人教A版必修5 第一章 解三角形 课件1.2 解三角形应用举例(1)

合集下载

人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)

人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)
BC DC = sin ∠BDC sin ∠DBC
求出BC的长;
第三步:在△ABC中,由余弦定理 第三步:
AB 2 = CA2 + CB 2 − 2CA CB cos C 求得AB的长。
形成结论
在测量上, 在测量上,根据测量需要适当确 定的线段叫做基线 如例1中的AC 基线, AC, 定的线段叫做基线,如例1中的AC, 中的CD.基线的选取不唯一, CD.基线的选取不唯一 例2中的CD.基线的选取不唯一, 一般基线越长 基线越长, 一般基线越长,测量的精确度越 高.
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
测量问题: 测量问题: 1、水平距离的测量 ①两点间不能到达, 又不能相互看到。 需要测量CB、CA的长和角C的大小,由余弦定理,
AB 2 = CA2 + CB 2 − 2CA CB cos C 可求得AB的长。
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦定理计 中 算出AB两点间的距离 算出 两点间的距离
A = A 2 + B 2 −2A ×B cosα B C C C C
例题2:要测量河对岸两地A、B之间的距离,在岸边 例题2:要测量河对岸两地A 之间的距离, 2:要测量河对岸两地 米的C 两地,并测得∠ADC=30° 选取相距 100 3 米的C、D两地,并测得∠ADC=30°、 ADB=45° ACB=75° BCD=45° ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 四点在同一平面上, 两地的距离。 D四点在同一平面上,求A、B两地的距离。 解:在△ACD中, ACD中 DAC=180 180° ACD+∠ADC) ∠DAC=180°-(∠ACD+∠ADC) 180° 75° 45° 30°)=30 30° =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3 在△BCD中, BCD中 CBD=180°-(∠BCD+∠BDC) ∠CBD=180°-(∠BCD+∠BDC) =180°-(45 +45°+30° =60° 45° =180°-(45°+45°+30°)=60°

2021_2022学年高中数学第1章解三角形1.2第2课时角度问题课件新人教A版必修5

2021_2022学年高中数学第1章解三角形1.2第2课时角度问题课件新人教A版必修5

灯塔 A 在观察站 C 的北偏东 40°,灯塔 B 在观察站 C 的南偏东 60°,
则灯塔 A 在灯塔 B 的( )
A.北偏东 5°
B.北偏西 10°
C.南偏东 5°
D.南偏西 10°
B [由题意可知∠ACB=180°-40°-60°=80°.∵AC=BC, ∴∠CAB=∠CBA=50°,从而可知灯塔 A 在灯塔 B 的北偏西 10°.]
A [结合题图可知∠DAC=β-α.
在△ACD中,由正弦定理得
sin D∠CDAC=sAinCα,
∴AC=sina
∠sinDαAC=sin
a sin α (β-α).
在Rt△ABC中,
AB=AC
sin
β=sian
sin αsin β (β-α).]
您好,谢谢观看!
Thank you for watching !
思路探究:①你能根据题意画出示意图吗? ②在△ABC 中,能求出 BC 与∠ABC 吗? ③在△BCD 中,如何求出∠BCD?
[解] 设缉私船用 t 小时在 D 处追上走私船,画出示意图,则有 CD=10 3t,BD=10t,
在△ABC 中,∵AB= 3-1,AC=2,∠BAC=120°, ∴由余弦定理,得 BC2=AB2+AC2-2AB·AC·cos∠BAC=( 3-1)2+22-2×( 3- 1)×2×cos 120°=6,
即缉私船沿北偏东 60°方向能最快追上走私船.
1.测量角度问题的关键是在弄清题意的基础上,画出表示实际 问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦 定理解三角形,最后将解得的结果转化为实际问题的解.
2.在解三角形问题中,求某些角的度数时,最好用余弦定理求 角.因为余弦函数在(0,π)上是单调递减的,而正弦函数在(0,π)上不 是单调函数,一个正弦值可以对应两个角.但角在0,π2上时,用正、 余弦定理皆可.

高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3

人教新课标A版必修5第一章解三角形1.2第2课时 三角形中的几何计算课件

人教新课标A版必修5第一章解三角形1.2第2课时 三角形中的几何计算课件


3sinA+π6≤

30<A<
3
.
当A=π3时,即△ABC为等边三角形时取等号,
所以sin A+sin B的最大值为 3.
题点四:多边形面积问题 4.已知圆内接四边形ABCD的边长AB=2,BC=6,CD=DA
=4,求四边形ABCD的面积S. 解:如图,连接BD,则S=S△ABD+S△CBD =12AB·ADsin A+12BC·CDsin C. ∵A+C=180°,∴sin A=sin C, ∴S=12sin A(AB·AD+BC·CD)=16sin A. 在△ABD中,由余弦定理得
(2)求sin A+sin B的最大值. 解:(1)由题意可知
1 2absin
C=
43×2abcos
C.
所以tan C= 3.
因为0<C<π,所以C=π3.
(2)由(1)知sin A+sin B=sin A+sinπ-A-π3
=sin A+sin23π-A
=sin
A+
ห้องสมุดไป่ตู้
3 2 cos
A+12sin
A
(√ )
(2)三角形中已知三边无法求其面积
(×)
(3)在三角形中已知两边和一角就能求三角形的面积 ( √ ) 解析:(1)正确,S=12absin C适合求任意三角形的面积.
(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正
弦值,进而求面积.
(3)正确.已知两边和两边的夹角可直接求得面积,已知两边
=a2-c2 b2
=左边,
所以a2-c2 b2=sinsiAn-CB.
与三角形有关的综合问题 题点一:与三角形面积有关的综合问题 1.在△ABC 中,角 A,B,C 的对边分别为 a,b,c.

人教a版必修五课件:解三角形-应用举例:三角形中的几何计算(54页)

人教a版必修五课件:解三角形-应用举例:三角形中的几何计算(54页)

人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
课 堂 互 动 探 究
例 练 结 合 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·素 能 提 升
人教A版· 数学· 必修5
π 又0<A<π,故A= . 3
人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
1 (2)△ABC的面积S=2bcsinA= 3,故bc=4. 而a2=b2+c2-2bccos A,故b2+c2=8. 解得b=c=2.
人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
进入导航
第一章 1.2 第3课时
系列丛书
典例导悟
类型一 [例1] 三角形中的面积计算 (2012· 全国新课标卷)已知a,b,c分别为△
ABC三个内角A,B,C的对边,acos C+ 3 asin C-b-c =0. (1)求A; (2)若a=2,△ABC的面积为 3,求b,c.
人教A版· 数学· 必修5
1 1 1 (4)S=2absinC=2acsinB=_________. 2bcsinA
人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
2.三角形中的计算、证明问题除正弦定理、余弦定理 外,常见的公式还有: (1)P=a+b+c(P为三角形的周长); (2)A+B+C=π; 1 (3)S= aha(ha表示a边上的高); 2 1 1 1 (4)S= absinC= acsinB= bcsinA; 2 2 2

应用举例_PPT课件

应用举例_PPT课件

小组评价:
天塔总高度415.2米
课堂反馈:
1.在地面上一点D测得一电视塔尖的仰角为45°,再 向塔底方向前进100m,又测得塔尖的仰角为60°, 则此电视塔高约为( A )m.
A.237 B.227
C.247
D.257
2. 在一栋20米高的楼顶测得对面一塔顶的仰角为
60°,塔底的俯角为45°,则塔的高度为(
小组测量任务展示
第一小组
数学建模
A
图 第形 一 小 组
问题背景中的条件
对应的数 学量
计算方 法
结果
∠AEB
∠AMB
EM
解斜三角形△AEM 和直角三角形
B E点处的仰角α
M
E
M点处的仰角β
EM的距离a
第二小组
第二小组
数学建模
图形 问题背景中的条件 对应的数学量 计算方法 结果A NhomakorabeaB
E
M
可以测量:E点处的仰角α,M点处的仰角β,EM的距离为 a,∠EBM=θ
用木棍测量金字塔的高度
泰勒斯(约公元前624年 --- 约公元前546年), 古希腊第一位闻名世界的大数学家.
人教A版必修5第一章解三角形
1.2 应用举例
(测量高度问题)
测量任务
天塔是天津广播电 视塔的简称,总高度 415.2米,为世界第四、 亚洲第二高塔,耸立于 碧波与云霄之间,是世 界上唯一一座“水中之 塔”,其势如剑倚天, 享有“天塔旋云”之美 称。
第三小组
数学建模
A
第三小组
图形
问题背景中的 对应的 计算方 结
条件
数学量 法 果
β
M
α
B E

人教版高中数学必修5第一章解三角形 1.2 应用举例

人教版高中数学必修5第一章解三角形 1.2 应用举例

(3)求解:利用正弦定理或余弦定理有序地解出三角形, 求得数学模型的解.
(4)检验:检验上述所求的解是否符合实际意义,从而得 出实际问题的解.
第2课时 解三角形的实际应用举例 —高度、角度问题
1.能够运用正弦定理、余弦定理等知识和方法解决一些有 关底部不可到达的物体高度测量的问题; 2.能够运用正弦定理、余弦定理等知识和方法解决一些有 关计算角度的实际问题.
1.现实生活中,人们是怎样测量底部不可到达的建筑物高 度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的 海拔高度呢?
2.在实际的航海生活中,人们又会遇到新的问题:在浩瀚 无垠的海面上如何确保轮船不迷失方向,保持一定的航 速和航向呢?
今天我们就来共同探讨这些方面的问题.
探究一、测量底部不可到达的建筑物高度
4.自动卸货汽车的车厢采用液压机构.设计时需要计算油泵 顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B与 车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20′,AC长为1.40m,计算BC的长(精确到0.01m).
(1)什么是最大仰角?
(2)例题中涉及一个怎样的三角形?
答:三角形的面积为 3
3 或 3-
3 .
2
2
1.三角形面积公式:
2.确定三角形的形状 利用正弦定理或余弦定理,“化边为角”或“化角
为边”.
1.利用正弦定理和余弦定理来解题时,要学会审题及根据 题意画方位图,要懂得从所给的背景资料中进行加工、抽 取主要因素,进行适当的简化.
2.实际问题处理 实际问题
实际问题的解
抽象概括 示意图
还原说明
数学模型 推演 理算 数学模型的解
第3课时 三角形中的几何计算

人教a版必修五课件:解三角形-应用举例:高度、角度问题(68页)

人教a版必修五课件:解三角形-应用举例:高度、角度问题(68页)

系列丛书
思考感悟
1.“视角”是“仰角”吗?
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
提示:不是.视角是指观察物体的两端视线张开的角 度.如图所示,视角60° 指的是观察该物体上下两端点时, 视线的张角.
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
2.方位角的范围是(0° ,180° )吗?
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
AB 在Rt△ABE中,tan∠AEB= ,AB为定值,若要使仰 BE 角∠AEB最大,则BE要最小,即BE⊥CD,这时∠AEB= 30° . 在Rt△BED中,∠BDE=180° -135° -30° =15° , ∴BE=BD· sin∠BDE=20 2sin15° =10( 3-1) (m). 在Rt△ABE中,AB=BEtan∠AEB=10( 3 -1)tan30° = 10 3 (3- 3)(m). 10 ∴塔的高度为 3 (3- 3) m.
标方向线为止的水平角 叫方位角. ______________________
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
(3)如图(1)所示,BC代表水平距离,AC代表垂直距 离,AB代表坡面距离.
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
如图(2)所示,把坡面的铅垂高度h和水平宽度l的比叫
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
典例导悟
类型一 [例1] 底部不可到达的高度问题 某人在塔的正东沿着南偏西60° 的方向前进40

人教版A版高中数学必修5:第一章解三角形_应用举例_课件23

人教版A版高中数学必修5:第一章解三角形_应用举例_课件23

一、解三角形应用题常见的几种情况 (1)实际问题经抽象概括后,已知量与未知量全部集中在 一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个 (或两个以上)三角形,这时需作出这些三角形,先解够条件的 三角形,然后逐步求出其他三角形中的解,有时需设出未知量, 从几个三角形中列出方程,解方程得出所要求的解.
解析:
设快艇驶离港口 B 后,最少要经过 xh,在 OA 上的点 D 处与考察船相遇.如图,连接 CD.则快艇沿线段 BC,CD 航行.
在△OBC 中,∠BOC=30°,∠CBO=60°,∴∠BCO=90°. 又 BO=120,∴BC=60,OC=60 3.故快艇从港口 B 到 小岛 C 需要 1h. 在△OCD 中,∠COD=30°,OD=20x,CD=60(x-2). 由余弦定理知,CD2=OD2+OC2-2OD·OCcos∠COD, ∴602(x-2)2=(20x)2+(60 3)2-2·20x·60 3cos30°,解得 x =3 或 x=38. ∵x>1,∴x=3. 故快艇驶离港口 B 后,最少要经过 3h 才能和考察船相遇.
分析:边读题,边画图形,如图,将条件中的角、长度 标上,求轮船离港口 A 还有多远,即求 AD 的长,在△ACD 中,已知一角(A)一边(CD),待求 AD,结合已知条件△BCD 三边长已知,由余弦定理可求三角,考虑沟通已知和未知, 可利用∠ADC 与∠BDC 互补,求∠BDC.
解析:
在△BDC 中,由余弦定理知, cos∠CDB=BD2+2BCDD·C2-D BC2 =-17,
测量距离的问题
[例 1] (2011·东北三校二模)港口 A 北偏东 30°方向的 C 处有一检查站,港口正东方向的 B 处有一轮船,距离检查站 为 31n mile,该轮船从 B 处沿正西方向航行 20n mile 后到达 D 处观测站,已知观测站与检查站距离 21n mile,问此时轮 船离港口 A 还有多远?

人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_29

人教A版高中数学必修5《一章 解三角形  1.2 应用举例  阅读与思考 海伦和秦九韶》示范课教案_29

《海伦——秦九韶公式》教案【教学内容】人教A版普通高中课程标准试验教科书必修5 第一章“阅读与思考”海伦与秦九韶.【教学对象】高一学生.【教材分析】本节内容选自高中数学必修五的第一章,是阅读与思考部分的内容,在《高中数学新课程标准》中并没有做要求,教材中只占用一篇幅叙述了海伦公式与秦九韶公式(“三斜求积”公式)的记载历史,并未给出证明和应用.本节内容之前学生已经学习了解三角形,从而这节课是三角形面积公式的延续与拓展.本节课的主要设计对象为数学学习程度较好的学生——在完成《高中数学新课程标准》中要求的学习之后仍有余力的学生,意在引领学生了解数学文化史,同时启发学生运用所学知识由“三斜求积”公推导海伦公式,并让学生从中体会数学之美.【学情分析】高一学生在进入本节课的学习之前,需要熟悉前面已学过的三角形面积公式,余弦定理的推论,同角三角函数的平方关系以及平方差公式和完全平方公式.【教学目标】∙知识与技能:(1)会推导秦九韶公式与海伦公式,并理解海伦公式的本质;(2)理解秦九韶公式与海伦公式的本质相同.(3)会用海伦公式解决简单的涉及到三角形三边与面积之间关系的问题.∙过程与方法:(1)经历推导秦九韶公式与海伦公式的全过程,培养学生严谨的的数学逻辑思维;(2)提高学生会应用海伦公式解决涉及到三角形三边与面积之间关系问题的能力.∙情感态度与价值观:(1)体会公式书写的简洁美;(2)体会数学以不变应万变的魅力.【教学重点】秦九韶公式与海伦公式的推导及其应用.【教学难点】秦九韶公式与海伦公式的本质.【教学方法】引导探究、实力应用.【教学过程】(一)旧知回顾1.三角形的面积公式:(1)ah S ABC 21=∆(h 为边a 上的高); (2)==∆C ab S ABC sin 21 = . 2.余弦定理的推论:bca cb A 2cos 222-+=;=B cos ;=C cos . 3.同角三角函数的平方关系:+α2sin 1=.[师生活动]通过提问,让学生回答出本节课涉及到的已经学习过的公式.(二)新课引入【引例】问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里。

人教a版必修五课件:解三角形-应用举例:距离问题(59页)

人教a版必修五课件:解三角形-应用举例:距离问题(59页)

人教A版· 数学· 必修5
进入导航
第一章 1.2 第1课时
系列丛书
∵DC=6,∠DBC=15° ,∠BCD=120° , CD· sin120° ∴BD= sin15° =3 6 ( 3 +1),AB=BDcos45° = 3 3( 3+1). ∴步行速度=3 3( 3+1)≈14.2 (m/min).
系列丛书
2.某人在平地上散步,已知正西方向有两根相距为6 m的标杆,当他向正北方向步行1 min后,看到一根标杆在 其西南方向,一根标杆在其南偏西30° 方向,求此人步行的 速度.(结果保留一位小数)
人教A版· 数学· 必修5
进入导航
第一章 1.2 第1课时
系列丛书
提示:如图,依题设条件,△BCD中已具备解三角形 的条件.由∠DBC=45° -30° =15° ,CD=6,∠BCD=90° +30° =120° 可解得BD.从而解出AB,计算出速度.
人教A版· 数学· 必修5
进入导航
第一章 1.2 第1课时
系列丛书
(1)根据题意作出示意图; (2)确定实际问题所涉及的三角形,并搞清该三角形的 已知元素和未知元素; (3)选用正弦定理或余弦定理(有时需正、余弦定理并用) 进行求解,并注意运算的正确性;
人教A版· 数学· 必修5
进入导航
第一章 1.2 第1课时
人教A版· 数学· 必修5
进入导航
第一章 1.2 第1课时
系列丛书
[解]
根据正弦定理得
AB AC = , sin∠ACB sin∠ABC ACsin∠ACB 8sin45° ∴AB= = sin∠ABC sin180° -30° -45° = 4 2 =8( 3-1) (m) 6+ 2 4

高中数学第一章解三角形122高度角度问题课件新人教A版必修5

高中数学第一章解三角形122高度角度问题课件新人教A版必修5

3.如图,位于 A 处的海面观测站获悉,在其正东方向相距
40 海里的 B 处有一艘渔船遇险,并在原地等待营救.在 A 处南
偏西 30°且相距 20 海里的 C 处有一艘救援船,该船接到观测站
通知后立即前往 B 处救助,则 sin∠ACB=
21
7
.
解析:在△ABC 中,AB=40,AC=20,∠BAC=120°.由余
解:如图所示,设预报时台风中心为 B,开始影响基地时台 风中心为 C,基地刚好不受影响时台风中心为 D,则 B,C,D 在一直线上,且 AD=20,AC=20.
由题意 AB=20( 3+1),DC=20 2,BC=( 3+1)×10 2.
在△ADC 中,∵DC2=AD2+AC2,
∴∠DAC=90°,∠ADC=45°.
2.如图,D,C,B 三点在地面同一直线上,DC=100 m, 从 C,D 两点测得 A 点仰角分别是 60°,30°,则 A 点离地面的 高度 AB 等于( A )
A.50 3 m C.50 m
B.100 3 m D.100 m
解析:因为∠DAC=∠ACB-∠D=60°-30°=30°, 所以△ADC 为等腰三角形.所以 AC=DC=100 m, 在 Rt△ABC 中,AB=ACsin60°=50 3 m.
对于顶部不能到达的建筑物高度的测量,我们可以选择另一 建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、 俯角等构成的三角形,在此三角形中利用正弦或余弦定理求解即 可.
[变式训练 2] 如图,线段 AB,CD 分别表示甲、乙两楼, AB⊥BD,CD⊥BD,从甲楼顶部 A 处测得乙楼顶部 C 的仰角 α =30°,测得乙楼底部 D 的俯角 β=60°,已知甲楼高 AB=24 米, 则乙楼高 CD= 32 米.

(新人教A版)高中数学第一章解三角形1.2应用举例第1课时距离问题练习必修5

(新人教A版)高中数学第一章解三角形1.2应用举例第1课时距离问题练习必修5

A 级 基础巩固一、选择题1.已知A 、B 两地的距离为10 km ,B 、C 两地的距离为20 km ,现测得∠ABC =120°,则A 、C 两地的距离为( D )A .10 kmB . 3 kmC .10 5 kmD .107 km[解析] 在△ABC 中,AB =10,BC =20,∠ABC =120°,则由余弦定理,得 AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =100+400-2×10×20cos120° =100+400-2×10×20×(-12)=700,∴AC =107,即A 、C 两地的距离为107 km .2.如图,在河岸AC 测量河的宽度BC ,测量下列四组数据,较适宜的是( D )A .γ,c ,αB .b ,c ,αC .c ,α,βD .b ,α,γ[解析] 本题中a 、c 、β这三个量不易直接测量,故选D .3.一船向正北航行,看见正西方向有相距10 n mlie 的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( C )A .5 n mlieB .5 3 n mlieC .10 n mlieD .10 3 n mlie[解析] 如图,依题意有∠BAC =60°,∠BAD =75°,∴∠CAD =∠CDA =15°,从而CD =CA =10, 在Rt △ABC 中,求得AB =5, ∴这艘船的速度是50.5=10(n mlie/h).4.某观察站C 与两灯塔A 、B 的距离分别为300 m 和500 m ,测得灯塔A 在观察站C 北偏东30°,灯塔B 在观察站C 正西方向,则两灯塔A 、B 间的距离为( C )A .500 mB .600 mC .700 mD .800 m[解析] 根据题意画出图形如图.在△ABC 中,BC =500,AC =300,∠ACB =120°, 由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos120° =3002+5002-2×300×500×(-12)=490 000,∴AB =700(m).5.要直接测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A 、B 两点,观察对岸的点C ,测得∠CAB =45°,∠CBA =75°,且AB =120 m 由此可得河宽为(精确到1m)( C )A .170 mB .98 mC .95 mD .86 m[解析] 在△ABC 中,AB =120,∠CAB =45°,∠CBA =75°,则∠ACB =60°,由正弦定理,得BC =120sin45°sin60°=406.设△ABC 中,AB 边上的高为h ,则h 即为河宽, ∴h =BC ·sin ∠CBA =406×sin75°≈95(m).6.甲船在湖中B 岛的正南A 处,AB =3 km ,甲船以8 km/h 的速度向正北方向航行,同时乙船从B 岛出发,以12 km/h 的速度向北偏东60°方向驶去,则行驶15 min 时,两船的距离是( B )A .7 kmB .13 kmC .19 kmD .10-3 3 km[解析] 由题意知AM =8×1560=2,BN =12×1560=3,MB =AB -AM =3-2=1,所以由余弦定理,得MN 2=MB 2+BN 2-2MB ·BN cos120°=1+9-2×1×3×(-12)=13,所以MN =13 km .二、填空题7.在相距2km 的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C 两点之间的距离是__6__km .[解析] 如图所示,由题意易知C =45°,由正弦定理得AC sin60°=2sin45°,从而AC =222·32=6(km).8.一只蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,则x =__1063__cm .[解析] 如图,由题意知,∠BAC =75°,∠ACB =45°.∠B =60°, 由正弦定理,得x sin ∠ACB =10sin B ,∴x =10sin ∠ACB sin B =10×sin45°sin60°=1063.三、解答题9.如图,我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知CD =6 000 m .∠ACD =45°,∠ADC =75°,目标出现于地面B 处时测得∠BCD =30°,∠BDC =15°.求炮兵阵地到目标的距离.(结果保留根号)[解析] 在△ACD 中,∠CAD =60°, AD =CD ·sin45°sin60°=63CD .在△BCD 中,∠CBD =135°,BD =CD ·sin30°sin135°=22CD ,∠ADB =90°.在Rt △ABD 中,AB =AD 2+BD 2=426CD =1 00042(m).10.一艘船以32.2 n mile/h 的速度向正北航行.在A 处看灯塔S 在船的北偏东20°的方向,30 min 后航行到B 处,在B 处看灯塔在船的北偏东65°的方向,已知距离此灯塔6.5 n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?[解析] 在△ASB 中,∠SBA =115°,∠S =45°.由正弦定理,得SB =AB sin20°sin45°=16.1sin20°sin45°≈7.787(n mile).设点S 到直线AB 的距离为h ,则h =SB sin65°≈7.06(n mile).∵h >6.5 n mile ,∴此船可以继续沿正北方向航行.B 级 素养提升一、选择题1.已知船A 在灯塔C 北偏东85°且到C 的距离为2 km ,船B 在灯塔C 西偏北25°且到C 的距离为 3 km ,则A 、B 两船的距离为( D )A .2 3 kmB .3 2 kmC .15 kmD .13 km[解析] 如图可知∠ACB =85°+(90°-25°)=150°,AC =2,BC =3,∴AB 2=AC 2+BC 2-2AC ·BC ·cos150°=13, ∴AB =13.2.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( A )A .1762 n mile/hB .34 6 n mile/hC .1722n mile/hD .34 2 n mile/h[解析] 如图所示,在△PMN 中,PM sin45°=MNsin120°,∴MN =68×3222=346,∴v =MN 4=1762(n mile/h).3.如图,货轮在海上以40 km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为140°的方向航行.为了确定船的位置,船在B 点观测灯塔A 的方位角为110°,航行12 h 到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是( B )A .10 kmB .10 2 kmC .15 kmD .15 2 km[解析] 在△ABC 中,BC =40×12=20( km),∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,则A =180°-(30°+105°)=45°. 由正弦定理,得AC =BC ·sin ∠ABC sin A =20·sin30°sin45°=102( km).二、填空题4.海上一观测站测得方位角240°的方向上有一艘停止航行待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90 n mile.此时海盗船距观测站107 n mile ,20 min 后测得海盗船距观测站20 n mlie ,再过__403__min ,海盗船到达商船.[解析] 如下图,设开始时观测站、商船、海盗船分别位于A 、B 、C 处,20 min 后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理,得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD =400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中,由已知得∠ABD =30°, ∠BAD =60°-30°=30°, ∴BD =AD =20,2090×60=403(min).5.如图,一艘船上午8∶00在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午8∶30到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距4 2 n mile ,则此船的航行速度是__16__n mile/h .[解析] 在△ABS 中,∠A =30°,∠ABS =105°, ∴∠ASB =45°,∵BS =42,BS sin A =ABsin ∠ASB ,∴AB =BS ·sin ∠ASBsin A =42×2212=8,∵上午8∶00在A 地,8∶30在B 地, ∴航行0.5小时的路程为8 n mile , ∴此船的航速为16 n mile/h . 三、解答题6.如图,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.[解析] 由题意可得DE 2=502+1202=1302, DF 2=1702+302=29 800, EF 2=1202+902=1502, 由余弦定理,得cos ∠DEF =1665.C 级 能力拔高1.为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如图).能够测量的数据有俯角和A 、B 间的距离.请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.[解析] 方案一:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算AM ,由正弦定理,得AM =d sin α2sin α1+α2;第二步:计算AN ,由正弦定理,得AN =d sin β2sin β2-β1;第三步:计算MN ,由余弦定理,得 MN =AM 2+AN 2-2AM ·AN cos α1-β1.方案二:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算BM ,由正弦定理,得BM =d sin α1sin α1+α2;第二步:计算BN ,由正弦定理,得BN =d sin β1sin β2-β1;第三步:计算MN ,由余弦定理,得 MN =BM 2+BN 2+2BM ·BN cos β2+α2.2.已知海岛B 在海岛A 的北偏东45°方向上,A 、B 相距10 n mile ,小船甲从海岛B 以2 n mile/h的速度沿直线向海岛A 移动,同时小船乙从海岛A 出发沿北偏西15°方向也以2 n mile/h 的速度移动.(1)经过1 h 后,甲、乙两小船相距多少海里?(2)在航行过程中,小船甲是否可能处于小船乙的正东方向?若可能,请求出所需时间,若不可能,请说明理由.[解析] 经过1 h 后,甲船到达M 点,乙船到达N 点, AM =10-2=8,AN =2,∠MAN =60°,所以MN 2=AM 2+AN 2-2AM ·AN cos60°=64+4-2×8×2×12=52.所以MN =213.所以经过1 h 后,甲、乙两小船相距213海里.(2)设经过t (0<t <5)h 小船甲处于小船乙的正东方向,则甲船与A 距离为AE =(10-2t )n mile ,乙船与A 距离为AF =2t n mile ,∠EAF =60°,∠EF A =75°,则由正弦定理,得AF sin45°=AE sin75°,即2tsin45°=10-2t sin75°,则t =10sin45°2sin75°+2sin45°=103+3=53-33<5.答:经过53-33小时小船甲处于小船乙的正东方向.。

(人教版)高中数学必修5课件:第1章 解三角形1.1.2

(人教版)高中数学必修5课件:第1章 解三角形1.1.2

高效测评 知能提升
[问题3] 你会利用向量求边AC吗? [提示] 会.|B→A|=3,|B→C|=2,〈B→A,B→C〉=60°. A→C2=(B→C-B→A)2 =B→C2-2B→C·B→A+B→A2 =22-2×2×3×cos 60°+32 =7. ∴|A→C|= 7,即边AC为 7.
数学 必修5
1.利用余弦定理解三角形的步骤: (1) 两边和它们的夹角 余―弦――定→理 另一边 余―正 弦―弦 定――定 理―理 推→论 另两角
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.利用余弦定理解三角形的注意事项: (1)余弦定理的每个等式中包含四个不同的量,它们分别是 三角形的三边和一个角,要充分利用方程思想“知三求一”. (2)已知三边及一角求另两角时,可利用余弦定理的推论也 可利用正弦定理求解.利用余弦定理的推论求解运算较复杂, 但较直接;利用正弦定理求解比较方便,但需注意角的范围, 这时可结合“大边对大角,大角对大边”的法则或图形帮助判 断,尽可能减少出错的机会.
6- 2
2,
故A=60°时,C=75°,c=
6+ 2
2或A=120°时,
C=15°,c=
6- 2
2 .
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
已知两边及一边对角解三角形的方法及注意 事项
(1)解三角形时往往同时用到正弦定理与余弦定理,此时要 根据题目条件优先选择使用哪个定理.
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这 两边与它们的夹角的余弦的积的两倍.

高中数学人教A版必修五教学课件:第一章 《解三角形》 1.1.2 余弦定理

高中数学人教A版必修五教学课件:第一章 《解三角形》 1.1.2 余弦定理

三角形中任何一边的平方等于其他两边的平方的和 减去 这两边与它们的夹角的余弦的积的 二 倍 在△ABC 中,
符号 语言
a2=b2+c2-2bccos A, b2=c2+a2-2accos B,
2 2 c2= a +b -2abcos C .
在△ABC 中, 推论 b2+c2-a2 c2+a2-b2 cos A= ,cos B= , 2bc 2ac
)
a2+c2-b2 1 解析:由题意知,cos B= =cos 120° =- ,∴a2+c2-b2 2ac 2 =-ac,∴a2+c2+ac-b2=-ac+ac=0.
答案:C
1 3.在△ABC 中,设角 A,B,C 的对边分别为 a,b,c,且 cos A= . 4 若 a=4,b+c=6,且 b<c,求 b,c 的值.
[解]
设 BD=x.在△ABD 中, 根据余弦定理, AB2=AD2+BD2-2AD· BDcos
∠BDA, ∴142=102+x2-2×10×xcos 60° ,………………………………3 分 即 x2-10x-96=0, 解得 x1=16,x2=-6(舍去),∴BD=16. ………………………6 分 ∵AD⊥CD,∠BDA=60° ,∴∠CDB=30° . ……………………9 分 在△BCD 中,由正弦定理, BC BD = , sin∠CDB sin ∠BCD
答案:120°
探究三
利用正余弦定理判断三角形的形状
[典例 3] 在△ABC 中,若 B=60° ,2b=a+c,试判断△ABC 的形状.
[解析] ∵B=60° , ∴b2=a2+c2-2accos 60° , 1 ∴ (a+c)2=a2+c2-ac, 4 ∴(a-c)2=0, ∴a=c, ∴a=b=c. 故△ABC 为等边三角形.

人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课件_25

人教A版高中数学必修5《一章 解三角形  1.2 应用举例  阅读与思考 海伦和秦九韶》示范课件_25

c
B

1 a2c2 4

1 4
a
2c
2


a2
c2 b2 2ac
2


1 [a2c2 (a2 c2 b2 )2 ]
4
2
即 S 1 [a2c2 (a2 c2 b2 )2] .
4
2
思考:除了 S 1 acsin B ,我们还学习过哪些三角形面积公式? 2
方法:利用余弦定理求出 cos B ,再根据 S 1 acsin B 进行证明.
2
证明:由余弦定理: cos B a2 c2 b2 2ac
S 1 ac sin B 1 ac
2
2
1 cos2 B 1 ac 2
1

a2
c2 2ac
b2
2

C
b
a
A
秦九韶的“大衍求一术”
比西方 1801 年著名数学家高斯建立的同余理论早 554 年,被西方 称为“中国剩余定理”。
秦九韶的任意次方程的数值解
领先英国人霍纳 572 年。
秦九韶的三斜求积术
秦九韶在 1247 年独立提出了“三斜求积术”, 虽然它与海伦公式形式上有所不同,但它完全与 海伦公式等价,它填补了中国数学史中的一个空 白,从中可以看出中国古代已经具有很高的数学 水平。
2、《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的 一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水 平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜 幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即

高中数学第一章解三角形1.2应用举例第2课时高、角问题课件新人教A版必修5[1]

高中数学第一章解三角形1.2应用举例第2课时高、角问题课件新人教A版必修5[1]
sin∠BDC sin∠CBD
CDsin ∠BDC s·sin β
所以 BC=

.
sin∠CBD sin (α+β)
s·tanθ sin β
在 Rt△ABC 中,AB=BCtan∠ACB=
.
sin (α+β)
第二十七页,共51页。
类型 3 角度问题 [典例 3] 如图所示,在坡度一定的山坡上的一点 A 测得山顶上一建筑物顶端 C 对于山坡的斜度为 15°,向山 顶前进了 100 米后到达 B 点,又从 B 点测得建筑物顶端 C 对于山坡的斜度为 45°,已知建筑物的高度为 50 m,求 此山坡相对于水平面的倾斜角 θ 大小(精确到 1°).
故山的高度为 15(1+ 3)(米).
第二十页,共51页。
类型 2 用正弦定理求空间中高度问题 [典例 2] 如下图所示,一辆汽车在一条水平的公路 上向正东行驶,到 A 处时测得公路南侧远处一山脚 C 在 东偏南 15°的方向上,行驶 5 km 后到达 B 处,测得此山 脚在东偏南 30°的方向上,且山顶 D 的仰角为 8°,求此 山的高度 CD(精确到 1 m,参考数据:tan 8°≈0.140 5).
C.d1>20 m
D.d2<20 m
解析:仰角大说明距离小,仰角小说明距离大,即 d1<d2.
答案:B
第九页,共51页。
4.某校运动会开幕式上举行升旗仪式,旗杆正好处 在坡角为 15°的看台的某一列的正前方,从这一列的第一 排和最后一排测得旗杆顶部的仰角分别为 60°和 30°,第 一排和最后一排的距离为 10 6 米(如图所示),旗杆底部 与第一排在一个水平面上.若国歌长度约为 50 秒钟,则 升旗手匀速升旗的速度为________.

人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_1

人教A版高中数学必修5《一章 解三角形  1.2 应用举例  阅读与思考 海伦和秦九韶》示范课教案_1

我国南宋著名数学家秦九韶也发现了与海伦公式等价的从三角形三边求面积的公式,他把这种方法称为“三斜求积”. 在他的著作《数书九章》里有一个题目:“问有沙田一段,有三斜,其小斜一十二里,中斜一十四里,大斜一十五里. 里法三百步. 欲知为田几何? 答曰:田积三百一十五顷.” 这道题实际上是已知三角形的三边长,求三角形面积. 《数书九章》中的求法是:“以小斜幂并大斜幂减中斜幂 ,余半之,自乘于上. 以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方,得积.” 译成现代式子是])2([41222222b a c a c S -+-= 这个式子称为秦九韶“三斜求积”公式.通过上述证明可以看出:秦九韶公式与海伦公式的本质是一样的! 从中充分说明我国古代已具有很高的数学水平.秦九韶 (约公元 1 2 0 2~ 1 2 61年 ) ,字道古,字道古,祖籍为鲁郡(今山东兖州),与李冶、杨辉、朱世杰并称宋元数学四大家,是我国古代数学家杰出代表之一. 著有《数书九章》,全书为十八卷,共 81题,分九大类. 系统总结和发展了高次方程的数值解法(在必修三《算法初步》中有“秦九韶算法”)和一次同余问题的解法,提出了相当完备的“正负开方术”和“大衍求一术”,对数学发展产生了广泛的影响,奠定了其时人难以望其项背的数学地位.他被外国科学史家赞誉为“他那个民族,那个时代,并且确实也是所有时代最伟大的数学家之一”. 如果将秦九韶和意大利文艺复兴时期的风云人物相比,竟有几分相似:他多才多艺,懂得星占、数学、音乐、建筑,还擅长诗文,会骑术、剑术、踢球等.4. 海伦公式的应用示例海伦公式除了可以解决“已知三角形三边长求面积”的问题外,还有什么应用呢?例1 三边长a ,b ,c 的三角形,满足c>a>b ,2a=b+c ,且它的周长是12,面积是6,试判断这个三角形的形状.分析:由已知得,a=4,b+c=8,p=6,于是。

人教版高中数学必修5第1章《解三角形》PPT课件

人教版高中数学必修5第1章《解三角形》PPT课件

数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
由sina A=sinc C得,
c=assiinnAC=8×sinsin457°5°=8×
2+ 4 2
6 =4(
3+1).
2
∴A=45°,b=4 6,c=4( 3+1).
数学 必修5
第一章 解三角形
自主学习 新知突破
高效测评 知能提升
当B=60°时,C=90°, c= a2+b2=4 3; 当B=120°时,C=30°,c=a=2 3. 所以B=60°,C=90°,c=4 3或 B=120°,C=30°,c=2 3.
8分 10分
12分
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: 正弦定理适用于任意三角形,故①②均不正确; 由正弦定理可知,三角形一旦确定,则各边与其所对角的正弦 的比就确定了,故③正确;由比例性质和正弦定理可推知④正 确.
答案: B
数学 必修5
第一章 解三角形
自主学习 新知突破
合作探究 课堂互动
自主学习 新知突破
合作探究 课堂互(1)已知b=4,c=8,B=30°,求C,A,a; (2)在△ABC中,B=45°,C=75°,b=2,求a,c,A.
解析: (1)由正弦定理得sin C=c·sinb B=8sin430°=1. ∵30°<C<150°,∴C=90°, 从而A=180°-(B+C)=60°, a= c2-b2=4 3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想一想
图中给出了怎样的一个
几何图形?已知什么,
求什么?
分析:如图,因为AB=AA1+A1B,又 已知AA1=1.5m,所以只要求出A1B即可。
解: BC D 中, C 在
1 1 1
B
BD1 60 45 15,

C1 C D1 D
由正弦定理可得: C1D1 BC1 sin B sin D1
练习: 在山顶铁塔上B处测得地面 上一点A的俯角α= 60° ,在塔底 C处测得A处的俯角β=30°。已 知铁塔BC部分的高为28m,求出 山高CD.
B
C

A
分析:根据已知条件,应该设 法计算出AB或AC的长
D
解:在⊿ABC中,∠BCA=90°+β, ∠ABC=90°-α, ∠BAC=α-β, ∠BAD=α.根 据正弦定理,
问题 4: 运用该定理解题还需要那些边和角呢?
解:根据正弦定理,得
AB AC sin ACB sin ABC
AC sin ACB 55 sin ACB AB sin ABC sin ABC 55 sin 75 55 sin 75 65.7(m) sin(180 51 75 ) sin 54
BC AB sin( ) sin(90 )
BC sin(90 ) BC cos 所以,AB sin( ) sin( ) 解Rt ABD , 得
BC cos sin BD AB sin BAD sin( ) 28 cos 30 sin 60 sin( 60 30 ) 42(m)
c2=a2+b2-2abcosC 可以解决的有关解三角形的问题: (1)已知三边;(2)已知两边和他们的夹角。
实例讲解
例 1:如图,设 A、B 两点在河的两岸,要测量两 点之间的距离,测量者在 A 的同侧,在所在的 河岸边选定一点 C,测出 AC 的距离是 55m, ∠BAC=51°,∠ACB=75°.求 A、B 两点的距离 (精确到 0.1m).
B A
C
分析:这是一道关于测量从一个可到达的点到 一个不可到达的点之间的距离的问题,题目条 件告诉了边 AB 的对角,AC 为已知边,再根据 三角形的内角和定理很容易根据两个已知角算 出 AC 的对角,应用正弦定理算出 AB 边。
问题 3: ABC 中, △ 根据已知的边和对应角, 运用哪个定理比较适当?
答:A,B两点间的距离为65.7米。
例2、A、B两点都在河的对岸(不可到达), 设计一种测量两点间的距离的方法。
分析:用例1的方法,可以计算出河的 这一岸的一点C到对岸两点的距离,再 测出∠BCA的大小,借助于余弦定理 可以计算出A、B两点间的距离。
解:测量者可以在河岸边选定两点C、D,测得CD=a,并 且在C、D两点分别测得∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ.在⊿ADC和⊿BDC中,应用正弦定理得

A1
A
C1D1 sin D1 12 sin 120 BC1 18 2 6 6 sin B sin 15
2 A1 B BC1 18 6 3 28.4 2 AB A1B AA 28.4 1.5 29.9(m) 1
答:烟囱的高为 29.9m.
AB AC 2 BC 2 2 AC BC cos
新课讲授
问题 1:什么叫仰角与俯角?
仰角:目标视线在水平线上方的叫仰角; 俯角:目标视线在水平线下方的叫俯角.
例3、如图,要测底部不能到达的烟囱的高
AB,从与烟囱底部在同一水平直线上的C、
D两处,测得烟囱的仰角分别是 45和 60 CD间的距离是12m.已知测角仪器高1.5m,求 烟囱的高。
画图形
数学模型
解 三 角 形
实际问题的解
检验(答)
数学模型的解
课堂小结
解斜三角形应用题的一般步骤: (1)分析:理解题意,分清已知与未知,画出 示意图 (2)建模:根据已知条件与求解目标,把已知 量与求解量尽量集中在有关的三角形中, 建立 一个解斜三角形的数学模型 (3)求解:利用正弦定理或余弦定理有序地解 出三角形,求得数学模型的解 (4)检验:检验上述所求的解是否符合实际意 义,从而得出实际问题的解
1.2 解三角形应用举例 (1)
距离 高度 角度 有关三角形计算
知识点小结
1、正弦定理: a b c
sinA sinB sinC
可以解决的有关解三角形问题: (1)已知两角和任一边; (2)已知两边和其中一边的对角。 a2=b2+c2-2bccosA 2、余弦定理:
b2=a2+c2-2accosB
CD=BD-BC=42-28=14(m) 答:山的高度约为14米。
课堂小结
P19
1.2A
1、 3、 9
1、本节课通过举例说明了解斜三角形实际中的一些应用。 掌握利用正弦定理及余弦定理解任意三角形的方法。 2、在分析问题解决问题的过程中关键要分析题意,分清已知 与所求,根据题意画出示意图,并正确运用正弦定理和余 弦定理解题。 3、在解实际问题的过程中,贯穿了数学建模的思想,其流程 图可表示为: 实际问题
a sin( ) a sin( ) AC sin180 ( ) sin( ) a sin a sin BC sin180 ( ) sin( )
计算出AC和BC后,再在⊿ABC中,应用余弦定理计 算出AB两点间的距离
相关文档
最新文档