第6讲位值原理
小升初奥数位置原理
位置原理教学目标本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。
通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。
并学会在其它进制中位值原理的应用。
从而使一些与数论相关的问题简单化。
教学内容:一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e ×10+f。
同一个数字,由于它在所写的数里的位置不同,所表示的数也不同。
也就是说,每一个,写在个位上,就表示5个一;写在十数字除了本身的值以外,还有一个“位置值”。
例如“5”位上,就表示5个十;写在百位上,就表示5个百;等等。
这种把数字和数位结合起来表示数的原则,称为写数的位值原则。
我们通常使用的是十进制计数法,其特点是“满十进一”。
就是说,每10个某一单位就组成和它相邻的较高的一个单位,即10个一,叫做“十”,10个十叫做“百”,10个百叫做“千”,等等。
写数时,从右端起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,等等(见下图)。
用阿拉伯数字和位值原则,可以表示出一切整数。
例如,926表示9个百,2个十,6个一,即926=9×100+2×10+6。
根据问题的需要,有时我们也用字母代替阿拉伯数字表示数,如:其中a可以是1~9中的数码,但不能是0,b和c是0~9中的数码。
位置原理【例 1】某三位数abc和它的反序数cba的差被99除,商等于______与______的差;1、ab与ba的差被9除,商等于______与______的差;2、ab与ba的和被11除,商等于______与______的和。
小学思维数学讲义:位值原理-带详解
⼩学思维数学讲义:位值原理-带详解位值原理1. 利⽤位值原理的定义进⾏拆分2. 巧⽤⽅程解位值原理的题位值原理当我们把物体同数相联系的过程中,会碰到的数越来越⼤,如果这种联系过程中,只⽤我们的⼿指头,那么到了“⼗”这个数,我们就⽆法数下去了,即使象古代墨西哥尤⾥卡坦的玛雅⼈把脚趾也⽤上,只不过能数⼆⼗。
我们显然知道,数是可以⽆穷⽆尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表⽰它们,如何对它们进⾏运算。
这就涉及到了记数,记数时,同⼀个数字由于所在位置的不同,表⽰的数值也不同。
既是说,⼀个数字除了本⾝的值以外,还有⼀个“位置值”。
例如,⽤符号555表⽰五百五⼗五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。
最右边的五表⽰五个⼀,最左边的五表⽰五个百,中间的五表⽰五个⼗。
但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三⼤法宝给同学们。
希望同学们在做题中认真体会。
1.位值原理的定义:同⼀个数字,由于它在所写的数⾥的位置不同,所表⽰的数值也不同。
也就是说,每⼀个数字除了有⾃⾝的⼀个值外,还有⼀个“位置值”。
例如“2”,写在个位上,就表⽰2个⼀,写在百位上,就表⽰2个百,这种数字和数位结合起来表⽰数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例:abcdef =a ×100000+b ×10000+c ×1000+d ×100+e ×10+f 。
3.解位值⼀共有三⼤法宝:(1)最简单的应⽤解数字谜的⽅法列竖式(2)利⽤⼗进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列⽅程解答模块⼀、简单的位值原理拆分【例 1】⼀个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字的和是。
【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,⼗位数字的10倍加上个位数字的10倍等于100,所以⼗位数字加个位数字等于100÷10=10。
数论专题讲义
数论专题讲义数论专题数论主要分为以下几个模块:1、数的整除问题2、质数合数与分解质因数3、约数与倍数4、余数问题5、奇数与偶数6、位值原理7、完全平方数8、数字谜问题一、分裂问题一.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2.一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3.如果一个整数的奇数位数和偶数位数之和的差可以除以11,那么这个数可以除以114.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,然后这个数字可以除以7、11或13【备注】(以上规律仅在十进制数中成立.)性质1如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果ca,CB,然后是C(a±b)性质2如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果boa,Cob,然后COA用同样的方法,我们还可以得出:属性3如果a可以被B和C的乘积除,那么a也可以被B和C除。
也就是说,如果bcoa,那么么boa,coa.属性4如果数字a可以被数字B或数字C除,并且数字B和数字C是互质的,那么a必须被数字B除1/10除以和C的乘积。
也就是说,如果boa,COA和(B,C)=1,那么bcoa性质5如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m是非零整数);性质6如果数a能整除数b,且数c能被数d整除,那么ac也能整除bd,如果b|a,和D C,然后是BD AC;1、整除判定特征如果六位数的数字是1992□ □ 可以除以105,最后两位数是多少?2、数的整除性质应用如果15abc6可以除以36,商是最小的,那么a、B和C分别是什么?3、整除综合性问题已知:23!?258d20c6738849766ab000。
五年级数学奥数讲义-位值原理与数的进制(学生版)
“位值原理与数的进制”学生姓名授课日期教师姓名授课时长本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。
通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。
并学会在其它进制中位值原理的应用。
从而使一些与数论相关的问题简单化。
一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
二、数的进制我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,=1二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则是“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n0=1。
n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
【试题来源】【题目】某三位数abc和它的反序数cba的差被99除,商等于与的差;ab与ba 的差被9除,商等于与的差;ab与ba的和被11除,商等于与的和。
【试题来源】【题目】如果ab×7= ,那么ab等于多少?【试题来源】【题目】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。
位值原理教案
位值原理教案一、教学目标1、让学生理解位值原理的基本概念和重要性。
2、帮助学生掌握运用位值原理解决数学问题的方法。
3、培养学生的逻辑思维能力和数学运算能力。
二、教学重难点1、重点:位值原理的概念和运用方法。
2、难点:如何引导学生将复杂的数学问题转化为位值原理的应用。
三、教学方法1、讲授法:讲解位值原理的概念和相关知识。
2、练习法:通过练习题让学生巩固所学内容。
3、讨论法:组织学生讨论问题,激发学生的思维。
四、教学过程1、导入通过一个简单的数字谜题引入位值原理的概念,比如:一个两位数,十位数字是 5,个位数字是 3,这个数是多少?让学生思考数字在不同位置上的意义。
2、知识讲解(1)解释位值原理的定义:每个数字在数中的位置不同,所表示的数值也不同。
以三位数为例,如 321,百位上的 3 表示 3 个百,即300;十位上的 2 表示 2 个十,即 20;个位上的 1 表示 1 个一,即 1。
所以 321 就是 300 + 20 + 1 = 321 。
(2)举例说明位值原理的应用,如:一个三位数,它的百位数字比十位数字大 2,十位数字比个位数字大 3,个位数字是 4,这个三位数是多少?3、练习巩固(1)给出一些简单的练习题,让学生根据位值原理写出数字的组成。
例如:47 是由()个十和()个一组成的。
(2)给出一些稍微复杂的题目,让学生运用位值原理解决问题。
比如:一个两位数,个位数字与十位数字之和是 8,个位数字比十位数字大 2,这个两位数是多少?4、小组讨论将学生分成小组,讨论以下问题:(1)在生活中,还有哪些地方用到了位值原理?(2)位值原理对于数学学习有什么重要意义?5、课堂总结(1)回顾位值原理的概念和应用方法。
(2)强调位值原理在数学中的重要性。
6、作业布置(1)完成课本上关于位值原理的练习题。
(2)让学生自己编写一道运用位值原理解决的数学问题,并解答。
五、教学反思在教学过程中,要注重引导学生思考,让他们通过自己的努力理解位值原理。
六年级寒假班上册by王刚
第1讲 几何专题复习1.(割补)如图所示,一个正十二边形的边长是1厘米,空白部分是等边三角形,一共有12个.请算出阴影部分的面积.2.(割补)从一个正方形的木板上锯下宽1m 的一个长方形木条后,剩下的长方形面积为26m ,问锯下的长方形木条面积是多少?3.(割补)如图如果长方形的面积为56平方厘米,且2MD =厘米、3QC =厘米、5CP =厘米、6BN =厘米,那么请你求出四边形MNPQ 的面积是多少厘米?4.(格点)如图,每个小方格的边长都是1,求三角形ABC 的面积.D5. (沙漏模型)如图E 是AG 中点,G 是CD中点,求长方形ABCD 面积。
F6.(燕尾定理)如图,四边形内一点向四个顶点连线,将总面积分成a 、b 、c 、d 四部分,满足 ac=bd 那么这个点一定在四边形对角线上。
7.(差不变原理)如右图,过平行四边形ABCD 内的一点作边的平行线EF 、GH ,若三角形PBD 的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 大多少平方分米?DB8. (勾股定理)明代数学家程大位在《算法统宗》里用旧体诗给出一题:平地秋千未起,踏板一尺离地。
送行二步与人齐,五尺人高曾记。
仕女佳人争蹴,终朝笑语欢喜。
良工高士素好奇,算出索长有几?(注:“步”为古代长度单位,1步=5尺)课后展示1.右图中甲的面积比乙的面积大__________平方厘米.6厘米4厘米8厘米2.P是长方形ABCD内的一点,三角形P AB的面积是5,三角形PBC面积是13,求三角形PBD 面积?3.如图长方形ABCD,EF平行于AD,GH平行于AB。
AB=8cm,BC=6cm。
求阴影面积。
4.如右图,三角形ABC 中,:4:9BD DC =,:4:3CE EA =,求:AF FB .5.如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,:3:1BG GC=,则四边形EFGH 的面积=________.G EDCBA6.如图,将四边形的四条边全部延长两倍得到大四边形,两个四边形面积比是多少?第2讲数论专题复习(1)1.(质数)三个质数的平方和是7950,这三个质数是。
小学奥数知识点拨 精讲试题 位值原理.学生版
【巩固】有三个数字能组成 6 个不同的三位数,这 6 个三位数的和是 2886,求所有这样的 6 个三位数中最小 的三位数的最小值.
【例 24】从 1~9 九个数字中取出三个,用这三个数可组成六个不同的三位数。若这六个三位数之和是 3330, 则这六个三位数中最小的可能是几?最大的可能是几?
5-7-1.位值原理.题库
5-7-1.位值原理.题库
学生版
page 6 of 10
【例 31】记四位数 abcd 为 X ,由它的四个数字 a,b,c,d 组成的最小的四位数记为 X ,如果 X X * 999 ,
那么这样的四位数 X 共有_______个.
【例 32】9000 名同学参加一次数学竞赛,他们的考号分别是 1000,1001,1002,…9999.小明发现他的考号是
【例 34】一个三位数除以 11 所得的商等于这个三位数各位数码之和,求这个三位数是多少?
模块三、巧用方程解位值原理
【例 35】有一个两位数,如果把数码 1 加写在它的前面,那么可以得到一个三位数,如果把 1 写在它的后面, 那么也可以得到一个三位数,而且这两个三位数相差 414,求原来的两位数。
5-7-1.位值原理.题库
【巩固】把 5 写在某个四位数的左端得到一个五位数,把 5 写在这个四位数的右端也得到一个五位数,已知 这两个五位数的差是 22122,求这个四位数。
5-7-1.位值原理.题库
学生版
page 8 of 10
【例 39】 如果把数码 5 加写在某自然数的右端,则该数增加 A1111 ,这里 A 表示一个看不清的数码,求这 个数和 A。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一 个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示 2 个一,写在百位上,就表 示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
【免费】【内部资料】5-7-1数值原理与数的进制-题库教师版
5-7位置原理与数的进制教学目标本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。
通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。
并学会在其它进制中位值原理的应用。
从而使一些与数论相关的问题简单化。
知识点拨一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。
二、数的进制我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n0=1。
n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
进制间的转换:如右图所示。
5-7.位置原理与数的进制.题库教师版page 1 of 95-7.位置原理与数的进制.题库 教师版 page 2 of 9模块一、位置原理 【例 1】 某三位数abc 和它的反序数cba 的差被99除,商等于______与______的差;【解析】 本题属于基础型题型。
全国版五年级数学思维课程(秋季)自我巩固
第一讲质数与合数1.30到80之间的质数有___个.2.一个质数是两位数,它的个位数字与十位数字之差是7,则这个质数是___.3.自然数N是一个两位数,它是一个质数,而且个位数字与十位数字交换之后还是质数、,这样的自然数N有___个.4.自然数N是一个两位质数,个位和十位也是质数,而且个位数字与十位数字交换之后还是质数,这样的自然数N有________个.5.在100以内,第二小的质数和第二大的质数之和是________.6.如果两个不同的质数相加等于12,那么这两个质数的乘积是________.7.如果两个不同的质数相加等于39,那么这两个质数的乘积是________.8.三个互不相同的质数相加,和为30,这三个质数的乘积最大是________.9.两个质数之和是30,那么这两个质数的差最大是________.10.两个不同的质数之和是34、那么这两个质数的差最小是________.第二讲分解质因数1.分解质因数:180=__________.A.2²×3²×5B.23×3×52.分解质因数:1080=_____________.A.24×3×5B.23×33×53.分解质因数:2500=____________.A.2²×54B.2²×3²×54.三个连续自然数的乘积为336,则这三个数的和是___________.5.三个自然数的乘积为3900,其中两个数的和刚好等于第三个数,那么这三个数中最大的是_________.6.三个自然数的乘积为1680,这三个数刚好构成一组等差数列,那么这个等差数列的公差是_________.7.算式1×2×3×…21的计算结果的末尾有个连续的0。
8.算式1×2×3×…×35的计算结果的末尾有个连续的0。
第6讲 实验:验证机械能守恒定律
五、数据处理 1.求瞬时速度
由公式 vn=hn+12-Thn-1可以计算出重物下落 h1、h2、h3、…的高度时对应的 瞬时速度 v1、v2、v3、…。 2.验证守恒 方法一:利用起始点和第 n 点计算,代入 ghn 和12v2n,如果在实验误差允许 的范围内,ghn=12v2n,则验证了机械能守恒定律。 方法二:任取两点 A、B,测出 A、B 两点距离 hAB,算出 ghAB 和12vB2 -12v2A 的值,如果在实验误差允许的范围内,ghAB=12v2B-12v2A,则验证了机械能 守恒定律。
在下列器材中,还必须使用的两种器材是________。
A.交流电源
B.刻度尺
C.天平(含砝码)
(3)实验中,先接通电源,再释放重物,得到如图乙所示的一条纸带。在纸带
上选取三个连续打出的点 A、B、C,测得它们到起始点 O 的距离分别为 hA、
hB、hC。已知当地重力加速度为 g,打点计时器打点的周期为 T。设重物的质
左端固定,右端在 O 点;在 O 点右侧的 B、C 位置各安装一个光电门,计 时器(图中未画出)与两个光电门相连。先用米尺测得 B、C 两点间距离 s, 再用带有遮光条的滑块压缩弹簧到某位置 A,由静止释放,计时器显示遮 光条从 B 到 C 所用的时间为 t,用米尺测量 A、O 之间的距离 x。
(1)计算滑块离开弹簧时速度大小的表达式是 v=________。
(2)为求出弹簧的弹性势能,还需要测量________。(选填字母序号)
A.弹簧原长
B.当地重力加速度
3.第 2 题也可以利用计算法验证机械能守恒。计算法需要知道当地的重力 加速度,通过计算重力势能的减少量与动能的增加量是否相等验证机械 能守恒。
结构力学——第6章结构位移计算讲解
WV dWV FNdu Md FSds
虚功方程为: W WV
W FNdu Md FSds
§6-2 变形体系的虚功原理
虚功原理的应用
虚位移原理: 对于给定的力状态,虚设一个位移状态,利 用虚功方程求解力状态中的未知力。
虚力原理: 对于给定的位移状态,虚设一个力状态,利用 虚功方程求解位移状态中的位移。
例6-7 图a为一组合结构,试求D点的竖向位移△Dy。
解:实际状态FNP、MP如图b所示。 ΔDy
FN FNPl E1 A1
A yC E2 I2
虚拟状态FN、M如图c所示。
(1 2 2)Fa 4Fa3
()
E1 A1
3E2 I 2
§6-6 静定结构温度变化时的位移计算
试求图a所示结构由于温度变
对于静定结构,支座发生移动并不引起内力,材料不发生变形,此 时结构的位移属刚体位移。位移计算一般公式简化为
ΔKc FRc
§6-7 静定结构支座移动时的位移计算
例6-9 图a所示三角刚架右边支座的竖向位移△By=0.06m, 水 平位移为△Bx=0.06m, 已知l=12m,h=8m。试求由此引
第六章 结构位移计算
§6-1 概述 §6-2 变形体系的虚功原理 §6-3 位移计算的一般公式 单位荷载法 §6-4 静定结构在荷载作用下的位移计算 §6-5 图乘法 §6-6 静定结构温度变化时的位移计算 §6-7 静定结构支座移动时的位移计算 §6-8 线弹性结构的互等定理 §6-9 空间刚架的位移计算公式
变形曲线。 解:实际状态弯矩图如图b所示。
虚拟状态弯矩图如图c所示。
ΔAy
A yC 1 (l l ) Fl 1 (l 2l ) Fl EI EI 2 2 2EI 3 4
第6讲位值原理范文
第6讲位值原理范文第6讲:位值原理引言:位值原理是数学中一个极其重要的概念,它是人类数位计算的基础。
在我们的日常生活中,数字是由一组字符(通常是10个字符,0到9)组成的。
这些字符按照特定的位置排列,每个位置对数字的值产生了重要影响。
这就是位值原理的核心概念:一个位置所代表的数值大小取决于它在这个数字中的位置。
1.位值的基本概念:我们以十进制为例来讲解位值原理。
在十进制中,每个位置的位值是指10的幂。
最右边的位置称为个位,它的位值是10^0=1;往左侧依次为十位(10^1=10)、百位(10^2=100)、千位(10^3=1000),以此类推。
每个位置的位值可以通过对10进行幂次运算来计算得到。
2.位值对数字的影响:3.位值和位置的关系:4.位值和数位的关系:一个数字的位数是指其包含的数位的个数。
在十进制中,每个位置上可以是0到9之间的任意一个数位。
因此,一个数字的位数与其表示的最大位值相关。
例如,在十进制中,一个数字的位数为n,那么它的最大位值就是10的(n-1)次幂。
而最右边的位置就是个位,它的位值是10的0次幂,对应的数位可以是0到9之间的任意一个数。
5.位值的应用:位值原理不仅在数学中有重要应用,它还在计算机科学中起到了关键作用。
在计算机中,二进制是一种常见的数制系统。
在二进制中,每个位置的位值是2的幂,默认从右侧开始,最右边的位置的位值是2的0次幂(即值为1),往左侧依次为2的1次幂、2的2次幂、2的3次幂,以此类推。
结论:位值原理是数学中一个基本而重要的概念,它使我们能够对数字中的每个位置的数值做出准确的解释和分析。
无论是在数学中还是计算机科学中,位值原理都扮演着至关重要的角色。
了解位值原理对于我们深入理解数的构成和运算是非常有益的,同时也有助于我们掌握更高级的数学概念和技能。
掌握位值原理是数学学习的一个重要里程碑,同时也是我们日常生活中解决数字问题的关键。
小学奥数教程-位值原理 (92) (含答案)
【例 3】 把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如 89 的逆序数为 98.如果一个两 位数等于其逆序数与 1 的平均数,这个两位数是________.
【考点】简单的位值原理拆分 【难度】2 星 【题型】填空 【关键词】学而思杯,5 年级,第 3 题 【解析】设为 ab ,即10a + b =10b + a + 1 ,整理得19=a 8b + 1 ,=a 3= ,b 7 ,两位数为 37
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一 个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示 2 个一,写在百位上,就表 示 2 个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例: abcdef = a×100000+b×10000+c×1000+d×100+e×10+f。
【例 8】 一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是 7,试求它 们的差。
【关键词】希望杯,4 年级,初赛,7 题,六年级,初赛,第 8 题,5 分
【解析】这个两位数,加上它的个位数字的 9 倍,恰好等于 100,也就是说,十位数字的 10 倍加上个位数字
的 10 倍等于 100,所以十位数字加个位数字等于 100÷10=10。
【答案】10
【例 2】 学而思的李老师比张老师大 18 岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年 龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在 20 岁以上)
位值原理
位置原理数论问题例题讲解数论之位值原理练习11、一个三位数除以11所得的商等于这个三位数各位数码之和,求这个三位数。
2、一个两位数,各位数字的和的5倍比原数大4,求这个两位数。
3、有一类三位数,它的各个数位上的数字之和是12,各个数位上的数字之积是30,所有这样的三位数的和是多少?4、a,b,c分别是0~9中不同的数码,用a,b,c共可组成六个三位数字,如果其中五个数字之和是2234,那么另一个数字是几?5、某校的学生总数是一个三位数,平均每个班35人。
统计员提供的学生总数比实际总人数少270人。
原来,他在记录时粗心地将这个三位数的百位与十位的数字对调了。
这个学校学生最多是多少人?数论之位值原理练习2时间: 2009年09月22日作者:匿名来源:网络1595人正在讨论相关问题1、用1,9,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少?2、从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。
若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?3、a,b,c是1~9中的三个不同数码,用它们组成的六个没有重复数字的三位数之和是(a+b+c)的多少倍?4、某三位数是其各位数字之和的23倍,求这个三位数。
5、把5写在某个四位数的左端得到一个五位数,把5写在这个数的右端也得到一个五位数,已知这两个五位数的差是22122,求这个四位数。
数论之位值原理练习3时间: 2009年09月22日作者:匿名来源:网络1595人正在讨论相关问题1、证明:一个三位数减去它的各个数位的数字之和后,必能被9整除。
2、将四位数的数字顺序重新排列后,可以得到一些新的四位数。
现有一个四位数码互不相同,且没有0的四位数M,它比新数中最大的小3834,比新数中最小的大4338。
求这个四位数。
3、将一个四位数的数字顺序颠倒过来,得到一个新的四位数(这个数也叫原数的反序数),新数比原数大8802。
小学五年级逻辑思维学习—位值原理与数的进制
小学五年级逻辑思维学习—位值原理与数的进制知识定位本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。
通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。
并学会在其它进制中位值原理的应用。
从而使一些与数论相关的问题简单化。
知识梳理一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
二、数的进制我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)=1×25+0×24+0×23+1×22+1×21+0×20。
2二进制的运算法则是“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n0=1。
n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
例题精讲【题目】某三位数abc和它的反序数cba的差被99除,商等于与的差;ab与ba的差被9除,商等于与的差;ab与ba的和被11除,商等于与的和。
【题目】如果ab×7= ,那么ab等于多少?【题目】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。
第6讲位值原理
学校姓名成绩
第6讲位值原理
一、基本概念:
1定义:每一个数字除了有自身的一个值外,还有一个“位置值”
2分拆:abcd =1000a+100b+ 10c+d
二、完全分拆:
1.用字母表示数
2.位值原理展开
3. 解方程
例1、
一个两位数等于它的数字和的6倍,求这个两位数.
练1、
一个两位数等于它的数字和的7倍,这个两位数可能是多少?
例2、
在一个两位数的两个数字中间加一个0,所得的三位数比原数大8倍,求这个两位数.
练2、
在一个两位数的两个数字之间加一个0,所得的三位数是原数的6倍,求这个两位数.
例3、
一个三位数,把它的个位和百位调换位置之后,得到一个新的三位数,这个新三位数和原三位数的差的个位数字是7。
试求两个数的差。
练3、
把一个三位数颠倒顺序后得到一个新数,这个数比原来数大792,那么原来的三位数最大可以是多少?
三、不完全分拆:
1. 用字母表示数月
2. 根据位值原理不完全分拆
3. 解方程
例4、
若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式
学习爱×4=爱学习×3
中,“学习爱’所表示的三位数最小是多少?
练4、
若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式
用微信交作业×2=交作业用微信×5
中,“用微信交作业”所表示的六位数最小是多少?
选做题
在等式“祝福母亲节”=母亲节祝福×五÷月”中,相同的汉字代表相同的数字,不同汉字表示不同数字,其中“五”代表“5”,“月”代表“8”,那么“祝福母亲节”所代表的五位数是多少?。
位值原理与数的进制
5-7位置原理与数的进制教学目标本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。
通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。
并学会在其它进制中位值原理的应用。
从而使一些与数论相关的问题简单化。
知识点拨一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。
二、数的进制我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比方二进制,八进制,十六进制等。
二进制:在电脑中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n0=1。
n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
进制间的转换:如右图所示。
八进制十进制二进制十六进制例题精讲模块一、位置原理【例 1】某三位数abc和它的反序数cba的差被99除,商等于______与______的差;【巩固】ab与ba的差被9除,商等于______与______的差;【巩固】ab与ba的和被11除,商等于______与______的和。
六年级奇偶性位置原理刘军辉
教育学科教师辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:学科教师:授课T (奇数与偶数的基础) C (提升专题)T (位置原理)类型授课日期时段教学内容一、同步知识梳理知识点1:奇数和偶数的定义整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
知识点2:奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数关,能不能把全部房间的灯都关上?为什么?解析:按要求每次拨动4个不同房间的开关,而4是偶数,所以,这样的一次操作,拨动房间开关次数是偶数.那么经过有限次拨动后,拨动各房间开关次数总和是偶数.可是,要使7个房间的灯由开变为关,需要拨动各个房间开关奇数次;第8个房间的开关仍为关,需要这个房间拨动开关偶数次.这样,需要拨动开关的总次数是奇数个奇数与一个偶数的和,是奇数.所以按照要求不能把全部房间的灯关上.检测题2:是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=45327?解析:不存在。
可以分情况来讨论:3奇0偶,2奇1偶,1奇2偶,0奇3偶。
但是比较繁琐,可以根据45327是一个奇数,只有奇数乘以奇数才能得到,所以a-b、b-c、a-c都为奇数,再根据奇偶性进行判断。
检测题3:东东在做算术题时,写出了如下一个等式:1038137564=⨯+,他做得对吗?【解析】等式左边是偶数,1375⨯是奇数,64是偶数,根据奇数+偶数=奇数,等式右边是奇数,偶数不等于奇数,因此东东写出的等式是不对的.一、专题精讲:整数的奇偶性分析法例1:一个图书馆分东西两个阅览室.东阅览室里每张桌子上有2盏灯.西阅览室里每张桌子上有3盏灯.现在知道两个阅览室里的总的桌子数和灯数都是奇数.问:哪个阅览室的桌子数是奇数?页、、、(2)奇数个奇数的和(或差)为奇数;偶数个奇数的和(或差)为偶数,任意多个偶数的 和(或差)总是偶数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校姓名成绩
第6讲位值原理
一、基本概念:
1定义:每一个数字除了有自身的一个值外,还有一个“位置值”
2分拆:abcd =1000a+100b+ 10c+d
二、完全分拆:
1.用字母表示数
2.位值原理展开
3. 解方程
例1、
一个两位数等于它的数字和的6倍,求这个两位数.
练1、
一个两位数等于它的数字和的7倍,这个两位数可能是多少?
例2、
在一个两位数的两个数字中间加一个0,所得的三位数比原数大8倍,求这个两位数.
练2、
在一个两位数的两个数字之间加一个0,所得的三位数是原数的6倍,求这个两位数.
例3、
一个三位数,把它的个位和百位调换位置之后,得到一个新的三位数,这个新三位数和原三位数的差的个位数字是7。
试求两个数的差。
练3、
把一个三位数颠倒顺序后得到一个新数,这个数比原来数大792,那么原来的三位数最大可以是多少?
三、不完全分拆:
1. 用字母表示数月
2. 根据位值原理不完全分拆
3. 解方程
例4、
若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式
学习爱×4=爱学习×3
中,“学习爱’所表示的三位数最小是多少?
练4、
若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式
用微信交作业×2=交作业用微信×5
中,“用微信交作业”所表示的六位数最小是多少?
选做题
在等式“祝福母亲节”=母亲节祝福×五÷月”中,相同的汉字代表相同的数字,不同汉字表示不同数字,其中“五”代表“5”,“月”代表“8”,那么“祝福母亲节”所代表的五位数是多少?。