数学分析英文版-chapter4

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 d p, q d p, xn d xn , q ,
由三角不等式我们可得
又因为
p, q
均为
x 的极限,由 d p, x 0, d x , q 0, 有
n n n
d p, q 0,
如果一个数列
n
即证
p q.
x 收敛,我们就把它收敛到的这个数叫做这个数列的极限,用
lim x
n
n
=A,
means that for every number >0 there is an integer N such that
xn A <
whenever n ≥N.
This limit process conveys the intuitive idea that x n can be made arbitrarily close to A provided that n is sufficiently large. Then we discuss limits of sequences of points in a metric space and the Cauchy Sequences. 2 CONVERGENT SEQUENCES IN A METRIC SPACE Definition1. A sequence {x n } of points in a metric space(S,d) is said to converge if there is a point p in S with the following property: For every >0 there is an integer N such that d(x n ,p) < whenever n ≥N xn
a Cauchy sequence if it satisfies the following condition (called the Cauchy condition): For every >0 there is an integer N such that d(x n ,x m )<

definition of convergence implies that x n →p if and only if d(x n ,p) →0.
Note:: 1.If {a n } and {b n } are real sequences converging to 0, then { a n + b n } also converges to 0. 2.If 0≤c n ≤a n for all n and if { a n } converges to 0,then { c n } also converges to 0. these elementary properties of sequences in R 1 can be used to simplify some of the proofs concerning limits in a general metric space. Theorem1. point in S. Proof. Assume that x n → p and x n →q. we will prove that p=q. By the triangle inequality we have 0≤d(p,q) ≤d(p, x n )+d(x n ,q). Since d(p, x n )→0 and d(x n ,q) →0 this implies that d(p,q)=0,so p=q. If a sequence {x n } converges, the unique point to which it converges is called the limit of the sequence and is denoted by lim x n or by lim n x n . A sequence {x n } in a metric space (S,d) can converge to at most one
n n n n

0 cn an ,
则数列
c 也收敛于 0.
n
这些欧几里得度量空间里数列的基本特性可以用来简化一些一般空间里的有关 于极限的证明. 定理 1.若数列
p 证明:设 是
x 在度量空间 S , d 中收敛,则它只有一个极限.
n n n
x 的一个极限, q 也是 x 的一个极限.我们证明: p q.
s, d 中的数列 xn为柯西数列,如果它满足
n N, m N
m
0,
存在正整数
N,
使得当
n
时有
x x
.
定理 2.表明任意的收敛数列都是柯西数列,但反之,并不是在所有的度量空间中
1 1 在欧几里得度量空间 T 0,1 来自百度文库 中是柯 的柯西数列都是收敛的.例如, 数列 n
西数列,但是这个数列在这个空间中并不收敛.然而,所有的柯西数列在欧几里 得空间 R
k
中都是收敛的.
CHAPTER4 LIMITS OF SEQUENCE 1 INTRODUCTION
The reader is already familiar with the limit concept as introduced in elementary calculus where, in fact, several kinds of limits are usually presented. For example, the limit of sequence of real numbers {x n }, denoted symbolically by writing
n
若对任给的正数 ,总存在正整数 N ,使得当 n N 时有
d xn , p ,
我们就称 记作
x 为度量空间 S , d 中的一个收敛点列.也叫做 x 收敛于点 p.
n n
x
n
pn , 或者简记为 xn p.
如果不存在这样的点 p, 我们就说
x 是发散的.
姓名:郭庆
学号:20130512013
数列的收敛
1.简介:
关于极限的概念大家应该都不陌生,事实上,在初等微积分中就有很多极限经常 出现 . 例如,实数列
x 的极限用符号表示为:
n
lim xn A,
n
也就是说,设
x 为数列, A 为定数 . 若对任给的正数 ,总存在正整数 N ,使
lim xn
lim 或者 n xn 来表示.
3.柯西数列
如果一个数列
x 收敛于一个极限 p, 这个数列的项最终将会越来越接近 p, 并且
n
之后的项与项之间会十分接近, 以至于充分后面的任何两项之差的绝对值可小于 给定的任意小正数.这一特性在下面的定理中很好的反映出来了. 定理 2.设
n
x 在度量空间 s, d 中收敛,则对任给的 0, 存在正整数 N , 使得当
时有
n N, m N
x x
n
m
.
lim p. 0, N 0, n N , m N 证明:设 n an 由数列极限定义,对任给的 存在 当
时有
x
因而 x x
n
p m

2
,
x
p n

2
,
m
x
m
p
x
n
p

2


2
.
2
柯西数列的定义:我们称度量空间 以下条件(也称柯西条件) : 对任给的
3 CAUCHY SEQUENCES
If a sequence {x } converges to a limit p, its terms must ultimately become close to p n and hence close to each other. This property is stated more formally in the next theorem. Theorem 2. Assume that {x } converges in a metric space (S, d). Then for every n whenever n N and m N.
5
4
inequality gives us d(x n ,x m ) d(x n ,p)+ d(p, x m ) Definition of a Cauchy Sequence.
+ = . 2 2
A sequence {x } in a metric space (S, d) is called n
n
这里需要注意:收敛的规定要求 xn p 当且仅当 d
1
x , p 0.
n
另外还有关于收敛的一些性质需要了解: (1).若实数列
n n
a ,b 均收敛于 0,则数列 a b 也收敛于 0. n (2).设数列 a 收敛于 0,若存在数列 c ,对于所有的正整数 都
whenever n N and m N.
Theorem 2. states that every convergent sequence is a Cauchy sequence. The converse is not true in a general metric space. For example, the sequence {1/ n}is a Cauchy Sequence in the Euclidean subspace T=(0,1] of R 1 ,but sequence dose not converge in T. However, the converse of Theorem 2.is true in every Euclidean space Rk .
We also say that{x n } converges to p and we write x n →p as n →∞, or simply
3
→p. If there is no such p in S, the sequence {x } is said to diverge.
n
NOTE. The
n
得当 n N 时有
x
则称数列
n
n
A ,
n
x 收敛于 A , 定数 A 称为数列 x 的极限 . x ,当 n 无限增大时,x
n n
这个极限过程表达了一个很直观的观点:对于数列

无限地接近某一个常数 A ,这样的数列叫做收敛数列 .
2.度量空间里的收敛数列:
定义 1 设
x 为度量空间 S , d 中的一个点列, p 为空间 S 中的一个点 .
> 0 there is an integer N such that
d(x n ,x m ) <
Proof. Let p=lim x n . Given >0, let N be such that d(x n ,p)< /2 whenever n
N. Then d(x m ,p) < /2 if m N. If both n N and m N the triangle
相关文档
最新文档