The LinuxKernel- Introduction
linux系统基础知识
linux系统基础知识Linux系统基础知识Linux是一种自由和开放源代码的类Unix操作系统,它是由Linus Torvalds在1991年首次发布的。
Linux系统具有高度的可定制性和灵活性,因此在服务器、超级计算机、移动设备等领域得到了广泛的应用。
本文将介绍Linux系统的基础知识,包括Linux的发行版、文件系统、用户和权限、命令行和图形界面等方面。
一、Linux的发行版Linux系统有许多不同的发行版,每个发行版都有自己的特点和用途。
常见的Linux发行版有Ubuntu、Debian、Fedora、CentOS、Red Hat等。
这些发行版都是基于Linux内核开发的,但它们的软件包管理、安装方式、默认桌面环境等方面有所不同。
选择适合自己的Linux发行版可以提高工作效率和使用体验。
二、文件系统Linux系统的文件系统采用树形结构,根目录为/。
在根目录下有许多子目录,如bin、etc、home、usr等。
其中,/bin目录存放系统命令,/etc目录存放系统配置文件,/home目录存放用户的主目录,/usr目录存放系统软件和库文件等。
Linux系统支持多种文件系统,如ext4、NTFS、FAT32等。
文件系统的选择取决于使用场景和需求。
三、用户和权限Linux系统是一个多用户系统,每个用户都有自己的用户名和密码。
用户可以通过命令行或图形界面登录系统,并执行各种操作。
Linux 系统采用权限控制机制,每个文件和目录都有自己的权限。
权限分为读、写、执行三种,分别对应数字4、2、1。
文件和目录的权限可以通过chmod命令进行修改。
Linux系统还有超级用户root,拥有系统的最高权限,可以执行任何操作。
四、命令行Linux系统的命令行界面是其最基本的界面,也是最强大的界面。
通过命令行可以执行各种操作,如创建文件、修改权限、安装软件等。
Linux系统的命令行界面有许多命令,如ls、cd、mkdir、rm、chmod等。
《linux概述》课件
软件仓库
APT使用软件仓库来存储和管理软件包。用户可以通过配 置软件仓库来添加或删除软件源,以便获取最新的软件包 版本。
安全性和稳定性
APT软件源经过严格审查,确保安全性和稳定性。同时, APT会自动处理软件包的数字签名,验证软件包的完整性 和来源。
Red Hat系列的YUM/DNF软件包管理
YUM/DNF简介
和自动补全功能,提高命
令行效率。
命令行基本操作
介绍如何在命令行中输入 命令、查看命令帮助、执 行命令等。
Linux的常用命令
01 文件操作命令
介绍如`ls`、`cp`、`mv`、 `rm`等常用文件操作命令 及其参数。
03 系统信息命令
介绍如`uname`、`df`、
`du`等获取系统信息的命
令。
06
Linux网络配置与管理
网络基础知识
IP地址
IP地址是网络中计算机的唯一标识,分为IPv4和IPv6两种 。
01
子网掩码
用于划分IP地址的网络部分和主机部分 。
02
03
默认网关
指明数据包应发送到的下一个路由器 。
常用网络命令
ping
测试与目标主机的连接状态。
ifconfig
查看和配置网络接口信息。
桌面领域
Linux桌面操作系统如Ubuntu、 Fedora等,为用户提供了一个稳定、 安全和个性化的使用环境。
物联网与嵌入式系统
Linux的小型化和定制化特性使其在 物联网设备和嵌入式系统中得到广泛 应用。
02
Linux系统基础
Linux的文件系统
01
文件类型
详细解释Linux中的文件类型, 如普通文件、目录、符号链接、 设备文件等。
linux 分支详解
linux 分支详解摘要:1.Linux 分支概述2.Linux 内核版本和发行版的概念3.Linux 的主要分支4.Linux 分支的命名规则5.Linux 分支的发展趋势正文:【1.Linux 分支概述】Linux 是一个自由和开放源代码的类Unix 操作系统。
在Linux 的世界里,有很多不同的版本和发行版可供选择。
为了更好地了解Linux 的版本和发行版,我们需要先了解Linux 分支的概念。
【2.Linux 内核版本和发行版的概念】Linux 内核是操作系统的核心,它负责管理系统的资源和与硬件进行交互。
Linux 发行版则是将内核和其他软件组合在一起的一个完整的操作系统。
一个发行版通常包括一个特定的内核版本,以及一系列预先安装的软件和图形化界面。
【3.Linux 的主要分支】Linux 的主要分支包括:(1) 稳定版(Stable):也称为主线(Mainline)或LTS(Long Term Support)版本。
这个分支包含了经过测试的最新稳定内核代码,适用于生产环境。
(2) 测试版(Testing):这个分支主要用于测试新的功能和修复bug,以确保它们在稳定版中能够正常工作。
(3) 不稳定版(Unstable):也称为开发版(Development)或Sid 版。
这个分支包含了最新的、尚未经过充分测试的内核代码,适用于开发者和爱好者。
【4.Linux 分支的命名规则】Linux 分支的命名规则通常包含三个部分:主版本号、次版本号和修订号。
例如,Linux 内核版本4.19.0 中,4 表示主版本号,19 表示次版本号,0 表示修订号。
【5.Linux 分支的发展趋势】随着Linux 社区的不断发展,我们可以预见以下几个趋势:(1) 稳定版的发行周期可能会变得更长,以确保每个版本都足够稳定。
(2) 测试版将变得更加重要,以确保在稳定版中引入的新功能和修复的bug 能够正常工作。
(3) 不稳定版将继续成为开发者和爱好者的试验田,为Linux 社区贡献新的功能和创新。
Linux kernel内核升级全过程,教你一次成功
序言由于开发环境需要在linux-2.6内核上进行,于是准备对我的虚拟机上的Linux系统升级。
没想到这一弄就花了两天时间(反复装系统,辛苦啊~~),总算把Linux系统从2.4.20-8内核成功升级到了2.6.18内核。
网上虽然有很多介绍Linux内核升级的文章,不过要么过时,下载链接失效;要么表达不清,不知所云;更可气的是很多文章在转载过程中命令行都有错误。
刚开始我就是在这些“攻略”的指点下来升级的,以致于浪费了很多时间。
现在,费尽周折,升级成功,心情很爽,趁性也来写个“升级攻略”吧!于是特意又在虚拟机上重新安装一个Linux系统,再来一次完美的升级,边升级边记录这些步骤,写成一篇Linux内核升级记实录(可不是回忆录啊!),和大家一起分享~~!一、准备工作首先说明,下面带#号的行都是要输入的命令行,且本文提到的所有命令行都在终端里输入。
启动Linux系统,并用根用户登录,进入终端模式下。
1、查看Linux内核版本# uname -a如果屏幕显示的是2.6.x,说明你的已经是2.6的内核,也用不着看下文了,该干什么干什么去吧!~~~如果显示的是2.4.x,那恭喜你,闯关通过,赶快进行下一步。
2、下载2.6内核源码下载地址:/pub/linux/kernel/v2.6/linux-2.6.18.tar.bz23、下载内核升级工具(1)下载module-init-tools-3.2.tar.bz2/pub/linux/utils/kernel/module-init-tools/module-init-tools-3.2.tar.bz2(2)下载mkinitrd-4.1.18-2.i386.rpm/fedora/linux/3/i386/RPMS.core/mkinitrd-4.1.18-2.i386.rpm(3)下载lvm2-2.00.25-1.01.i386.rpm/fedora/linux/3/i386/RPMS.core/lvm2-2.00.25-1.01.i386.rpm(4)下载device-mapper-1.00.19-2.i386.rpm/fedora/linux/3/i386/RPMS.core/device-mapper-1.00.19-2.i386.rpm(2.6.18内核和这4个升级工具我都有备份,如果以上下载地址失效,请到/guestbook留下你的邮箱,我给你发过去)好啦,2.6内核和4个升级工具都下载完了(少一个也不行,如果没有下载齐全,请不要尝试下面的步骤,升级是不会成功的),下面回到Linux系统中开始配置工作吧。
linux内核命名规则
linux内核命名规则Linux内核是开源操作系统Linux的核心组件,负责管理计算机的硬件资源,并提供了许多系统调用和服务,以及各种设备驱动程序。
内核的命名规则是指在每个内核版本发布时,都会有一个特定的名称与之对应。
本文将介绍Linux内核命名规则及其背后的故事。
Linux内核的命名规则遵循一定的模式,通常由两个或三个部分组成:主版本号、次版本号和修订版本号。
例如,Linux内核的一个版本号可以是5.4.3,其中5是主版本号,4是次版本号,3是修订版本号。
这个命名规则的目的是为了方便用户识别和区分不同的内核版本。
内核的主版本号通常只在有重大变化或突破性的更新时才会增加,而次版本号则表示一些较小的功能性改进和更新。
修订版本号则用于修复一些bug和安全漏洞,并提供性能优化。
通过这种命名规则,用户可以根据版本号来判断内核的新旧程度和功能改进情况。
除了版本号之外,Linux内核的命名还有一个独特的特点,即每个版本都有一个与之对应的代号。
这些代号通常是由内核的主要开发者之一——林纳斯·托瓦兹(Linus Torvalds)来命名的。
这些代号通常是以字母顺序排列的,例如2.6.17版本的代号是“骑士”(Knight),2.6.24版本的代号是“爱莎”(Elvira)。
这些代号的选择并没有特定的规则,通常是林纳斯根据自己的喜好和兴趣来决定的。
有时,这些代号可能与一些有趣的事物或人物相关联,例如2.6.20版本的代号是“怀旧”(Valhalla),是因为林纳斯喜欢玩一款名为“怀旧”(Valhalla)的电子游戏。
而有些代号则是纯粹的幽默和调侃,例如2.6.29版本的代号是“凯特琳”(Kitten),是为了取悦他的女儿。
除了版本号和代号之外,Linux内核的命名还有一些特殊的规则和限制。
首先,每个代号只能在一个版本中使用一次,以确保每个版本的代号都是独一无二的。
其次,代号必须是以字母开头的英文单词,以避免与数字或其他特殊字符产生冲突。
《Linux培训》PPT课件
自由与开放
Linux遵循自由软件许可 证,允许用户自由使用 、修改和分发源代码。
高性能与稳定性
Linux具有出色的性能和 稳定性,广泛应用于服 务器、超级计算机和云
计算等领域。
安全与可靠
Linux具有强大的安全机 制和防火墙保护功能, 能够抵御各种网络攻击
。
跨平台兼容性
Linux可以在不同的硬件 平台上运行,支持多种
Red Hat Enterprise Linux (RHEL): 广泛用于企业服务器和数据中心,提 供长期稳定支持和更新。
Ubuntu Server: 适用于中小企业和大 型企业,提供强大的功能和易用性。
CentOS: 作为RHEL的社区版,具有 高度的可定制性和稳定性,适用于企 业环境。
Linux在企业中的部署与实施
详细描述
Python具有简洁的语法和强大的标准库,使得开发过程快速且高效。在Linux环境下, Python可以用于编写各种应用程序和工具,如Web服务器、网络爬虫、自动化脚本等
。掌握Python编程对于Linux系统下的开发工作至关重要。
C/C编程
总结词
C和C是两种高效的系统级编程语言,常用于开发底层软件和操作系统。
sudo权限
sudo权限可以让具有 sudo权限的用户执行超级 用户命令,需要谨慎配置 和管理。
常用命令与工具
常用命令
Linux系统中常用的命令包括 “ls”、“cd”、“pwd”、 “cp”、“mv”、“rm”等,
用于文件和目录操作。
系统监控工具
Linux系统中常用的系统监控工具 包括“top”、“htop”、 “vmstat”等,用于监控系统状 态和性能。
游戏开发
《Linux就该这么学》PPT大纲
Fedora
Debian是一个历史悠久的Linux发行版,以 稳定性和丰富的软件包著称,适合服务器和 桌面应用。
Fedora是一个面向开发者和创新者的Linux 发行版,注重最新技术和软件包的更新。
Linux应用领域及前景展望
应用领域
Linux广泛应用于服务器、嵌入式 系统、云计算、大数据、人工智能 等领域。
03
配置文件详解与常见配置示例 (如SMTP认证、反垃圾邮件等)
04
邮箱存储位置及访问权限设置方 法
05
客户端配置与测试邮件发送接收 流程
06
05
安全篇:Linux系统安全 防护策略
防火墙设置及端口控制技巧
防火墙基本概念
介绍防火墙的定义、作用及在Linux系统中的实 现方式。
UFW防火墙
介绍UFW(Uncomplicated Firewall)防火墙 的简易配置方法,适用于初学者快速上手。
《Linux就该这么学》PPT大纲
目 录
• 入门篇:Linux系统概述 • 基础篇:Linux命令行操作 • 进阶篇:软件包管理与系统配置 • 应用篇:常见服务器搭建与维护 • 安全篇:Linux系统安全防护策略 • 拓展篇:自动化运维工具介绍
01
入门篇:Linux系统概述
什么是Linux
Linux定义
安全加固措施
提供Linux系统安全加固的常用措施,如关 闭不必要的服务、限制用户权限等。
漏洞修复建议
根据扫描结果提供针对性的漏洞修复建议, 包括升级软件、打补丁等。
安全监控与日志分析
介绍Linux系统的安全监控方法和日志分析 技巧,以便及时发现和处理安全问题。
06
拓展篇:自动化运维工具 介绍
kernel用法
kernel用法“[Kernel用法],以中括号内的内容为主题”指的是在编程领域中关于Kernel的使用方法。
Kernel是操作系统的核心组件,负责管理系统资源、调度任务和提供系统服务等功能。
在本文中,我将详细解释Kernel的用途和功能,并介绍如何使用Kernel来开发和优化操作系统。
第一部分:什么是KernelKernel是操作系统的核心组件,它是运行在操作系统最底层的软件。
Kernel负责管理计算机的硬件资源,提供给上层应用程序访问硬件的接口,同时还负责调度任务和处理系统中断等重要功能。
Kernel的主要目标是提供一个可靠、高效和安全的运行环境,保证系统的稳定性和性能。
第二部分:Kernel的功能Kernel的功能可以归纳为以下几个方面:1. 系统资源管理:Kernel负责管理计算机的硬件资源,包括内存、处理器、磁盘和网络等。
它通过分配和回收资源,实现对系统资源的有效利用,避免资源浪费和冲突。
2. 任务调度:由于计算机的计算能力有限,需要合理地安排各个任务的执行顺序。
Kernel通过任务调度算法,根据任务的优先级和需求,决定任务的调度顺序,从而实现高效的任务执行和资源利用。
3. 中断处理:当计算机的硬件出现故障或需要提供服务时,会触发中断信号。
Kernel负责接收和处理这些中断信号,保证系统的稳定性和可靠性。
它会根据中断类型,调用相应的处理程序,进行操作系统的相应操作。
4. 设备驱动程序:Kernel提供了与硬件设备交互的接口,即设备驱动程序。
设备驱动程序允许应用程序通过Kernel来访问硬件设备,如打印机、鼠标、键盘等。
这样,应用程序就无需关注硬件细节,只需要使用Kernel 提供的接口来操作设备。
5. 安全性和保护:Kernel是系统的核心组件,负责保护系统的安全性。
它会为每个应用程序分配一定的资源,并通过访问控制策略来控制应用程序对系统资源的访问权限,防止恶意应用程序对系统进行破坏或滥用。
linux内核编程入门
Linux内核编程目录1.HELLO, WORLD ................................................................................................ 一EXHELLO.C .............................................................................................................. 一1.1内核模块的编译文件........................................................................................................ 二1.2多文件内核模块.................................................................................................................. 三2.字符设备文件 ....................................................................................................... 六2.1多内核版本源文件........................................................................................................ 十四3./PROC文件系统 .............................................................................................. 十五4.使用/PROC进行输入 ...................................................................................... 二十5.和设备文件对话(写和IOCTLS) ........................................................... 二十八6.启动参数 ....................................................................................................... 四十二7.系统调用 ....................................................................................................... 四十五8.阻塞进程 ....................................................................................................... 五十一9.替换PRINTK’S ........................................................................................... 六十一10.调度任务 ..................................................................................................... 六十四11.中断处理程序.............................................................................................. 六十九11.1I NTEL 结构上的键盘 ......................................................................................... 六十九12.对称多处理 ................................................................................................. 七十三常见的错误 ......................................................................................................... 七十四2.0和2.2版本的区别 ........................................................................................ 七十四除此以外.............................................................................................................. 七十四其他...................................................................................................................... 七十六G OODS AND S ERVICES..................................................................................................... 七十六GNU GENERAL PUBLIC LICENSE........................................................................ 七十六注.......................................................................................................................... 八十二1.Hello, world当第一个穴居的原始人程序员在墙上凿出第一个―洞穴计算机‖的程序时,那是一个打印出用羚羊角上的图案表示的―Hello world‖的程序。
linux教案_高校教学
Linux教案_高校教学教案内容:一、Linux简介1.1 了解Linux的发展历程1.2 了解Linux的核心理念(开放、自由软件)1.3 了解Linux的发行版(如Ubuntu、CentOS、Fedora等)1.4 掌握Linux在实际应用中的优势和劣势二、Linux安装与配置2.1 学习Linux安装流程(硬盘安装、光盘安装、虚拟机安装等)2.2 学习Linux文件系统结构2.3 学习Linux基本操作命令(如文件操作、目录操作、文本处理等)2.4 掌握Linux桌面环境(如GNOME、KDE等)的基本操作三、Linux文件权限与管理3.1 学习Linux文件权限概念(读、写、执行)3.2 学习文件权限的表示方法(数字表示法、符号表示法)3.3 学习如何修改文件权限(chmod、chown等命令)3.4 掌握Linux文件权限的实际应用场景四、Linux用户管理4.1 学习Linux用户和组的概念4.2 学习用户管理的命令(如useradd、usermod、userdel等)4.3 学习组管理的命令(如groupadd、groupmod、groupdel等)4.4 掌握Linux用户和组的实际应用场景五、Linux进程管理5.1 学习Linux进程概念5.2 学习如何查看进程(ps、top等命令)5.3 学习如何控制进程(start、stop、restart等)5.4 掌握Linux进程管理的实际应用场景六、Linux网络配置与通信6.1 学习Linux网络配置文件(/etc/network/interfaces)6.2 学习Linux网络命令(ifconfig、ping、netstat等)6.3 掌握Linux网络配置与诊断的实际应用6.4 了解Linux下的网络资源共享(Samba、NFS等)七、Linux软件管理7.1 学习Linux软件包管理工具(如apt-get、yum等)7.2 学习Linux软件安装、更新和卸载的方法7.3 掌握Linux软件管理的实际应用场景7.4 了解开源软件和Linux发行版之间的关系八、Linux文本处理工具8.1 学习Vim编辑器的基本使用方法8.2 学习Linux下的文本处理工具(如grep、sed、awk等)8.3 掌握文本处理在Linux中的实际应用场景8.4 进行简单的编程练习,巩固文本处理技能九、Linux Shell脚本编程9.1 学习Shell脚本的基本概念与结构9.2 学习如何在Linux中编写、执行Shell脚本9.3 掌握Shell脚本编程的基本技巧(变量、循环、条件判断等)9.4 进行简单的Shell脚本编程练习,实际应用所学知识十、Linux系统安全10.1 学习Linux系统安全的基本概念10.2 学习Linux文件系统安全(权限设置、文件加密等)10.3 学习Linux网络安全(防火墙、SSH等)10.4 掌握Linux系统安全管理的实际应用场景10.5 了解Linux安全漏洞修复和补丁管理的基本方法十一、Linux系统监控与性能优化11.1 学习系统监控工具(如top, htop, vmstat等)11.2 学习Linux性能优化方法(CPU、内存、磁盘I/O优化)11.3 掌握系统监控与性能优化的实际应用场景11.4 了解系统调优在提高系统稳定性、性能方面的作用十二、Linux存储管理12.1 学习Linux文件系统(ext4, XFS, Btrfs等)12.2 学习Linux逻辑卷管理(LVM)12.3 学习Linux磁盘阵列管理(RD)12.4 掌握存储管理在实际应用中的配置与优化十三、Linux备份与恢复13.1 学习Linux下备份工具的使用(如tar, rsync等)13.2 学习系统备份与恢复策略的制定13.3 掌握数据备份与恢复的实际操作流程13.4 了解灾难恢复方案的制定与实施十四、Linux服务器配置与管理14.1 学习Web服务器配置(如Apache, Nginx)14.2 学习文件服务器配置(如Samba, NFS)14.3 学习邮件服务器配置(如Postfix, Dovecot)14.4 学习数据库服务器配置(如MySQL, PostgreSQL)14.5 掌握服务器管理的最佳实践与安全策略十五、Linux项目实践15.1 学习Linux项目开发流程与方法15.2 完成一个简单的开源项目贡献(如代码提交、bug修复等)15.3 了解开源社区参与方式与规范15.4 掌握Linux在实际项目中的应用与部署重点和难点解析本文教案主要分为十五个章节,涵盖了Linux的基本概念、安装与配置、文件权限与管理、用户管理、进程管理、网络配置与通信、软件管理、文本处理工具、Shell脚本编程、系统安全、系统监控与性能优化、存储管理、备份与恢复、服务器配置与管理以及项目实践等方面。
《linux课程》课件
使用 Cron 命令可以设置和管 理定时任务,自动执行脚本和 命令。
Top
Top 命令可以帮助用户查看和 管理系统进程,对系统性能进 行监控。
Linux 系统监控和调优
1
C PU 管理
2
Linux CPU 管理技巧包括进程管理、
CPU 亲和力设置、数据缓存优化等。
3
内存管理
Linux 内存管理是系统性能调优的关 键,可以通过调整内存大小提升系统 速度。
2
容灾和恢复
掌握容灾和恢复技巧,能够保证系统在不同灾难情景下的全面恢复。
3
性能优化
了解性能优化技术,可以识别和解决系统性能瓶颈问题。
Linux 常见问题解决
无法启动系统
检查 BIOS 设置和硬件故障等因素,解决无 法启动进入系统的问题。
驱动问题
检查硬件设备的驱动和系统的兼容性,解决 硬件设备无法正常工作的问题。
应用程序性能问题
使用 top 命令查看进程性能和资源使用情况, 解决应用程序卡顿和占用系统资源过多的问 题。
网络问题
使用网络工具 ping 和 traceroute 等调试网 络连接问题。
ping、traceroute、nslookup 等命令能够帮助用户分析网络 状况。
Linux 网络配置
1
IP 地址和网关
掌握 IP 地址和网关配置方法,能够简单高效地连接网络。
2
DNS 服务器
了解 DNS 服务器的作用和配置方法,可以帮助用户解析 URL 地址和进行网络 通信。
3
网络协议
熟悉 Linux 支持的 TCP/IP 网络协议,可以识别和纠正网络问题。
概念,能够帮助用户管理文件系统的
linux操作系统课程所讲的内容
linux操作系统课程所讲的内容《Linux操作系统》课程通常会涵盖以下主要内容:1. Linux系统简介与历史:1)Linux内核的发展历程2)开源文化与社区支持3)Linux发行版介绍(如Ubuntu、CentOS、Red Hat Enterprise Linux等)2. Linux系统安装与基本配置:1)安装过程演示与实践2)系统启动流程(GRUB引导程序)3)文件系统管理(分区、格式化、挂载点)4)用户和组的创建与管理5)shell基础与高级操作(bash脚本编程)3. 文件系统与目录结构:1)文件权限及所有权2)软链接与硬链接3)目录操作命令(ls, cd, cp, mv, rm等)4. 进程管理:1)进程状态与控制(ps, top, kill, pgrep等)2)进程调度与作业控制5. 内存管理和虚拟存储:1)内存使用监控工具2)swap空间配置与管理3)物理内存与虚拟内存原理6. 网络配置与服务管理:1)网络接口配置(ifconfig/ip命令)2)DNS解析原理与配置3)配置网络服务(例如:Apache、Nginx、DHCP、DNS服务器)4)端口管理与防火墙规则设置(iptables或firewalld)7. 系统安全:1)权限管理策略2)SSH远程登录与密钥认证3)SELinux或AppArmor安全模块4)日志分析与审计8. 软件包管理:1)RPM与YUM/DNF在RHEL/CentOS系统上的应用2)APT与DEB包在Ubuntu/Debian系统上的使用3)编译安装与依赖管理9. 脚本编程与自动化任务:1)Shell脚本编写与调试2)Cron定时任务设置10. 设备管理与硬件驱动:1)设备文件与udev规则2)常见硬件设备的识别与配置11. 系统维护与故障排查:1)系统备份与恢复2)系统性能监视与优化3)故障诊断与日志分析通过理论教学和实验实践,学生将深入理解Linux操作系统的内部工作原理,并掌握在实际环境中进行系统管理和应用开发的基本技能。
linux操作系统讲解PPT课件
安装其他软件:可以根据 需要安装其他软件或工具, 以完成Linux操作系统的网络设置
基本配置:包括用户名、主机名、域名等
网络设置:包括IP地址、网关、DNS等
Linux操作系统的软件包管理和升级
常 见 的 软 件 包 管 理 工 具 : apt 、 yu m 、dnf 等 软件包查询:apt-cache search <关键词>、yum list <软件包名>等 软件包安装:apt-get install <软件包名>、yum install <软件包名>等 软 件 包 升 级 :apt- get update & & apt- get upg rade、 yum update等
Telnet: 一种 用 于网络远程登录 的标准协议,常 用于测试网络连 接
Linux操作系统的多媒体播放器和图形界面
多媒体播放器:VLC、 MPlayer等
图形界面:GNOME、KDE 等
Linux操作系统的安 全性和稳定性
Linux操作系统的用户管理和权限控制
用 户 管 理 : L inux 操 作 系 统 提 供 了 用 户 管 理 功 能 , 可 以 创 建 、 删 除 、 修 改 用 户 账 户 和 组 账 户 , 对用户和组进行权限管理。
Linux操作系统的安 装和配置
Linux操作系统的安装步骤和注意事项
准备安装介质:选择合 适的Linux发行版,并准
备安装光盘或U盘。
启动计算机:将安装介质 插入计算机,重启并进入 BIOS设置,选择从安装介
质启动。
选择安装选项:在安装过 程中,选择合适的安装选 项,如语言、时区、键盘
布局等。
《Linux培训》PPT课件
04
性能监控工具
介绍常用的Linux系统性能监 控工具,如top、htop、sar
等。
性能瓶颈识别
通过分析系统资源使用情况, 识别性能瓶颈,如CPU、内
存、磁盘I/O等。
优化方法
针对不同的性能瓶颈,提供相 应的优化方法,如调整系统参
数、优化软件配置等。
实践案例
分享一些成功的系统性能优化 案例,帮助学员更好地理解和
《Linux培训》PPT课 件
汇报人: 2023-12-31
目 录
• Linux基础知识 • Linux常用命令 • Linux文件系统与磁盘管理 • Linux网络配置与服务管理 • Linux Shell编程基础 • Linux系统安全与优化
Linux基础知识
01
Linux简介
Linux的起源
Linux Shell编程基
05
础
Shell脚本概述
01
02
03
脚本定义
Shell脚本是一种命令行脚 本语言,用于自动化 Linux/Unix系统上的任务 。
脚本执行
Shell脚本可以通过Shell 解释器执行,例如Bash、 sh等。
脚本组成
Shell脚本由命令、控制结 构、变量和注释等组成。
不同的操作。
循环控制
Shell脚本支持循环控制语句,如 for、while等,用于重复执行一
段代码。
流程控制
Shell脚本还支持其他流程控制语 句,如break、continue等,用
于控制循环的执行流程。
Linux系统安全与优
06
化
防火墙配置与安全策略制定
防火墙基本概念
介绍防火墙的定义、作用及常见类型。
专业英语
荆楚理工学院学生课程考核论文学院:计算机工程学院专业:计算机科学与技术班级: XX级计算机科学与技术一班课程:计算机专业英语论文题目: Anatomy of the Linux kernel 学生姓名: XXXXX学生学号: XXXX时间: 2012.12.18 成绩评定:Anatomy of the Linux kernel—History and architectural decompositionSummary: The Linux® kernel is the core of a large and complex operating system, and while it's huge, it is well organized in terms of subsystems and layers. In this article, you explore the general structure of the Linux kernel and get to know its major subsystems and core interfaces.Given that the goal of this article is to introduce you to the Linux kernel and explore its architecture and major components, let's start with a short tour of Linux kernel history, then look at the Linux kernel architecture from 30,000 feet, and, finally, examine its major subsystems. The Linux kernel is over six million lines of code, so this introduction is not exhaustive. Use the pointers to more content to dig in further.A short tour of Linux historyLinux or GNU/Linux?You've probably noticed that Linux as an operating system is referred to in some cases as "Linux" and in others as "GNU/Linux." The reason behind this is that Linux is the kernel of an operating system. The wide range of applications that make the operating system useful are the GNU software. For example, the windowing system, compiler, variety of shells, development tools, editors, utilities, and other applications exist outside of the kernel, many of which are GNU software. For this reason, many consider "GNU/Linux" a more appropriate name for the operating system, while "Linux" is appropriate when referring to just the kernel.While Linux is arguably the most popular open source operating system, its history is actually quite short considering the timeline of operating systems. In the early days of computing, programmers developed on the bare hardware in the hardware's language. The lack of an operating system meant that only one application (and one user) coulduse the large and expensive device at a time. Early operating systems were developed in the 1950s to provide a simpler development experience. Examples include the General Motors Operating System (GMOS) developed for the IBM 701 and the FORTRAN Monitor System (FMS) developed by North American Aviation for the IBM 709.In the 1960s, Massachusetts Institute of Technology (MIT) and a host of companies developed an experimental operating system called Multics (or Multiplexed Information and Computing Service) for the GE-645. One of the developers of this operating system, AT&T, dropped out of Multics and developed their own operating system in 1970 called Unics. Along with this operating system was the C language, for which C was developed and then rewritten to make operating system development portable.Twenty years later, Andrew Tanenbaum created a microkernel version of UNIX®, called MINIX (for minimal UNIX), that ran on small personal computers. This open source operating system inspired Linus Torvalds' initial development of Linux in the early 1990s (see Figure 1).Figure 1. Short history of major Linux kernel releasesLinux quickly evolved from a single-person project to a world-wide development project involving thousands of developers. One of the mostimportant decisions for Linux was its adoption of the GNU General Public License (GPL). Under the GPL, the Linux kernel was protected from commercial exploitation, and it also benefited from the user-space development of the GNU project (of Richard Stallman, whose source dwarfs that of the Linux kernel). This allowed useful applications such as the GNU Compiler Collection (GCC) and various shell support.Introduction to the Linux kernelNow on to a high-altitude look at the GNU/Linux operating system architecture. You can think about an operating system from two levels, as shown in Figure 2.Figure 2. The fundamental architecture of the GNU/Linux operating systemMethods for system call interface (SCI)In reality, the architecture is not as clean as what is shown in Figure 2. For example, the mechanism by which system calls are handled (transitioning from the user space to the kernel space) can differ by architecture. Newer x86 central processing units (CPUs) that provide support for virtualization instructions are more efficient in this process than older x86 processors that use the traditional int 80h method.At the top is the user, or application, space. This is where the user applications are executed. Below the user space is the kernel space. Here, the Linux kernel exists.There is also the GNU C Library (glibc). This provides the system call interface that connects to the kernel and provides the mechanism to transition between the user-space application and the kernel. This is important because the kernel and user application occupy different protected address spaces. And while each user-space process occupies its own virtual address space, the kernel occupies a single address space.he Linux kernel can be further divided into three gross levels. At the top is the system call interface, which implements the basic functions such as read and write. Below the system call interface is the kernel code, which can be more accurately defined as the architecture-independent kernel code. This code is common to all of the processor architectures supported by Linux. Below this is the architecture-dependent code, which forms what is more commonly called a BSP (Board Support Package). This code serves as the processor and platform-specific code for the given architecture.Properties of the Linux kernelWhen discussing architecture of a large and complex system, you can view the system from many perspectives. One goal of an architectural decomposition is to provide a way to better understand the source, and that's what we'll do here.The Linux kernel implements a number of important architectural attributes. At a high level, and at lower levels, the kernel is layered into a number of distinct subsystems. Linux can also be considered monolithic because it lumps all of the basic services into the kernel. This differs from a microkernel architecture where the kernel provides basic services such as communication, I/O, and memory and process management, and more specific services are plugged in to the microkernel layer. Each has its own advantages, but I'll steer clear of that debate.Over time, the Linux kernel has become efficient in terms of both memory and CPU usage, as well as extremely stable. But the most interesting aspect of Linux, given its size and complexity, is its portability. Linux can be compiled to run on a huge number of processors and platforms with different architectural constraints and needs. One example is the ability for Linux to run on a process with a memory management unit (MMU), as well as those that provide no MMU. The uClinux port of the Linux kernel provides for non-MMU support. See the Resources section for more details.Major subsystems of the Linux kernelNow let's look at some of the major components of the Linux kernel using the breakdown shown in Figure 3 as a guide.Figure 3. One architectural perspective of the Linux kernelSystem call interfaceThe SCI is a thin layer that provides the means to perform function calls from user space into the kernel. As discussed previously, this interface can be architecture dependent, even within the same processor family. The SCI is actually an interesting function-call multiplexing and demultiplexing service. You can find the SCI implementation in ./linux/kernel, as well as architecture-dependent portions in ./linux/arch.Process managementWhat is a kernel?As shown in Figure 3, a kernel is really nothing more than a resource manager. Whether the resource being managed is a process, memory, or hardware device, the kernel manages and arbitrates access to the resource between multiple competing users (both in the kernel and in user space).Process management is focused on the execution of processes. In the kernel, these are called threads and represent an individual virtualization of the processor (thread code, data, stack, and CPU registers). In user space, the term process is typically used, though the Linux implementation does not separate the two concepts (processes and threads). The kernel provides an application program interface (API) through the SCI to create a new process (fork, exec, or Portable Operating System Interface [POSIX] functions), stop a process (kill, exit), and communicate and synchronize between them (signal, or POSIX mechanisms).Also in process management is the need to share the CPU between the active threads. The kernel implements a novel scheduling algorithm that operates in constant time, regardless of the number of threads vying for the CPU. This is called the O(1) scheduler, denoting that the same amount of time is taken to schedule one thread as it is to schedule many. The O(1) scheduler also supports multiple processors (called Symmetric MultiProcessing, or SMP). You can find the process management sources in ./linux/kernel and architecture-dependent sources in ./linux/arch).Memory managementAnother important resource that's managed by the kernel is memory. For efficiency, given the way that the hardware manages virtual memory, memory is managed in what are called pages (4KB in size for most architectures). Linux includes the means to manage the available memory, as well as the hardware mechanisms for physical and virtual mappings.But memory management is much more than managing 4KB buffers. Linux provides abstractions over 4KB buffers, such as the slab allocator. This memory management scheme uses 4KB buffers as its base, but then allocates structures from within, keeping track of which pages are full, partially used, and empty. This allows the scheme to dynamically grow and shrink based on the needs of the greater system.Supporting multiple users of memory, there are times when the available memory can be exhausted. For this reason, pages can be moved out of memory and onto the disk. This process is called swapping because the pages are swapped from memory onto the hard disk. You can find the memory management sources in ./linux/mm.Virtual file systemThe virtual file system (VFS) is an interesting aspect of the Linux kernel because it provides a common interface abstraction for file systems. The VFS provides a switching layer between the SCI and the file systems supported by the kernel (see Figure 4).Figure 4. The VFS provides a switching fabric between users and file systemsAt the top of the VFS is a common API abstraction of functions such as open, close, read, and write. At the bottom of the VFS are the file system abstractions that define how the upper-layer functions are implemented. These are plug-ins for the given file system (of which over 50 exist). You can find the file system sources in ./linux/fs.Below the file system layer is the buffer cache, which provides a common set of functions to the file system layer (independent of any particular file system). This caching layer optimizes access to the physical devices by keeping data around for a short time (or speculatively read ahead so that the data is available when needed). Below the buffer cache are the device drivers, which implement the interface for the particular physical device.Network stackThe network stack, by design, follows a layered architecture modeled after the protocols themselves. Recall that the Internet Protocol (IP) is the core network layer protocol that sits below the transport protocol (most commonly the Transmission Control Protocol, or TCP). Above TCP is the sockets layer, which is invoked through the SCI.The sockets layer is the standard API to the networking subsystem and provides a user interface to a variety of networking protocols. From raw frame access to IP protocol data units (PDUs) and up to TCP and the User Datagram Protocol (UDP), the sockets layer provides a standardized way to manage connections and move data between endpoints. You can find the networking sources in the kernel at ./linux/net.Device driversThe vast majority of the source code in the Linux kernel exists in device drivers that make a particular hardware device usable. The Linux source tree provides a drivers subdirectory that is further divided by the various devices that are supported, such as Bluetooth, I2C, serial, and so on. You can find the device driver sources in ./linux/drivers.Architecture-dependent codeWhile much of Linux is independent of the architecture on which it runs, there are elements that must consider the architecture for normal operation and for efficiency. The ./linux/arch subdirectory defines thearchitecture-dependent portion of the kernel source contained in a number of subdirectories that are specific to the architecture (collectively forming the BSP). For a typical desktop, the i386 directory is used. Each architecture subdirectory contains a number of other subdirectories that focus on a particular aspect of the kernel, such as boot, kernel, memory management, and others. You can find the architecture-dependent code in ./linux/arch.Interesting features of the Linux kernelIf the portability and efficiency of the Linux kernel weren't enough, it provides some other features that could not be classified in the previous decomposition.Linux, being a production operating system and open source, is a great test bed for new protocols and advancements of those protocols. Linux supports a large number of networking protocols, including the typical TCP/IP, and also extension for high-speed networking (greater than 1 Gigabit Ethernet [GbE] and 10 GbE). Linux also supports protocols such as the Stream Control Transmission Protocol (SCTP), which provides many advanced features above TCP (as a replacement transport level protocol).Linux is also a dynamic kernel, supporting the addition and removal of software components on the fly. These are called dynamically loadable kernel modules, and they can be inserted at boot when they're needed (when a particular device is found requiring the module) or at any time by the user.A recent advancement of Linux is its use as an operating system for other operating systems (called a hypervisor). Recently, a modification to the kernel was made called the Kernel-based Virtual Machine (KVM). This modification enabled a new interface to user space that allows other operating systems to run above the KVM-enabled kernel. In addition to running another instance of Linux, Microsoft® Windows® can also bevirtualized. The only constraint is that the underlying processor must support the new virtualization instructions.英文原文地址为:/developerworks/linux/library/l-linux-kernel/Linux 内核剖析——历史与体系结构分解摘要: Linux 内核是一个大型的、复杂的操作系统核心,尽管它庞大,但它的子系统和层次都组织得很好。
linux内核完全注释一PPT课件
Linux:开放的操作系统
是一个UNIX操作系统的克隆,可以免费使 用,遵循GPL声明,可以自由修改和传播。 Linux包含了人们希望操作系统拥有的所 有功能特性,这些功能包括真正的多任务、 虚拟内存、世界上最快的TCP/IP驱动程序、 共享库和多用户支持。
现在是个人计算机和工作站上的UNIX类操 作系统。它不仅继承了UNIX的特征,而且 在许多方面超过了UNIX。
单内核例子
Linux
微内核优点
内核简单 可移值性好
微内核缺点
开销大
微内核例x简介 Linux的历史与现状
Linux之父
Linus Torvalds(林纳 斯·托瓦兹,1969年12 月28日生 )
毕业与芬兰赫尔辛基大 学计算机科学系,大学 二年级时编写Linux
设备管理
内 核
行在内核模式中
模 式
应用程序与内核模块、
内核模块间的通信是通
过函数调用实现的
硬件
操作系统内核体系结构——微内核
应用程序 设备服务器 文件服务器 IPC、进程管理、内存管理 硬件
用 内核仅包含一些最
户 模
基本功能,运行在
式 内核模式下
其它操作系统功能
内 以服务器的形式提
核 模
批处理操作系统 串行,非交互
单任务单用户操作系统 串行,交互 Dos
多任务单用户操作系统 并行,交互 Windows 98
多任务多用户操作系统 并行,交互,分时共享 Unix、Linux、Windows XP
实时操作系统 并行,响应时间短,容错性 强 嵌入式Linux
供,运行在用户模
式 式下
Linux操作系统简介
2.5 Linux旳内核体系构造
与UNIX系统相同,Linux系统大致可分 为3层:接近硬件旳底层是内核,即Linux操 作系统旳常驻内存部分;中间层是内核之外 旳Shell层,亦即操作系统旳系统程序部分; 最高层是应用层,即顾客程序部分,涉及多 种文本处理程序、语言编译程序及游戏程序 等。Linux旳系统构造如图2.1所示。
(4)Mail 服 务 器 : Qmail、sendmail、 XMail;
(5)E-Mail客户端:pine、Kmail;
(6) 浏 览 器 : Netscape、Mozilla、 Phoenix、lynx;
(7) 虚 拟 终 端 : rxvt、xterm、gnometerminal、mlterm;
Linux常用旳网络应用软件有下列几类。
( 1 ) WWW 服 务 器 : Apache、Caudium、 CERN HTTPD Server、Netscape Fast Track Server、Zeus Server;
(2)FTP 服 务 器 : Wu-ftp、proftpd、 vsftpd;
(3)FTP客户端:gFTP、lftp;
(8)聊天工具:gaim、Licq。
(9)网络共享服务:samba。
(10)远程登陆:telnet、ssh1、ssh2
2.4.5 X Window
X窗口系统是Linux上旳原则图形界面, 它是一种有效旳支持多种应用旳环境。 在XWindow 基础上实现不同旳桌面系统, 如:KDE, gnome桌面系统。
Linux操作系统简介
1 Linux旳发展 2 Linux旳版本 3 Linux旳特征和功能 4 Linux旳常用软件 5 Linux旳内核体系构造 6 Linux旳现状及前景