鲁教版七年级数学上册第一章专项练习
初中数学鲁教版(五四制)七年级上册第一章 三角形本章综合与测试-章节测试习题
章节测试题1.【答题】下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A. 3cm,4cm,8cmB. 8cm,3cm,11cmC. 5cm,5cm,11cmD. 6cm,5cm,3cm【答案】D【分析】【解答】2.【答题】如图,下列图形中,AD是△ABC中BC边上的高的是()A. B. C. D.【答案】D【分析】【解答】3.【答题】在△ABC中,,则△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【答案】B【分析】【解答】4.【答题】如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC=EC,∠B=∠EB. BC=EC,∠A=∠DC. BC=EC,AC=DCD. ∠BCE=∠ACD,∠A=∠D【答案】B【分析】【解答】5.【答题】如图,在△ABC中,∠ACB=90°,∠A=20°.若将△ABC沿CD折叠,使点B 落在AC边上的点E处,则∠ADE的度数是()A. 30°B. 40°C. 50°D. 70°【答案】C【分析】【解答】6.【答题】如图,欲测量内部无法到达的古塔相对两点A,B间的距离,可延长AO至C,使CO=AO,延长BO至D,使DO=BO,则△COD≌△AOB,从而通过测量CD就可测得A,B间的距离.其全等的根据是()A. SASB. ASAC. AASD. SSS【答案】A【分析】【解答】7.【答题】如图,在△ABC中,已知D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积等于()A. 2cm2B. 1cm2C.D.【答案】B【分析】【解答】8.【答题】如图,网格中有△ABC及线段DE,在网格上找一点F(必须在网格的交点处),使△DEF与△ABC全等,这样的点有()A. 1个B. 2个C. 3个D. 4个【答案】D【分析】【解答】9.【答题】如图,建高楼时常需要塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的______.【答案】稳定性【分析】【解答】10.【答题】已知三角形的两条边长分别为2cm和7cm,第三边的长为奇数,则第三边的长为______cm.【答案】7【分析】【解答】11.【答题】如图,已知△ABC中AD是BC边上的高,AE,BF分别是∠CAB,∠ABC的平分线,并相交于点O.若∠CAB=50°,∠C=60°,则∠DAE=______,∠BOA=______.【答案】5° 120°【分析】【解答】12.【答题】如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B.一动点E从A点出发以2cm/s的速度沿射线AN运动,点D为射线BM上的一个动点,随着E点运动而运动,且始终保持ED=CB.当点E离开点A后(E不在A点上),运动______s,△DEB与△BCA全等.【答案】2,6,8【分析】【解答】13.【题文】(10分)已知线段a和∠α,求作一个三角形,使其一个内角等于∠α,另一个内角等于2∠α,且这两个内角的夹边等于2a.【答案】见解答.【分析】本题考查利用基本作图作三角形.【解答】如图,△ABC即为所求.14.【题文】(12分)如图,A,C,F,D在同一直线上,且AF=DC,AB∥DE,AB=DE.请写出BC与EF的关系,并说明理由.【答案】见解答.【分析】本题考查全等三角形的判定和性质.【解答】BC=EF,BC∥EF.理由:∵AF=CD,∴AF-FC=CD-FC,即AC=DF.∵AB∥DE,∴∠A=∠D.在△ABC和△DEF中,∴△ABC≌△DEF(SAS).∴BC=EF,∠ACB=∠DFE.∴∠BCF=∠EFC,∴BC∥EF.15.【题文】(12分)如图,点E在AC上,AB=AD,BE=DE,试说明∠3=∠4.【答案】见解答.【分析】本题考查全等三角形的判定和性质.【解答】在△ABE和△ADE中,∴△ABE≌△ADE(SSS),∴∠1=∠2.在△ABC和△ADC中,∴△ABC≌△ADC(SAS),∴∠3=∠4.16.【题文】(14分)如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过A,B两点分别作直线l的垂线,垂足分别为D,E.(1)△ACD与△CBE全等吗?说明你的理由.(2)猜想线段AD,BE,DE之间的关系,并说明理由.(3)若把两块等腰直角三角板按图3所示的方式放置,连接BE,AD,AD分别交BE,BC于点F,G.猜想AD与BE有怎样的数量关系和位置关系,并说明理由.【答案】见解答.【分析】本题考查全等三角形的判定和性质.【解答】(1)△ACD与△CBE全等.理由如下:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.又∵∠ACB=90°,∴∠ACD=∠CBE=90°-∠ECB.在△ACD与△CBE中,∴△ACD≌△CBE(AAS).(2)AD=BE-DE.理由如下:∵△ACD≌△CBE,∴AD=CE.CD=BE.∴AD=CE=CD-DE=BE-DE.(3)AD=BE,AD⊥BE.理由如下:在△BCE和△ACD中,∵∠DCE=∠ACB=90°,∴∠DCE+∠DCB=∠ACB+∠BCD,∴∠BCE=∠ACD.在△BCE和△ACD中,∴△BCE≌△ACD(SAS),∴BE=AD,∠EBC=∠CAD.在Rt△ACG中,∵∠CGA+∠CAG=90°,∠BGF=∠CGA,∴∠BGF+∠GBF=90°,∴∠BFG=90°,即AD⊥BE.17.【答题】下列图形是全等图形的是()A. B. C.D.【答案】B【分析】【解答】18.【答题】如图,为估计池塘岸边A,B间的距离,小明在池塘的一侧选取一点O,测得OA=15m,OB=10m,则A,B间的距离可能是()A. 30mB. 25mC. 20mD. 5m【答案】C【解答】19.【答题】如图,要测量湖两岸相对两点A,B间的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再作BF的垂线DE,使A,C,E在一条直线上,这时可得△ABC≌△EDC. 用于判定全等的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【分析】【解答】20.【答题】在△ABC中,已知下列条件:①∠A=60°,∠C=30°;②∠A+∠B=∠C;③∠A:∠B:∠C=3:4:5;④∠A=90°-∠C.能确定△ABC是直角三角形的有()A. 1个B. 2个C. 3个D. 4个【分析】【解答】。
初中数学鲁教版(五四制)七年级上册第一章 三角形4 三角形的尺规作图-章节测试习题
章节测试题1.【题文】画一个三角形,再画一个与其全等的图形.【答案】见解析【分析】作任意再作一个三角形与它全等即可.【解答】解:1,作任意 2,作射线在上截取 3,以为圆心, 为半径画圆4,以为圆心, 为半径画圆,交圆于,5,连接得,全等于2.【答题】下列尺规作图,能判断是边上的高是().A.B.C.D.【答案】B【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】A选项:AD为BC边上的中线,不符合题意;B选项:AD为BD边上的高;C选项:AD为∠BAC的角平分线;D选项:AD不是BC边上的高.选B.方法总结:掌握利用尺规作图作三角形的高的方法.3.【答题】已知三边作三角形时,用到所学知识是( )A. 作一个角等于已知角B. 作一个角使它等于已知角的一半C. 在射线上取一线段等于已知线段D. 作一条直线的平行线或垂线【答案】C【分析】根据三边做三角形用到作一条线段等于已知线段的基本作图方法.【解答】已知三边作三角形时,用到的三角形的判定方法是SSS定理,而第一条边的作法,需要在射线上截取一条线段等于已知的线段。
故C。
方法总结:作一个三角形等于已知的三角形,有多种方法,本题是其中的三边作图,用的是SSS判定定理。
4.【答题】已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为( )A. 作一条线段等于已知线段B. 作一个角等于已知角C. 作两条线段等于已知三角形的边,并使其夹角等于已知角D. 先作一条线段等于已知线段或先作一个角等于已知角【答案】D【分析】利用基本作图先要作一个线段等于已知线段,再作一个角等于已知角或先作一个角等于已知角,然后便于作边.【解答】已知三角形的两边及其夹角,求作这个三角形,可以先A法,也可以先B法,但是都不全面,因为这两种方法都可以,故选D.。
5.【答题】利用尺规进行作图,根据下列条件作三角形,画出的三角形不是唯一的是()A. 已知三条边B. 已知三个角C. 已知两角和夹边D. 已知两边和夹角【答案】B【分析】看是否符合所学的全等的公理或定理即可.【解答】A、符合全等三角形的判定SSS,能作出唯一直角三角形;B、不正确,已知三个角可画出无数个三角形;C、正确,符合ASA判定;D、正确,符合SAS判定.选B.方法总结:此题主要考查由已知条件作三角形,可以依据三角形全等的判定来做.6.【答题】用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A. 三角形的两条边和它们的夹角B. 三角形的三边C. 三角形的两个角和它们的夹边D. 三角形的三个角【答案】A【分析】由已知条件可判定已知条件为两边和它们的夹角作三角形.【解答】由已知条件可判定已知条件为两边和它们的夹角作三角形.选A.7.【答题】已知∠AOB,用尺规作一个角∠A’O’B’等于已知角∠AOB的作图痕迹如图所示,则判断∠AOB=∠A’O’B’所用到的三角形全等的判断方法是()A. SASB. ASAC. AASD. SSS【答案】D【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS得到三角形全等,由全等三角形的性质,可得全等三角形的对应角相等.【解答】如图,连接CD、C’D’,∵在△COD和△C’O’D’中,∴△COD≌△C’O’D’(SSS),∴∠AOB=∠A’O’B’选D.8.【答题】用尺规作图,已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作角的平分线【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三边作三角形实质就是把三边的长度用圆规画出,选C.9.【答题】如图,小敏做试题时,不小心把题目中的三角形用墨水弄污了一部分,她想在一块白纸上作一个完全一样的三角形,然后粘贴在上面,她作图的依据是( )A. SSSB. SASC. ASAD. AAS【答案】C【分析】图中的三角形已知一条边以及两个角,利用全等三角形的判定(ASA)可作图.【解答】根据图形,可以确定两角及其夹边.选C.10.【答题】根据下列已知条件,能唯一画出△ABC的是( )A. ∠A=36°,∠B=45°,AB=4B. AB=4,BC=3,∠A=30°C. AB=3,BC=4,CA=1D. ∠C=90°,AB=6【答案】A【分析】看是否符合所学的全等的公理或定理及三角形三边关系即可.【解答】A.∠A=36°,∠B=45°,AB=4,利用原理“ASA”可以画出唯一的三角形;B、C、D都不能唯一的作出三角形.选A.11.【答题】利用基本作图方法,不能作出唯一三角形的是( )A. 已知两边及其夹角B. 已知两角及其夹边C. 已知两边及一边的对角D. 已知三边【答案】C【分析】三角形全等的判定定理有SAS,ASA,AAS,SSS,根据以上内容判断即可.【解答】A. 已知两边及其夹角,作图依据“SAS”;B. 已知两角及其夹边,作图依据“ASA”;C. 已知两边及一边的对角,不能做出唯一的三角形;D. 已知三边,作图依据“SSS”.选C.12.【答题】已知三边作三角形,用到的基本作图是( )A. 作一个角等于已知角B. 作已知直线的垂线C. 作一条线段等于已知线段D. 作一条线段等于已知线段的和【答案】C【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】已知三角形的三边,求作符合要求的三角形,其作图依据是“SSS”.故用到的基本作图是:作一条线段等于已知线段.选C.13.【答题】下列各条件中,能作出唯一的△ABC的是( )A. AB=4,BC=5,AC=10B. AB=5,BC=4,∠A=40°C. ∠A=90°,AB=10D. ∠A=60°,∠B=50°,AB=5【答案】D【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】本题中A选项中的三边不能确定三角形,B选项中不是夹角,C选项中缺少一个条件,选D.14.【答题】下列选项所给条件能画出唯一的是()A. ,,B. ,,C. ,D. ,,【答案】A【分析】要能做出唯一三角形,则需要已知三边,两边及夹角,两角及夹边,【解答】A中两角夹一边,形状固定,所以可作唯一三角形;B中∠B并不是AB,AC的夹角,所以可画出多个三角形;C中两个锐角也不确定,也可画出多个三角形;D中AC与BC两边之差大于第三边,所以不能作出三角形,选A.15.【答题】如图,根据图中作图痕迹,可以得出作三角形的依据分别是:(1)______;(2)______;(3)______(图中虚线表示最后作出的线段)【答案】SAS,SSS,ASA【分析】从作图痕迹可知是通过作两边和两边的夹角得到三角形的,作图的依据是SAS.从作图痕迹可知是通过作三边得到三角形的,作图的依据是SSS.从作图痕迹可知是通过作两角和夹边得到三角形的,作图的依据是ASA.【解答】解:答案为:16.【答题】尺规作三角形的类型:尺类型依据规作图已知两边及其夹角作三角形______已知两角一边作三角形______(或)已知三边作三角形______【答案】SAS,ASA,SSS【分析】判定三角形全等的方法有:【解答】解:已知两边及其夹角作三角形,其依据是:SAS.已知两角一边作三角形,其依据是:ASA(或).已知三边作三角形, 其依据是:故答案为:17.【答题】作三角形用到的基本作图是:(1)______;(2)______;【答案】作一个角等于已知角,作一条线段等于已知线段【分析】根据三边作三角形用到的基本作图是:作一条线段等于已知线段.【解答】解:作三角形用到的基本作图是:(1). 作一个角等于已知角(2). 作一条线段等于已知线段故答案为:(1). 作一个角等于已知角(2). 作一条线段等于已知线段.18.【答题】下列作图中:①用量角器画出;②作,使;③连接;④用直尺和三角板作的平行线,属于尺规作图的是______.(填序号)【答案】②③【分析】尺规作图的定义:只能用没有刻度的直尺和圆规作图【解答】属于尺规作图的是②、③.故答案为②③.19.【答题】已知,分别以射线、为始边,在的外部作,,则与的位置关系是______.【答案】互相垂直或重合【分析】根据题意,结合图形,利用已知条件及角的和差关系,求∠COD度数.【解答】①∵∠AOB=22.5°,∴∠AOC=22.5°,∠BOD=45°,∴∠COD=90°,此时OC⊥OD;②∵∠AOB=22.5°,∴∠AOC=22.5°,∠BOD=45°,∴∠BOC=45°,此时OC与OD 重合.故答案为互相垂直或重合.方法总结:本题关键在于考虑到两个可能性.20.【答题】利用尺规作三角形,有三种基本类型:(1)已知三角形的两边及其夹角,求作符合要求的三角形,其作图依据是“______”;(2)已知三角形的两角及其夹边,求作符合要求的三角形,其作图依据是“______”;(3)已知三角形的三边,求作符合要求的三角形,其作图依据是“______”.【答案】SAS,ASA,SSS【分析】根据三角形全等的判定定理可得答案.【解答】根据SAS—两边及其夹角分别相等的两个三角形全等;ASA—两角及其夹边分别相等的两个三角形全等;SSS—三边分别相等的两个三角形全等.故答案:(1)SAS、 (2)ASA 、(3)SSS.。
初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题
章节测试题1.【答题】如图△ACB≌A’CB’,∠A’CB=30°,∠ACB’=110°,则∠ACA’的度数是______度.【答案】40【分析】本题主要考查全等三角形对应角相等的性质,对应角都减去∠A′CB得到两角相等是解决本题的关键.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,即∠ACA′=∠BCB′,∵∠A′CB=30°,∠ACB′=110°,∴∠ACA′=(110°﹣30°)÷2=40°.故答案为:402.【答题】△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=______.【答案】40°【分析】利用全等三角形的性质,要求∠DEF即要求∠ABC,分别设出△ABC对应的角度,再利用三角形内角和为180°列方程解出未知数即可.【解答】设∠BAC=4x°,∠ACB=3x°,∠ABC=2x°,所以4x+3x+2x=180,x=20,∴∠ABC=40°,∵△ABC≌△DEF,∴∠ABC=∠DEF=40°.故答案为40°.3.【答题】如图,△ABC≌△DEF,线段AD=5,DE=3,则BD= ______.【答案】2【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△DEF,DE=3,∴AB=DE=3,∵线段AD=5,∴BD=AD-AB=5-3=2.4.【答题】如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=42°,则∠DAC=______.【答案】36°【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE=42°,∴∠DAC=∠BAE﹣∠BAD﹣∠CAE=120°﹣42°﹣42°=36°.故答案为:36°.5.【答题】如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=______.【答案】66°【分析】根据全等三角形对应角相等可得∠ACB=∠E,再求出∠ACF,然后根据三角形的内角和定理列式计算即可得解.【解答】解:∵△ABC≌△ADE,∴∠ACB=∠E=105°,∴∠ACF=180°﹣105°=75°,在△ACF和△DGF中,∠D+∠DGB=∠DAC+∠ACF,即25°+∠DGB=16°+75°,解得∠DGB=66°.故答案为:66°.6.【题文】如图,ΔABC≌ΔD EF,∠A=25°,∠B=65°,B F=3㎝,求∠D FE的度数和E C的长.【答案】∠D FE=65°;E C=3㎝.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°-∠A-∠B=180°-25°-65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm,∴∠DFE=90°,EC=3cm.7.【题文】如图,△ACB与△BDA全等,AC与BD对应,BC与AD对应,写出其余的对应边和对应角.【答案】见解析【分析】利用全等三角形的性质分别得出对应点进而得出对应边与对应角关系.【解答】解:∵△ACB≌△BDA,∴AB=BA;∠CBA=∠DAB,∠CAB=∠DBA,∠C=∠D.8.【题文】如图,已知△ABD≌△CDB,∠ABD=∠CDB,写出其余的对应边和对应角.【答案】见解析【分析】利用全等三角形的性质分别得出对应点进而得出对应边与对应角关系.【解答】解:∵△ABD≌△CDB,∴∴AB的对应边是CD,AD的对应边是CB,BD的对应边是DB,∠A的对应角是∠C,∠ADB的对应角是∠CBD,∠ACB的对应角是∠ECD.9.【题文】如图,已知△ABC≌△EDC,指出其对应边和对应角.【答案】见解析【分析】利用全等三角形的性质分别得出对应点进而得出对应边与对应角关系.【解答】解:△ABC≌△EDC,∴AB的对应边是ED,AC的对应边是EC,BC的对应边是DC,∠A的对应角是∠E,∠B的对应角是∠D,∠ACB的对应角是∠ECD.10.【题文】如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出其他的对应边和对应角.【答案】见解析【分析】先根据△ABE≌△ACD,可以确定点A的对应点是A,点B的对应点是C,点D的对应点是E,然后根据对应顶点,结合图形即可找出对应边和对应角. 【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴点A的对应点是A,点B的对应点是C,点E的对应点是D,∴∠BAE与∠CAD是对应角,AB与AC,BE与CD,AD与AE是对应边.11.【题文】如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【答案】(1)EF=NM,EG=NH,FG=MH,∠F=∠M, ∠E=∠N, ∠EGF=∠NHM (2)MN=2.1cm,HG=2.2cm.【分析】(1)因为△EFG≌△NMH,故有全等三角形的对应边和对应角相等.(2)因为△EFG≌△NMH,故EF=NM,,即可求出各自的长度.【解答】解:(1)△EFG≌△NMH,∠F与∠M是对应角在△EFG和△NMH中,有EF=NM,EG=NH,FG=MH∠F=∠M, ∠E=∠N, ∠EGF=∠NHM ;(2)∵由(1)可知,EF=NM,EF=2.1cm ∴MN="2.1"又MH=FG=3.3 FH=1.1∴=3.3-1.1=2.2cm.12.【答题】如图,已知B,C,E在一条直线上,且△ABC≌△EFC,∠EFC=60°,则∠A=______;【答案】30°【分析】根据全等三角形的性质解答即可.【解答】解:根据三角形全等可得:∠ACB=∠ECF=90°,∠B=∠EFC=60°,则根据△ABC的内角和定理可得:∠A=180°-90°-60°=30°.13.【答题】如图,△ABD≌△AC E,A E=3cm,AC=6 cm,则CD=______cm.【答案】3【分析】根据全等三角形的性质解答即可.【解答】∵△ABD≌△ACE,∴AD=AE=3cm,∴CD=AC-AD=6 -3=3cm,故答案为:3.14.【答题】如图,△ABD≌△EBC,AB=3cm,BC=5cm,则DE长是______cm。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(76)
章节测试题1.【答题】如果三角形三个内角的度数比是2:3:4,则它是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 钝角或直角三角形【答案】A【分析】【解答】2.【答题】如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,下列结论中错误的是()A. 图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D. ∠2=∠A【答案】B【分析】【解答】3.【答题】将一把直尺与一块含30°角的三角板按如图所示方式放置,若∠1=40°,则∠2的度数为()A. 125°B. 120°C. 140°D. 130°【答案】D【分析】【解答】4.【答题】如图,将一副三角板按图中所示方式摆放,保持两条斜边互相平行,则∠1=()A. 30°B. 25°C. 20°D. 15°【答案】D【分析】【解答】5.【答题】在△ABC中,∠A:∠B:∠C=2:3:5,此三角形按角分类应是______三角形.【答案】直角【分析】【解答】6.【答题】如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC.若∠1=155°,则∠B的度数为______.【答案】65°【分析】【解答】7.【答题】如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为______.【答案】40°【分析】【解答】8.【题文】如图,直线a∥b,EF⊥CD于点F,∠2=65°,求∠1的度数.【答案】提示:先根据直线a∥b得出∠FDE=∠2=65°,再由EF⊥CD于点F可知⊥DFE=90°,从而可得出∠1=25°.【分析】【解答】9.【题文】如图所示,∠C=90°,∠B=50°,E为AC边上一点,ED⊥AB,垂足为D,试问:∠AED和∠B的关系是什么?【答案】相等.【分析】【解答】10.【答题】下列条件:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°-∠B,④∠A=∠B=∠C,其中能确定△ABC是直角三角形的有______.(填序号)【答案】①②③【分析】【解答】11.【答题】已知a∥b,将一块含30°角的三角板按如图所示方式放置,如果∠1=35°,那么∠2=()A. 35°B. 55°C. 56°D. 65°【答案】B【分析】【解答】12.【答题】将一副三角板按如图所示方式放置,则∠1与∠2的和是()A. 60°B. 45°C. 30°D. 25°【答案】B【分析】13.【题文】如图,在△ACB中,∠ACB=90°,CD⊥AB,垂足为D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD,BC于E,F,求证:∠CEF=∠CFE.【答案】(1)提示:∠ACD和∠B都与∠CAB互余;(2)略.【分析】【解答】14.【答题】已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是()A. 4B. 6C. 8D. 10【答案】C【分析】【解答】15.【答题】一个三角形三边的长分别为1,3,x,且x为整数,则此三角形的周长是()A. 9B. 8C. 7D. 6【分析】【解答】16.【答题】已知三角形的三边长分别为3,8,x,若x的值为偶数,则x的值有()A. 6个B. 5个C. 4个D. 3个【答案】D【分析】【解答】17.【答题】现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根可以组成三角形的个数是()A. 1B. 2C. 3D. 4【答案】B【分析】【解答】18.【答题】如果三角形的两边长分别为3和5,则周长l的取值范围是()A. 6<l<15B. 6<l<16C. 11<l<13D. 10<l<16【答案】D【分析】19.【答题】已知△ABC三边的长x,y,z满足(x-y)2+|y-z|=0,则△ABC的形状是()A. 钝角三角形B. 直角三角形C. 等边三角形D. 以上都不对【答案】C【分析】【解答】20.【答题】若等腰三角形的一边长是7,另一边长是4,则此等腰三角形的周长是()A. 18B. 15C. 18或15D. 无法确定【答案】C【分析】【解答】。
鲁教版(五四制)七年级数学上册第一章达标测试卷含答案
鲁教版(五四制)七年级数学上册第一章达标测试卷一、选择题(每题3分,共36分)1.图中三角形的个数是()A.3 B.4 C.5 D.62.下列各图中,作出△ABC的AC边上的高,正确的是()3.若一个三角形的两边长分别为3 cm,6 cm,则它的第三边的长可能是() A.2 cm B.3 cm C.6 cm D.9 cm4.如图,CE是∠ACD的平分线,CE交BA的延长线于点E,若∠ABC=32°,∠BAC=118°,则∠ECD的度数是()A.50°B.60°C.70°D.75°5.如图是作△ABC的作图痕迹,则此作图的已知条件是() A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角6.如图,在△ABC和△ABD中,若∠CAB=∠DAB,点A,B,E在同一条直线上,则添加以下条件,仍然不能判定△ABC≌△ABD的是()A.BC=BD B.∠C=∠DC.∠CBE=∠DBE D.AC=AD7.下列说法正确的是()A.两个面积相等的三角形是全等图形B.两个长方形是全等图形C.两个周长相等的圆是全等图形D.两个正方形是全等图形8.如图,△OAB≌△OCD,OA=4,∠AOB=35°,∠OCA=62°,则下列结论不一定正确的是()A.∠BDO=62°B.∠BOC=21°C.OC=4 D.CD∥OA9.如图,给出下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′.若从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.410.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,记△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1 B.2 C.3 D.411.如图,在△ABC中,∠A=50°,∠B=60°,CD平分∠ACB,DE⊥BC于E,则∠CDE的度数为()A.35°B.45°C.55°D.65°12.如图,在△AOB和△COD中,OA=OB,OC=OD(OA<OC),∠AOB=∠COD=α,直线AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠OAM=∠OBM;③∠AMB=α,其中正确结论的个数是()A.3 B.2 C.1 D.0二、填空题(每题3分,共18分)13.如图,一扇窗户打开后,用窗钩BC可将其固定,这所运用的几何原理是______________.14.一个三角形两边上的高线交于一点,这个点正好是该三角形的一个顶点,则该三角形的形状是________三角形.15.如图是由6个相同的小正方形拼成的网格,∠2-∠1=________°. 16.要测量河两岸相对的两点A ,B 间的距离(AB 垂直于河岸BF ),先在BF上取两点C ,D ,使CD =CB ,再作出BF 的垂线DE ,垂足为D ,且使A ,C ,E 三点在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB .因此测得ED 的长就是AB 的长.判定△EDC ≌△ABC 的理由是________.17.如图,在△ABC 中,AD 是BC 边上的高,BE 是AC 边上的高,且AD ,BE 交于点F .若BF =AC ,CD =3,BD =8,则线段AF 的长度为________. 18.如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE=12(AB +AD ),若∠D =115°,则∠B =________.三、解答题(19~21题每题8分,25题12分,其余每题10分,共66分) 19.尺规作图:如图,小明在作业本上画的△ABC 被墨迹污染了,他想画一个与原来完全一样的△A ′B ′C ′,请帮助小明想办法用尺规作图法画出△A ′B ′C ′,并说明你的理由.20.已知a,b,c是△ABC的三边长,a=4,b=6,设△ABC的周长是x.(1)直接写出c及x的取值范围.(2)若x是小于18的偶数.①求c的长;②判断△ABC的形状.21.如图,在△ABC中,CD是高,且∠CAB=∠DCB.(1)试判断△ABC的形状,并说明理由;(2)若AE是△ABC的角平分线,AE,CD相交于点F.试说明:∠CFE=∠CEF.22.如图,某市新开发了一个旅游景点,湖心有一个小岛C,现需要在湖心小岛C上修建一个度假村,因此要测量景点A,B与C的距离.设计人员拟出下列方案:画出∠BAM=∠CAB,∠ABN=∠ABC,射线AM与射线BN交于点D,于是只需量出AD,BD的长,就知道AC,BC的长.这个方法可行吗?根据是什么?你还能设计出其他方案吗?23.如图,△ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B 和由C向A爬行,经过t s后,它们分别爬行到了D,E处,设DC与BE 的交点为F.(1)试说明:△ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.24.如图,已知点M是AB的中点,DC是过点M的一条直线,且∠ACM=∠BDM,AE⊥CD,BF⊥CD,垂足分别为点E,F.(1)试说明:△AME≌△BMF;(2)猜想MF与CD之间的数量关系,并说明理由.25.已知点P是Rt△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是__________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.D 2.C 3.C 4.D 5.C 6.A 7.C 8.D 9.B10.B 点拨:由题意易得S △ABE =13×12=4,S △ABD =12×12=6,所以S △ADF -S △BEF=S △ABD -S △ABE =2.11.C12.A 点拨:因为∠AOB =∠COD =α,所以∠AOB +∠BOC =∠COD +∠BOC , 即∠AOC =∠BOD . 在△AOC 和△BOD 中,⎩⎨⎧OA =OB ,∠AOC =∠BOD ,OC =OD ,所以△AOC ≌△BOD (SAS), 所以∠OAC =∠OBD ,AC =BD , 即∠OAM =∠OBM ,故①②正确; 易知∠AMB +∠OBD =∠OAC +∠AOB , 所以∠AMB =∠AOB =α, 故③正确.二、13.三角形的稳定性 14.直角 15.90 16.ASA17.5 点拨:由已知可得∠ADC =∠BDF =∠BEA =90°.因为∠AFE =∠BFD , 所以∠DAC =∠DBF . 又因为AC =BF , 所以△ADC ≌△BDF .所以AD =BD =8,DF =DC =3. 所以AF =AD -DF =8-3=5.18.65° 点拨:过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD , 所以∠CAF =∠CAE . 又因为CF ⊥AF ,CE ⊥AB , 所以∠AFC =∠AEC =90°. 在△CAF 和△CAE 中,⎩⎨⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE (AAS). 所以FC =EC ,AF =AE . 又因为AE =12(AB +AD ), 所以AF =12(AE +EB +AD ), 即AF =BE +AD . 又因为AF =AD +DF , 所以DF =BE . 在△FDC 和△EBC 中,⎩⎨⎧CF =CE ,∠CFD =∠CEB =90°,DF =BE ,所以△FDC ≌△EBC (SAS). 所以∠FDC =∠B . 又因为∠ADC =115°,所以∠FDC =180°-115°=65°. 所以∠B =65°.三、19.解:作图如图所示.理由:在△ABC 和△A ′B ′C ′中,⎩⎨⎧∠B =∠B ′,BC =B ′C ′,∠C =∠C ′,所以△ABC ≌△A ′B ′C ′(ASA).20.解:(1)c 的取值范围为2<c <10;x 的取值范围为12<x <20. (2)①因为x 为小于18的偶数, 所以x =16或x =14. 当x =16时,c =6; 当x =14时,c =4.②当c =6时,b =c ,△ABC 为等腰三角形;当c =4时,a =c ,△ABC 为等腰三角形.综上所述,△ABC 是等腰三角形.21.解:(1)△ABC 是直角三角形.理由如下:因为在△ABC 中,CD 是高, 所以∠CDA =90°, 所以∠CAB +∠ACD =90°. 又因为∠CAB =∠DCB , 所以∠DCB +∠ACD =90°, 即∠ACB =90°,所以△ABC 是直角三角形. (2)因为AE 是△ABC 的角平分线, 所以∠DAF =∠CAE .因为CD 是高,所以∠CDA =90°, 所以∠DAF +∠AFD =90°. 由(1)知∠ACB =90°, 所以∠CAE +∠CEF =90°, 所以∠AFD =∠CEF .又因为∠AFD =∠CFE , 所以∠CFE =∠CEF .22.解:这个方法可行.根据“ASA”可得△ABC ≌△ABD ,则AC =AD ,BC =BD .其他方案略.23.解:(1)因为两只小蚂蚁同时从A ,C 出发,速度相同,所以t s 后两只小蚂蚁爬行的路程AD =CE . 在△ACD 和△CBE 中,⎩⎨⎧AD =CE ,∠A =∠ACB ,AC =CB ,所以△ACD ≌△CBE (SAS). (2)无变化.理由如下: 因为△ACD ≌△CBE , 所以∠EBC =∠ACD .因为∠BFC =180°-∠EBC -∠BCD ,所以∠BFC =180°-∠ACD -∠BCD =180°-∠ACB . 因为∠A =∠ABC =∠ACB ,∠A +∠ABC +∠ACB =180°, 所以∠ACB =60°.所以∠BFC =180°-60°=120°. 所以∠BFC 的大小无变化.24.解:(1)因为点M 是AB 的中点,所以AM =BM .因为AE ⊥CD ,BF ⊥CD , 所以∠AEM =∠BFM =90°. 在△AME 和△BMF 中, ⎩⎨⎧∠AEM =∠BFM =90°,∠AME =∠BMF ,AM =BM ,所以△AME ≌△BMF (AAS).(2)猜想:2MF =CD .理由如下:因为AE ⊥CD ,BF ⊥CD ,所以∠AEC =∠BFD =90°. 由(1)可知△AME ≌△BMF ,所以EM =FM ,AE =BF .在△ACE 和△BDF 中,⎩⎨⎧∠AEC =∠BFD =90°,∠ACM =∠BDM ,AE =BF ,所以△ACE ≌△BDF (AAS).所以DF =CE .因为DF =CD +CF ,CE =EF +CF ,所以CD =EF .因为EF =EM +FM ,EM =FM ,所以2MF =CD .25.解:(1)AE ∥BF ;QE =QF(2)QE =QF .理由如下:如图,延长EQ 交BF 于点D .由题意易得AE ∥BF ,所以∠AEQ =∠BDQ .因为点Q 为斜边AB 的中点,所以AQ =BQ .在△AEQ 和△BDQ 中,⎩⎨⎧∠AQE =∠BQD ,∠AEQ =∠BDQ ,AQ =BQ ,所以△AEQ ≌△BDQ (AAS).所以EQ =DQ .因为BF⊥CP,所以∠DFE=90°,所以QE=QF.。
初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题(3)
章节测试题1.【答题】如果两个三角形全等,那么下列结论不正确的是()A. 这两个三角形的对应边相等B. 这两个三角形都是锐角三角形C. 这两个三角形的面积相等D. 这两个三角形的周长相等【答案】B【分析】根据全等三角形的性质解答即可.【解答】根据全等三角形的性质,全等三角形的对应边相等,周长相等,面积相等,故A、C、D正确;全等三角形不一定是锐角三角形,故D选项错误,选D.方法总结:本题考查了全等三角形的性质,解题的关键是要明确全等三角形与三角形的形状无关.2.【答题】如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A. 15°B. 20°C. 25°D. 30°【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵△ADB≌△EDB≌△EDC,∴∠C=∠DBE=∠DBA,∠DEC=∠DEB=∠A=90°,∴∠C=30°选D.3.【答题】若△ABC与△DEF全等,点A和点E,点B和点D分别是对应点,则下列结论错误的是()A. BC=EFB. ∠B=∠DC. ∠C=∠FD. AC=EF【答案】A【分析】根据全等三角形的性质解答即可.【解答】∵点A和点E,点B和点D分别是对应点,∴△ABC≌△EDF,∴∠A=∠E,∠B=∠D,∠C=∠F,AC=EF,BC=DF,AB=ED.选A.4.【答题】下列说法正确的有()①两个图形全等,它们的形状相同;②两个图形全等,它们的大小相同;③面积相等的两个图形全等;④周长相等的两个图形全等.A. 1个B. 2个C. 3个D. 4个【答案】B【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】①两个图形全等,它们的形状相同,故正确;②两个图形全等,它们的大小相同,故正确;③面积相等的两个图形全等,错误;④周长相等的两个图形全等,错误.选B.5.【答题】下列四组图形中,是全等图形的一组是()A.B.C.D.【答案】D【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】由全等形的概念可知:A.B中的两个图形大小不同,C中的形状不同,D 则完全相同选D.6.【答题】如图,△ABC≌△CDA,AB=4,BC=6,则AD等于()A. 4B. 5C. 6D. 不确定【答案】C【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△CDA,∴AD=BC=6选C.7.【答题】如果△ABC与△DEF是全等形,则有()(1)它们的周长相等;(2)它们的面积相等;(3)它们的每个对应角都相等;(4)它们的每条对应边都相等.A. (1)(2)(3)(4)B. (1)(2)(3)C. (1)(2)D. (1)【答案】A【分析】根据全等三角形的性质解答即可.【解答】根据全等形的概念可以判定:(1)(2)(3)(4)都成立.选A.8.【答题】下列说法正确的是()A. 全等三角形的三条边相等,三个角也相等B. 判定两个三角形全等的条件中至少有一个是等边C. 面积相等的两个图形是全等形D. 全等三角形的面积相等周长不相等【答案】B【分析】根据全等三角形的性质解答即可.【解答】全等三角形的三条对应边相等,三个对应角也相等,A不正确;判定两个三角形全等的条件中至少有一个是等边,B正确;面积相等的两个图形不一定是全等形,C不正确;全等三角形的面积和周长都相等,D不正确,故选:B9.【答题】边长都为整数的△ABC≌△DEF,AB与DE是对应边,AB=2,BC=4.若△DEF的周长为偶数,则DF的长为()A. 3B. 4C. 5D. 3或4或5【答案】B【分析】根据全等三角形的性质解答即可.【解答】已知△ABC≌△DEF,AB=2,BC=4,根据全等三角形的对应边相等可得AB=DE=2,BC=EF=4,由三角形的三边关系可知4-2<DF<4+2,即2<DF<6,又因△DEF的周长为偶数,DE=2,EF=4,可得DF=4,选B.10.【答题】如图,已知△ABC≌△CDA,AB与CD是对应边,AB=4,BC=5,AC=6,则AD的长为()A. 4B. 5C. 6D. 不确定【答案】B【分析】根据全等三角形的性质解答即可.【解答】已知△ABC≌△CDA,根据全等三角形的性质可得AD=CB=5,选B.11.【答题】已知四边形ABCD的各边长如图上数据所示,且四边形OPEF≌四边形ABCD,∠P与∠B,∠E与∠C分别是对应角,则PE的长为()A. 3B. 5C. 6D. 10【答案】D【分析】根据全等三角形的性质解答即可.【解答】由题意可得PE和BC对应,根据全等图形的对应边相等可得PE=BC=10,选D.12.【答题】下列说法正确的是()A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的三角形C. 全等三角形的周长和面积都相等D. 所有的等边三角形都全等【答案】C【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】本题考查的是全等三角形的定义。
鲁教版七年级数学上册第一章专项练习
1.如图,D是BC上一点,AB=AD,BC=DE,AC=AE,试说明:∠BAD=∠CAE.2.(2017·苏州中考变式)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.试说明:△AEC≌△BED.3.(2017·黄冈)如图,∠BAC=∠DAM,AB=AN,AD=AM,试说明:∠B=∠ANM.4.(2017·武汉)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD 与AB之间的关系,并说明理由.5.已知△ABN和△ACM的位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:(1)BD=CE.(2)∠M=∠N.6.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD于点E,AD=2.4cm,DE=1.7cm,求BE的长度。
7.(济南历城区二模)如图,AB=CB,BE=BF,∠1=∠2.试说明:△ABE≌△CBF.8.如图,C为线段AB上一点,AD∥EB,AC=BE,AD=BC.试说明:△ACD≌△BEC.\9.(泰安岱岳区期末)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.试说明:△ABC≌△DEC.10.(淄博新元中学月考)如图,BE⊥AE,CF⊥AE,垂足分别是E,F,又知D是EF的中点,△BED与△CFD全等吗?为什么?11.(济宁微山县校级月考)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.试说明:(1)△ACD≌△BEC.(2)CF⊥DE.12.(济宁十三中月考)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点E在BC边上,且BE=BD,连接AE,DE,DC.(1)试说明:△ABE≌△CBD.(2)若∠CAE=30°,求∠BDC的度数。
初中数学鲁教版(五四制)七年级上册第一章 三角形5 利用三角形全等测距离-章节测试习题
章节测试题1.【答题】如图要测量河两岸相对的两点A、B的距离,先在AB 的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长就是AB的长;判定△EDC≌△ABC的理由是( )A. SSSB. ASAC. AASD. SAS【答案】B【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】由题意得:根据ASA得:△EDC≌△ABC.选B.2.【答题】到三角形各顶点的距离相等的点是三角形( )A. 三边的垂直平分线的交点B. 三条高的交点C. 三条角平分线的交点D. 三条中线的交点【答案】A【分析】根据三角形外心的作法,确定到三定点距离相等的点.【解答】因为到三角形各顶点的距离相等的点,需要根据垂直平分线上的点到线段两端点的距离相等,只有分别作出三角形的两边的垂直平分线,交点才到三个顶点的距离相等.选A.3.【答题】如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B 间的距离,如图所示的这种方法,是利用了三角形全等中的( )A. SSSB. ASAC. AASD. SAS【答案】D【分析】根据三角形全等判定定理,可以得出结果.【解答】由原题可得:AC = DC∠ACB=∠DCBBC =BC∴△ACB ≌△D C B(SAS)∴AB = DB故选D.。
4.【答题】如图所示小明设计了一种测零件内径AB的卡钳,问:在卡钳的设计中,要使DC=AB,AO、BO、CO、DO应满足下列的哪个条件?( )A. AO=COB. BO=DOC. AC=BDD. AO=CO且BO=DO【答案】D【分析】三角形全等,需要三个条件.【解答】各选项中,只给出了一个条件,再加上隐含的对顶角相等,才两个条件,故不正确。
对于选项D,可得:AO=CO且BO=DO(已知)∠AOB=∠COD(对顶角相等)∴△ACB ≌△D C E(SAS)∴DC = AB,故选D.。
初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题(1)
章节测试题1.【答题】如图,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,点A在DE 上,则∠BAD的度数为()A. 15°B. 20°C. 25°D. 30°【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=60°,∠C=∠F=40°.∵DF∥BC,∴∠1=∠C,∴∠1=∠F,∴AC∥EF,∴∠2=∠E=60°.∵∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∴∠BAD=∠BAC﹣∠2=80°﹣60°=20°.选B.2.【答题】如图,△ABC≌△AED,那么图中相等的角有()A. 3对B. 4对C. 5对D. 6对【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:图中相等的角有5对.理由如下:∵△ABC≌△AED,∴∠B=∠E,∠BAC=∠EAD,∠ACB=∠ADE,∴∠BAD=∠EAC,∠ACD=∠ADC;图中相等的角有5对.选C.3.【答题】已知△ABC≌△A′B′C′,若∠A=50°,∠B′=80°,则∠C的度数是()A. 30°B. 40°C. 50°D. 60°【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△A′B′C′,∴∠B=∠B′=180°,∴∠C=180°-∠A-∠B=50°.选C.4.【答题】如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A. ∠1=∠2B. CA=ACC. ∠D=∠BD. AC=BC【答案】D【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△CDA,AB=CD,∴∠1和∠2,∠D和∠B是对应角,∴∠1=∠2,∠D=∠B,∴AC和CA是对应边,而不是BC,∴A、B、C正确,D、AC=BC错误.选D.5.【答题】如图所示,图中的两个三角形能完全重合,下列写法正确的是()A. △ABE≌△AFBB. △ABE≌△ABFC. △ABE≌△FBAD. △ABE≌△FAB【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:要把对应顶点写在对应位置.∵B和B对应,A和A对应,E和F对应,故△ABE≌△ABF.选B.6.【答题】如图所示.在△ABC中,∠A:∠B:∠C=3:5:10,又△A′B′C≌△ABC,则∠BCA′:∠BCB′等于()A. 1:2B. 1:3C. 2:3D. 1:4【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵∠A:∠B:∠C=3:5:10,∴设∠A=3k,∠B=5k,∠C=10k,∵△A′B′C≌△ABC,∴∠A′CB′=∠ACB=10k,在△ABC中,∠B′CB=∠A+∠B=3k+5k=8k,∴∠A′CB=∠A′CB′﹣∠B′CB′=10k﹣8k=2k,∴∠BCA′:∠BCB′=2k:8k=1:4,选D.7.【答题】下列命题中不正确的是()A. 全等三角形的对应边相等B. 全等三角形的面积相等C. 全等三角形的周长相等D. 周长相等的两个三角形全等【答案】D【分析】根据全等三角形的性质解答即可.【解答】A.全等三角形的对应边相等,正确,故本选项错误;B.全等三角形的面积相等,正确,故本选项错误;C.全等三角形的周长相等,正确,故本选项错误;D.周长相等的两个三角形全等,错误,故本选项正确,选D.8.【答题】如图,△ABC≌△A'B'C,∠ACB90°,∠A'CB20°,则∠BCB'的度数是()A. 60°B. 70°C. 80°D. 90°【答案】B【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△A'B'C,∴∠A′CB′=∠ACB90°,∵∠A'CB20°,∴∠BCB'=∠A′CB′-∠A′CB=90°-20°=70°,选B.9.【答题】图中的两个三角形全等,则等于().A.B.C.D.【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:由图中两三角形全等,知.故选.10.【答题】如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A. ∠A=∠BB. AO=BOC. AB=CDD. AC=BD【答案】C【分析】根据全等三角形的性质解答即可.【解答】解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴A、B、D均正确,而AB、CD不是不是对应边,∴AB≠CD,选C.方法总结:根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.11.【答题】如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C 为对应顶点,D,E为对应顶点,下列结论不一定成立的是()A. AC=CDB. BE=CDC. ∠ADE=∠AEDD. ∠BAE=∠CAD【答案】A【分析】根据全等三角形的性质解答即可.【解答】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CD,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,故不符合题意;无法证明AC=CD,故A符合题意,选A.12.【答题】如图,两个三角形为全等三角形,则的度数是()A.B.C.D.【答案】A【分析】根据全等三角形的性质解答即可.【解答】根据三角形内角和可得∠1=180°-50°-50°=72°,因为两个全等三角形,所以∠α=∠1=72°,选A.13.【答题】如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=20°,∠F=60°,则∠DAC的度数是()A. 50°B. 60°C. 100°D. 120°【答案】A【分析】根据全等三角形的性质和角的平分线解答即可.【解答】根据全等三角形的性质求出∠B=∠EDF=20°和∠C=∠F=60°,根据三角形内角和定理求出∠BAC=180°﹣∠B﹣∠C=100°,根据角平分线定义求出∠DAC=∠BAC=50°,选A.14.【答题】若△ABC与△DEF全等,且,,则的度数不可能是()A.B.C.D.【答案】A【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC与△DEF全等,∴∠D的度数可能是选A.15.【答题】如图,已知△ABC≌△DCB,AB=10,∠A=60°,∠ABC=80°,那么下列结论中错误的是().A. ∠D=60°B. ∠DBC=40°C. AC=DBD. BE=10【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵∠A=60°,∠ABC=80°,∴∠ACB=40°,∵△ABC≌△DCB,∴∠D=∠A=60°,∠DBC=∠ACB=40°,AC=BD,故A,B,C正确,选D.16.【答题】如图,在△ABC中,∠A∶∠ABC∶∠ACB=3∶5∶10,且△A′B′C≌△ABC,则∠BCA′∶∠BCB′等于()A. 1∶2B. 1∶3C. 2∶3D. 1∶4【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵∠A:∠ABC:∠C=3:5:10,∴设∠A=3k,∠B=5k,∠C=10k,∵△A′B′C≌△ABC,∴∠A′CB′=∠ACB=10k,在△ABC中,∠B′CB=∠A+∠B=3k+5k=8k,∴∠A′CB=∠A′CB′-∠B′CB′=10k-8k=2k,∴∠BCA′:∠BCB′=2k:8k=1:4选D.17.【答题】如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A. 3B. 4C. 7D. 8【答案】C【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△EFD,∴AC=DE,∵EC=4,CD=3,∴DE=7,∴AC=7,选C.18.【答题】如图,已知△ABC≌△DCB,AB=10,∠A=60°,∠ABC=80°,那么下列结论中错误的是().A. ∠D=60°B. ∠DBC=40°C. BE=10D. AC=DB【答案】C【分析】根据全等三角形的性质解答即可.【解答】△ABC≌△DCB,所以∠A=∠D=60°,A正确.∠ABC=80°,∠A=60°,所以∠ACB=∠DBC=40°.B正确.所以AC=DB,D正确.所以选C.19.【答题】如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=32°,∠E=96°,∠EAB=20°,则∠BAD等于()A. 75°B. 57°C. 62°D. 72°【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△ADE,∴∠D=∠B=32°,∵∠E=96°,∴∠EAD=180°-∠E-∠D=52°,∴∠BAD=∠BAE+∠EAD=20°+50°=72°,选D.20.【答题】如图,△ABC≌△DEF,DF和AC,FE和CB是对应边.若∠A=100°,∠F=47°,则∠DEF等于()A. 100°B. 53°C. 47°D. 33°【答案】D【分析】根据全等三角形的性质解答即可.【解答】解:∵△ABC≌△DEF,DF和AC,FE和CB是对应边,∴∠A=∠FDE,又∵∠A=100°,∴∠FDE=100°;∵∠F=47°,∠FDE+∠F+∠DEF=180°,∴∠DEF=180°﹣∠F﹣∠FDE=180°﹣47°﹣100°=33°;选D.方法总结:本题主要考查的是全等三角形的对应角相等,以及三角形的内角和定理.根据相等关系,把已知条件转到同一个三角形中然后利用三角形的内角和来求解是解决这类问题常用的方法.。
鲁教版七年级数学上册第一章《三角形》1.认识三角形同步测试
鲁教版七年级数学上册第一章 《三角形》 1. 认识三角形 单元测试一、选择题:1、下列各组长度的线段中,能组成三角形的是( )A. 6、8、15B. 7、6、13C. 4、5、6D. 3、8、152.已知一个三角形三个内角的度数之比为1:1:2,则这个三角形一定是( )A.锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形3.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是( ) A .75° B .90° C .105° D .120°4. 一个三角形ABC 中,∠A =80°,∠B -∠C =40°,则∠B 的度数为( )A .80°B .70°C .60°D .30°5. 如果一个三角形的三个内角都不相等,那么最小角一定小于( )A .60°B .45°C .30°D .59°6.下列说法:①三角形按边分类可分为三边不等的三角形、等腰三角形和等边三角形; ②等边三角形是特殊的等腰三角形; ③等腰三角形是特殊的等边三角形; ④有两边相等的三角形一定是等腰三角形. 其中,说法正确的有( )A. 1个B. 2个C. 3个D. 4个7.如图,直线a//b,直角三角形BDC 如图放置,∠DCB =90°.若∠1+∠B =70°,则∠2的度数为( ) A . 20° B. 40° C . 30° D . 25°8.5012....ABC A A B C D ∆∠=︒∠+∠︒︒︒︒ 已知中,,则图中的度数为( )180 220 230 2409.下列结论中正确的是( ) A .三角形的角平分线、中线和高都在三角形内部B .直角三角形的高只有一条C .三角形的高至少有一条在三角形内部D .钝角三角形的三条高都在三角形外部10.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .直角三角形 C.钝角三角形 D .以上选项都有可能11.三角形的下列线段中,能将三角形的面积分成相等两部分的是( )A .高B .角平分线C .中线D .以上都不对12.下列各图形中,AD 是△ABC 中BC 边上高的图形为( )A.B .C . D.二、填空题: 13.4575,______.ABC A C BD ABC BDC∆∠=︒∠=︒∆∠ 如图,在中,,是的角平分线,则的度数为14115____.154,6,5,____.BE CF ABC BDC A AD BE ABC AD BC AC BE ∆∠=︒∠=∆====.如图,、都是的角平分线,且,则.如图,、分别是的高,则16.长为9、6、5、4的四根木条,选其中三根组成三角形,选法有_______种.17.一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是______.18.如图,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 、CE ,若△ABC 的面积是8,则阴影部分的面积为________.三、解答题:()()()()2219.10,252,ABC a b c a b c a b b a ABC a b c ABC ∆-+-=∆==∆、已知的三边长分别为、、 若、、满足试判断的形状; 若,且为整数,求周长的最大值及最小值。
鲁教版(五四学制)七年级数学上册第一章三角形检测题(含答案详解)
.
14.如图所示,在△ABC 中,∠ABC = ∠ACB,∠A = 40°,P 是△ABC 内一点,且∠1 = ∠2,
则∠BPC=________.
C
1
第 13 题图
P2
A 第 14 题图
B
第 15 题图
15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .
第 24 题图
25.(6 分)如图所示,武汉有三个车站 A、B、C 成三角形,一辆公共汽
车从 B 站前往 C 站.
(1)当汽车运动到点 D 时,刚好 BD=CD,连线段 AD,AD 这条线段是什
么线段?这样的线段在△ABC 中有几条呢?此时有面积相等的三角形
吗?
A.3 km
B.4 km
C.5 km
D.6 km
9.如图所示,在△ABC 中,AB=AC,∠ABC 、∠ACB 的平分线 BD,CE
相交于 O 点,且 BD 交 AC 于点 D,CE 交 AB 于点 E.某同学分析图
形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;
③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是( )
第一章 三角形检测题
(本测试题满分:100 分,时间:90 分钟)
一、选择题(每小题 3 分,共 30 分)
1.一个三角形的两边长分别为 3 cm 和 7 cm,则此三角形的第三边的长可能是( )
A.3 cm
B.4 cm
C.7 cm
D.11 cm
2.如图所示,
分别表示△ABC 的三边长,则下面与△ 一定全等的三角形
∠DFB 和∠DGB 的度数.
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(36)
章节测试题1.【答题】若等腰三角形的周长为,其中一边长为,则该等腰三角形的底边长为()A. B. C. 或 D.【答案】B【分析】本题考查了了等腰三角形的计算,正确理解分两种情况讨论,并且注意到利用三角形的三边关系定理,是解题的关键.【解答】解:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;当长是3cm的边是腰时,底边长是:13-3-3=7cm,而3+3<7,不满足三角形的三边关系.故底边长是:3cm.选B.2.【答题】下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A. 1,2,1B. 1,2,3C. 1,2,2D. 1,2,4【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:三角形的三边关系为:任意两边之和大于第三边.A.不能构成三角形.B.不能构成三角形.C.能构成三角形.D.不能构成三角形.选C.3.【答题】△ABC的三条边长分别是、、,则下列各式成立的是()A. B.C. D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】对于任意一个三角形,三角形的三边关系满足:两边之和大于第三边.选B.4.【答题】如果一个三角形的两边长分别为和,则第三边长可能是()A. B. C. D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:设第三边长为x,则由三角形三边关系定理得4-2<x<4+2,即2<x <6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.选B.5.【答题】下列各数可能是一个三角形的边长的是().A. 1,3,5B. 3,4,5C. 2,2,4D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.A、∵1+3<5,∴本组数不能构成三角形.故本选项错误;B、∵3+4>5,∴本组数能构成三角形.故本选项正确;C、∵2+2=4,∴本组数可以构成三角形.故本选项正确;D、∵,∴本组数不能构成三角形.故本选项错误;6.【答题】若a,b,c为△ABC的三边长,且满足a-4+(b-2)2=0,则c的值可以为()A. 5B. 6C. 7D. 8【答案】A【分析】根据非负数的性质和三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:∵∴a−4=0,a=4;b−2=0,b=2;则4−2<c<4+2,2<c<6,5符合条件;选A.7.【答题】下列各组数不可能是一个三角形的边长的是().A. ,,B. ,,C. ,,D. ,,【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A.5+5>5,能构成三角形;B.5+7>7,能构成三角形;C.5+12>13,能构成三角形;D.7+5=12,不能构成三角形.8.【答题】下列长度的四根木棒中,能与长为,的两根木棒围成一个三角形的是().A. B. C. D.【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边长为,则,即.选C.9.【答题】下列各组数不可能是一个三角形的边长的是().A. ,,B. ,,C. ,,D. ,,【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】三角形中任意两边和需大于第三边,任意两边之差小于第三边,可知A选项:1+2=3,构不成三角形,选.10.【答题】以下列长度的线段为边,能组成三角形的是()A. ,,B. ,,C. ,,D. ,【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A、1+2=3,构不成三角形,不符合题意;B、6+8<15,构不成三角形,不符合题意;C、4+7>10,10-7<4,能构成三角形,符合题意;D、3+3<7,构不成三角形,不符合题意,选C.11.【答题】下列长度的三条线段能组成三角形的是()A. 3,4,8B. 2,5,3C. ,,5D. 5,5,10【答案】C【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】选项A,3+4<8,根据三角形的三边关系可知,不能够组成三角形;选项B,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C,+>5,根据三角形的三边关系可知,能够组成三角形;选项D,5+5=10,根据三角形的三边关系可知,不能够组成三角形;选C.12.【答题】等腰三角形的周长为13cm,其中一边长为3cm.则该等腰三角形的底长为()A. 3cm或5cmB. 3cm或7cmC. 3cmD. 5cm【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】①3cm是腰长时,底边=13﹣3×3=7cm,此时,三角形的三边分别为3cm、3cm、7cm,∵3+3=6<7,∴不能组成三角形;②3cm是底边时,腰长=(13﹣3)=5cm,此时,三角形的三边分别为5cm、5cm、3cm,能够组成三角形,∴等腰三角形的底长为3cm,选C.13.【答题】至少有两边相等的三角形是()A. 等边三角形B. 等腰三角形C. 等腰直角三角形D. 锐角三角形【答案】B【分析】本题考查了三角形的分类.本题属于易错题,同学们往往忽略了等边三角形是一特殊的等腰三角形,且等腰三角形也可以是锐角三角形、钝角三角形以及直角三角形.【解答】解:本题需要分类讨论:两边相等的三角形称为等腰三角形,该等腰三角形可以是等腰直角三角形,该等腰三角形有可能是锐角三角形,也有可能是钝角三角形;当有三边相等时,该三角形是等边三角形.等边三角形是一特殊的等腰三角形.14.【答题】图中三角形的个数是()A. 8个B. 9个C. 10个D. 11个【分析】本题考查了三角形,注意要不重不漏地找到所有三角形,一般从一边开始,依次进行.【解答】解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.15.【答题】以下三条线段为边,能组成三角形的是()A. 1cm、2cm、3cmB. 2cm、2cm、4cmC. 3cm、4cm、5cmD. 4cm、8cm、2cm【答案】C【分析】本题考查三角形的三边关系:任何两边的和大于第三边;做本题题目的关键是直接判断较小的两条边的和与最长边的和的大小关系,如果前者大,说明这三条边能组成三角形,否则,不能组成三角形.【解答】解:根据三角形的三边关系,得:A项,1+2=3,不能组成;B项,2+2=4,不能组成;C项,3+4>5,能组成;D项,4+2=8,不能组成.选C.16.【答题】已知三角形的三边为4、5、x,则不可能是()A. 6B. 5C. 4D. 1【答案】D【分析】根据“三角形两边的和大于第三边”和“三角形两边的差小于第三边”可得第三条边的取值范围.【解答】解:根据三角形三边关系,可得,即,则x不能取1.17.【答题】若三角形的三边长分别为3,4,x-1,则x的取值范围是()A. 0<x<8B. 2<x<8C. 0<x<6D. 2<x<6【答案】B【分析】根据“三角形两边的和大于第三边”和“三角形两边的差小于第三边”可得第三条边的取值范围;当然,本题不要忘了第三条边长为(x-1).【解答】解:这里第三边长为x-1,根据三角形三边关系,可得,即,选B.18.【答题】如图,过A、B、C、D、E五个点中任意三点画三角形,(1)其中以AB为一边可以画出______个三角形;(2)其中以C为顶点可以画出______个三角形.【答案】3 6【分析】(1)根据以AB为一边,分别得出符合题意的三角形即可;(2)根据以C为顶点,分别得出符合题意的三角形即可.【解答】解:(1)其中以AB为一边可以画出3个三角形为:△ABE,△ABD,△ABC;(2)其中以C为顶点可以画出6个三角形为:△ABC,△BCD,△BCE,△ADC,△DEC,△ACE.故答案为:(1)3;(2)6.19.【答题】一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长______ cm.【答案】18【分析】本题考查了一元一次方程在三角形中的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.【解答】解:设三角形的三边长为2x,3x,4x,由题意,得2x+3x+4x=81,解得x=9,则三角形的三边长分别为:18cm,27cm,36cm,∴,最长边比最短边长:36-18=18(cm).20.【答题】小华要从长度分别是5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是______ cm、______ cm、______ cm(按照从小到大的顺序填写).【答案】6 1116【分析】按顺序写出4种取法,然后根据三角形的三边关系再判断;判断是注意技巧,即符合“两条较短边长的和大于较大的边长”的就能组成三角形.【解答】解:从这四根小木棒取出三根有以下取法:①5cm,6cm,11cm;②5cm,6cm,16cm;③5cm,11cm,16cm;④6cm,11cm,16cm,一共有4种选法.其中,①5+6=11,不能;②5+6<16,不能;③5+11=16,不能;④6+11<16,能.综上,能摆成三角形的只有④.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(51)
章节测试题1.【答题】一个等腰但不等边的三角形,它的角平分线、高、中线的总条数为______条.【答案】7【分析】根据等腰三角形的性质进行分析即可得到答案.【解答】解:等腰但不等边的三角形底边上的角平分线、中线、高线三线重合成一条;腰上的三条线不重合,因而共有7条线,故答案为:72.【题文】如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为13cm,求AC的长.【答案】9m【分析】根据中线的定义知CD=BD.结合三角形周长公式知AC﹣AB=5cm;又AC+AB=13cm.易求AC的长度.【解答】解:∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=13cm,∴AC=9cm.即AC的长度是9m.3.【题文】已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C,B重合),点E为射线CA上一点,∠ADE=∠AED,设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=42°,∠DAE=30°,则α=______,β=______.②若∠BAC=54°,∠DAE=36°,则α=______,β=______.③写出α与β的数量关系,并说明理由;(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.【答案】(1)12°;6°;18°;9°;α=2β(2)α=2β﹣180°.【分析】(1)①先根据角的和与差求α的值,根据等腰三角形的两个底角相等及顶角为30°得:∠ADE=∠AED=75°,同理可得:∠ACB=∠B=69°,根据外角性质列式:75°+β=69°+12°,可得β的度数;②同理可求得:α=54°﹣36°=18°,β=9°;③设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,分别求出∠ADE和∠B,根据∠ADC=∠B+α列式,可得结论;(2)α=2β﹣180°,理由是:如图(2),设∠E=x°,则∠DAC=2x°,根据∠ADC=∠B+∠BAD,列式可得结论.【解答】解:(1)①∵∠DAE=30°,∴∠ADE+∠AED=150°,∴∠ADE=∠AED=75°,∵∠BAC=42°,∴α=42°﹣30°=12°,∴∠ACB=∠B==69°,∵∠ADC=∠B+α,∴75°+β=69°+12°,β=6°;故答案为:12°,6°;②∵∠DAE=36°,∴∠ADE+∠AED=144°,∴∠ADE=∠AED=72°,∵∠BAC=54°,∴α=54°﹣36°=18°,∴∠ACB=∠B==63°,∵∠ADC=∠B+α,∴72°+β=63°+18°,β=9°;故答案为:18°,9°;③α=2β,理由是:如图(1),设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β+∠ADE=α+∠ABC,β+=α+,∴α=2β.如图(2),设∠E=x°,则∠DAC=2x°,∴∠BAC=∠BAD+∠DAC=α+2x°,∴∠B=∠ACB=,∵∠ADC=∠B+∠BAD,∴β﹣x°=+α,∴α=2β﹣180°.4.【答题】如图,D,E,F分别是边BC,AD,AC上的中点,若S阴影的面积为3,则△ABC的面积是()A. 5B. 6C. 7D. 8【答案】D【分析】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.三角形的中线将三角形分成面积相等的两部分.【解答】∵为的中点,∴∵,分别是边,上的中点,∴,,,∴,∴阴影部分选.5.【答题】已知AD是△ABC的中线,且△ABD比△ACD的周长大3cm,则AB与AC的差为()A. 2cmB. 3cmC. 4cmD. 6cm【答案】B【分析】本题考查了三角形的中线,熟记概念并求出两三角形周长的差等于AB-AC是解题的关键.【解答】解:∵AD是△ABC的中线,∴BD=DC,∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC,∵△ABD比△ACD的周长大3cm,∴AB与AC的差为3cm.选B.6.【答题】如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A. ∠AOD+∠BOE=60°B. ∠AOD=∠EOCC. ∠BOE=2∠CODD. ∠DOE的度数不能确定【答案】A【分析】本题是对角平分线的性质的考查.然后根据角平分线定义得出所求角与已知角的关系转化求解.【解答】A、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠BOE+∠AOD=∠EOC+∠DOC=∠DOE=(∠BOC+∠AOC)=∠AOB=60°.故本选项叙述正确;B、∵OD是∠AOC的角平分线,∴∠AOD=∠AOC.又∵OC是∠AOB内部任意一条射线,∴∠AOC=∠EOC不一定成立.故本选项叙述错误;C、∵OC是∠AOB内部任意一条射线,∴∠BOE=∠AOC不一定成立,∴∠BOE=2∠COD不一定成立.故本选项叙述错误;D、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠DOE=(∠BOC+∠AOC)=∠AOB=60°.故本选项叙述错误;选A.7.【答题】已知∠BOC=60°,OF平分∠BOC. 若AO⊥BO,OE平分∠AOC,则∠EOF的度数是()A. 45°B. 15°C. 30°或60°D. 45°或15°【答案】A【分析】本题考查了垂线,利用了垂线的定义,角平分线的定义,角的和差,正确地进行分类讨论、准确画出图形是解题的关键.【解答】如图1,由AO⊥BO,得∠AOB=90°,由角的和差,得∠AOC=∠AOB+∠BOC=150°,∵OE平分∠AOC,OF平分∠BOC,∴∠COE=∠AOC=×150°=75°,∠COF=∠BOC=×60°=30°,由角的和差,得∠EOF=∠COE-∠COF=75°-30°=45°;如图2,由AO⊥BO,得∠AOB=90°,由角的和差,得∠AOC=∠AOB-∠BOC=30°,∵OE平分∠AOC,OF平分∠BOC,∴∠COE=∠AOC=×30°=15°,∠COF=∠BOC=×60°=30°,由角的和差,得∠EOF=∠COE+∠COF=15°+30°=45°,选A.8.【答题】已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=则∠BOE的度数是()A. B. C. D.【答案】C【分析】本题考查了角的计算,正确运用角的平分线的定义是解答本题的关键.【解答】设∠DOE=x,则∠BOD=3x,∴∠AOD=180°-∠BOD=180°-3x.∵OC平分∠AOD,∴∠COD=∠AOD=(180°-3x)=90°-x.∵∠COE=∠COD+∠DOE=90°-x+x=90°-,由题意可得,90°-=m,解得x=180°-2m,即∠DOE=180°-2m,∴∠BOE=360°-4m,选C.9.【答题】如图,在中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,,,,则的面积是()A. 16B. 19C. 22D. 30【答案】D【分析】本题考查三角形的面积,解题关键在于由这些三角形的底边的比例关系来求面积【解答】三角形BDG和CDG中,BD=2DC.根据这两个三角形在BC边上的高相等,那么S△BDG=2S△GDC,因此S△GDC=4,同理S△AGE=S△GEC=3,S△BE C=S△BGC+S△GEC=8+4+3=15,∴三角形ABC的面积=2S△BEC=30.选D.10.【答题】如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,图中哪两个角不是互为余角()A. ∠AOD和∠BOEB. ∠AOD和∠COEC. ∠DOC和∠COE D. ∠AOC和∠BOC【答案】D【分析】本题考查了角平分线的性质,余角的判断.【解答】解:∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠AOD=∠DOC,∠COE=∠EOB,∵∠AOB=180°,∴∠DOC+∠COE=90°,∠AOD+∠BOE=90°,∠AOD+∠COE=90°,选D.11.【答题】下列说法错误的是()A. 三角形的角平分线把三角形分成面积相等的两部分B. 三角形的三条中线相交于一点C. 直角三角形的三条高交于三角形的直角顶点处D. 钝角三角形的三条高所在直线的交点在三角形的外部【答案】A【分析】掌握三角形的中线、角平分线、高的概念.以及三角形的中线、角平分线、高的交点的位置.【解答】A、三角形的中线把三角形的面积分成相等的两部分,错误;B、三角形的三条中线,角平分线都相交于一点,正确;C、直角三角形三条高交于直角顶点,正确;D、钝角三角形的三条高所在直线的交点在三角形的外部,正确.选A.12.【答题】三角形的三条高所在的直线相交于一点,此点在()A. 三角形的内部B. 三角形的外部C. 三角形的边上D. 不能确定【答案】D【分析】本题考查了三角形的高线,熟记三类三角形的高线的交点的位置是解题的关键.【解答】锐角三角形三条高所在直线的交点在三角形内部,直角三角形三条高所在直线的交点在直角顶点,钝角三角形三条高所在直线的交点在三角形外部,选B.13.【答题】如图,已知D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长为()A. 6B. 8C. 10D. 12【答案】B【分析】本题考查了三角形的重心的性质和应用,解题的关键是要明确:三角形的重心是三角形三边中线的交点.【解答】∵D是△ABC的重心,∴BE是AC边的中线,E是AC的中点;又∵AE=4,∴AC=8.选B.14.【答题】如图,AD是△ABC的角平分线,AE是△ABD的角平分线,若∠BAC=76°,则∠EAD的度数是()A. 19°B. 20°C. 18°D. 28°【答案】A【分析】本题考查了三角形的角平分线.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.【解答】∵AD是△ABC的角平分线∠BAC=76°,∴∠DAC=∠DAB=38°,∵AE是△ABD的角平分线,∴∠BAE=19°,∴∠EAD=∠BAD-∠BAE=19°.选A.15.【答题】已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是()A. 22°B. 46°C. 68°D. 78°【答案】C【分析】本题考查了垂直的定义,角平分线的定义.【解答】解:∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°-22°=68°.选C.16.【答题】如图,△ABC中,点D在BC上,且BD=2DC,点E是AC中点,若△CDE面积为1,则△ABC的面积为______.【答案】6【分析】考查了三角形的面积,熟记等底同高、同底等高三角形面积间的数量关系即可解答.【解答】∵△CDE面积为1,点E是AC中点,∴S△ADC=2S△CDE=2.又∵BD=2DC,∴S△ABC=3S△ADC=6.故答案是:6.17.【答题】如图,在中,已知,,分别为,,的中点,且,则图中阴影部分的面积等于______.【答案】2【分析】本题考查了三角形中线的性质,熟知三角形的中线将三角形分成面积相等的两部分是解题关键.【解答】解:∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△BDE+S△CDE=S△ABC=(cm2),即S△BCE=4(cm2).∵F为CE中点,∴S△BEF=S△BCE=(cm2).故答案为2.18.【答题】已知:分别是的高,角平分线,,则的度数为______度.【答案】20或50【分析】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【解答】解:如图,当△ABC是钝角三角形时,∵AD⊥BD,∴∠ADC=90°,∵∠ACD=60°,∠ACD=∠B+∠BAC,∠B=20°,∴∠BAC=∠ACD-∠B=40°,∠CAD=90°-∠ACD=90°-60°=30°∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC=20°,∴∠EAD=∠CAD+∠CAE=30°+20°=50°.如图,当△ABC是锐角三角形时,∵∠C=60°,∠B=20°,∴∠BAC=100°,∠BAD==90°-20°=70°,∵AE平分∠BAC,∴∠BAE=∠BAC=50°,∴∠EAD=∠DAB-∠BAE=70°-50°=20°.,综上所述:∠EAD=50°或20°.故答案为:50或20.19.【答题】如图,在△ABC中,若D、E、F分别是AB、AC、CD边上的中点,S△DEF=4,则S△ABC=______【答案】32【分析】本题考查了三角形的面积,正确的识别图形是解题的关键.【解答】解:∵F是CD边上的中点,S△DEF=4,∴S△DEC=2S△DEF=8,∵E是AC边上的中点,∴S△ADC=2S△DEC=16,∵D是AB边上的中点,∴S△ABC=2S△ACD=32.20.【答题】在△ABC中,AD为BC边上的高,∠B=50°,∠CAD=15°,则∠BAC=______.【答案】55°或25°【分析】本题考查了三角形内角和定理,解决问题的关键是进行分类讨论,解题时注意:三角形的内角和为180°.【解答】①如图,当AD在△ABC的内部时,∵AD⊥BC,∠B=50°,∴∠BAD=40°,∴∠BAC=∠BAD+∠CAD=40°+15°=55°;②如图,当AD在△ABC的外部时,∵AD⊥BC,∠B=50°,∴∠BAD=40°,∴∠BAC=∠BAD-∠CAD=40°-15°=25°;故答案为:25°或55°。
初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题(4)
章节测试题1.【答题】如图所示,若△ABC≌△DEF,则∠E等于()A. 30°B. 50°C. 60°D. 100°【答案】D【分析】根据全等三角形的性质解答即可.【解答】本题考查的是全等三角形的性质根据全等三角形的对应角相等及三角形内角和即得结果。
由图可得∠∠∠,△ABC≌△DEF,∠∠,故选D. 。
2.【答题】如图,已知≌,下列选项中不能被证明的等式是().A.B.C.D.【答案】C【分析】根据全等三角形的性质解答即可.【解答】∵≌,∴,,,∴,即:,∴选项、、均正确,只有C中结论无法证明是成立的.选C.3.【答题】如图,图中的两个三角形是全等三角形,其中一些角和边的大小如图所示,那么的值是().A.B.C.D.【答案】C【分析】根据全等三角形的性质解答即可.【解答】由三角形内角和为,可求边长为的边所对的角为,由全等三角形对应角相等可知,选C.4.【答题】下列各组的两个图形属于全等图形的是()A.B.C.D.【答案】D【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】A选项两个图形不全等,因为它们大小不一样;B选项两个图形不全等,因为它们大小不一样;C选项两个图形不全等,因为它们大小形状都不一样;D选项两个图形全等,它们大小和形状都一样.选D.5.【答题】如图,△ABC≌△CDA,则下列结论错误的是()A. AC=CAB. AB=ADC. ∠ACB=∠CADD. ∠B=∠D【答案】B【分析】根据全等三角形的性质解答即可.【解答】∵△ABC≌△CDA,∴AB=CD,AC=CA,BC=DA,∠ACB=∠CAD,∠B=∠D,∠DCA=∠BAC.故B选项错误.6.【答题】下列各组图形中,一定是全等图形的是()A. 两个周长相等的等腰三角形B. 两个面积相等的长方形C. 两个斜边相等的直角三角形D. 两个周长相等的圆【答案】D【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】A选项:两个周长相等的等腰三角形,不一定全等,故此选项错误;B选项:两个面积相等的长方形,不一定全等,故此选项错误;C选项:两个斜边相等的直角三角形,不一定全等,故此选项错误;D选项:两个周长相等的圆,半径一定相等,故两圆一定全等,故此选项正确.选D.7.【答题】如图,△ABC≌△EDF,∠FED=70°,则∠A的度数是()A. 50°B. 70°C. 90°D. 20°【答案】B【分析】根据全等三角形的性质性质得出∠A=∠FED,即可得出答案.【解答】解:∵△ABC≌△EDF,∠FED=70°,∠A=∠FED=70°,选B.8.【答题】如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A. 2B. 3C. 5D. 2.5【答案】B【分析】根据全等三角形的性质解答即可.【解答】∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC−AE=5−2=3,选B.9.【答题】下列图形中,和所给图形全等的图形是()A.B.C.D.【答案】D【分析】根据全等形的定义:能够完全重合的两个图形是全等形进行判断即可.【解答】根据全等图形的定义只需找出与原图形大小相等,形状相同的图形即可,A、B、C选项均不符合题意,只有D符合题意,D中的图形相对于原图形顺时针作了180°的旋转变换.选D.10.【答题】△ABC≌△DEF,△ABC的周长为100cm,DE=30cm,DF=25cm,那么BC长()A. 55cmB. 45cmC. 30cmD. 25cm【答案】B【分析】根据全等三角形的性质解答即可.【解答】解:因为△ABC≌△DEF,DE=30cm,DF=25cm,所以AB=DE=30cm,AC=DF=25cm,又△ABC的周长为100cm,所以BC=100-AB-AC=100-30-25=45cm,选B.11.【答题】下列图形中与已知图形全等的是()A. B. C. D.【答案】B【分析】认真观察图形,根据全等形的定义,能够重合的图形是全等形,可得答案是B.【解答】解:A、圆里面的正方形与已知图形不能重合,错;B、与已知图形能完全重合,正确;C、中间是长方形,与已知图形不重合,错;D、中间是长方形,与已知图形不重合,错.选:B.12.【答题】下列各组图案中,不是全等形的是()A. B.C. D.【答案】D【分析】直接利用全等图形的定义分析得出答案.【解答】解:A、两图形全等,不合题意;B、两图形全等,不合题意;C、两图形全等,不合题意;D、两图形不全等,符合题意;选:D.13.【答题】下列选项中表示两个全等图形的是()A. 形状相同的两个图形B. 能够完全重合的两个图形C. 面积相等的两个图形D. 周长相等的两个图形【答案】B【分析】直接利用全等图形的定义分析得出答案.【解答】解:A、形状相同的两个图形,不一定是全等图形,故此选项错误;B、能够完全重合的两个图形,一定是全等图形,故此选项正确;C、面积相等的两个图形,不一定是全等图形,故此选项错误;D、周长相等的两个图形,不一定是全等图形,故此选项错误;选:B.14.【答题】下列说法正确的是()A. 两个面积相等的图形一定是全等图形B. 两个长方形是全等图形C. 两个全等图形形状一定相同D. 两个正方形一定是全等图形【答案】C【分析】根据全等图形的定义进行判断即可.【解答】解:A:两个面积相等的图形不一定是全等图形,故A错误;B:长方形不一定是全等图形,故B错误;C:两个全等图形形状一定相同,故C正确;D:两个正方形不一定是全等图形,故D错误;选:C.15.【答题】如图所示的图形是全等图形的是()A. B.C. D.【答案】B【分析】能够完全重合的几个图形就是全等形,故全等形的形状一样,大小一样,从而即可一一判断得出答案.【解答】解:如图所示的图形是全等图形的是B,故答案为:B.16.【答题】下列说法正确的个数是()①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合;⑤能够重合的图形是全等图形.A. 5B. 4C. 3D. 2【答案】D【分析】根据全等图形的定义以及性质一一判断即可;【解答】解:①面积相等的两个三角形全等;错误,面积相等的两个三角形不一定全等.②两个等边三角形一定是全等图形;错误,边长相等的两个等边三角形全等.③如果两个三角形全等,它们的形状和大小一定都相同;正确.④边数相同的图形一定能互相重合;错误.⑤能够重合的图形是全等图形.正确.选:D.17.【答题】下列四个图形中,属于全等图形的是()A. ①和②B. ②和③C. ①和③D. ③和④【答案】A【分析】根据全等图形的定义判断即可;【解答】解:①和②能够完全重合.选: A.18.【答题】下列四个图形中,全等的图形是()A. ①和②B. ①和③C. ②和③D. ③和④【答案】D【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【解答】解:③和④可以完全重合,因此全等的图形是③和④.选:D.19.【答题】下列图形中,属于全等形的是()A. B.C. D.【答案】B【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两个正方形的边长不相等,不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确.C、两图形不能完全重合,故本选项错误;D、两图形不能完全重合,故本选项错误.选:B.20.【答题】下列图形中,全等的一对是()A. B.C. D.【答案】B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可直接选出答案.【解答】解:由全等形的概念可知:A、C中的两个图形大小不同,D中的形状不同,B则完全相同,选B.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(24)
章节测试题1.【答题】有4根小木棒,长度分别为4cm、6cm、8cm、10cm任意取其中的3根小木棒首层相接搭三角形,可搭出不同的三角形的个数为()A. 2个B. 3个C. 4个D. 5个【答案】B【分析】取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.【解答】共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.∴有3种方案符合要求.选:B.2.【答题】把14cm长的铁丝截成三段,围成不是等边三角形的三角形,并且使三边均为整数,那么()A. 有1种截法B. 有2种截法C. 有3种截法D. 有4种截法【答案】D【分析】根据题目要求,根据构成三角形的条件,周长为14,可逐步分析,将每个符合题意的三角形写出即可.【解答】解:根据三角形的三边关系,两边之和大于第三边,最短的边是1时,不成立;当最短的边是2时,三边长是:2,6,6;当最短的边是3时,三边长是:3,5,6;当最短的边是4时,三边长是:4,4,6和4,5,5.最短的边一定不能大于4.综上,有2,6,6;3,5,6;4,4,6和4,5,5共4种截法.选:D.3.【答题】下列各组数中,不可能是一个三角形三边长的是()A. 5,7,12B. 5,7,7C. 5,12,13D. 5,7,11【答案】A【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形任意两边的和大于第三边,可知A、5+7=12,不能组成三角形;B、5+7>7,能组成三角形;C、5+12>13,能够组成三角形;D、5+7>11,能组成三角形.选A.4.【答题】已知一个三角形的两边长分别为a,b,且a>b,那么这个三角形的周长l的取值范围是()A. 3a<l<3bB. 2a<l<2a+2bC. 2a+b<l<2b+aD. 3a-b<l<2b+a【答案】B【分析】先根据三角形的三边关系求得第三边的取值范围,再确定这个三角形的周长l的取值范围即可.【解答】解:设第三边长x.根据三角形的三边关系,得a-b<x<a+b.∴这个三角形的周长m的取值范围是a-b+a+b<l<a+b+a+b,即2a<l<2a+2b.选B.5.【答题】三角形的两边长分别为2和5,则三角形的周长L的取值范围是()A. 3<L<7B. 9<L<12C. 10<L<14D. 无法确定【答案】C【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于3而小于7.又另外两边之和是7,故周长的取值范围是大于10而小于14.选C.6.【答题】已知三角形三边的长均为整数,其中某两条边长之差为5,若此三角形周长为奇数,则第三边长的最小值为()A. 8B. 7C. 6D. 5【答案】C【分析】根据已知可设其中一边为x,则另一边为x+5,第三边为y,又由此三角形周长为奇数,可得第三边的长为偶数,根据三角形三边关系,即可求得第三边长的最小值.【解答】解:∵三角形三边中某两条边长之差为5,∴设其中一边为x,则另一边为x+5,第三边为y,∴此三角形的周长为:x+x+5+y=2x+y+5,∵三角形周长为奇数,∴y是偶数,∵5<y<x+x+5,∴y的最小值为6.选C.7.【答题】如果三角形的两边长分别为3和5,则周长L的取值范围是()A. 6<L<15B. 6<L<16C. 11<L<13D. 10<L<16【答案】D【分析】首先根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,求得第三边的取值范围,再进一步求得其周长的取值范围.【解答】解:根据三角形的三边关系,得第三边大于2,而小于8.则周长L的取值范围是大于10,而小于16.选D.8.【答题】用9根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余重叠和折断,则能摆出不同的三角形的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.根据三角形的三边关系,可以首先确定一边,再加以分析.【解答】解:有2,3,4;3,3,3;4,4,1三种情况.选C.9.【答题】用10根等长的火柴棍首尾连接拼成一个三角形(火柴棍不允许剩余、重叠和折断),这个三角形一定是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 不等边三角形【答案】B【分析】根据题意可知三角形的周长为10,再根据三角形的三边关系找到符合条件的三边,看符合哪类三角形即可.【解答】解:根据题意可知三角形的周长为10,又∵三角形任意两边之和大于第三边,∴最大边要小于5,∴三角形的三边可以为4,2,4或4,3,3.∴这个三角形一定是等腰三角形.10.【答题】将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A. 5种B. 6种C. 7种D. 8种【答案】C【分析】已知三角形的周长,分别假设三角形的最长边,从而利用三角形三边关系进行验证即可求得不同的截法.【解答】解:∵长棒的长度为15cm,即三角形的周长为15cm∴①当三角形的最长边为7时,有4种截法,分别是:7,7,1;7,6,2;7,5,3;7,4,4;②当三角形的最长边为6时,有2种截法,分别是:6,6,3;6,5,4;③当三角形的最长边为5时,有1种截法,是:5,5,5;④当三角形的最长边为4时,有1种截法,是4,3,8,∵4+3<8,∴此截法不可行;∴不同的截法有:4+2+1=7种.选C.11.【答题】三角形三边的长都是正整数,其中最长边的长为10,这样的三角形有()A. 55种B. 45种C. 40种D. 30种【答案】D【分析】确定三边中的两边,分类找到边长是整数,且最长的边为10的三角形的个数即可.【解答】解:当2边长分别为10,10时,第3边可取1,2,3,4,5…9,10,这样的三角形有10种;当2边长为10,9时,第3边可取2,3,4,5,…9,这样的三角形有8种;当2边长为10,8时,第3边可取3,4,5,6,7,8,这样的三角形有6种;当2边长为10,7时,第3边可取4,5,6,7,这样的三角形有4种;当2边长为10,6时,第3边可取5,6,这样的三角形有2种;这样的三角形共有10+8+6+4+2=30(组).选D.12.【答题】已知三角形三边长a,b,c都是整数,并且a≤b<c,若b=7,那么这样的三角形共有()个.A. 21B. 28C. 49D. 14【答案】A【分析】根据已知条件首先可以得到a的可能值有1,2,3,4,5,6,7,再根据三角形的三边关系可以得到c的值.【解答】解:根据已知,得a的可能值有1,2,3,4,5,6,7.根据三角形的三边关系,得当a=1时,则c不存在;当a=2时,则c=8;当a=3时,则c=8,9;当a=4时,则c=8,9,10;当a=5时,则c=8,9,10,11;当a=6时,则c=8,9,10,11,12;当a=7时,则c=8,9,10,11,12,13.则这样的三角形有21个.选A.13.【答题】已知一个三角形的三边长均为整数,若其中仅有一条边长为5,且它不是最短边,也不是最长边,则满足条件的三角形共有()A. 10个B. 8个C. 6个D. 4个【答案】C【分析】根据边长为5的情况确定出该三角形的最短边的长度,然后根据三角形的任意两边之和大于第三边,两边之差小于第三边求出最长边,从而得解.【解答】解:根据题意,∵三角形的三边长均为整数,∴该三角形的最短边可以是2、3、4,当最短边为2时,最长边<2+5,即最长边<7,∴最长边为6,当最短边为3时,最长边<3+5,即最长边<8,∴最长边为6、7,当最短边为4时,最长边<4+5,即最长边<9,∴最长边为6、7、8,∴满足条件的三角形共有1+2+3=6.选C.14.【答题】如图,图中三角形的个数为()|A. 2B. 18C. 19D. 20【答案】D【分析】线段AB上有5个点,可以与点C组成5×(5-1)÷2=10个三角形,线段DE上有5个点,可以与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.【解答】解:线段AB与点C组成5×(5-1)÷2=10个三角形,线段DE与点C组成5×(5-1)÷2=10个三角形,图中三角形的个数为20个.选D.15.【答题】已知三条线段长分别为a、b、c,a<b<c(a、b、c均为整数),若c=6,则线段a、b、c能组成三角形的情形有()A. 3种B. 4种C. 5种D. 6种【答案】B【分析】根据已知条件首先可以得到a的可能值有1,2,3,4,b的可能值有1,2,3,4,5,并且a<b,再根据三角形的三边关系讨论即可求解.【解答】解:根据已知,得a的可能值有1,2,3,4,b的可能值有1,2,3,4,5,并且a<b,根据三角形的三边关系,得当a=1时,则b不存在;当a=2时,则b=5;当a=3时,则b=4,5;当a=4时,则b=5;则线段a、b、c能组成三角形的情形有4个.选:B.16.【答题】三角形三边的长都是正整数,其中最长边的长为8,这样的三角形个数有()A. 20B. 30C. 45D. 56【答案】A【分析】确定三边中的两边,分类找到边长是整数,且最长的边为8的三角形的个数即可.【解答】解:当2边长分别为8,8时,第3边可取1,2,3,4,5…8,这样的三角形有8种;当2边长为8,7时,第3边可取2,3,4,5,…7,这样的三角形有6种;当2边长为6,8时,第3边可取3,4,5,6,这样的三角形有4种;当2边长为8,5时,第3边可取4,这样的三角形有2种;这样的三角形共有8+6+4+2=20(组).选:A.17.【答题】如果三角形的边长都是正整数,并且最长边的长是6,那么这样的三角形共有()A. 13B. 12C. 10D. 9【答案】B【分析】确定三边中的两边,分类找到边长是整数,且最长的边为6的三角形的个数即可.【解答】解:当较长的2边长分别为6时,0<第3边≤6,可取1,2,3,4,5,6共6个数;当较长的2边长分别为6,5时,1<第3边≤5,可取2,3,4,5共4个数;当较长的2边长为6,4时,2<第3边≤4,可取3,4共2个数这样的三角形共有6+4+2=12(组).选B.18.【答题】三角形三边长都是整数,并且唯一的最长边的边长是6,那么这样的三角形共有()A. 3个B. 4个C. 5个D. 6个【答案】D【分析】确定三边中的两边,分类找到边长是整数,且唯一最长的边为6的三角形的个数即可.【解答】解:当较长的2边长分别为6,5时,1<第3边≤5,可取2,3,4,5共4个数;当较长的2边长为6,4时,2<第3边≤4,可取3,4共2个数;这样的三角形共有4+2=6(组).选D.19.【答题】已知三角形的三边a,b,c的长都是整数,且a≤b<c,如果b=5,则这样的三角形共有个.A. 8B. 9C. 10D. 11【答案】C【分析】由三角形的三边关系与a≤b<c,即可得a+b>c,继而可得b<c<a+b,又由c-b<a≤b,三角形的三边a,b,c的长都是整数,即可得1<a≤5,然后分别从a=2,3,4,5去分析求解即可求得答案.【解答】解:若三边能构成三角形则必有两小边之和大于第三边,即a+b>c.∴b<c<a+b,又∵c-b<a≤b,三角形的三边a,b,c的长都是整数,∴1<a≤5,∴a=2,3,4,5.当a=2时,5<c<7,此时,c=6;当a=3时,5<c<8,此时,c=6,7;当a=4时,5<c<9,此时,c=6,7,8;当a=5时,5<c<10,此时,c=6,7,8,9;∴一共有1+2+3+4=10个.故答案为:10.20.【答题】已知△ABC的三边a,b,c的长度都是整数,且a≤b<c,如果b=5,则这样的三角形共有()A. 8个B. 9个C. 10个D. 11个【答案】C【分析】由三角形的三边关系与a≤b<c,即可得a+b>c,继而可得b<c<a+b,又由c-b<a≤b,三角形的三边a,b,c的长都是整数,即可得1<a≤5,然后分别从a=2,3,4,5去分析求解即可求得答案.【解答】解:若三边能构成三角形则必有两小边之和大于第三边,即a+b>c.∴b<c<a+b,又∵c-b<a≤b,三角形的三边a,b,c的长都是整数,∴1<a≤5,∴a=2,3,4,5.当a=2时,5<c<7,此时,c=6;当a=3时,5<c<8,此时,c=6,7;当a=4时,5<c<9,此时,c=6,7,8;当a=5时,5<c<10,此时,c=6,7,8,9;∴一共有1+2+3+4=10个.选:C.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(50)
章节测试题1.【答题】已知AD是△ABC的中线,且△ABD比△ACD的周长大3cm,则AB与AC的差为()A. 2cmB. 3cmC. 4cmD. 6cm【答案】B【分析】根据三角形中线的定义可得BD=CD,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AD是△ABC的中线,∴BD=DC,∴△ABD与△ACD的周长之差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD比△ACD的周长大3cm,∴AB与AC的差为3cm.选B.2.【答题】钝角三角形的高线在三角形外的数目有()A. 3B. 2C. 1D. 0【答案】B【分析】本题考查了三角形的高.【解答】作出钝角三角形的三条高线即可得出结果.钝角三角形有3条高,其中两条在外部,一条在内部.选B.3.【答题】三角形的三条中线的交点的位置为()A. 一定在三角形内B. 一定在三角形外C. 可能在三角形内,也可能在三角形外D. 可能在三角形的一条边上【答案】A【分析】根据三角形的中线的定义解答.【解答】解:三角形的三条中线的交点一定在三角形内.选A.4.【答题】三角形的重心是()A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点【答案】A【分析】对于一个质地均匀的三角形,三条边上中线的交点就是其重心.【解答】解:三角形的重心是三条中线的交点,故答案为:A.5.【答题】如图,△ABC中BC边上的高为()A. AEB. BFC. ADD. CF 【答案】A【分析】根据三角形的高线的定义解答.【解答】根据高的定义,AE为△ABC中BC边上的高.故答案为:A.6.【答题】下列说法正确的是()A. 三角形的中线就是过顶点平分对边的直线B. 三角形的三条角平分线的交点有可能在三角形外部C. 三角形的三条高线的交点必在三角形内部D. 以上说法都错【答案】D【分析】本题考查了三角形的角平分线、中线和高.【解答】三角形的中线就是过顶点和对边的中点的线段,故A不正确.三角形的三条角平分线的交点有可能在三角形内部,故B不正确.锐角三角形的三条高线的交点在内部;直角三角形的三条高线的交点在顶点上;钝角三角形的三条高线的交点在外部.故C不正确.选D.7.【答题】三角形的角平分线是()A. 射线B. 直线C. 线段D. 线段或射线【答案】C【分析】本题考查了三角形的角平分线、中线和高.【解答】三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线.据此得出.三角形的角平分线是线段,选C.8.【答题】三角形一边上的中线把原三角形分成两个()A. 形状相同的三角形B. 面积相等的三角形C. 直角三角形D. 周长相等的三角形【答案】B【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.【解答】解:三角形一边上的中线把原三角形分成两个面积相等的三角形.选B.9.【答题】如图,在△ABC中,BD,CE分别为AC,AB边上的中线,BD⊥CE,若BD=4,CE=6,则△ABC的面积为()A. 12B. 24C. 16D. 32【答案】C【分析】根据题意得到点O是△ABC的重心,得到OC=CE=4,根据三角形的面积公式求△BDC的面积,根据三角形的中线的性质计算即可.【解答】解:∵BD,CE分别为AC,AB边上的中线,∴点O是△ABC的重心,∴OC=CE=4,∴△BDC的面积=×BD×OC=8,∵BD为AC边上的中线,∴△ABC的面积=2×△BDC的面积=16,选C.10.【答题】下列说法错误的是().A. 锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B. 钝角三角形有两条高线在三角形外部C. 直角三角形只有一条高线D. 任意三角形都有三条高线、三条中线、三条角平分线【答案】C【分析】根据三角形的高线、中线、角平分线的性质逐一判断即可.【解答】解:A、正确,锐角三角形的三条高线、三条中线、三条角平分线分别交于一点;B、正确,钝角三角形有两条高线在三角形的外部;C、错误,直角三角形也有三条高线;D、正确.故答案为:C11.【答题】在下图中,正确画出AC边上高的是()A. B.C. D.【答案】C【分析】根据三角形的高的意义可知,AC边上的高是过B作直线AC的垂线,垂足落在AC所在直线上.【解答】解:AC边上的高是过B作直线AC的垂线,直角落在AC边上,只有C 满足条件.故答案为:C.12.【答题】如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE的角平分线;②BO是△ABD的中线;③DE是△ADC的中线;④ED是△EBC的角平分线的结论中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】易得∠BAD=∠CAD,AE=CE,根据这两个条件判断所给选项是否正确即可.【解答】∵△ABC的角平分线AD、中线BE相交于点O,∴∠BAD=∠CAD,AE=CE,①在△ABE中,∠BAD=∠CAD,∴AO是△ABE的角平分线,故①正确;②AO≠OD,∴BO不是△ABD的中线,故②错误;③在△ADC中,AE=CE,DE是△ADC的中线,故③正确;④∠ADE不一定等于∠EDC,那么ED不一定是△EBC的角平分线,故④错误;正确的有2个选项.选B.13.【答题】如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A. AC是△ABC的高B. DE是△BCD的高C. DE是△ABE 的高D. AD是△ACD的高【答案】C【分析】根据三角形的高的概念判断即可;选项A的说法符合高的概念,选项B 的说法符合高的概念,C选项中,DE是△BDC、△BDE、△EDC的高,不是△ABE的高,选项D的说法符合高的概念.【解答】解:选项A的说法符合高的概念,故正确;选项B的说法符合高的概念,故正确;C选项中,DE是△BDC、△BDE、△EDC的高,故错误;选项D的说法符合高的概念,故正确.故答案为:C.14.【答题】三角形的角平分线、中线和高()A. 都是线段B. 都是射线C. 都是直线D. 不都是线段【答案】A【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.【解答】解:三角形的角平分线、中线和高都是线段.选A15.【答题】如图,在△ABC中,CD⊥AB于点D,则CD是△ABC()A. BC边上的高B. AB边上的高C. AC边上的高D. 以上都不对【答案】B【分析】本题考查了三角形的高.【解答】根据三角形的高的概念可得,CD是△ABC的AB边上的高.选B.16.【答题】如图,下面的四个图形中,线段BE是△ABC的高的图是()A. B.C. D.【答案】A【分析】根据三角形的高的定义即可判断.【解答】解:三角形的高是过其中一个顶点先对边所在直线作垂线,顶点与垂足的连线段就是三角形的高.选A.17.【答题】AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,△ABD与△ACD的周长之差为______cm.【答案】2【分析】此题考查三角形的中位线的性质.此题的关键是将求△ABD与△ACD的周长之差,转化为求AB与AC的差.【解答】∵AD是边BC上的中线,∴BD=CD.∵△ABD的周长为:AB+BD+AD,△ACD的周长为:AC+CD+AD,∴△ABD与△ACD的周长之差为:(AB+BD+AD)-(AC+CD+AD)=AB-AC,又∵AB=5cm,AC=3cm,∴AB-AC=2(cm).即△ABD与△ACD的周长之差为2cm.18.【答题】如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP 平分∠ACB,则∠BPC的大小是______度.【答案】115【分析】直接根据角平分线平分对应角,三角形内角和为180度进行计算.【解答】BP平分∠ABC,CP平分∠ACB,故答案为115.19.【答题】如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC 于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有______.【答案】③④【分析】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.【解答】①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.20.【答题】如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=______.【答案】50°【分析】由AE平分∠BAC,可得角相等,由∠1=30°,∠2=20°,可求得∠EAD的度数,在直角三角形ABD在利用两锐角互余可求得答案.【解答】解:∵AE平分∠BAC,∴∠1=∠EAD+∠2,∴∠EAD=∠1﹣∠2=30°﹣20°=10°,Rt△ABD中,∠B=90°﹣∠BAD=90°﹣30°﹣10°=50°.故答案为50°.。
_ 鲁教版七年级数学上册 第一章 三角形 单元测试题
鲁教版数学七年级上册第一章《三角形》单元测试题一、选择题:1、以下列各组线段的长为边,能组成三角形的是()A.2、4、7 B.3、5、2 C.7、7、3 D.9、5、32、一个三角形的两边长分别为2和5,且第三边长为整数,这样的三角形的周长最大值是()A. 11B. 12C. 13D. 143、如图中三角形的个数为( )A. 3 个B. 4 个C. 5 个D. 6 个4、如图,△ABC≌△DEF,AC∥DF,则∠C的对应角为()A.∠F B.∠B C.∠AEF D.∠D5、如图,AB=AD,BC=CD,点E在AC上,则全等三角形共有()A.1对B.2对C.3对D.4对6、在下列各图的△ABC中,正确画出AC边上的高的图形是()A.B.C. D.7、如图,已知AB=AC,AD=AE,欲说明△ABD≌△ACE,需补充的条件是( )A. ∠B=∠CB.∠D=∠EC. ∠1=∠2D.∠CAD =∠28、如图,和相交于点,已知,以“”为依据说明≌还需添加()A.AB=CDB.∠A=∠CC.OB=ODD. ∠AOB=∠COD9、如图,AD是△ABC的中线,点E是AD的中点,连接BE、CE,若△ABC 的面积是8,则阴影部分的面积为( )A.2B.4C.6D.810、如图,∠ACE是△ABC的外角,∠ACD=∠A,∠B=50°,则∠BCD的度数为()A.130°B.120°C.110°D.100°11、下列各组条件中,能判定△ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EF C.AB=D E,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F12.如图,△ABC中,∠A=30°,将△ABC沿DE折叠,点A落在F处,则∠FDB+∠FEC的度数为()A.140°B.60°C.70°D.80°二、填空题:13.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有_______种.14.如果△ABC≌△DEF,若AB=DE,∠B=50°,∠C=70°,则∠D=.15.如图,已知线段AB、CD相交于点O,且∠A=∠B,若有△AOC≌△BOD,需补充一个条件是_____.16、如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=____ .17、如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.18、如图,四边形ABCD的对角线AC、BD交于点O,△ABO≌△ADO,下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中不正确结论的序号是______ .三、解答题:19、如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=88°,求∠F的度数.20.如图,四边形ABCD中,∠ABC +∠D =180°,AC平分∠BAD,CE⊥AB,CF⊥AD.试说明:(1)△CBE ≌△CDF;(2)AB +DF =AF.21、已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.判断线段AP和AQ的关系,并证明.22、如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD 交CE于N,连接MN.(1)求证:AE = BD;(2)求证:MN∥AB。
初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题(19)
章节测试题1.【答题】如图,沿直角边所在直线向右平移到,则下列结论中,错误的是()A. B. C. D.【答案】D【分析】由平移的性质,结合图形,对选项进行一一分析,选择正确答案.【解答】A、Rt△ABC向右平移得到△DEF,则△ABC≌△DEF成立,故正确,不符合题意;B、△ABC≌△DEF,则BC=EF,BC-EC=EF-EC,即BE=CF,故正确,不符合题意;C、△ABC≌△DEF,则AC=DF成立,故正确,不符合题意;D、BE=EC不能成立,故错误,符合题意,选D.2.【答题】如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A. PQB. MOC. PAD. MQ【答案】A【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此可以得到答案.【解答】解:∵△PQO≌△NMO,∴PQ=MN,∴要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长.选A.3.【答题】如图,△ABC≌△ADE,若∠BAC=75°,∠E=40°,则∠B的度数为()A. 75°B. 40°C. 65°D. 115°【答案】C【分析】根据全等三角形的性质得出∠C=∠E=40°,根据三角形的内角和定理求出即可.【解答】∵△ABC≌△ADE,∠E=40°,∴∠C=∠E=40°,∵∠BAC=75°,∴∠B=180°−∠BAC−∠C=65°,选C.4.【答题】下列说法中:全等三角形的对应边相等;全等三角形的对应角相等;全等三角形的周长相等;周长相等的两个三角形全等;全等三角形的面积相等;面积相等的两个三角形全等,正确说法有()A. 2个B. 3个C. 4个D. 5个【答案】C【分析】本题考查了全等三角形的性质与判定.全等三角形是指能够完全重合的两个三角形,全等三角形的对应边相等,对应角相等,根据以上知识点逐个判断即可.【解答】解:全等三角形的对应边相等;正确.全等三角形的对应角相等;正确.全等三角形的周长相等;正确.周长相等的两个三角形全等;错误.全等三角形的面积相等;正确.面积相等的两个三角形全等;错误正确的说法有4个,选C.5.【答题】如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是()A. 6cmB. 5cmC. 7cmD. 无法确定【答案】C【分析】本题考查了全等三角形的性质.根据全等三角形的对应边相等解答即可.【解答】∵△ABC≌△ADE,∴DE=BC=7cm,选C.6.【答题】如图,已知△ABC≌△ADE,若AB=8,AC=3,则BE的值为______.【答案】5【分析】根据△ABC≌△ADE,得到AE=AC,由AB=8,AC=3,根据BE=AB-AE即可解答.【解答】∵△ABC≌△ADE,∴AE=AC,∵AB=8,AC=3,∴BE=AB-AE=AB-AC=8-3=5.故答案为:5.7.【答题】如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠BDC=______°【答案】65【分析】根据全等三角形对应角相等可得∠C=∠A,∠ABD=∠CBD,再求出∠CBD,然后根据三角形的内角和等于180°列式计算即可得解.【解答】解:∵△ABD≌△CBD,∴∠C=∠A=80°,∠ABD=∠CBD,∵∠ABC=70°,∴∠CBD=∠ABC=×70°=35°,在△BCD中,∠BDC=180°-∠C-∠CBD=180°-80°-35°=65°.故答案为:65.8.【答题】已知△ABC≌△DEF,△ABC的周长为12,则△DEF的周长为______【答案】12【分析】利用全等三角形的性质即可解决问题.【解答】∵△ABC≌△DEF,∴△ABC与△DEF的周长相等.∵△ABC的周长为12,∴△DEF的周长为12.故答案为:12.9.【答题】一个三角形的三边为2、5、x,另一个三角形的三边为y、2、4,若这两个三角形全等,则x+y=______.【答案】9【分析】根据全等三角形对应边相等求出x、y的值,然后相加即可得解.【解答】解:∵两个三角形全等,∴x=4,y=5,∴x+y=4+5=9.故答案为:9.10.【答题】如图,△ABC≌△DEF,BE=7,AD=3,AB=______.【答案】5【分析】先根据全等三角形的性质AB=DE,再结合题意得DB=AE,则由BE=7,AD=3,可得答案.【解答】∵△ABC≌△DEF,∴AB=DE,则DB=AB-DA,AE=DE-AE,则DB=AE,由BE=7,AD=3,可得AE===2,则AB=BE-AE=5.11.【题文】如图,△ABC≌△DEF,∠A=33°,∠E=57°,CE=5cm.(1)求线段BF的长;(2)试判断DF与BE的位置关系,并说明理由.【答案】(1)5cm;(2)见解答.【分析】(1)根据全等三角形的性质得出BC=EF,求出EC=BF即可;(2)根据全等三角形的性质可得∠A=∠D=33°,根据三角形内角和定理求出∠DFE的度数,即可得出答案.【解答】(1)∵△ABC≌△DEF,∴BC=EF,∴BC+CF=EF+CF,即BF=CE=5cm;(2)∵△ABC≌△DEF,∠A=33°,∴∠A=∠D=33°,∵∠D+∠E+∠DFE=180°,∠E=57°,∴∠DFE=180°-57°-33°=90°,∴DF⊥BE.12.【答题】下列图形是全等图形的是()A. B.C. D.【答案】B【分析】根据全等图形的定义解答即可.【解答】A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;选B.13.【答题】若△ABC≌△DEF,则下列说法不正确的是()A. 和是对应角B. AB和DE是对应边C. 点C和点F是对应顶点D. 和是对应角【答案】A【分析】本题考查全等三角形的性质,根据对应顶点的字母写在对应位置上准确确定出对应边和对应角是解题关键.【解答】∵△ABC≌△DEF,∴AB和DE是对应边,点C和点F是对应顶点,∠B和∠E是对应角,∠A和∠B是相邻的角,不是对应角,∴说法不正确的是A.选A.14.【答题】如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A. ∠BB. ∠AC. ∠EMFD. ∠AFB【答案】A【分析】根据全等三角形的性质解答即可.【解答】∵△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,∴∠DCE=∠B,选A.15.【答题】下列图形中,和所给图形全等的图形是()A. B.C. D.【答案】D【分析】根据全等图形的定义解答即可.【解答】根据全等图形的定义只需找出与原图形大小相等,形状相同的图形即可,A、B、C选项均不符合题意,只有D符合题意,D中的图形相对于原图形顺时针作了180°的旋转变换.选D.16.【答题】下列说法中:①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④周长相等的两个三角形全等;⑤全等三角形的面积相等;⑥面积相等的两个三角形全等,正确的()A. ①②③④⑤B. ③④⑤⑥C. ①②③⑤D. ①②③④⑤⑥【答案】C【分析】根据全等三角形的性质解答即可.【解答】根据全等三角形的性质:全等三角形的对应边相等、对应角相等、周长相等、面积相等,因此①②③⑤是正确的;但是周长相等的两个三角形却不一定全等,比如边长分别为3、4、5的直角三角形和边长为4的等边三角形虽然周长相等,但是却不全等.同样,底为4高为3的三角形,与底为3高为4的三角形,它们面积虽然相等,但是却不全等.因此④⑥是错误的,选C.17.【答题】如图,ΔABC≌ΔCDA,∠BAC=∠DCA,则BC的对应边是()A. CDB. CAC. DAD. AB【答案】C【分析】根据全等三角形的性质解答即可.【解答】∵ΔABC≌ΔCDA,∠BAC=∠DCA,∴BC的对应边为DA,选C.18.【答题】如图,已知△ABC≌△CDE,下列结论中不正确的是()A. AC=CEB. ∠BAC=∠ECDC. ∠ACB=∠ECDD. ∠B=∠D【答案】C【分析】根据全等三角形的性质解答即可.【解答】由全等三角形的性质可知A、B、D均正确,而∠ACB=∠CED,故C错误.选C.19.【答题】如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A. POB. PQC. MOD. MQ【答案】B【分析】根据全等三角形的性质解答即可.【解答】∵△PQO≌△NMO,∴,则只需测出PQ的长即可求出M、N之间的距离.选B.20.【答题】如图,△ACB≌△A′CB′,∠A′CB=30°,∠ACB′=110°,则∠ACA′的度数是()A. B. C. D.【答案】D【分析】根据全等三角形的性质解答即可.【解答】∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB-∠A′CB=∠A′CB′-∠A′CB,即∠ACA′=∠BCB′,∵∠A′CB=30°,∠ACB′=110°,∴∠ACA′=(110°-30°)=40°.选D.。
鲁教版七年级数学上第一章三角形 练习题
鲁教版七年级数学上1.1三角形及其内角和【基本知识方法】1.一位同学用三根木棒拼成如下图形,则其中符合三角形概念的是( )(A)①(B)②(C)③(D)④2.(2019杭州)在△ABC中,若一个内角等于另两个内角的差,则( )(A)必有一个内角等于30° (B)必有一个内角等于45°(C)必有一个内角等于60° (D)必有一个内角等于90°3.(2019赤峰)如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为( )(A)65°(B)70°(C)75°(D)85°4.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的度数为.5.如图,AB∥CD,FE⊥DB,垂足为点E,∠1=50°,则∠2的度数是______6.在△ABC中,∠A-∠B=90°,∠B=2∠C,求△ABC的各内角的度数.7.如图,DF与AC交于点E,已知∠B=42°,∠C=56°,∠DEC=48°,求∠F的度数.【综合】8.如图,点D在△ABC边AB的延长线上,DE∥BC.若∠A=35°,∠C=24°,则∠D的度数是( )(A)24° (B)59° (C)60° (D)69°9.如图,在△ABC中,AD,BF,CE相交于O点,则图中的三角形的个数是( )(A)7个(B)10个 (C)15个(D)16个10.如图,∠1+∠2+∠3+∠4等于( )(A)150°(B)240°(C)300°(D)330°11.如图,有一块直角三角板XYZ放置在△ABC上,三角板XYZ的两条直角边XY,XZ改变位置,但始终满足经过B,C两点.如果△ABC中,∠A=40°,则∠ABX+∠ACX=_________12.如图,在△ABC中,若∠BAC=85°,∠ADB=70°,∠BAD=∠B,求∠C.【提高训练】13.(分类讨论思想)当三角形中一个内角α是另一个内角β的2倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”中最小的内角为30°,那么其中“特征角”的度数为___________鲁教版七年级数学上1.2三角形的分类及直角三角形的性质【基础练习】1.在一个直角三角形中,有一个锐角等于65°,则另一个锐角的度数是( )(A)115°(B)125°(C)25° (D)35°2.如图所示,AB⊥BD,AC⊥CD,若∠D=35°,则∠A的度数为( )(A)65° (B)35° (C)55° (D)45°3.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )(A)45° (B)60° (C)75° (D)85°4.如图,在△ABC中,∠C=90°,点D在BC上,∠B=40°,∠DAC=20°,则∠BAD= 度.第4题图5.如图,∠ACB=90°,CD⊥AB,则图中与∠1互余的角有个,它们分别是.第5题图6.在Rt△ABC中,∠C=90°,∠A=4∠B,则∠A= .7.如图,∠B=∠C,DE⊥BC于点E,EF⊥AB于点F,∠ADE=140°,求∠FEB的度数.【综合训练】8.下列判断:①有两个内角分别为55°和25°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中至少有两个锐角;④△ABC中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC是直角三角形.其中正确的有( )(A)1个(B)2个(C)3个(D)4个9.如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )(A)90° (B)135°(C)150°(D)270°10.一把直尺和一块三角板ABC(含30°,60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D,点E,另一边与三角板的两直角边分别交于点F,点A,且∠CDE=40°,那么∠BAF的大小为( )(A)40° (B)45° (C)50° (D)10°11.(2019哈尔滨)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为.12.如图,EO⊥CO于点O,若∠B=30°,∠E=40°,求∠OAD的度数.13.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,已知∠B=48°,∠BAC=72°,求∠CAD与∠DHE的度数.【能力提升】14.(探究题)(1)如图①,直角三角形ABC中CD⊥AB,图中有与∠A相等的角吗?为什么?(2)如图②,把图①中的CD平移到ED处,图中还有与∠A相等的角吗?为什么?(3)如图③,把图①中的CD平移到ED处,交BC的延长线于点E,图中还有与∠A相等的角吗?为什么?鲁教版七年级数学上1.3三角形的三边关系【基础练习】1.(2019台州)下列长度的三条线段,能组成三角形的是( )(A)3,4,8 (B)5,6,10 (C)5,5,11 (D)5,6,112.(2020任城区期中)小红已有两根长度分别是10 cm、20 cm的木条,现要钉一个三角形木架,则她还需要第三根木条的长度可以是( )(A)5 cm (B)10 cm (C)20 cm (D)40 cm3.若一个三角形的两边长分别为2和4,则该三角形的周长可能是( )(A)6 (B)7 (C)11 (D)124.(2020河口期中)一个等腰三角形的两边长分别是3 cm和7 cm,则它的周长是 cm.5.已知三角形两边的长分别为1,5,第三边长为整数,则第三边的长为6.已知一个三角形的三边长分别为2,8,x,若其周长是偶数,则x的值是;若x是奇数,则x的值是.7.一个三角形的两边长为3和5,(1)求它的第三边a的取值范围;(2)求它的周长L的取值范围;(3)若周长为偶数,求三角形的第三边长.8.已知等腰三角形的两边长a,b满足|a-4|+(b-9)2=0,求这个等腰三角形的周长.【综合训练】9.已知四根长度分别为3 cm,6 cm,8 cm,10 cm的木棒,任意选取三根木棒组成一个三角形,那么可以组成三角形的个数为( )(A)1个(B)2个 (C)3个(D)4个10.已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )(A)2a+2b-2c (B)2a+2b (C)2c (D)011.已知△A B C的周长为13,且各边长均为整数,那么这样的等腰△ABC有个.12.一个等腰三角形的周长为28 cm.(1)如果底边长是腰长的1.5倍,求这个等腰三角形的三边长;(2)如果一边长为10 cm,求这个等腰三角形的另两边长.【提高训练】13.(分论讨论题)某等腰三角形的三边长分别为x,3,2x-1,则该三角形的周长为( )(A)11 (B)11或8 (C)11或8或5 (D)与x的取值有关14.小明同学在研究了课本上的一道问题“四根小木棍的长度分别为2 cm,3 cm,4 cm和5 cm,任取其中3根,可以搭成几个不同的三角形?”后,提出下列问题:长度分别为a,b,c(单位: cm)的三根小木棍搭成三角形,已知a,b,c都是整数,且a≤b<c,如果b=5 cm,用满足上述条件的三根小木棍能够搭出几个不同的三角形?请你参与研究,并写出探究过程.鲁教版七年级数学上1.4三角形中的三条重要线段【基础练习】1.(2020广饶期中)如图,在△ABC中,BC边上的高是( )(A)AF (B)BH (C)CD (D)EC2.如图,在△ABC中,AB=2,BC=4,△ABC的高AD与CE的比为( )(A)1∶2 (B)2∶1 (C)1∶4 (D)4∶13.如图,在△ABC中,AD是△ABC的高AE平分∠BAC,若∠1=30°,∠2=20°,则∠B的度数是( B )(A)40° (B)50° (C)60° (D)70°4.在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多3 cm,已知AB=4 cm,则AC的长为( )(A)1 cm (B)6 cm (C)7 cm (D)8 cm5.在一块三角形的优良品种试验基地,如图所示,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种划分方案.(温馨提示:请准确作图)6.在△ABC中,AB∶AC=3∶2,BC=AC+1,若△ABC的中线BD把△ABC的周长分成两部分的比是8∶7,求AB,AC的长(边长为整数).7.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是( )(A)15°(B)20°(C)25°(D)30°【综合训练】7.如图,△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠DAE+∠ACD等于( )(A)75° (B)80° (C)85° (D)90°8.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4 cm2,则S阴影等于( )(A)2 cm2(B)1 cm2(C)2 cm2(D)4 cm29.已知BD,CE是△ABC的高,直线BD,CE相交所成的角中有一个角为65°,则∠BAC= .10.如图,AD是△ABC的中线,BE是△ABD的中线.若△ABC的面积为20,BD=5,则点E到BC边的距离为 .11.已知:如图,在△ABC中,AD,AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,求∠DAE的度数;(2)试问∠DAE与∠C-∠B有怎样的数量关系?说明理由.【提高训练】12.(动点问题)如图,△ABC中,∠C=90°,AC=8 cm,BC=6 cm,AB=10 cm.若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2 cm.设运动的时间为t秒.(1)当t= 秒时,CP把△ABC的周长分成相等的两部分;(2)当t= 秒时,CP把△ABC的面积分成相等的两部分;(3)当t= 时,△BCP的面积为12鲁教版数学七年级上阶段训练1认识三角形【例题】1.如果等腰三角形的两边长分别为2和5,则它的周长为()(A)9 (B)7 (C)12 (D)9或122.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()(A)1 (B)2 (C)3 (D)43.如图,△ABC中,点D是BC边上的一点,且S△ACD=S△ABD,则AD为()(A)高(B)中线(C)角平分线(D)不能确定4.如图,AE⊥BC于点E,试问AE为哪些三角形的高.5.等腰三角形周长为16,一边长为6,另外两边长为.6.已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,求∠BAC的度数.【练习测试】1.在下列长度的三条线段中,不能组成三角形的是()(A)2 cm,3 cm,4 cm (B)3 cm,6 cm,7 cm (C)2 cm,2 cm,6 cm (D)5 cm,6 cm,7 cm2.(2020任城区期中)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()3.若一个三角形的两边长分别是4 cm和10 cm,那么第三边的长度在以下选项中不能是()(A)6 cm (B)7 cm (C)8 cm (D)9 cm4.如图,以BC为边的三角形的个数是()(A)3 (B)4 (C)5 (D)65.如图,△ABC中,∠ABC=50°,∠ACB=70°,AD平分∠BAC,DE是△ABD的高,则∠ADE的度数是()(A)45°(B)50°(C)60°(D)70°6.如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论不正确的是()(A)∠A和∠B互为余角(B)△ADE是直角三角形(C)∠A和∠ADE互为余角(D)∠B和∠CDE互为余角7.已知(a-5)2+|b-9|=0,那么以a,b为边长的等腰三角形的周长为()(A)19 (B)19或23 (C)23 (D)14或238.小华要从长度分别为5 cm,6 cm,11 cm,16 cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒形成的三角形的周长为cm.9.如图,已知BE和CF是△ABC的两条高,∠ABC=44°,∠ACB=72°,则∠BDC= .10.如图,在△ABC中,∠1=∠2,G为AD中点,延长BG交AC于点E,F为AB上一点,CF⊥AD于点H.下列结论:①AD是△ABC的角平分线;②BE是△ABD的AD边上的中线;③CH为△ACD边AD上的中线;④AH是△ACF的角平分线和高线.正确的有.11.如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为.12.一个三角形的两边长分别为5 cm和3 cm,第三边的长是整数,且周长是偶数,则第三边的长是.13.已知:在△ABC中,∠A∶∠B∶∠C=1∶3∶5,求∠A,∠B和∠C的度数,它是什么三角形?14.已知AD为△ABC的中线,AB=5 cm,且△ACD的周长比△ABD的周长少2 cm,求AC的长度.15.如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EP平分∠BEF,FP平分∠DFE.试说明:△PEF是直角三角形.16.如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;(3)若△ABD的面积为6,且BD边上的高为3,求BC的长.17.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于点E,若∠DAC=26°,∠CBE=22°.求∠BAC的度数.18.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.(1)求出c及x的取值范围;(2)若x是小于18的偶数.①求c的长;②判断△ABC的形状.鲁教版七年级数学上1.2图形的全等【基础练习】1.如图,与左边正方形图案属于全等的图案是( )2.如图,△AOB≌△COD,点A与点C是对应点,那么下列结论中错误的是( )(A)∠B=∠D (B)∠AOB=∠COD(C)AC=BD (D)AO=CO3.如图,△ABC≌△DEF,若∠A=50°,∠B=100°,则∠F的度数是( )(A)100°(B)60° (C)50° (D)30°4.如图,△ABD≌△EBC,若 AC=12,BE=5,则DE的长为( )(A)2 (B)3 (C)4 (D)55.如图,△OAD≌△OBC,若∠O=65°,∠C=20°,则∠DAC= .6.如图,已知△ABD≌△CAE,∠BDA=∠CEA=90°,试说明:DE=BD+CE.7.如图,已知△ABE≌△ACD.(1)如果BE=6,DE=2,求BC的长;(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.【综合训练】8.如图,如果△ABC≌△DEF,△DEF周长是32 cm,DE=9 cm,EF=13 cm,∠E=∠B,则AC= cm.9.如图,已知△A B C≌△A D E,点D是∠B A C的平分线上的一点,且∠BAC=60°,则∠CAE= .10.如图,△A B C≌△A D E,若∠C=35°,∠D=75°,∠D A C=25°,则∠BAD= .11.如图,C D⊥A B于点D,B E⊥A C于点E,△A B E≌△A C D,∠C=42°, AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数;(2)求CE的长.【提高训练】12.如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P.(1)若∠ABE=160°,∠DBC=30°,求∠CBE的度数;(2)若AD=DC=3 cm,BC=4.5 cm,求△DCP与△BPE的周长之和.鲁教版七年级数学上1.3.1探索三角形全等的条件(边边边)【基础训练】1.下列不是利用三角形稳定性的是( )(A)伸缩晾衣架(B)三角形房架 (C)自行车的三角形车架 (D)矩形门框的斜拉条2.如图,已知AB=AD,BC=DC,若∠B=30°,∠BAC=23°,则∠ACD的度数为( )(A)120°(B)125°(C)127°(D)104°3.如图,△ABC中,AB=AC,EB=EC,则由“SSS”可以判定( )(A)△ABD≌△ACD (B)△ABE≌△ACE (C)△BDE≌△CDE (D)以上答案都不对4.如图,点B,C,F,E在同一条直线上,AB=DE,AC=DF,BC=EF,小雪根据这些条件得出了四个结论:①AB∥DE;②AC∥DF;③BF=CE;④∠1=∠2,其中正确的有( )(A)1个(B)2个(C)3个(D)4个5.如图,AC=DC,BC=EC,请你添加一个适当的条件: ,使得△ABC≌△DEC.6.如图,AB=DF,AC=DE,BE=FC,问:△ABC与△DFE全等吗?AB与DF平行吗?请说明你的理由.【综合训练】7.如图,在△ABC中,∠ACB=90°,按如下步骤操作:①以点A为圆心,任意长为半径作弧,分别交AC,AB于D,E两点;②以点C为圆心,AD长为半径作弧,交AC的延长线于点F;③以点F为圆心,DE 长为半径作弧,两弧交于点G;④作射线CG,若∠FCG=50°,则∠B为( )(A)30°(B)40° (C)50° (D)60°8.如图,已知AB=AC,BD=CD,CE=BE,E是AD上的一点,则下列结论中不成立的是( )(A)∠BDE=∠CDE (B)∠ECD=∠AEB (C)∠BAD=∠CAD (D)∠BED=∠CED9.已知:∠AOB,求作:∠AOB的平分线.作法:①以点O为圆心,适当长为半径画弧,分别交OA,OB于点M,N;②分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB内部交于点C;③画射线OC.射线OC即为所求.上述作图用到了全等三角形的判定方法,这个方法是.10.如图,AB=CD,CB=AD,O为AC上任意一点,过O作直线分别交AB,CD的延长线于F,E两点,试说明:∠E=∠F.11.(核心素养—逻辑推理)如图,已知AB=CD,AC=DB,∠A与∠D相等吗?为什么?【提高训练】12.如图,在△ABC中,AC=BC,点D是AB上的一点,AE⊥CD于点E,BF⊥CD于点F,若CE=BF,AE=EF+BF.试判断AC与BC的位置关系,并说明理由.鲁教版七年级数学上1.3.2探索三角形全等的条件(角边角或角角边)【基础训练】1.如图所示,∠1=∠2,∠B=∠C,若能得到BD=CD,则所用的判定两三角形全等的依据是( )(A)角角角(B)边边边 (C)角边角(D)角角边2.如图,AB∥CD,点C是BE的中点,直接应用“ASA”定理证明△ABC≌△DCE还需要的条件是( )(A)AB=CD (B)∠ACB=∠E (C)∠A=∠D (D)AC=DE3.如图,点D在AB上,点E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是( )(A)AD=AE (B)∠AEB=∠ADC (C)BE=CD (D)AB=AC4.(2020东平期中)如图,已知AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是( )(A)∠1=∠2 (B)∠A=∠2(C)△ABC≌△CED (D)AB=CE5.如图所示,点E为△ABC的边AC的中点,CN∥AB,点N,E,M在同一直线上,若MB=6 cm,CN=4 cm,则 AB= .6.如图,点A,F,C,D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF.试说明:AB=DE.【综合训练】7.如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC 交CD的延长线于点F,如果EF=5 cm,那么AE等于( )(A)1 cm (B)2 cm (C)3 cm (D)4 cm8.如图,△AEB,△AFC中,∠E=∠F,∠B=∠C,AE=AF,则下列结论错误的是( )(A)∠EAM=∠FAN (B)BE=CF (C)△ACN≌△ABM (D)CD=DN9.如图,C,F在BE上,若∠A=∠D,AC∥DF,AC=DF,BE=8,CF=2,则EC= .10.(2020东平期中)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,点C作过点A的直线的垂线BD,CE,垂足为点D,E.试说明:(1)△ABD≌△CAE;(2)DE=BD+CE.11.如图,∠A=∠B,A E=B E,点D在A C边上,∠1=∠2,A E和B D相交于点O.试说明:△AEC≌△BED.【提高训练】12.(核心素养—逻辑推理)B,F,C,E在一条直线上,F B=C E,A B∥E D, AC∥FD,AD交BE于点O,AD与BE互相平分吗?为什么?鲁教版七年级数学上1.3.3探索三角形全等的条件(边角边)【基本训练】1.如图,FE=BC,DE=AB,若∠B=∠E=40°,∠F=70°,则∠A等于( )第1题图(A)40° (B)50° (C)60° (D)70°2.(2020利津期中)下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )(A)甲和乙(B)乙和丙(C)甲和丙(D)只有丙3.(2020济宁附中期中)如图,在△ABC和△DEF中,已知:AC=DF,BE=CF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)第3题图4.(2020利津期中)如图,在△A B C与△A E F中,A B=A E,B C=E F,∠B= ∠E,AB交EF于点D.给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD=AC.其中正确的结论是(填序号).5.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.试说明:BD=CE.6.如图,AC∥EG,BC∥EF,直线GE分别交BC,BA于P,D.且AC=GE,BC=FE.试说明:∠A=∠G.【综合训练】7.(2020利津期中)如图,AB∥CD,BC∥AD,AB=CD,AE=CF,其中全等三角形的对数是( )(A)4 (B)3(C)2 (D)18.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使得△ABC≌△DEF的共有( )(A)1组(B)2组(C)3组(D)4组9.(2020利津期中)如图,E,F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE与BF交于点P.(1)试说明:CE=BF;(2)求∠BPC的度数.【提高训练】10.(探究题)如图,在△ABC中,BE,CF分别是AC,AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG.试说明:(1)AD=AG;(2)AD与AG的位置关系如何?鲁教版七年级数学上1.4三角形的尺规作图【基础训练】1.尺规作图的画图工具是( )(A)刻度尺、圆规(B)三角尺和量角器(C)直尺和量角器(D)没有刻度的直尺和圆规2.利用尺规作图不能唯一作出三角形的是( )(A)已知三边(B)已知两边及夹角(C)已知两角及夹边(D)已知两边及其中一边的对角3.已知三边作三角形时,用到所学知识是( )(A)作一个角等于已知角(B)作一个角使它等于已知角的一半(C)作一线段等于已知线段(D)作一条直线的平行线或垂线4.(2019贵港)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△ABC.【综合训练】5.下列选项所给条件能画出唯一△ABC的是( )(A)∠A=50°,∠B=30°,AB=2(B)AC=4,AB=5,∠B=60°(C)∠C=90°,AB=10(D)AC=3,AB=4,BC=86.如图,通过(1)画∠DA′E=∠A;(2)在射线 A′D 上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′得到的△A′B′C′≌△ABC的依据是.7.如图,在△ABC中,∠B>∠C,小明以BC为一边作△DBC,使它与△ABC全等,并且点D与点A不重合,这样的三角形可以作个.8.如图,已知a和∠α,用尺规作一个三角形A B C,使A B=A C=2a, ∠BAC=180°-∠α(不写作法,但要保留作图痕迹).【提高训练】9.(分类讨论题)已知一个三角形的两条边长分别是 1 cm 和2 cm,一个内角为40°(请在图中标出已知角的度数和已知边的长度,用直尺和圆规作图,不写作法,保留作图痕迹).(1)如图,请你用直尺和圆规画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,则用直尺和圆规画出一个这样的三角形;若不能,则说明理由.鲁教版七年级数学上1.5利用三角形全等测距离【基础训练】1.在一次小制作活动中,艳艳剪了一个燕尾图案,她用刻度尺量得AB=AC,BO=CO,为了保证图案的美观,她准备再用量角器量一下∠B和∠C是否相等.小麦走过来说:“不用量了,肯定相等.因为△ABO≌△ACO.”小麦利用的判定三角形全等的方法是( )(A)ASA (B)SAS (C)SSS (D)AAS2.如图,欲测量内部无法到达的古塔相对两点A,B间的距离,可延长AO至C,使CO=AO,延长BO至D,使DO=BO,则△COD≌△AOB,从而通过测量CD就可测得A,B间的距离,其全等的根据是( )(A)SAS (B)ASA (C)AAS (D)SSS3.如图,AA′,BB′表示两根长度相同的木条,若O是AA′,BB′的中点,经测量AB=9 cm,则容器的内径A′B′为( )(A)8 cm (B)9 cm (C)10 cm (D)11 cm4.在新修的花园小区中,有一条“Z”字形绿色长廊ABCD(如图所示),其中AB∥CD,在AB,BC,CD三段绿色长廊上各修建一凉亭E,M,F,且BE=CF,点M是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,要测出线段的长度.5.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)试说明:△ABC≌△DEF;(2)若BE=10 cm,BF=3 cm,求FC的长度.【综合训练】6.如图,是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为.7.如图,两根旗杆间相距12 m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=MD.已知旗杆AC的高为3 m,该人的运动速度为1 m/s,则这个人运动到点M所用时间是s.第7题图8.如图,O为码头,A,B两个灯塔与码头的距离相等,OA,OB为海岸线,一轮船从码头开出,计划沿∠AOB的平分线航行,航行途中,测得轮船与灯塔A,B的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.9.如图,A,B两点分别位于一个假山两边,请你利用全等三角形的知识设计一种测量A,B间距离的方案,并说明其中的道理.(1)测量方案:(2)理由:【提高训练】10.某同学根据数学知识原理制作了如图所示的一个测量工具——拐尺,其中O为AB的中点,CA⊥AB,BD⊥AB,CA=BD,现要测量一透明隔离房间的深度x,如何使用此测量工具,说明理由.。
初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题(11)
章节测试题1.【答题】如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A. 20°B. 30°C. 35°D. 40°【答案】B【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.选B.2.【答题】如图,△ABC≌△AED,点D在BC上,若∠EAB=42°,则∠DAC的度数是()A. 48B. 44C. 42D. 38 【答案】C【分析】直接利用全等三角形的性质得出对应角相等进而得出答案.【解答】解:∵△ABC≌△AED,∴∠EAD=∠BAC,∴∠EAB=∠DAC=42°.选C.3.【答题】已知图中的两个三角形全等,则∠α度数是()A. 50°B. 58°C. 60°D. 72°【答案】A【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=50°.选A.4.【答题】△ABC≌△DEF,下列结论中不正确的是()A. AB=DEB. BE=CFC. BC=EFD. AC=DE 【答案】D【分析】根据全等三角形的性质即可判断;【解答】解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BE=CF,故A,B,C正确,选D.5.【答题】如图,△ABD≌△CDB,则AB=()A. ADB. CDC. BCD. BD【答案】B【分析】根据全等三角形的性质即可得到结论.【解答】解:∵△ABD≌△CDB,∴AB=CD,选B.6.【答题】若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为()A. 8B. 7C. 6D. 5【答案】C【分析】根据△MNP≌△MNQ可得MP=MQ,已知PM=6,即可得解.【解答】解:∵△MNP≌△MNQ,∴MP=MQ,已知PM=6,∴MQ=6.选C.7.【答题】如图,△ABC≌△ADE,点D落在BC上,且∠B=55°,则∠EDC的度数等于()A. 50°B. 60°C. 70°D. 80°【答案】C【分析】根据全等三角形的性质:对应角和对应边相等解答即可.【解答】解:∵△ABC≌△ADE,∴∠B=∠ADE=55°,AB=AD,∴∠ADB=∠B=55°,∴∠EDC=70°.选C.8.【答题】如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A. △ABD和△CDB的面积相等B. △ABD和△CDB的周长相等C. ∠A+∠ABD=∠C+∠CBDD. AD∥BC,且AD=BC【答案】C【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;选C.9.【答题】已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°【答案】D【分析】要根据已知的对应边去找对应角,并运用"全等三角形对应角相等"即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°选D.10.【答题】如图△ABC≌△AEF,点F在BC上,下列结论:①AC=AF②∠FAB=∠EAB③∠FAC=∠BAE④若∠C=50°,则∠BFE=80°其中错误结论有()A. 1个B. 2个C. 3个D. 4个【答案】A【分析】根据全等三角形对应边相等,对应角相等可得AF=AC,∠BAC=∠EAF,∠C=∠AFE,进而可得答案.【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确,∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC﹣∠BAF=∠EAF﹣∠BAF,∴∠FAC=∠BAE,故②错误,③正确,∵AC=AF,∴∠C=∠AFC=50°,∵△ABC≌△AEF,∴∠AFE=∠C=50°,∴∠EFB=180°﹣50°﹣50°=80°,错误结论有1个,选A.11.【答题】如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A. AB=ACB. ∠BAE=∠CADC. BE=DCD. AD=DE【答案】D【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,∴D错误.选D.12.【答题】如图,△ABC≌△DEC,∠ACB=90°,∠DCB=20°,则∠BCE的度数为()A. 20°B. 40°C. 70°D. 90°【答案】C【分析】根据全等三角形对应角相等可得∠DCE=∠ACB,然后根据∠BCE=∠DCE ﹣∠DCB代入数据计算即可得解.【解答】解:∵△ABC≌△DEC,∴∠DCE=∠ACB,∴∠BCE=∠DCE﹣∠DCB=90°﹣20°=70°.选C.13.【答题】如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A. 1cmB. 2cmC. 3cmD. 4cm【答案】C【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可;【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,选C.14.【答题】已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°【答案】D【分析】要根据已知的对应边去找对应角,并运用"全等三角形对应角相等"即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°选D.15.【答题】如图,已知△ABO≌△CDO,则下列结论不正确的是()A. AB=ODB. ∠A=∠CC. AD=BCD. ∠AOB=∠COD 【答案】A【分析】由全等三角形的性质解答即可.【解答】解:∵△ABO≌△CDO,∴AO=OC,AB=CD,OB=OD,∠A=∠C,∠B=∠D,∠AOB=∠COD,选A.16.【答题】有下列说法:①两个三角形全等,它们的形状一定相同;②两个三角形形状相同,它们一定是全等三角形;③两个三角形全等,它们的面积一定相等;④两个三角形面积相等,它们一定是全等三角形.其中正确的说法是()A. ①②B. ②③C. ①③D. ②④【答案】C【分析】根据全等三角形的定义以及性质一一判断即可.【解答】解:①两个三角形全等,它们的形状一定相同,此说法正确;②两个三角形形状相同,它们不一定是全等三角形,此说法错误;③两个三角形全等,它们的面积一定相等,此说法正确;④两个三角形面积相等,它们不一定是全等三角形,此说法错误;综上,正确说法的是①③,选C.17.【答题】如图,△ABC≌△CDA,其中A与C,B与D是对应顶点,则下列结论中错误的是()A. ∠B=∠DB. AB=CDC. AB=BCD. AD∥BC【答案】C【分析】由全等三角形的对应边相等、对应角相等对以下结论进行判定.【解答】解:由△ABC≌△CDA,其中A与C,B与D是对应顶点得到:A、B与D是对应顶点,则∠B=∠D,故本选项不符合题意;B、AB与CD是对应边,则AB=CD,故本选项不符合题意;C、AB与CD是对应边,则AB=CD,故本选项符合题意;D、∠BCA=∠DAC,则AD∥BC,故本选项不符合题意;选C.18.【答题】如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E. F,∠B=25°,则∠D等于()A. 80°B. 65°C. 48°D. 28°【答案】B【分析】依据直角三角形两锐角互余,即可得到∠A的度数,再根据全等三角形的对应角相等,即可得到结论.【解答】解:∵AE⊥BC,∠B=25°,∴Rt△ABE中,∠A=65°,又∵△AEB≌△DFC,∴∠D=∠A=65°,选B.19.【答题】如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,点E在线段AB上,若∠AED+∠BCE=52°,则∠ACD的大小为()A. 25°B. 26°C. 27°D. 28°【答案】B【分析】由全等可得∠B=∠DEC,∠DCE=∠ACB,且∠AEC=∠B+∠BCE=∠AED+∠DEC,可得∠AED=∠BCE=26°,即可求∠ACD的度数【解答】解∵△ABC≌△DEC∴∠B=∠DEC,∠DCE=∠ACB∵∠AEC=∠B+∠BCE=∠AED+∠DEC∴∠AED=∠BCE.且∠AED+∠BCE=52°∴∠BCE=∠AED=26°∵∠DCE=∠ACB∴∠DCA=∠BCE=26°选B.20.【答题】如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A. 1cmB. 2cmC. 3cmD. 4cm【答案】D【分析】根据全等三角形的性质可知BC=BD=7cm,BE=AB=3cm,再利用线段的和差关系计算CE即可.【解答】解:∵△ABC≌△EBD,∴BE=AB,BC=BD,∵AB=3cm,BD=7cm,∴BE=3cm,BC=7cm,∴CE=7cm-3cm=4cm,故答案为:D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.如图,D是BC上一点,AB=AD,BC=DE,AC=AE,试说明:∠BAD=∠CAE.
2.(2017·苏州中考变式)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,
AE和BD相交于点O.试说明:△AEC≌△BED.
3.(2017·黄冈)如图,∠BAC=∠DAM,AB=AN,AD=AM,试说明:∠B=∠ANM.
4.(2017·武汉)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD 与AB之间的关系,并说明理由.
5.已知△ABN和△ACM的位置如图所示,AB=AC,AD=AE,∠1=∠2.
试说明:
(1)BD=CE.
(2)∠M=∠N.
6.如图,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD于点E,AD=2.4cm,DE=1.7cm,求BE的长度。
7.(济南历城区二模)如图,AB=CB,BE=BF,∠1=∠2.试说明:△ABE≌△CBF.
8.如图,C为线段AB上一点,AD∥EB,AC=BE,AD=BC.试说明:△ACD≌△BEC.\
9.(泰安岱岳区期末)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.试说明:△ABC≌△DEC.
10.(淄博新元中学月考)如图,BE⊥AE,CF⊥AE,垂足分别是E,F,又知D是EF的中点,△BED与△CFD全等吗?为什么?
11.(济宁微山县校级月考)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.试说明:
(1)△ACD≌△BEC.
(2)CF⊥DE.
12.(济宁十三中月考)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点
E在BC边上,且BE=BD,连接AE,DE,DC.
(1)试说明:△ABE≌△CBD.
(2)若∠CAE=30°,求∠BDC的度数。
13.(广饶县期末)如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边的中线,过点C作CF⊥AE,垂足为点F,过点B作BDLBC交CF的延长线于点D.
(1)试说明:CD=AE.
(2)若AC=10cm,求BD的长.
14.(济宁充州区校级期中)如图:
(1)在△ABC中,BC边上的高是。
(2)在△AEC中,AE边上的高是。
(3)在△FEC中,EC边上的高是。
(4)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长度.
15.(济宁微山县校级一模)已知:如图,线段a和∠α,.求作:△ABC,使AB=AC=a,∠A=∠α.
16.已知:如图,∠α,∠β和线段a,用直尺和圆规作△ABC,使∠A=∠α,∠B=∠β,BC=a.
17.(微山县期未变式)如图,两棵大树间相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,求小华行走的时间。
17.如图,已知∠CAB=∠DAB,∠CAB=∠DBA,点P在AB上,试说明:PC=PD.
18.如图在Rt△ABC中,∠C=90°,E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F。
若AC=6,BC=5,则四边形FBCD周长的最小值。
19.如图,矩形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为多少秒时,△ABP和△DCE全等。
20.如图,已知BD是△ABC的中线,CF是△BCD的中线,AE∥CF交BD的延长线于点E,若△ADE的面积为3,则△ABC的面积是?。