-=-+【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.类型三、公式法进行因式分解➽➼平方差公式✭✭完全平方公式5.因式分解:(1)﹣2a 3+12a 2﹣18a(2)9a 2(x ﹣y )+4b 2(y ﹣x )【答案】(1)﹣2a (a ﹣3)2(2)(x ﹣y )(3a +2b )(3a ﹣2b )【分析】(1)原式提取公因式,再利用完全平方公式分解即可.(2)原式变形后,提取公因式,再利用平方差公式分解即可.解:(1)原式=﹣2a (a 2﹣6a +9)=﹣2a (a ﹣3)2(2)原式=(x ﹣y )(9a 2﹣4b 2)=(x ﹣y )(3a +2b )(3a ﹣2b ).【点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.举一反三:【变式】因式分解:(1)224x y -(2)32296a a b ab -+【答案】(1)()()22x y x y +-;(2)()23a a b -.【分析】(1)利用平方差公式进行因式分解即可;(2)先提公因式,然后利用完全平方公式进因式分解即可.解:(1)22224(2)(2)(2)x y x y x y x y -=-=+-;(2)232222(96)(963)=-+=--+a a ab b a b a a b b a a .【点拨】本题主要考查了多项式的因式分解,解题的关键是熟练掌握各种因式分解的方法,并会根据多项式的特征选取合适的方法,还要注意要分解彻底.6.分解因式:(1)2225()9()m n m n +--(2)22441a b a --+【答案】(1)()()444m n n m ++;(2)()()2121a b a b +---【分析】(1)将m n +和m n -看成两个整体,利用平方差公式分解因式得到()()8228m n m n ++,再提取公因式即可.(2)利用分组法先将原式分成2441a a -+和2b -两组,2441a a -+可利用完全平方公式分解,再和2b -组合,由平方差公式分解即可.(1)解:2225()9()m n m n +--()()()()5353m n m n m n m n =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()55335533m n m n m n m n =++-+-+()()8228m n m n =++()()444m n m n =++.(2)22441a b a --+()22441a a b =-+-()2221a b =--()()2121a b a b =-+--()()2121a b a b =+---.【点拨】本题考查了因式分解的方法,分组法、公式法和提公因式法本题都涉及了,熟练掌握完全平方公式、平方差公式是解题的关键.举一反三:【变式】分解因式:(1)228168ax axy ay -+-(2)()22222936x y x y +-;【答案】(1)28()a x y --;(2)22(3)(3)x y x y +-【分析】(1)先提公因式,再根据完全平方公式分解因式即可;(2)根据平方差公式和完全平方公式分解因式即可.解:(1)原式228(2)a x xy y =--+28()a x y =--(2)原式2222(9)(6)x y xy =+-2222(96)(96)x y xy x y xy =+++-22(3)(3)x y x y =+-【点拨】本题考查了因式分解,涉及提公因式法和公式法,熟练掌握分解因式的步骤是解题的关键.类型四、因式分解➽➼十字相乘法✭✭分组分解法7.将下列各式分解因式:(1)256x x --;(2)21016x x -+;(3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)用十字相乘法,分解因式即可;(2)用十字相乘法,分解因式即可;(3)用十字相乘法,分解因式即可.(1)解:∵78x x ⨯-,即78x x x -=-,∴256(7)(8)x x x x --=+-;(2)解:∵28x x ⨯--,即2810x x x --=-,∴21016(2)(8)x x x x -+=--;(3)解:22103(310)x x x x --=-+-,∵52x x ⨯-,即523x x x -=,∴原式(5)(2)x x =-+-.【点拨】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号.二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【变式】用十字相乘法解方程:(1)2560x x +-=;(2)2230x x --=.【答案】(1)6x =-或1x =;(2)3x =或=1x -【分析】根据十字相乘法可分别求解(1)(2).(1)解:2560x x +-=(6)(1)0x x +-=,60x +=或10x -=,6x =-或1x =;(2)解:2230x x --=,(3)(1)0x x -+=,30x -=或10x +=,3x =或=1x -.【点拨】本题主要考查利用因式分解进行求解方程,熟练掌握因式分解是解题的关键.8.因式分解:323412x x y x y +--.【答案】(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式=324312x x x y y-+-=22(4)3(4)x x y x -+-=2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解.举一反三:【变式】因式分解:(1)a 2-ab +ac -bc ;(2)x 3+6x 2-x -6.【答案】(1)(a -b)(a +c);(2)(x +1)(x -1)(x +6)试题分析:根据因式分解的方法进行因式分解即可.解:(1)原式()()()()a a b c a b a b a c =-+-=-+.(2)原式()()()()()()()()()322226616116116x x x x x x x x x x x =-+-=-+-=-+=+-+类型五、因式分解综合9.将下列各式分解因式.(1)3416x x -;(2)()2212a x ax +-;(3)()24a b a b --;(4)()()()()2233a b a b a b b a -+++-.【答案】(1)()()41212x x x +-;(2)()221a x x ++;(3)()22a b --;(4)()()28a b a b -+【分析】(1)先提取公因式,然后进一步利用平方差公式进行因式分解即可;(2)利用提公因式法进行因式分解即可;(3)先将括号去掉,然后移项,根据完全平方公式进行因式分解即可;(4)利用提公因式法以及平方差公式综合进行因式分解即可.解:(1)3416x x -=()2414x x -=()()41212x x x +-;(2)()2212a x ax +-=()221a x x ⎡⎤+-⎣⎦=()221a x x ++;(3)()24a b a b --=2244ab a b --=()2244a ab b --+=()22a b --;(4)()()()()2233a b a b a b b a-+++-=()()()()2233a b a b a b a b -+-+-=()()()2233a b a b a b ⎡⎤-+-+⎣⎦=()()()4422a b a b a b -+-=()()28a b a b -+.【点拨】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.举一反三:【变式】因式分解:(1)2273xy x-(2)2292a b ab+-+(3)228x x --【答案】(1)3(3+1)(31)-x y y ;(2)(3)(3)+++-a b a b ;(3)(2)(4)x x +-【分析】(1)根据提取公因式,平方差公式,即可分解因式;(2)根据完全平方公式法、平方差公式,即可分解因式;(3)根据十字相乘法分解因式,即可得到答案.解:(1)2273xy x-23(91)x y =-3(31)(31)x y y =+-;(2)2292a b ab+-+2229a ab b =++-22()3a b =+-(3)(3)a b a b =+++-;(3)228x x --(2)(4)x x =+-.【点拨】本题主要考查分解因式,掌握提取公因式法、公式法、十字相乘法分解因式,是解题的关键.类型五、因式分解的应用10.阅读材料,回答下列问题:若22228160m mn n n -+-+=,求m ,n 的值.解:∵22228160m mn n n -+-+=,∴222(2)(816)0m mn n n n -++-+=,即22()(4)0m n n +--=,又2()0m n -≥,2(4)0n -≥,∴2()0m n -=,2(4)0n -=,∴4n =,4m =.(1)若22440a b a +-+=,求a ,b 的值;(2)已知ABC 的三边a ,b ,c 满足2222220a b c ab ac ++--=.判断ABC 的形状,并说明理由.【答案】(1)2,0a b ==;(2)等边三角形,理由见分析.【分析】(1)参照例题,将等式转化为两个完全平方的和等于0的形式,进而求得a ,b 的值;(2)方法同(1).解:(1)∵22440a b a +-+=,∴()22440a a b ++-=,即2220()a b -+=,又22(2)0,0a b -≥≥,22(2)0,0a b ∴-==,2,0a b ∴==.(2)∵2222220a b c ab ac ++--=,2222(2)(2)0a ab b b ac c ∴-++-+=,即22()()0a b b c -+-=,又22()0,()0a b b c -≥-≥,∴22()0,()0a b b c -=-=,,a b b c ∴==,a b c ==∴.ABC ∴ 是等边三角形.【点拨】本题考查了因式分解的应用,完全平方公式,掌握完全平方公式是解题的关键.举一反三:【变式】已知:1a b +=,154ab =-(1)求22ab a b +的值(2)求22a b +的值(3)若22a b k -=-,求非负数k 的值【答案】(1)154-;(2)172;(3)k =【分析】(1)将代数式22ab a b +用提公因式法因式分解为()ab a b +,再将1a b +=,154ab =-代入计算即可;(2)将22a b +变形为()22a b ab +-,再将1a b +=,154ab =-代入计算即可;(3)类似的方法将()2a b -变形为()24a b ab +-,代入计算后求出a b -的值,继而根据22a b k -=-计算出符合条件的k 的值即可.(1)解:∵1a b +=,154ab =-,∴()221515144ab a b ab a b +=+=-⨯=-;(2)解:∵1a b +=,154ab =-,∴()2222a b a b ab+=+-15124⎛⎫=-- ⎪⎝⎭1512=+172=;(3)解:∵()()224a b a b ab-=+-1514164⎛⎫=--= ⎪⎝⎭,∴4a b -=±当4a b -=时,224k -=,k =∵k 为非负数,∴k =当4a b -=-时,224k -=-,22k =-(舍去),∴k =【点拨】本题考查了完全平方公式的应用以及提取公因式分解因式,能够灵活应用完全平方公式是解题的关键.11.阅读材料:()()()2222244454529232322x x x x x x x ⎛⎫⎛⎫+-=++--=+-=+++- ⎪ ⎪⎝⎭⎝⎭()()51x x =+-上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:223x x +-;(2)求多项式2610x x +-的最小值;(3)已知a 、b 、c 是△ABC 的三边长,且满足222506810a b c a b c +++=++,求△ABC 的周长.【答案】(1)()()31x x +-;(2)19-;(3)12【分析】(1)先配方后,再利用平方差公式进行因式分解;(2)配方后根据平方的非负性求最小值;(3)配方后根据非负性求出a ,b ,c 的值即可.(1)解:223x x +-222113x x =++--2(1)4x =+-(12)(12)x x =+++-;(3)(1)x x =+-;(2)2226106919(3)19x x x x x +-=++-=+-,∵2(3)0x +≥,∴多项式2610x x +-的最小值为19-;(3)由题意得:2226810500a b c a b c ++---+=,∴2226981610250a a b b c c +++++--=-.∴222(3)4)(0(5)a b c -+-+-=.又∵2(3)0a -≥,2(04)b -≥,2(05)c -≥,∴30a -=,40b -=,50c -=,∴3a =,4b =,5c =,∴ABC 的周长为34512++=.【点拨】本题考查了配方法因式分解以及因式分解的应用,掌握完全平方公式是解题的关键.举一反三:【变式】先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:因为2222690m mn n n ++-+=,所以2222690m mn n n n +++-+=.所以22()(3)0m n n ++-=.所以0,30m n n +=-=.所以3,3m n =-=.问题:(1)若224212120++-+=x y xy y ,求xy 的值;(2)已知a ,b ,c 是等腰ABC 的三边长,且a ,b 满足2210841a b a b +=+-,求ABC 的周长.【答案】(1)-4;(2)13或14【分析】(1)仿照例题的思路,配成两个完全平方式,然后利用偶次方的非负性,进行计算即可解答;(2)仿照例题的思路,配成两个完全平方式,再利用偶次方的非负性,先求出a ,b 的值,然后分两种情况,进行计算即可解答.解:(1)∵22421212x y xy y ++-+222231212x xy y y xy =+++-+2()3x y =++2(2)y -,=∴0x y +=,20y -=,∴2x =-,2y =,∴2(2)4=⨯-=-xy .(2)∵2210841a b a b +=+-,∴2210258160a a b b -+++=-,∴22(5)(4)0a b -+-=,∴50a -=,40b -=,∴5a =,4b =.由于ABC 是等腰三角形,所以5c =或4.①若5c =,则ABC 的周长为55414++=;②若4c =,则ABC 的周长为54413++=.所以ABC 的周长为13或14.【点拨】本题考查了配方法的应用,偶次方的非负性,三角形的三边关系,熟练掌握完全平方式是解题的关键.。

因式分解概念讲解及练习题

因式分解概念讲解及练习题

第一讲:因式分解(注:在看以下内容时,用红笔标注不懂的地方以及自己感觉容易粗心出错的地方,并记下来) 知识点: 一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系. 因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: )(c b a ac ab +=+2. 概念内涵:(1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+ 3. 易错点点评:(1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式:(1)平方差公式: ))((22b a b a b a -+=- (2)完全平方公式: 222)(2b a b ab a +=++222)(2b a b ab a -=+-3. 易错点点评:因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底. 4. 运用公式法: (1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号. (2)完全平方公式: ①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍. 5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法:1. 分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式. 3. 注意: 分组时要注意符号的变化. 五. 十字相乘法:1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅=, 21c c c ⋅=,且满足1221c a c a b +=,往往写成的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ 2. 二次三项式q px x ++2的分解:))((2b x a x q px x ++=++abq ba p =+=3. 规律内涵:(1)理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.(2)如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p. 4. 易错点点评:(1)十字相乘法在对系数分解时易出错;(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.c 2a 2c 1a 1ba 11(注:不必一周之类完成,能完成多少完成多少)第一次作业一、填空(每空1分,共15分)1、把一个多项式化为的形式,叫做因式分解。

因式分解全章练习题

因式分解全章练习题

因式分解练习题一、提取公因式专项训练一:确定下列各多项式的公因式。

1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+-8、()()2x m n y m n +++9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。

1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。

1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=- 7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。

(单项式因式分解)1、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把下列各式分解因式。

因式分解-讲义(精华版)

因式分解-讲义(精华版)

两课时(90分钟)一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

制胜必备1、理解因式分解的概念2、掌握因式分解的基本方法:提取公因式法、公式法等3、能对简单多项式进行因式分解,并结合实际来应用希尔伯特说:“当我听别人讲解某些数学问题时, 常觉得很难理解,甚至不可能理解。

这时便想,是否可以将问题化简些呢往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。

”秘诀:天才是一份灵感加上九十九份的汗水所成就的!(2) 运用公式法1 因式分解的定义及与整式乘法的关系(1) 因式分解:把一个多项式化为几个整式的积的形式 (2) 因式分解与整式乘法是互逆运算. 2 因式分解的常用方法 (1) 提公因式法如果一个多项式的各项都含有一个相同的因式,那么这个相同的因式,就叫做公因式. 提公因式法用公式可表示为ma+mb+mc=m ( a+b+c ),其分解步骤为:①确定多项式的公因式:公因式为各项系数的最大公约数与相同字母的最低次幕的乘积. ②将多项式除以它的公因式从而得到多项式的另一个因式.将乘法公式反过来对某些多项式进行因式分解,这种方法叫做公式法,即a2—b2= (a+b) (a-b), a2士2ab + b2= (a+b)2.3 •因式分解解题的思考顺序(1) 一提:如果多项式的各项有公因式,那么先提公因式;(2) 二用:如果各项没有公因式,那么可以尝试运用公式法来分解;(3) 三查:分解因式,必须进行到每一个多项式都不能再分解为止;分解因式的结果应为整式积的形式。

1 •下列因式分解中,正确的是( )1 1(A) 1- 4 x2= 4 (X + 2) (x- 2) (B)4x — x2 -2 = - 2(x- 1)2(C) ( x- y )3-y- X) = (X -y) (x -y + 1) ( x - -1)(D) x2—2 _x + y = ( x + y) (x -y -1)2 .下列各等式(1) a2—b2 = (a + b) (a-),(2) x2 43x +2 = x(x—+ 211,(4 )x2 + 十) 1(3 ) x2―2 —( x + y) (x -y )从左到右是因式分解的个数为(-2 —( x -x )(A) 1 个(B) 2 个(C) 3 个(D) 4 个3 .若x2+ mx + 25是一个完全平方式,则m的值是( )(A) 20 (B)10 (C)士20 (D)士104. 若x2+ mx + n 能分解成(x+2 ) (x -5),则m= _________ ,n= ;5. 若二次三项式2x2+x+5m在实数范围内能因式分解,则m= _____6 .若x2+kx—6有一个因式是(x—2),则k的值是_______________ ;【兵法案例】分解因式:a3—2a2+a= _______【作战策略】因式分解常用的方法有提公因式法、公式法、分组分解法和十字相乘法。

《因式分解》全章复习与巩固(基础)知识讲解

《因式分解》全章复习与巩固(基础)知识讲解

《因式分解》全章复习与巩固(基础)【学习目标】1. 理解因式分解的意义,了解分解因式与整式乘法的关系; 2.掌握提公因式法分解因式,理解添括号法则; 3. 会用公式法分解因式;4. 综合运用因式分解知识解决一些简单的数学问题. 【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算. 要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律. 要点三、添括号的法则括号前面是“﹢”号,括到括号里的各项都不变号;括号前面是“﹣”号,括到括号里的各项都变号. 要点四、公式法 1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b -=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-.形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点五、十字相乘法和分组分解法 十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq cp q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点六、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解. (4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、已知21x x +-=0,求3223x x ++的值.【思路点拨】观察题意可知21x x +=,将原式化简可得出答案. 【答案与解析】解:依题意得:21x x +=, ∴3223x x ++, =3223x x x +++, =22()3x x x x +++, =23x x ++,=4;【总结升华】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值. 【思路点拨】对所求的代数式先进行整理,再利用整体代入法代入求解. 【答案与解析】解:()()2259x x x x x -+--,=322359x x x x -+--, =249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0.【总结升华】本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解. 举一反三:【变式】()()33a y a y -+是下列哪一个多项式因式分解的结果( )A .229a y+B .229a y-+C .229a y-D .229a y--【答案】C ;3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式324x xy -进行因式分解,得到()()32422x xy x x y x y -=+-,然后把x =10,y =10代入,分别计算出()2x y +及()2x y -的值,从而得出密码. 【答案与解析】解:()()()32224422x xy x x yx x y x y -=-=+-,当x =10,y =10时,x =10,2x +y =30,2x -y =10, 故密码为103010或101030或301010.【总结升华】本题是中考中的新题型.考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键. 举一反三:【变式】利用因式分解计算 (1)16.9×18+15.1×18(2) 22683317- 【答案】 解:(1)16.9×18+15.1×18=()116.915.18⨯+=13248⨯= (2)22683317-=()()683317683317+⨯- =1000×366 =366000. 4、因式分解:(1)()()269a b a b ++++; (2)222xy x y ---(3)()()22224222x xyy x xy y -+-+.【思路点拨】都是完全平方式,所以都可以运用完全平方公式分解.完全平方公式法:()2222a b a ab b ±=±+.【答案与解析】解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x y x y ---=-++=-+(3)()()22224222x xyy x xy y -+-+=()()24222x xy yx y -+=-【总结升华】本题考查了完全平方公式法因式分解,(3)要两次分解,注意要分解完全. 举一反三:【变式】下列各式能用完全平方公式进行分解因式的是( )A .21x + B .221x x +- C .21x x ++ D .244x x ++【答案】D ;5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【思路点拨】根据材料,找出规律,再解答. 【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x xxx +++-.【总结升华】此题要综合运用配方法,完全平方公式,平方差公式,熟练掌握公式并读懂题目信息是解题的关键.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______;(2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+.【思路点拨】(1)根据一个正方形和三个长方形的面积和等于由它们拼成的这个大长方形的面积作答; (2)根据(1)的结论直接作答. 【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++②()()271234y y x x -+=--【总结升华】本题实际上考查了利用十字相乘法分解因式.运用这种方法的关键是把二次项系数a 分解成两个因数12,a a 的积12a a ,把常数项c 分解成两个因数12c c 的积12,c c ,并使1221a c a c +正好是一次项b ,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号. 举一反三:【变式】已知A =2a +,B =25a a -+,C =2519a a +-,其中a >2. (1)求证:B -A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 解:(1)B -A =()21a -+2>0,所以B >A ;(2)C -A =25192a a a +---,=2421a a +-, =()()73a a +-.因为a >2,所以a +7>0,从而当2<a <3时,A >C ;当a =3时,A =C ;当a >3时,A <C .【巩固练习】 一.选择题1.下列各式从左到右的变化中属于因式分解的是( ). A .()()22422m n m n m n -=+- B .()()2111m m m +-=-C .()23434m m m m --=-- D .()224529m m m --=--2. 把24a a -多项式分解因式,结果正确的是( )A .()4a a -B .()()22a a +-C .()()22a a a +-D .()224a -- 3. 下列多项式能分解因式的是( ) A .22x y +B .22x y--C .222x xy y-+-D .22x xy y-+4. 将2m()2a -+()2m a -分解因式,正确的是()A .()2a -()2m m - B .()()21m a m -+ C .()()21m a m -- D .()()21m a m --5. 下列四个选项中,哪一个为多项式28102x x -+的因式?( )A .2x -2B .2x +2C .4x +1D .4x +2 6. 若)5)(3(+-x x 是q px x ++2的因式,则p 为( )A.-15B.-2C.8D.2 7. 2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是()A .2)5(b a - B .2)5(b a + C .)23)(23(b a b a +- D .2)25(b a - 8. 下列多项式中能用平方差公式分解的有( )①22a b --; ②2224x y -; ③224x y -; ④()()22m n ---; ⑤22144121a b -+;⑥22122m n -+. A .1个 B .2个 C .3个 D .4个 二.填空题9.分解因式:()241x x -- =________.10.把23x x c ++分解因式得:23x x c ++=()()12x x ++,则c 的值为________.11.若221x y -=,化简()()20122012x y x y +-=________.12. 若2330x x +-=,32266x x x +-=__________. 13.把()()2011201222-+-分解因式后是___________.14.把多项式22ax ax a --分解因式,下列结果正确的是_________.15. 当10x =,9y =时,代数式22x y -的值是________.16.把2221x y y ---分解因式结果正确的是_____________. 三.解答题 17.分解因式:(1)234()12()x x y x y ---; (2)2292416a ab b -+; (3)21840ma ma m --.18. 已知10a b +=,6ab =,求:(1)22a b +的值;(2)32232a b a b ab -+的值. 19.已知关于x 的二次三项式2x mx n ++有一个因式()5x +,且17m n +=,试求m 、n 的值.20. 两位同学将一个二次三项式分解因式,一位同学因看错了一次项系数而分解成()()219x x --,另一位同学因看错了常数项而分解成()()224x x --,请将原多项式分解因式.【答案与解析】 一.选择题1. 【答案】A ;【解析】因式分解是把多项式化成整式乘积的形式. 2. 【答案】A ;【解析】()244a a a a -=-. 3. 【答案】C ;【解析】A .不能分解;B .2222()x y x y --=-+,不能分解;C .()2222x xy y x y -+-=--,故能够分解;D .不能分解.4. 【答案】C ; 【解析】2m()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --.5. 【答案】A ;【解析】将28102x x -+进行分解因式得出()()281024122x x x x -+=--,进而得出答案即可.6. 【答案】D ;【解析】2(3)(5)28x x x x -+=+-. 7. 【答案】A【解析】2222)(4)(12)(9b a b a b a ++-+-=()()()22325a b a b a b -++=-⎡⎤⎣⎦.8. 【答案】D ;【解析】③④⑤⑥能用平方差公式分解. 二.填空题9. 【答案】()22x -;【解析】()()22241442x x x x x --=-+=-.10.【答案】2;【解析】()()21232x x x x ++=++.11.【答案】1; 【解析】()()()()()201220122012201222201211x y x y x y x y x y+-=+-=-==⎡⎤⎣⎦.12.【答案】0;【解析】()3222662362360x x x x x x x x x +-=+-=⨯-=. 13.【答案】20112; 【解析】()()()()()201120122011201120112221222-+-=--=--=.14.【答案】()()21a x x -+;【解析】22ax ax a --=()()2(2)21a x x a x x --=-+.15.【答案】19;【解析】()()()()2210910919x y x y x y -=+-=+-=.16.【答案】()()11x y x y ++--;【解析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.三.解答题 17.【解析】解:(1)234()12()x x y x y ---=224()[3()]4()(32)x y x x y x y y x ---=--; (2)22292416(34)a ab b a b -+=-;(3)()()()2218401840202ma ma m m a a m a a --=--=-+. 18.【解析】解:∵10a b +=,6ab =,则(1)()2222a b a b ab +=+-=100-12=88;(2)()()2322322224a b a b ab ab a ab b ab a b ab ⎡⎤-+=-+=+-⎣⎦=6×(100-24)=456. 19.【解析】解:设另一个因式是x a +,则有()()5x x a ++=()255x a x a +++=2x mx n ++∴5a m +=,5a n =,这样就得到一个方程组5517a ma nm n +=⎧⎪=⎨⎪+=⎩,解得2107a n m =⎧⎪=⎨⎪=⎩.∴m 、n 的值分别是7、10. 20.【解析】解:设原多项式为2ax bx c ++(其中a 、b 、c 均为常数,且abc ≠0).∵()()()22219210922018x x x x x x --=-+=-+, ∴a =2,c =18;又∵()()()2222426821216x x x x x x --=-+=-+, ∴b =-12.∴原多项式为221218x x -+,将它分解因式,得()()2222121826923x x x x x -+=-+=-.。

七年级下-数学-因式分解-讲义

七年级下-数学-因式分解-讲义

定义:把一个多项式化成几个整式的积的形式因式分解的意义与整式乘法的关系:互逆提取公因式法:)(c b a m mc mb ma ++=++因式分解的主要方法 平方差公式:()()b a b a b a -+=-22 因式分解 公式法完全平方公式:()2222b ab a b a +±=±因式分解的一般步骤:先看能否用提取公因式,再看能否用公式法因式分解的应用4.1 因式分解知识点:一般地,把一个多项式化成几个整式的积的形式,叫做因式分解,也叫分解因式。

考点①:判断因式分解。

关键:1、等式右边是几个整式乘积的形式2、是否分解彻底;3、用整式乘法来检验因式分解的正确性。

例1:下列各式从左到右的变形中,是因式分解的是()A. ()2132-22+-=+x x x B. ()()111222-+=-+xy xy xy y x C. ()x x y xy y x -=-2233 D. ()()y x y x y x 32329422++-=+- 例2:检验下列因式分解是否正确.(1) ()()1212122+-=-a a a(2) ()()3393-+=-x x x x x(3) ()()3824112++=+-m m m m(4) ()()y x y x y xy x +-=-+2222 考点②:已知因式或其中一个因式,求原多项式的系数。

关键:1、将因式的乘积用整式乘法做化简,再与原多项式一项一项对比。

2、若只知一个因式,则将另一个因式设为类似mx-n 的形式,再与已知因式相乘做化简,最后与原多项式对比。

例1:若()()43--x x 是多项式122+-ax x 分解因式的结果,则a 的值是______. 例2:若()3-x 是多项式122+-ax x 分解因式的结果,则a 的值是______. 例3:若()3-x 是多项式a x x +-72分解因式的结果,则a 的值是______.例4:甲、乙两名同学分解因式b ax x++2时,甲看错了b ,分解结果为()()42++x x ;乙看错了a ,分解结果为()()91++x x ,则.____=-b a考点③:将考点②反过来,已知原多项式和它的因式分解的其中一个因式,求另一个因式.例1:()ab aby abx ab 749147-=+--,括号里应填()A . y x 721++- B. y x 72-1+- C. y x 7-2-1 D. y x 721-+例2:已知将122-+x x 因式分解得到的一个因式是()3-x ,另一个因式是_________.考点④:利用因式分解简单计算.例1:(1)2012012- (2)223565-4.2 提取公因式法知识点一:公因式1. 一般地,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.2. 多项式各项的公因式应是各项系数的最大公约数与各项都含有的相同字母的最低次幂的积.知识点二:提取公因式法3. 如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解,这种方法叫做提取公因式法。

因式分解经典讲义(精)

因式分解经典讲义(精)

第二章 分解因式【知识要点】1.分解因式(1)概念:把一个________化成几个___________的形式,这种变形叫做把这个多项式分解因式。

(2)注意:①分解因式的实质是一种恒等变形,但并非所有的整式都能因式分解。

②分解因式的结果中,每个因式必须是整式。

③分解因式要分解到不能再分解为止。

2.分解因式与整式乘法的关系整式乘法是____________________________________________________; 分解因式是____________________________________________________; 所以,分解因式和整式乘法为_______关系。

3.提公因式法分解因式(1)公因式:几个多项式__________的因式。

(2)步骤:①先确定__________,②后__________________。

(3)注意:①当多项式的某项和公因式相同时,提公因式后该项变为1。

②当多项式的第一项的系数是负数时,通常先提出“-”号。

4.运用公式法分解因式(1)平方差公式:_________________________ (2)完全平方公式:_________________________注:分解因式还有诸如十字相乘法、分组分解法等基本方法,做为补充讲解内容。

【考点分析】考点一:利用提公因式法分解因式及其应用 【例1】分解因式:(1)3241626m m m -+- (2)2()3()x y z y z +-+(3)2()()()x x y x y x x y +--+ (4)(34)(78)(1112)(78)a b a b a b a b --+--解析:(1)题先提一个“-”号,再提公因式2m ;(2)题的公因式为y z +;(3)题的公因式为()x x y +; (4)题的公因式为78a b -。

答案:(1)22(2813)m m m --+; (2)()(23)y z x +-;(3)2()xy x y -+; (4)22(78)a b -。

浙教版七年级下第六章_因式分解_知识点+习题

浙教版七年级下第六章_因式分解_知识点+习题

第六章因式分解知识点回顾1、 因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解。

因式分解和整式乘法互为逆运算2、常用的因式分解方法:(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法: 平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法考点一、因式分解的概念因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解。

因式分解和整式乘法互为逆运算1、下列从左到右是因式分解的是( )A. x(a-b)=ax-bxB. x 2-1+y 2=(x-1)(x+1)+y2 C. x 2-1=(x+1)(x-1) D. ax+bx+c=x(a+b)+c2、若2249a kab b ++可以因式分解为2(23)a b -,则k 的值为______3、已知a 为正整数,试判断2a a +是奇数还是偶数?4、已知关于x 的二次三项式2x mx n ++有一个因式(5)x +,且m+n=17,试求m ,n 的值考点二 提取公因式法提取公因式法:)(c b a m mc mb ma ++=++公因式:一个多项式每一项都含有的相同的因式,叫做这个多项式各项的公因式找公因式的方法:1、系数为各系数的最大公约数 2、字母是相同字母3、字母的次数-相同字母的最低次数习题1、将多项式3222012a b a bc -分解因式,应提取的公因式是( )A 、abB 、24a bC 、4abD 、24a bc2、已知(1931)(1317)(1317)(1123)x x x x -----可因式分解为()(8)ax b x c ++,其中a ,b ,c 均为整数,则a+b+c 等于( )A 、-12B 、-32C 、38D 、723、分解因式(1)6()4()a a b b a b +-+ (2)3()6()a x y b y x ---(3)12n n n x x x ---+ (4)20112010(3)(3)-+-4、先分解因式,在计算求值(1)22(21)(32)(21)(32)(12)(32)x x x x x x x -+--+--+ 其中x=1.5(2)22(2)(1)(1)(2)a a a a a -++--- 其中a=185、已知多项式42201220112012x x x +++有一个因式为21x ax ++,另一个因式为22012x bx ++,求a+b 的值6、若210ab +=,用因式分解法求253()ab a b ab b ---的值7、已知a ,b ,c 满足3ab a b bc b c ca c a ++=++=++=,求(1)(1)(1)a b c +++的值。

因式分解全章教案和练习题

因式分解全章教案和练习题

因式分解全章教案和练习题第一章:因式分解的基本概念教学目标:1. 理解因式分解的含义和意义。

2. 掌握因式分解的基本方法和步骤。

教学内容:1. 因式分解的定义和作用。

2. 提公因式法:找出多项式的公因式,并进行提取。

3. 分解因式:将多项式分解为两个或多个因式的乘积。

教学方法:1. 采用讲解法,讲解因式分解的基本概念和方法。

2. 利用例题进行讲解和示范,让学生跟随老师一起进行因式分解。

教学步骤:1. 导入新课,介绍因式分解的概念和意义。

2. 讲解提公因式法,让学生理解并掌握提取公因式的步骤。

3. 讲解分解因式的方法,让学生理解并掌握分解因式的步骤。

4. 进行课堂练习,让学生运用所学知识进行因式分解。

教学评价:1. 课堂练习的完成情况。

2. 学生对因式分解的基本概念和方法的理解程度。

第二章:提公因式法教学目标:1. 掌握提公因式法的基本步骤。

2. 能够运用提公因式法进行因式分解。

教学内容:1. 提公因式法的步骤:找出多项式的公因式,进行提取。

2. 提公因式法的应用:对多项式进行因式分解。

教学方法:1. 采用讲解法,讲解提公因式法的步骤和应用。

2. 利用例题进行讲解和示范,让学生跟随老师一起进行提公因式法。

教学步骤:1. 回顾上一章的内容,复习因式分解的基本概念。

2. 讲解提公因式法的步骤,让学生理解并掌握提取公因式的步骤。

3. 讲解提公因式法的应用,让学生理解并掌握如何运用提公因式法进行因式分解。

4. 进行课堂练习,让学生运用所学知识进行提公因式法。

教学评价:1. 课堂练习的完成情况。

2. 学生对提公因式法的基本步骤和应用的理解程度。

第三章:十字相乘法教学目标:1. 掌握十字相乘法的基本步骤。

2. 能够运用十字相乘法进行因式分解。

教学内容:1. 十字相乘法的步骤:找出多项式的两个因式的乘积,进行相乘。

2. 十字相乘法的应用:对多项式进行因式分解。

教学方法:1. 采用讲解法,讲解十字相乘法的步骤和应用。

初中因式分解讲义

初中因式分解讲义

第一讲 因式分解初步及应用1. 因式分解把一个多项式分解成几个整式之积的形式叫做多项式的因式分解。

因式分解是多项式乘法的逆向变形。

因式分解的常用方法:提取公因式,公式法,十字相乘法,分组分解法,配方法。

常用公式:; 222)(2b a b ab a ±=+±;;2222)(222c b a ca bc ab c b a ++=+++++;))((3222333ca bc ab c b a c b a abc c b a ---++++=-++;;=+nnba 。

2. 因式分解简单应用利用因式分解解决计算、求值、解方程及证明问题,解题时主要是把所研究的问题转化为因式分解问题。

对于较复杂的数值计算可利用字母代换的方法加以简化。

【例题】1. 提取公因式法:如果一个多项式的各项含有公因式,把这个因式提出来,作为多项式的一个因式,再用这个因式去除这个多项式,把所得的商作为另一个因式,这种因式分解的方法叫做提取公因式。

提公因式法是因式分解中的首选方法,不能提公因式或者提公因式后再选择其它方法。

公因式的取法为:①系数取各项整数系数的最大公约数(第一项系数为负,一般提出负号)。

②字母取各项的相同字母(有时为多项式)。

③字母的指数取相同字母的最低指数。

例1、 分解下列因式:(1)ma+mb; (2)m(a-b)+n(b-a); (3)3423222102a b a b a b--+。

解析: (1)m(a+b); (2)(m-n)(a-b) ;(3) ()3423222222102251a b a b a b a babb --+=-+-。

例2、分解下列各式:(1)322222)(18)(24)(12a b xy a b y x b a xy -+--- ; (2))()()(222cb ca c bc b ab ac ab a --+-++-+。

解析:(1))3342()(6)(18)(24)(122322222b a xy y b a xy a b xy a b y x b a xy +---=-+---(2)2222)()()()(c b a cb ca c bc b ab ac ab a -+=--+-++-+。

因式分解知识点、练习讲义

因式分解知识点、练习讲义

因式分解讲义一、知识点总结1. 因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

关键:左边必须是多项式,右边是几个整式的积例:1、 已知关于x的二次三项式分解因式的结果为(x-1)(x+2),求a,b的值2.因式分解的方法:(1)提公因式法:①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。

公因式:多项式的各项都含有的相同的因式。

公因式可以是一个数字或字母,也可以是一个单项式或多项式。

(相同字母)例:的公因式是 .1.分解因式:(1) ,为正整数 (2)(3)先因式分解,再求值:m(m+n)(m-n)-m(m+n),其中m+n=1,mn=-.2、利用因式分解计算:(-2)+(-2)-23、 对于任意正整数n,说明代数式2-2必能被30整除。

(2)运用公式法定义:把乘法公式反过来用,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

注意:①公式中的字母可代表一个数、一个单项式或一个多项式。

②选择使用公式的方法:主要从项数上看,若多项式是二项式可考虑平方差公式;若多项式是三项式,可考虑完全平方公式。

例1:因式分解 例2:因式分解1、分解因式:2、 利用平方差公式计算:3、证明:若n为正整数,则(2n+1)-(2n-1)一定能被8整除。

(3)分组分解法(拓展)①将多项式分组后能提公因式进行因式分解; ②将多项式分组后能运用公式进行因式分解.例:把多项式分解因式 例:将多项式因式分解1、a-1-2ab+b2、已知a-b=,ab=,求-2ab+ab+ab的值(4)十字相乘法(形如形式的多项式,可以考虑运用此种方法)方法:常数项拆成两个因数,这两数的和为一次项系数例:分解因式 分解因式5-6分解因式3.因式分解的一般步骤:“一提”、“二套”、“三分组”、“四拆”。

2、习题演练(一)、填空:1、若是完全平方式,则的值等于_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提公因式法(基础)【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式.要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、观察下列从左到右的变形:⑴; ⑵ ⑶; ⑷其中是因式分解的有 (填序号)【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断. m m ()()3322623a b a bab -=-()ma mb c m a b c -+=-+()22261266x xy y x y ++=+()()22323294a b a b a b +-=-【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解.等式的右边必须是整式因式积的形式. 举一反三:【变式】(20•海南)下列式子从左到右变形是因式分解的是( )A.a +4a ﹣21=a (a+4)﹣21B.a +4a ﹣21=(a ﹣3)(a+7)C.(a ﹣3)(a+7)=a +4a ﹣21D.a +4a ﹣21=(a+2)﹣25类型二、提公因式法分解因式2、(1)多项式的公因式是________;(2)多项式的公因式是________;(3)多项式的公因式是________;(4)多项式的公因式是________.【总结升华】确定公因式一定要从系数、字母及指数三方面入手,公因式可以是一个数,也可以是一个单项式,还可以是一个多项式,互为相反数的因式可变形为公因式.举一反三:【变式】下列多项式中,能用提公因式法分解因式的是( )A .B .C .D .3、若,则E 是( )A .B .C .D .【总结升华】观察等式的右边,提取的是,故可把变成,即左边222222363x xy -+324168mn m m --()()()x b c a y b c a a b c +--+----2(3)(3)x x x -+-2x y -22x x +2x y 2+2x xy y 2-+()()()232p q q p q p E ---=-1q p --q p -1p q +-1q p +-()2q p -()2p q -()2q p -=.注意偶次幂时,交换被减数和减数的位置,值不变;奇次幂时,交换被减数和减数的位置,应加上负号.举一反三:【变式】把多项式提取公因式后,余下的部分是( )A .B .C .2D .4、(20春•新沂市期中)分解因式:3x (a ﹣b )﹣6y (b ﹣a ).【总结升华】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】用提公因式法分解因式正确的是( )A .B .C .D .类型三、提公因式法分解因式的应用5、若,求的值.【总结升华】条件求值要注意观察代数式的结构,,这样就能由已知整体代入求值了.()()21q p p q -+-()()()111m m m +-+-()1m -1m +2m 2m +()222129343abc a b c abc ab -=-()2233632x y xy y y x x y -+=-+()2a ab ac a a b c -+-=--+()2255x y xy y y x x +-=+0232=-+x x x x x 46223-+()3222623x x x x x +=+【提公因式-巩固练习】一.选择题1. 下列各式变形中,是因式分解的是( )A. B. C. D. 2.(20•东营区校级期末)多项式6ab c ﹣3a 2bc+12a b 的公因式是( )A.abcB.3a bC.3a b cD.3ab 3. 多项式分解因式的结果是( ) A. B. C. D.4. 分解因式的结果是( )A. B.C. D.5. 下列因式分解正确的是( )A.B.C.D.6. 把提公因式得( )A .B .C .D .二.填空题7. 因式分解是把一个______________化为______________的形式.8. 的公因式是___________;的公因式是__________. ()222211a ab b a b -+-=--2212221x x x x ⎛⎫+=+ ⎪⎝⎭()()2224x x x +-=-()()()421111x x x x -=++-2222222232n n n a aa +-+()321n a a a-+()22n n a a a -+()221n n a a a -+()31n n a a a -+()()2552x y x -+-()()251x y -+()()251x y --()()521x y -+()()521x y --()()()m a b n a b a b mn -+-=-()()()()m x y n y x x y m n ---=--()()1mn x y mn x y mn ++=++()()()()232232y x x y x y x y -+-=---3223284x y x y xy ++2232(42)x x xy y ++32232(42)x y x y xy ++222(42)xy x xy y ++22(4)xy x xy +,,ax ay ax -236,2,4mn m n mn -9. 因式分解=_________________.10. 多项式的公因式是______________.11.(20•澄海区一模)分解因式:m (x ﹣y )+n (y ﹣x )=_____________________.12. 因式分解=_____________________.三.解答题13. 应用简便方法计算:(1); (2)14. 已知,求和的值.15.(2014春•常州期中)分解因式:6a (b ﹣1)﹣2(1﹣b ).32a a b -33222339a b a b a b --243210515m n m n m n -+-1098222--16 3.148 3.1426 3.14⨯+⨯+⨯1,3a b ab +==-22a b ab +3322a b ab +22平方差公式(基础) 知识讲解【学习目标】1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法——平方差公式1、下列各式中能用平方差公式分解因式的有________(填序号).①;②;③;④;⑤;⑥.【总结升华】能否运用平方差公式分解因式,应紧紧抓住平方差公式的特点进行判断.分别从项数、符号、平方项等方面来判断.2、分解因式:(1); (2); (3); (4).()()22a b a b a b -=+-a b a b 22a b --224a b -224x y --2291a b -+22()()x y y x -+-41x -229a b -22251x y -22168194a b -+214m -+【总结升华】(1)可以利用加法的交换律把负平方项交换放在后面.(2)“1”是平方项,可以写成“”.(3)一定要把两项写成的形式,再套用平方差公式.举一反三:【变式1】分解因式:(1); (2).【变式2】(20春•泗阳县期末)下列各式能用平方差公式计算的是( )A.(2a+b )(2b ﹣a )B.(﹣x+1)(﹣x ﹣1)C.(a+b )(a ﹣2b )D.(2x ﹣1)(﹣2x+1)类型二、平方差公式的应用3、(20春•开江县期末)计算20152﹣2014×2016的结果是( )A.﹣2B.﹣1C.0D.1【总结升华】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.举一反三:【变式1】如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是( )A. B. C. D.2122a b -212516m -22(2)16(1)x x -++-a b )(b a >()()22a b a b a b -=+-()2222a b a ab b +=++()2222a b a ab b -=-+()()2222a b a b a ab b +-=+-【变式2】用简便方法计算:(1);(2).4、已知大正方形的周长比小正方形的周长长96厘米,它们的面积相差960平方厘米.求两个正方形的边长.【巩固练习】一.选择题1. 下列各式中,不能用平方差公式分解因式的是( ).A. B. C. D. 2. 一个多项式分解因式的结果是,那么这个多项式是(). A . B . C . D .3. 有一个因式是,则另一个因式为( )A. B. C. D.4. 在一个边长为12.75的正方形内挖去一个边长为7.25的正方形,则剩下的面积应当是( )A .B .C .D .5. (20•赤峰模拟)已知a+b=4,a ﹣b=3,则a 2﹣b 2=( )A.4B. 3C.12D.16. 下列分解因式结果正确的是( )A. B. C. D. 2199919982000-⨯2253566465⨯-⨯249y -2149x -44m n --()2194p q +-)2)(2(33b b -+46-b 64b -46+b 46--b ()22a b c --a b c +-a b c --a b c ++a b c +-a b c -+cm cm 220cm 2200cm 2110cm 211cm ()223633x y xy xy x y +=+()()()()222233x y x y x y x y +-+=++()()422111x x x -=+-()()3312322x x x x x -=+-二.填空题7. 分解因式:___________,____________. 8. 利用因式分解计算:__________,____________.9. 分解因式:___________,______________. 10.(201•杭州模拟)若a+2b=﹣3,a 2﹣4b 2=24,则a ﹣2b+1= .11. 若多项式能用平方差公式分解因式,那么单项式M =_______.(写出一个即可)12. 用公式简算:=________________.三. 解答题13. 把下列各式因式分解(1) (2)(3) (4).14. 已知,. (1)求的值; (2)求和的值.15.(2014春•牟定县校级期末)新实验中学校园正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?224x y -=223a b -=22401599-=2211387-=42x x -=()()244b a a -+-=24a M +22200820082009+-2249a b -4481m n -622123a a b -()2231a b b b -+-23x y +=22415x y -=-2x y -x y完全平方公式(基础)【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即,. 形如,的式子叫做完全平方式.要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法——完全平方公式1、 下列各式是完全平方式的是( ).A .B .C .D .【总结升华】形如,的式子叫做完全平方式.举一反三:【变式】(20春•临清市期末)若x 2+2(m ﹣3)x+16是完全平方式,则m 的值是( )A .﹣1B . 7C . 7或﹣1D . 5或1()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b 412+-x x 21x +1++xy x 122-+x x 222a ab b ++222a ab b -+2、分解因式:(1); (2); (3); (4).【总结升华】本题的关键是掌握公式的特征,套用公式时要注意把每一项同公式的每一项对应. 举一反三:【变式】分解因式:(1); (2);(3); (4).3、分解因式:(1);(2);(3).21449x x ++29124x x -+214a a ++22111162a b ab -+29()12()4a b a b +-++222()()a a b c b c ++++21025a a --22()4()()4()x y x y x y x y +++-+-2234162x y xy y ++4224168a a b b -+222(3)(1)x x x +--【总结升华】分解因式的一般步骤:一“提”、二“套”、三“查”,即首先有公因式的提公因式,没有公因式的套公式,最后检查每一个多项式因式,看能否继续分解.举一反三:【变式】分解因式:(1).(2). (3); (4);(5);类型二、配方法4、(20•江都市期末)已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).【总结升华】要先观察式子的特点,看能不能将式子进行变形,以简化计算. 举一反三:【变式】已知为任意有理数,则多项式-1-的值为( ). A .一定为负数 B .不可能为正数 C .一定为正数 D .可能为正数,负数或0224()12()()9()x a x a x b x b ++++++22224()4()()x y x y x y +--+-2244x y xy --+322344x y x y xy ++()()2222221x x x x -+-+x x 142x【完全平方-巩固练习】 一.选择题1. 将224144a a ++因式分解,结果为( ).A.()()188a a ++B.()()1212a a +-C.()212a +D.()212a -2.2()nm x y -是下列哪一个多项式分解的结果( )A .22nm x y - B .2n n m m x x y y -+ C .222nn m m xx y y -+ D .2n n m m x x y y --3. (20•邵阳)已知a+b=3,ab=2,则a 2+b 2的值为( ) A . 3 B . 4 C . 5D .64. 如果222536a mab b ++可分解为()256a b -,那么m 的值为( ). A.30 B.-30 C.60 D.-60 5. 如果229x kxy y ++是一个完全平方公式,那么k 是( ) A.6 B.-6 C.±6 D.18 6. 下列各式中,是完全平方式的是( )A.2991x x -- B.2691y y -++ C.2169y y -- D.2931y y --二.填空题7. 若()22416-=+-x mx x ,那么________m =.8. 因式分解:()()225101a b a b -+-+=____________. 9. 分解因式:214m m ---=_____________. 10.(20春•萧山区期末)将4x 2+1再加上一项,使它成为(a+b )2的形式(这里a 、b 指代的是整式或分式),则可以添加的项是 . 11. 分解因式:()()154a a +++ =_____________. 12. (1)()()225=a a -+;(2)()()22412m mn -+=.三.解答题 13. 若13x x +=,求221x x+的值.14.(20春•万州区期末)已知x ﹣y=1,x 2+y 2=25,求xy 的值.15. 把()()3322x y x y x xy y +=+-+称为立方和公式,()()3322x y x y x xy y -=-++称为立方差公式,据此,试将下列各式因式分解: (1)38a +; (2)3271a -.十字相乘法及分组分解法(基础)【学习目标】1. 熟练掌握首项系数为1的形如型的二次三项式的因式分解.2. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法. 【要点梳理】pq x q p x +++)(2要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:2x bx c ++pq cp q b=⎧⎨+=⎩()()2x bx c x p x q ++=++2x bx c ++c 0c >p q 、0c <p q 、b p q 、2x bx c ++b c 、c b 2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++a把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法. 【典型例题】 类型一、十字相乘法1、将下列各式分解因式: (1); (2); (3)【总结升华】常数项为正,分解的两个数同号;常数项为负,分解的两个数异号. 二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上. 举一反三:【变式1】分解因式:(1); (2); (3)【变式2】(20春•苏州期末)因式分解:m 2n ﹣5mn+6n.21016x x -+2310x x --1072++x x 822--x x 2718x x --+2、将下列各式分解因式: (1);(2)(3); (4).【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.注意观察式子结构,能够看作整体的看作整体.举一反三:【变式】将下列各式分解因式:(1);(2);(3);(4)..22355x x +-25166x x ++22616x xy y --21136x x -+251124a a --10722+-xy y x ()()342++-+b a b a3、将下列各式分解因式: (1); (2)【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数. 举一反三:【变式】分解因式:(1); (2);(3);类型二、分组分解法4、(20•重庆校级期中)先阅读下列材料,然后回答后面问题: 将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay )+(bx+by )=a (x+y )+b (x+y )=(x+y )(a+b )请你仿照以上方法,探索并解决下列问题: (1)分解因式:x 2﹣y 2﹣x ﹣y ;(2)分解因式:45am 2﹣20ax 2+20axy ﹣5ay 2;(3)分解因式:4a 2+4a ﹣4a 2b ﹣b ﹣4ab+1.2314x x +-2344x x --+2631105x x +-如“3+1”分法: 2xy+y 2﹣1+x 2=x 2+2xy+y 2﹣1 =(x+y )2﹣1 =(x+y+1)(x+y ﹣1)【总结升华】此题主要考查了提取公因式法分解因式以及分组分解法分解因式,正确分组是解题关键. 举一反三:【变式】分解因式:【巩固练习】 一.选择题1. 将因式分解,结果是( ) A. B.C. D. 2.(20•保定二模)下列因式分解正确的是( ) A . x 2﹣7x+12=x (x ﹣7)+12B . x 2﹣7x+12=(x ﹣3)(x+4)C . x 2﹣7x+12=(x ﹣3)(x ﹣4) D . x 2﹣7x+12=(x+3)(x+4)3. 如果,那么等于( )A. B.C. D.4. 若,则的值为( ) A.-9 B.15 C.-15 D.95. 如果,则为 ( )A .5B .-6C .-5D .6 6.把进行分组,其结果正确的是( ) A. B. C. D. 二.填空题7. 若,则= .8. 因式分解___________.9.(20•吴江市模拟)因式分解:4a 2+4a ﹣15= . 10. 因式分解:=_______________; 11. 因式分解= . 12.分解因式:=________.22244a b ab c +--21016a a ++()()28a a -+()()28a a +-()()28a a ++()()28a a --()()2x px q x a x b -+=++p ab a b +ab -a b --()()236123x kx x x +-=-+k b 2222a b c bc --+222()(2)a c b bc ---222()2a b c bc --+222()(2)a b c bc ---222(2)a b bc c --+()()21336m m m a m b -+=++a b -22a b ac bc -++ax bx cx ay by cy +++++()2064x x -+321a a a +--三.解答题13.若多项式可以分解成两个一次因式的积,其中、均为整数,请你至少写出2个的值.14.(20秋•宣武区校级期末)因式分解:2x 2+x ﹣3.15.分解因式:(1); (2);(3); (4);(5).236x px ++()()x a x b ++a b p 268x x -+21024x x +-215238a a -+22568x xy y -++225533a b a b --+。

相关文档
最新文档