核医学仪器

合集下载

核医学仪器实验报告

核医学仪器实验报告

一、实验名称核医学仪器原理与应用实验二、实验日期2023年11月10日三、实验目的1. 了解核医学仪器的基本原理和结构。

2. 掌握核医学仪器的主要应用领域。

3. 学习核医学仪器在临床诊断和治疗中的作用。

4. 培养实验操作技能和数据处理能力。

四、实验原理核医学仪器利用放射性同位素发出的射线(如γ射线、β射线等)对人体进行成像或测量,从而实现对疾病的诊断和治疗。

本实验主要涉及以下原理:1. 闪烁探测原理:利用闪烁晶体将γ射线转换为可见光,再由光电倍增管转换为电信号,最终进行计数和成像。

2. 计数器原理:通过测量放射性同位素发出的射线数量,计算放射性活度。

3. 核医学成像原理:利用γ相机或SPECT等设备,对放射性同位素在体内的分布进行成像。

五、主要仪器与试剂1. 仪器:核医学仪器、闪烁晶体、光电倍增管、计数器、γ相机、SPECT等。

2. 试剂:放射性同位素、闪烁液、NaI(Tl)晶体等。

六、实验步骤1. 准备阶段:- 熟悉实验原理和仪器操作方法。

- 检查仪器设备是否正常。

2. 实验操作:- 将放射性同位素溶液注入闪烁晶体中,观察闪烁现象。

- 将闪烁晶体与光电倍增管连接,进行计数实验,测量放射性活度。

- 利用γ相机或SPECT进行成像实验,观察放射性同位素在体内的分布。

3. 数据处理:- 记录实验数据,包括放射性活度、计数率等。

- 对实验数据进行统计分析,计算相关参数。

4. 实验报告撰写:- 总结实验结果,分析实验现象。

- 讨论实验过程中遇到的问题及解决方法。

- 提出实验改进建议。

七、实验结果1. 观察到闪烁晶体在放射性同位素的作用下产生闪烁现象。

2. 通过计数实验,测得放射性活度为X mCi。

3. 利用γ相机或SPECT进行成像实验,观察到放射性同位素在体内的分布情况。

八、讨论1. 本实验验证了核医学仪器的基本原理,证明了闪烁探测和计数器的有效性。

2. 实验过程中,观察到放射性同位素在体内的分布情况,为进一步的临床诊断和治疗提供了依据。

核医学-第一篇 基础篇 第二章 核医学仪器

核医学-第一篇 基础篇 第二章 核医学仪器

其作用是有效地把光传递给光电倍增管的光阴极,以减少全反射。 其作用是将微弱的光信号转换成可测量的电信号,是一种光电转换器件。 一般紧跟在光电倍增管的输出端,对信号进行跟踪放大。
5. 后续电子学线路 用于对探测器输出电脉冲信号进一步分析处理,包括主放大器、脉冲高度
分析器等单元。
6. 显示记录装置 主要有定标器、计数率仪、显像仪器等。
核医学仪器的分类
根据使用目的不同,核医学仪器可分为显像仪器(包括γ相机、SPECT、PET等)、脏器功 能测量仪器、放射性计数测量仪器,以及放射性药物合成与分装仪器等。
第一节
放射性探测仪器的基本原理
核医学(第9版)
一、放射性探测的基本原理
放射性探测是用探测仪器把射线能量转换成可记录和定量的光能、电能等,通过一定的电 子学线路分析计算,表示为放射性核素的活度、能量、分布的过程,其基本原理是建立在射线 与物质相互作用的基础上。
下面以实验核医学和临床核医学最常用的固体闪烁计数器为例,简要介绍放射性探测仪器 的基本构成和工作原理。
核医学(第9版)
二、放射性探测仪器的基本构成和工作原理
固体闪烁计数器主要由以下部件组成:
1. 晶体 其作用是将射线的辐射能转变为光能,最常用的晶体是碘化钠晶体。
2. 光学耦合剂 3. 光电倍增管 4. 前置放大器
核医学(第9版)
一、γ相机的基本结构
探头
− 准直器(collimator) − 闪烁晶体 − 光电倍增管(PMT)
电子学线路
− 定位电路和能量电路
显示记录装置 显像床
核医学(第9版)
一、γ相机的基本结构
1. 准直器(collimator)
准直器是安置于晶体前方、由铅 或铅钨合金制成的一种特殊装置,有 若干个小孔贯穿其中,称为准直孔。 准直器的作用是只允许与准直孔角度 相同的射线到达晶体并被探测,其他 方向的射线则被吸收或阻挡。

《核医学仪器》课件

《核医学仪器》课件

对高辐射源进行严格管理,防止丢失或被盗。
定期进行辐射监测,确保仪器运行正常,辐射在安全范围内;
核医学仪器应安装在经过专门设计、符合安全标准的机房内;
核医学仪器使用后的处理及环保要求
对泄露的放射性物质应及时清除,防止扩散和污染环境。
对有潜在污染的场所和设备应进行去污处理,并经监测合格后方可重新使用;
核医学仪器的工作原理
01
核辐射衰减与核辐射探测的基本原理
介绍原子核、核素、同位素等基本概念,以及核辐射的衰减规律和探测原理。
02
γ闪烁照相机的工作原理
介绍γ闪烁照相机的结构、工作原理及其在核医学中的应用。
探测效率与能量分辨率
空间分辨率与灵敏度
图像质量与伪影
核医学仪器的主要技术参数及意义
介绍物理因素(如散射、本底、猝发等)、技术因素(如扫描时间、扫描层厚、重建算法等)和临床因素(如患者体位、器官运动等)对核医学仪器性能的影响。
核医学仪器在神经科学研究中的应用
甲状腺疾病诊断
核医学仪器可以利用放射性碘元素检测甲状腺的功能和状态,对甲状腺疾病的诊断具有重要意义。
肾上腺疾病诊断
核医学仪器可以检测肾上腺皮质醇、醛固酮等激素的分泌情况,对肾上腺疾病的诊断具有重要意义。
核医学仪器在内分泌疾病诊断中的应用
THANK YOU.
谢谢您的观看
全身显像仪器
用于全身检查,可发现肿瘤、炎症等异常病变;
pet
用于正电子显像,可得到人体各部位放射性分布情况;
γ相机
用于平面显像,可得到人体各部位放射性分布情况;
spect
用于单光子显像,可得到人体各部位放射性分布情况;
核医学仪器的工作原理及技术参数
03

核医学仪器与辐射测量

核医学仪器与辐射测量
究中广泛应用,促进了核科学的 发展和进步。
前沿技术和发展趋势
1
分子显像
新兴的分子显像技术将进一步推动核医学仪器的发展,提高诊断和治疗的准确性。
2
革新性探测器
新型的革新性探测器将改善核医学仪器的性能和灵敏度,使其更适用于不同的应 用领域。
3
辐射剂量控制
辐射剂量控制技术的改进将有助于降低患者和医护人员的辐射暴露风险,提高安 全性。
PET-CT
结合正电子发射断层扫描和计算机断层扫描,可以获得功能和结构信息的图像。
SPECT
通过检测和记录体内放射性同位素的分布,提供有关脏器和组织功能的图像。
核医学仪器的原理和工作方式
1
放射性同位素
核医学仪器利用放射性同位素的特性来获取有关疾病诊断和治疗的信息。
2
探测器和传感器
核医学仪器使用探测器和传感器来测量和记录放射性同位素的放射性衰变和能量 释放。
核医学仪器与辐射测量
核医学仪器是用于诊断和治疗疾病的设备,常用于放射性同位素的检测和显 像。辐射测量是评估辐射水平的过程,对于保护人类健康至关重要。
核医学仪器的定义
核医学仪器是指用于诊断和治疗核医学领域的设备,如放射性同位素显像仪、PET-CT、SPECT等。
核医学仪器的分类
放射性同位素显像仪
通过检测和记录体内放射性同位素的分布,提供有关病理和生理信息的图像。
辐射测量的方法和技术
被动测量
• 辐射计 • 剂量仪
主动测量
• 核硅片 • 闪烁体探测器
辐射成像
• 数字X射线成像 • CT扫描
核医学仪器与辐射测量的应用领域
临床诊断
核医学仪器用于辅助诊断各种疾 病,如癌症、心血管疾病和神经 系统疾病。

核医学仪器及放射防护

核医学仪器及放射防护
核医学仪器及放射防护
核医学技术以核素为生物标记,通过现代仪器和电子计算机对人体进行影像 诊断。在医学上,它被广泛用于诊断和治疗癌症、心血管疾病等疾病。
放射性原理
核能
核能是一种具有很强的能量释放 和放射性的能源形态,其中最重 要的部分是核裂变和核聚变。
放射性同位素
放射性同位素具有放射性,是一 种放射性核素,能够发射出可测 量的辐射并在物理和生物方面得 到应用。
盖革计数器
一种常用的辐射计量装疗
核医学技术可以准确定位肿瘤 的位置和大小,并指导治疗方 案。
心血管疾病
核医学技术可以帮助人类了解 心血管疾病的发病机制、感染 病变的程度等。
神经疾病
核医学技术可以帮助人类了解 神经疾病的发病机制以及病变 的严重程度。
总结和展望
技术展望
随着人类医疗技术和科学技术的不断发展,将会有越来越多的核医学技术应用于医学领域。
风险展望
核医学技术仍然存在一些辐射安全和环境威胁问题。需要尽力减少风险并做好放射源的管理 和处置。
未来展望
核医学技术日益卓越,未来将给医学健康领域带来新的希望和可能性。
辐射
辐射是指物质能够在空间中以波 动的形式传递能量。它分为电磁 辐射和粒子辐射两种。
核医学仪器分类
1 单光子发射计算机断层扫描(SPECT)
通过一个或多个单光子发射的奇异核素射线 探测器,检测机体内浓聚的放射性药物,产 生三维影像。
2 正电子发射计算机断层扫描(PET)
在人体内注射活性同位素示踪物,并利用PET 成像技术记录核素排放的微小高能粒子,然 后重建产生三维影像。
3 CT
4 MRI
通过使用一台机器通过一系列X光诊断成像来 了解人体内的细节结构,以形成三维影像。

核医学仪器探测的基本原理

核医学仪器探测的基本原理

核医学仪器是用于诊断、治疗和研究核医学领域的设备。

它们基于放射性同位素的放射性衰变和放射性粒子的相互作用,通过测量和检测放射性信号来获取有关组织、器官或生物过程的信息。

以下是几种常见核医学仪器的基本原理:
伽马摄像机(Gamma Camera):伽马摄像机是一种用于核医学显像的仪器。

它利用放射性同位素释放的伽马射线与探测器(如闪烁晶体)发生相互作用。

当伽马射线通过闪烁晶体时,晶体会发出闪烁光,探测器接收并转换为电信号。

通过分析和处理这些电信号,可以重建出图像,显示出放射性同位素在体内的分布情况。

单光子发射计算机断层摄影(SPECT):SPECT是一种核医学显像技术,通过使用一台旋转的伽马摄像机来获取多个角度的图像数据。

通过伽马射线与探测器的相互作用,获得关于放射性同位素在体内分布的信息。

然后,通过计算和重建处理,生成三维的断层图像,用于诊断和研究。

正电子发射计算机断层摄影(PET):PET是一种核医学显像技术,利用正电子放射性同位素与电子相遇时产生的正电子湮灭事件。

正电子与电子相遇后,会发生湮灭,释放出两个伽马射线。

通过在患者体内放置一组环形探测器,可以检测到伽马射线的事件并记录下来。

通过计算和重建处理,生成高分辨率的三维图像,用于诊断和研究。

这些仪器的基本原理是利用放射性同位素的放射性衰变和放射性粒子与物质的相互作用。

通过测量和记录放射性信号,并进行计算和重建处理,可以获得有关组织、器官或生物过程的定量和定位信息,对疾病诊断、治疗和研究提供支持。

核医学仪器基础知识

核医学仪器基础知识

放射性同位素可以用于治疗癌症、甲状腺问题和其他疾病。
放射性剂量计算原理
放射性剂量计算是核医学中的重要步骤,通过精确计算患者接受的辐射剂量, 确保安全和有效的治疗。
闪烁探测器
探测原理
闪烁探测器通过闪烁晶体的特性 来探测和测量放射性同位素发出 的闪烁光信号。
用途
闪烁探测器常用于核医学成像设 备,如伽马相机,能够提供全身 和局部的图像信息。
正电子发射断层扫描仪
正电子发射断层扫描仪(PET)是一种高分辨率的核医学成像技术,利用正电 子湮灭探测器测量正电子与电子湮灭产生的能量和位置信息,可用于诊断和 治疗。
正电子湮灭探测器
用于正电子发射计算机断层扫描仪,能够探测和测量正电子与电子湮灭产生的能量。
单光子发射计算机断层扫描仪
利用放射性同位素发射单个光子,可以对器官和组织进行断层扫描。
射线检测原理
1 放射性同位素发射射
线
2 探测器测量射线
核医学仪器中的探测器可
3 成像和分析
通过对测量数据进行成像
核医学利用放射性同位素
核医学仪器基础知识
核医学是一门应用放射性同位素成像和治疗的技术,涉及各种仪器和设备的 使用。本节将介绍核医学的基本知识,为您提供全面的了解。
核医学简介
核医学是一门集生物学、医学和物理学于一体的学科,通过应用放射性同位素技术来诊断疾病和治疗患者。
核医学仪器种类
闪烁探测器
常用的核医学成像设备,能够探测和测量放射性同位素发出的闪烁光信号。
单光子发射计算机断层扫 描仪
闪烁探测器还可用于单光子发射 计算机断层扫描仪,用于三维断 层成像。
正电子湮灭探测器
探测原理
正电子湮灭探测器能够探测和测量正电子与电子湮 灭产生的能量和位置信息。

核医学仪器探测的基本原理(一)

核医学仪器探测的基本原理(一)

核医学仪器探测的基本原理(一)核医学仪器探测的基本核医学仪器在现代医学诊断与治疗中发挥着重要的作用。

它可以利用不同核素的放射性衰变来实现对人体内部疾病的探测和诊断。

本文将从浅入深,介绍核医学仪器探测的基本原理。

1. 核医学仪器的分类核医学仪器可以按照其测量手段的不同进行分类。

主要分为放射性核素探测器和影像形成器。

1.1 放射性核素探测器放射性核素探测器用于检测和测量放射性核素发出的射线。

常见的放射性核素探测器有闪烁探测器、半导体探测器和气体探测器等。

1.2 影像形成器影像形成器是核医学仪器检测结果的可视化工具。

常见的影像形成器有闪烁摄影机、单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)等。

2. 核医学仪器的工作原理核医学仪器的工作原理基于放射性核素的衰变特性和射线的相互作用规律。

2.1 放射性核素的衰变特性放射性核素具有不稳定的原子核,会自发地发出射线以转变为稳定的核或其他核素。

常见的射线有阿尔法(α)、贝塔(β)和伽马(γ)射线。

2.2 射线与物质的相互作用射线与物质的相互作用决定了仪器如何检测和测量放射性核素发出的射线。

主要的相互作用过程有闪烁、电离和散射等。

2.3 仪器的工作流程核医学仪器的工作流程一般包括以下步骤: - 放射性核素的制备和标记 - 患者的内部摄取或注射放射性核素 - 探测器的检测和测量- 数据的处理和图像的重建3. 核医学仪器的应用核医学仪器在医学领域有着广泛的应用。

3.1 肿瘤检测与诊断通过给患者注射放射性核素,核医学仪器可以检测到肿瘤的存在并进行定位,提供有关肿瘤的生物学特征和活动状态的信息。

3.2 心血管疾病诊断核医学仪器可以通过检测心肌血液灌注、心肌代谢和心功能等指标,帮助诊断心血管疾病,如冠心病、心肌梗死等。

3.3 神经系统疾病诊断核医学仪器可以通过检测脑代谢、脑血流和神经受体等指标,帮助诊断神经系统疾病,如脑肿瘤、帕金森病等。

3.4 其他应用领域核医学仪器还可应用于骨科、内分泌学、肾脏病等领域的诊断和疾病监测。

《核医学仪器》课件

《核医学仪器》课件
放射性粒子植入治疗可用于肿瘤的近距离放射治疗,而放射免疫疗法则利用抗体与 肿瘤抗原的结合,将放射性药物定向作用于肿瘤组织。
这些治疗方法具有创伤小、副作用少等优点,为患者提供了更加安全有效的治疗选 择。
在药物研发中的应用
核医学仪器在药物研发中发挥着关键作用,通过放射性标记技术可以对 药物进行追踪和监测,了解其在体内的分布、代谢和排泄情况。
医学治疗案例
案例二:神经性疼痛治疗
神经性疼痛是一种常见的慢性疼痛,核医学治疗可以提供有效的缓解。医生可以使用放射性药物来破 坏引起疼痛的神经纤维,从而减轻患者的痛苦。核医学仪器在监测治疗效果和调整治疗方案方面具有 重要作用。
药物研发案例
案例一:靶向抗癌药物研发
VS
核医学仪器在靶向抗癌药物的研发过 程中发挥了关键作用。通过放射性标 记技术,研究人员可以追踪药物在体 内的分布和代谢,了解药物与肿瘤的 结合情况,为药物的进一步优化提供 依据。
药物研发案例
案例二:免疫疗法药物研发
免疫疗法是一种新兴的治疗方法,核医学仪器在免疫疗法的药物研发中具有重要 作用。研究人员可以使用核医学仪器来监测免疫细胞在体内的活化和分布,了解 免疫反应的强度和持久性,为药物的研发提供重要的实验依据。
THANKS
感谢观看
02
核医学仪器通过测量放射性物质 的发射、衰变和分布等特性,提 供有关人体生理、病理和药物代 谢等方面的信息。
核医学仪器的发展历程
核医学仪器的发展始于20世纪初, 随着科技的不断进步,核医学仪器经 历了从简单计数器到复杂成像系统的 演变。
近年来,随着计算机技术和数字化技 术的引入,核医学仪器在图像质量、 操作便捷性和智能化等方面取得了显 著进步。
02
核医学仪器的工作原理

核医学常用仪器

核医学常用仪器
为能量转换器,将探测到的射线能量转换成可以记录的电脉冲信号
Basic principle of scintillation detector
闪烁荧光 photoelectric effect 电子数倍增 电子流(电位降) 一个入射光子 产生一个闪烁事件 产生一个脉冲
二、应用
主要应用于血、尿等各类组织样品及体外分析标本的放射性测量
第三节 功能测定仪
功能测定仪由一个或多个探头、电子线路、计算机和记录 显示装置组成。其对射线的探测原理见上述 闪烁探测器。
(一)甲状腺功能测定仪
采用带张角型准直器的 闪烁探头和定标器组合的装置。
a:正常志愿者 b:甲亢 c:甲亢高峰前移 d:甲低
应用
甲状腺摄碘功能测定。
(二)肾图仪
肾图仪由带铅屏蔽壳和准直器的闪烁探头和计数率 仪的微机组成。 将检查时获得肾图曲线相应计数率和参数结果记录 并打印在报告纸上。
图像融合 是指不同图像(SPECT, PET, CT, MRI)之间的空
间配准或结合。利用各种成像方式的特点,为不同的影像提供 互补信息,增加图像质量,以期对临床诊断和治疗的定位、观 察提供有效的方法。
SPECT配置高能准直器
一种单光子探测方式。主要用于心肌锝[99mTc]-MIBI 心肌血流灌注和氟[18F]-FDG心肌代谢断层显像。
• • •
GE HawkEye
多探头接收 电子准直 符合窗时间
二、应用
SPECT功能和半衰期较长的正电子符合探测断层显像
符合线路SPECT AC方法
放射源技术(铯[137Cs]、钡[133Ba]) X-CT 技术 X-CT 技术可进行同机解剖结构与功能代谢图像融合, (fusion imaging)对病灶可做出精确定位诊断。

核医学成像设备

核医学成像设备

SPECT的基本本成像原理
正电子发射型计算机断层显像(Positron Emission Computed Tomography),是核医学领域比较先进的临床检查影像技术。
PET是目前惟一可在活体上显示生物分子代谢、受体及神经介质活动的新型影像技术,现已广泛用于多种疾病的诊断与鉴别诊断、病情判断、疗效评价、脏器功能研究和新药开发等方面。 (1)灵敏度高。 (2)特异性高。 (3)全身显像。 (4)安全性好。
设备的历史和分类
由准直器、闪烁晶体、光电倍增管、前置放大器、定位电路、显示记录装置、机械支架和床组成。
病人体内发出的γ射线
准直器
Na(T1)晶体
光电倍增管
γ射线
闪烁荧光
光电流
前置放大
定位电路
图像处理电路
显示器
照相机
其中将准直器、闪烁晶体、光电倍增管、前置放大器和电子矩阵电路等固定在一个支架上 ,组成探测器(探头)
光电倍增管
光电倍增管由光阴极、倍增极和阳极组成,这些电极被封装在真空的玻璃管中。
01
闪烁光子作用在光阴极上时 由于光电效应可产生出电子
02
电子倍增是通过一系列 倍增极所构成的倍增系统完成
03
从阳极上得到的电子流与 入射到光电倍增管光阴极 上的闪烁光强度成正比
04
单光子发射计算机断层成像术(Single-Photon Emission Computed Tomography,SPECT)
核医学成像的基本部件
准直器
准直器常用钨铅合金制作,包含圆形、方形或者六角形的小孔,覆盖在整个NaI晶体表面。
准直器可以分为低能(小于150KeV)、中能(150-300KeV)和高能(300-600KeV)三种,低能准直器孔径最小,空间分辨率最高;中能次之;高能最差

核医学仪器的原理和应用

核医学仪器的原理和应用

核医学仪器的原理和应用1. 介绍核医学是一门综合运用核物理、放射性同位素和生物学等学科知识的医学专业,广泛应用于医疗诊断、治疗和研究领域。

核医学仪器是核医学中不可缺少的设备,它们利用放射性同位素的特性以及核反应和核衰变等原理,实现对人体内部组织和器官的非侵入性实时观察和诊断。

2. 核医学仪器的分类核医学仪器主要包括放射性同位素制备与加工设备、核素探针和放射性检测设备以及图像处理和分析系统等。

根据具体的功能和应用领域,核医学仪器可以分为以下几类:2.1 放射性同位素制备与加工设备•核医学中常用的放射性同位素包括技术性放射性同位素和医学用放射性同位素。

技术性放射性同位素主要用于核医学研究和生产加工方面,而医学用放射性同位素则用于临床医学的诊断和治疗。

•放射性同位素制备与加工设备主要包括核反应堆、加速器和放射性同位素制备自动化装置。

这些设备的主要作用是产生和加工所需的放射性同位素,以满足医学应用的需求。

2.2 核素探针和放射性检测设备•核素探针是核医学中常用的一种设备,它利用放射性同位素发出的射线来实现对人体内部组织和器官的非侵入性探测和成像。

核素探针主要分为手持式探针和固定式探针两种,可以根据具体的应用需求选择合适的探针。

•放射性检测设备主要包括放射性计数器和放射性成像仪。

放射性计数器用于测量放射性同位素的强度,而放射性成像仪则可以将放射性同位素在人体内部的分布情况以图像的形式展示出来。

2.3 图像处理和分析系统•图像处理和分析系统在核医学中扮演着重要的角色,它可以对核素探针或放射性成像仪获得的图像进行处理和分析,提取有用的信息并帮助医生做出正确的诊断。

图像处理和分析系统主要包括图像重建、滤波和配准等方面的算法和技术。

3. 核医学仪器的应用核医学仪器在医学领域有着广泛的应用,可以用于人体的诊断、治疗和科学研究等方面。

以下是核医学仪器的一些主要应用:3.1 核医学诊断•核医学诊断是核医学的主要应用之一,可以通过核素探针或放射性成像仪获取人体内部的生物代谢信息,对疾病进行诊断。

第三章 核医学常用仪器

第三章 核医学常用仪器

常用核医学仪器
1、γ闪烁探测器 2、γ照相机 3、单光子发射断层扫描仪 4、正电子发射断层扫描仪
5、甲状腺功能测定仪、肾图仪
(上尿路通否?)
Γ闪烁探测器
γ照相机结构----静态动态显像
准值器collimator
NaI(TlI)crystal
探头 光导
photomultiplier tube matrix
(二)后续电子学线路
1.前置放大器 2.主放大器 3.脉冲高度分析器(甄别器) 4.定标器数据处理和定时系统等 5、计算机输出系统
液体闪烁探测器 (liduid scintillation detector)

探测效率(E) 经测量得到的放射源的计数率(cps)与 该放射源在单位时间内的衰变数(dps) 的比值
电脑屏幕
单光子发射断层扫描仪
探头
显示屏

单光子发射断层扫描仪(γ光子)
探头(多个探头多角度采集信号提高 灵敏度、空间分辨率) 机架、计算机 光学照相、检查床 图象重建系统
SPECT与X-CT的比较
仪器种类 射线性质 SPECT(属于发射型CT) γ射线,光子流 X-CT透射 X射线,光子流
入射方式
符合线路
飞行时间测量装置
计算机数据处理
图象显示 断层床
PET显像原理
11C13N15O18F
引入体内
β+
ANIHHILATION
方向相反γ 光子
空间位置信
号能量信号
多角度核素 分布投影
不同角度分组
互成180。探头
计算机重建 多断面影像
功能代谢影像 各种生理参数
分子显像
PET优点(与SPECT相比)

核医学仪器与方法课件

核医学仪器与方法课件
闪烁计数器利用闪烁物质在射线作用下发光的现象,测 量放射性物质的活度和能量。
常用的放射性测量仪器包括闪烁计数器、半导体探测器 等。
半导体探测器利用半导体材料对射线的高灵敏度特性, 测量放射性物质的活度和分布等参数。
03
核医学仪器应用方法
放射性核素显像技术
总结词
利用放射性核素标记的药物作为示踪剂,通过体外成像技术显示组织器官的生理和病理变化。
详细描述
放射性核素显像技术是核医学中应用最早、最广泛的技术之一。它利用放射性核素标记的药物作为示踪剂,通过 体外成像技术显示组织器官的生理和病理变化。该技术可用于诊断肿瘤、心血管疾病、神经系统疾病等多种疾病 。
正电子发射断层显像技术
总结词
利用正电子发射断层扫描技术,对体内正电子示踪剂进行成像,以获取分子和代谢水平的信息。
核医学仪器与超声成像的比较
超声成像利用高频声波显示脏器和组织的结构,而核医学仪器则利用放射性核素发出的 射线进行成像。两者原理和应用场景不同,但都是无创、无痛、无辐射的检查方法。
感谢您的观看
THANKS
如遇到无法解决的问题,应及时联系厂家或专业维修人员进 行维修,避免影响正常工作。同时,应建立完善的维修档案 ,记录故障现象、排除方法和维修结果等,以便日后参考和 总结。
05
核医学仪器发展趋势与展 望
核医学仪器的发展趋势
核医学仪器向高精度、高灵敏度方向发展
01
随着科技的不断进步,核医学仪器在探测器和成像技术方面取
核医学仪器的发展历程
20世纪50年代
核医学仪器开始应用于临床, 最初是用于检测体内放射性物
质的分布情况。
20世纪70年代
随着计算机技术的发展,核医 学仪器开始实现数字化和自动 化,提高了成像质量和效率。

核医学仪器

核医学仪器

第五章 合同法律制度
第二节 合同的订立 一、订立形式
书面 形式
口头 形式
其他 形式
重庆财经职业学院
15
真题示例∙判断题
王某与吴某通过电子邮件签订的化妆品买卖合同属于书面形式 的合同。( √ )
重庆财经职业学院
16
第五章 合同法律制度
第二节 合同的订立 二、合同格式条款 (一)提供格式条款一方的义务——“提请注意”
低能准直器:<150KeV的γ射线,厚度
20mm,孔数为20000~420000孔。
中能准直器:150~400KeV的γ射线,厚度
80mm,孔数8000~10000孔。
高能准直器:>400KeV的γ射线,厚度
100mm,孔数1000~4000孔。
γ射线能量增高,孔间隔增厚,孔数目 减少,探头灵敏度也降低。
密封在具有玻璃窗口和氧化镁反射层的 铝壳内,以防止潮解。有圆形和矩形两 种。晶体薄分辨率好,灵敏度大大降低; 晶体加厚时康普顿散射效应增强,分辨 率差,探测效率增加。
光导:聚乙稀制成。有些γ相机不用。
光电倍增管:闪烁晶体与光电倍增管之间
采用光导,它们之间涂有硅油作为光耦合 剂,以减少光通过两种介面时的损失。光 电倍增管均匀排列在晶体后面,吸收晶体 产生的信号并转变成电压信号输出。其数 量多少与图像定位的准确性有关,数量越 多,图像的空间分辨率越高,定位准确性 越好。光电倍增管要严格选择,使各个管 子的放大性能尽可能一致。
发散孔型准直器:各孔的形状和配置从晶 体面向外看是一扩大的锥形视野,即使 比晶体直径大的被测物也可纳入有效视 野内。扩大视野10~20%,适用于大器 官显像和全身扫描。
聚焦孔型准直器:具有与针孔准直器同样 的作用,灵敏度高。对深部病变有较高 的分辨率。

核医学仪器及放射防护课件

核医学仪器及放射防护课件

SPECT成像具有操作简便、价格相对较 低和能够反映血流灌注和代谢变化的优 点,因此在心血管、脑和骨关节疾病的
诊断中具有广泛应用。
SPECT成像的基本原理是利用单光子发 射示踪剂,在人体内产生γ射线,通过 探测器测量γ射线的能量和方向,重建
出人体内部的图像。
核磁共振成像技术
MRI成像具有高分辨率、无辐射损伤和非侵入性的优 点,因此在神经系统、骨骼肌肉系统和心血管疾病的 诊断中具有广泛应用。
Hale Waihona Puke 监测治疗效果通过核医学仪器监测治疗 效果,医生可以及时调整 治疗方案,提高治疗效果 。
科学研究
核医学仪器在生物学、医 学、药学等领域的研究中 发挥着重要作用,有助于 推动相关学科的发展。
核医学仪器的分类与特点
核磁共振成像仪
利用磁场和射频波激发原子核,通过测量和解析共振信号进行成像。
正电子发射断层扫描仪(PET)
利用正电子标记的示踪剂进行生物体功能成像。
单光子发射断层扫描仪(SPECT)
利用放射性示踪剂和γ相机进行生理功能成像。
X射线机
利用X射线穿透人体组织,检测异常病变。
核医学仪器的发展历程与趋势
发展历程
从最早的X射线机到现代的核磁共振成像仪和PET、SPECT等 高端设备,核医学仪器经历了漫长的发展历程。
有力保障。
核医学仪器在食品安全检测中也 有广泛应用,如放射性同位素标 记的农药残留检测试剂盒等,有 助于保障食品安全和公众健康。
THANKS
感谢观看
核医学仪器及放射 防护课件
contents
目录
• 核医学仪器概述 • 核医学仪器原理与技术 • 放射防护基础知识 • 核医学仪器操作与安全 • 核医学仪器在医疗领域的应用 • 未来核医学仪器的发展趋势与挑战

核医学仪器

核医学仪器

第二章核医学仪器核医学仪器是指在医学中用于探测和记录放射性核素放出射线的种类、能量、活度、随时间变化的规律和空间分布等一大类仪器设备的统称,它是开展核医学工作的必备要素,也是核医学发展的重要标志。

根据使用目的不同,核医学常用仪器可分为脏器显像仪器、功能测定仪器、体外样本测量仪器以及辐射防护仪器等,其中以显像仪器最为复杂,发展最为迅速,在临床核医学中应用也最为广泛。

核医学显像仪器经历了从扫描机到γ照相机、单光子发射型计算机断层仪(singlephotonemissioncomputedtomography,SPECT)、正电子发射型计算机断层仪(positronemissioncomputedtomography,PET)、PET/CT、SPECT/CT及PET/MR的发展历程。

1948年Hofstadter开发了用于γ闪烁测量的碘化钠晶体;1951年美国加州大学Cassen成功研制第一台闪烁扫描机,并获得了第一幅人的甲状腺扫描图,奠定了影像核医学的基础。

1957年HalAnger研制出第一台γ照相机,实现了核医学显像检查的一次成像,也使得核医学静态显像进入动态显像成为可能,是核医学显像技术的一次飞跃性发展。

1975年等成功研制出第一台PET,1976年JohnKeyes 和RonaldJaszezak分别成功研制第一台通用型SPECT和第一台头部专用型SPECT,实现了核素断层显像。

PET由于价格昂贵等原因,直到20世纪90年代才广泛应用于临床。

近十几年来,随着PET/CT的逐渐普及,实现了功能影像与解剖影像的同机融合,使正电子显像技术迅猛发展。

同时,SPECT/CT及PET/MR的临床应用,也极大地推动了核医学显像技术的进展。

第一节核射线探测仪器的基本原理一、核射线探测的基本原理核射线探测仪器主要由射线探测器和电子学线路组成。

射线探测器实质上是一种能量转换装置,可将射线能转换为可以记录的电脉冲信号;电子学线路是记录和分析这些电脉冲信号的电子学仪器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章核医学仪器核医学仪器是指在医学中用于探测和记录放射性核素放出射线的种类、能量、活度、随时间变化的规律和空间分布等一大类仪器设备的统称,它是开展核医学工作的必备要素,也是核医学发展的重要标志。

根据使用目的不同,核医学常用仪器可分为脏器显像仪器、功能测定仪器、体外样本测量仪器以及辐射防护仪器等,其中以显像仪器最为复杂,发展最为迅速,在临床核医学中应用也最为广泛。

核医学显像仪器经历了从扫描机到γ照相机、单光子发射型计算机断层仪(single photon emission computed tomography,SPECT)、正电子发射型计算机断层仪(positron emission computed tomography,PET)、PET/CT、SPECT/CT 及PET/MR的发展历程。

1948年Hofstadter开发了用于γ闪烁测量的碘化钠晶体;1951年美国加州大学Cassen成功研制第一台闪烁扫描机,并获得了第一幅人的甲状腺扫描图,奠定了影像核医学的基础。

1957年Hal Anger研制出第一台γ照相机,实现了核医学显像检查的一次成像,也使得核医学静态显像进入动态显像成为可能,是核医学显像技术的一次飞跃性发展。

1975年M. M. Ter-Pogossian等成功研制出第一台PET,1976年John Keyes和Ronald Jaszezak 分别成功研制第一台通用型SPECT和第一台头部专用型SPECT,实现了核素断层显像。

PET由于价格昂贵等原因,直到20世纪90年代才广泛应用于临床。

近十几年来,随着PET/CT的逐渐普及,实现了功能影像与解剖影像的同机融合,使正电子显像技术迅猛发展。

同时,SPECT/CT及PET/MR的临床应用,也极大地推动了核医学显像技术的进展。

第一节核射线探测仪器的基本原理一、核射线探测的基本原理核射线探测仪器主要由射线探测器和电子学线路组成。

射线探测器实质上是一种能量转换装置,可将射线能转换为可以记录的电脉冲信号;电子学线路是记录和分析这些电脉冲信号的电子学仪器。

射线探测的原理是基于射线与物质的相互作用产生的各种效应,主要有以下三种。

1.电离作用射线能引起物质电离,产生相应的电信号,电信号的强度与射线的种类、能量及射线的量存在一定关系,记录并分析这些电信号即可得知射线的种类及放射性活度。

如,电离室(ionization chamber)、盖革计数器(Geiger-Müller counter)等。

2.荧光现象带电粒子能使闪烁物质发出荧光。

γ光子在闪烁体中通过产生光电子、康普顿电子和电子对激发闪烁物质发出荧光。

荧光光子经过光电倍增管转换为电信号并被放大,由后续的电子学单元分析、记录下来。

如,闪烁计数器等。

3.感光作用射线可使感光材料中的卤化银形成潜影,在进行显影处理时,将潜影中的感光银离子还原为黑色的金属银颗粒,感光材料形成黑色颗粒的数量与射线的量成正比。

根据感光材料产生黑影的灰度及位置判断放射性存在的量及部位。

如,放射自显影等。

二、核射线探测器的种类核射线探测仪器根据探测原理主要分为闪烁型探测器(scintillation detector)、电离型探测器(ionization detector)、半导体探测器和感光材料探测器。

闪烁型探测器主要用于核医学显像仪器、功能测定仪器,体外β、?射线测量仪器等;电离型探测器主要用于测定放射源活度和辐射防护仪器。

(一)闪烁型探测器闪烁型探测器是利用射线使荧光物质分子激发,激发态(excited state)的荧光物质分子回复到基态(ground state)时发射荧光光子的原理设计的探测器。

闪烁型探测器由闪烁体、光导、光电倍增管等组成。

是核医学仪器中应用最广泛的探测器。

1.闪烁体(scintillator)闪烁体吸收射线能量后,闪烁体内的分子或原子被激发,并在回复到基态时发射荧光光子。

闪烁体依据形态又分为固体闪烁探测器和液体闪烁探测器,其中晶体闪烁探测器(crystal scintillation detector)是核医学仪器最常用的固体闪烁探测器。

液体闪烁探测器主要用于低能β射线、低能?射线及契伦科夫效应等测量,称为液体闪烁测量。

晶体闪烁探测器的材料选择,单光子探测多选用碘化钠晶体(NaI),在碘化钠晶体内按0.1% ~ 0.4%分子比加入铊(Tl)可以增加能量转换效率,提高探测效率。

因此,碘化钠晶体通常表示为NaI(Tl)。

碘化钠晶体透明度高、对射线吸收性能好、探测效率高,对核医学单光子显像最常用的核素99m Tc的 射线的探测效率可达到70% ~ 90%。

正电子探测选用锗酸铋(bismuth germanium oxide,BGO)晶体,硅酸镥(lutetium oxyorthosilicate,LSO)晶体及硅酸钇镥(lutetium yttrium orthosilicate,LYSO)晶体等。

2.光导(lightguide)光导主要有硅油和有机玻璃两种,填充于晶体闪烁探测器与光电倍增管之间,减少空气对荧光光子的全反射,提高荧光光子进入光电倍增管的效率。

3.光电倍增管(photomultiplier tube,PMT)是一种能量转换装置,可将微弱的光信号转换成电流脉冲(图2-1)。

闪烁体发射的荧光光子经光学窗进入光电倍增管,在光阴极上打出光电子,离光阴极不远处的第一倍增极上加有200 ~ 400V的正电压,光电子被它吸引和加速,高速光电子撞在倍增极上会产生多个二次电子;二次电子又被加有更高电压(+50 ~ +150V)的第二倍增极吸引和加速,并在它上面撞出更多二次电子,然后第三倍增极使电子进一步倍增。

经过9 ~ 12个倍增极的连续倍增,二次电子簇流最后被阳极收集起来形成电流脉冲,每个倍增极的倍增因子一般为3 ~ 6,总倍增因子可以达到105 ~ 108。

从阳极上得到的电子簇流与进入光电倍增管的闪光强度成正比,因而也与入射闪烁晶体的γ 光子的能量成正比,所以闪烁探测器是一种能量灵敏探测器。

外界磁场能影响在倍增极之间飞行的二次电子的运动轨迹从而使倍增因子发生变化,因此在光电倍增管外面通常包裹着高导磁系数材料制造的磁屏蔽层以降低外界磁场的影响。

图2-1 光电倍Array增管工作原理随着科学技术的飞速发展,光电倍增管也出现了全新设计,通过将低功耗数字电路集成到硅光电倍增管芯片,这种硅光电倍增管可以将探测到的光子直接转换成可通过芯片计数的超高速数字脉冲。

硅光电倍增管可以实现更快、更准确的光子计数,以及更好的时间分辨率,对于改善核医学影像仪器的性能具有重要意义。

(二)电离型探测器电离型探测器是利用射线能使气体分子电离的原理设计的探测器,常采用玻璃、塑料或石墨等材料构成一个充满惰性气体的密闭的圆柱形管,管子的中央有一个金属丝为阳极(anode)与电源的阳极相连,管壁内衬一层薄金属为阴极(cathode)与电源阴极相连。

电离型探测器的工作原理是:射线使气体分子电离,在电场作用下,带正电荷的离子向阴极移动,带负电荷的离子向阳极移动,在电路中就可产生一次电压变化,形成一个电脉冲。

电脉冲的数量及电信号的强弱与射线的数量及能量呈一定关系。

电离型探测器主要有电离室、盖革计数器及正比计数器(proportional counter)等类型。

(三)半导体探测器半导体探测器是20世纪60年代开始发展起来的探测器,主要采用半导体材料,如硅、锗等。

探测原理是晶体内部产生电子和空穴对,产生的电子和空穴对的数量和入射光子的能量成正比。

带负电的电子和带正电的空穴分别向正负电极移动,形成的电脉冲,其强度与入射光子的能量成正比。

目前,国外新研制出半导体探测器为碲锌镉(Cadmium-Zinc-Telluride,CZT)探测器。

CZT探测器探测效率高,与传统的碘化钠闪烁体探测器相比,具有更高的能量分辨率。

在常温下,CZT半导体探测器可以直接将γ射线转化成电信号。

目前,CZT探测器已经用于心脏专用型SPECT、乳腺专用γ照相机、小动物PET、小动物SPECT等核医学仪器。

(四)感光材料探测器利用射线可使感光材料感光的原理探测射线,根据感光材料产生黑影的灰度及位置判断射线的量及部位。

主要用于实验核医学的放射自显影。

三、核探测器的电子学线路核探测器输出的电脉冲必须经过一系列电子学单元线路处理才能被记录和显示。

最基本的电子学线路有放大器、脉冲高度分析器、计数定量、记录、显示及供电线路等。

(一)放大器放大器包括前置放大器(preamplifier)和主放大器(main amplifier)两部分。

由探测器输出的电脉冲信号很弱小,而且形状也多不规整,需要放大整形后才能被有效的记录和显示。

放大器就是对电脉冲进行放大、整形、倒相的电子学线路。

(二)脉冲高度分析器脉冲高度分析器的基本电路是甄别器(discriminator ),其作用是将幅度超过一定阈值的输入脉冲转化为标准的数字脉冲输出,而把幅度小于阈值的脉冲“甄别”掉,这个阈值就称为甄别阈(discriminator threshold ),甄别阈的电位是连续可调的。

仪器的暗电流及本底计数也可产生脉冲信号,但其高度明显低于射线所产的脉冲信号,因此设置适当的阈值可减少本底对测量的影响。

甄别器的测量方式为积分测量。

实践中常将两个或多个甄别器联合使用,其中最简单、最常用的是单道脉冲高度分析器(single channel PHA )(图2-2),它由上、下两路甄别器和一个反符合电路(anti-coincidence circuit )组成。

如果下限甄别器的阈电压为V ,上限甄别器的阈电压为V+?V ,只有当输入脉冲的高度大于V 同时小于V+?V 时,才能触发反符合线路而输出,不符合这一条件者,就不能触发符合线路而不能输出。

这种测量方式称为微分测量。

如果将下限阈值V 与上限阈值V+?V 之间形成的阈值差?V 看成一个通道,上下两路甄别阈的差值称为道宽(channel width ),也称为能量窗宽。

根据待测放射性核素射线的能量调节脉冲高度分析器的高度和“道宽”或“窗宽”,选择性地记录目标脉冲信号,排除本底及其他干扰,可提高探测效率,脉冲高度分析器也可以用于测量射线的能谱。

图2-2 单道脉冲高度分析器工作原理 核射线探测仪器是由上述核射线探测器和电子学线路组成(图2-3)。

图2-3 放射性测量仪器的组成示意图 第二节 γ照相机γ照相机(γ camera )于1957年由Hal Anger 研制成功,因此也称为Anger 型γ照相机。

γ照相机可以显示放射性药物在机体内的分布及代谢状况,获取放射性药物在特定脏器或组织内的转运和分布信息,以二维图像的方式反映特定脏器或组织功能及代谢变化。

相关文档
最新文档