矩阵按键识别技术
矩阵按键的工作原理
矩阵按键的工作原理
按键是一种常见的输入设备,它们常用于各种电子设备,如手机,游戏机,电脑,控制系统等。
按键可以识别不同的按键组合,从而输入不同的命令。
按键有多种不同的结构,而矩阵按键是其中最常见的一种。
矩阵按键的工作原理是:设备的每个按键都由一组横向和纵向的键组成。
当按下一个按键时,键将发送电流给处理器,处理器解析电流,计算出相应的键值。
当多个按键同时按下时,处理器会计算出组合动作,从而输入相应的指令。
矩阵按键可以比较容易地实现按键组合,同时可以避免按键冲突。
此外,由于矩阵按键的结构比较简单,因此生产成本也比较低。
它们可以用于制作小型的按键,如智能手机的虚拟按键和游戏机的综合按键,也可以用于制作大型的按键,如电脑键盘的按钮和家用电器的控件。
矩阵按键的典型应用是在控制系统中,它们可以明确地控制系统的某些操作,如控制系统的动作,接受用户输入,执行动作等。
由于矩阵按键可以容易地处理复杂的按键组合,因此它们可以在游戏控制台上实现复杂的操作,从而为游戏玩家带来更多乐趣。
矩阵按键是一种非常有用的技术,它比传统的按键有更多的优势。
它可以通过多组按键组合来实现复杂的按键功能,而且可以避免按键冲突。
此外,矩阵按键的生产成本也比较低,比较容易实现。
由此可见,矩阵按键有着广泛的应用前景,可以为各种电子设备增加更多功
能,使用者也可以更好地控制设备,获得更多乐趣。
矩阵键盘工作原理
矩阵键盘工作原理矩阵键盘是一种常见的计算机输入设备,它的工作原理是通过一组排列成矩阵的按键和电路来实现数据输入。
在我们日常使用的电脑键盘中,就采用了矩阵键盘的设计原理。
下面我们来详细了解一下矩阵键盘的工作原理。
首先,矩阵键盘由多个按键组成,这些按键通常被排列成矩阵的形式,每个按键都对应着一个电路。
当用户按下某个按键时,这个按键所在的电路就会被闭合,产生一个电信号。
这个信号会被传输到计算机的主板上,然后由主板进行识别和处理。
其次,矩阵键盘的工作原理是基于键盘扫描的。
在键盘扫描过程中,计算机会通过轮流地对每行和每列的电路进行检测,以确定哪些按键被按下。
具体来说,当用户按下某个按键时,它所在的行和列的电路就会连接起来,计算机就能够通过扫描检测到这个按键的存在。
然后,一旦计算机检测到有按键被按下,它就会根据按键所在的行和列的位置来确定这个按键的具体标识。
这个标识会被转换成相应的ASCII码或者其他编码方式,然后传输到计算机的操作系统中。
操作系统会根据接收到的编码来识别用户按下的是哪个按键,并进行相应的处理,比如在屏幕上显示相应的字符或者执行相应的功能。
最后,需要注意的是,矩阵键盘的工作原理是基于按键的电路连接来实现的。
因此,它对于多个按键同时按下的情况可能会存在一定的限制。
一般来说,矩阵键盘能够支持同时按下一定数量的按键,但是如果同时按下的按键超出了它的限制,就有可能会出现按键冲突的情况,导致计算机无法准确识别用户的输入。
总的来说,矩阵键盘是一种通过按键和电路排列成矩阵来实现数据输入的计算机输入设备。
它的工作原理是基于键盘扫描和按键电路连接来实现的,能够准确地识别用户的按键输入,并将输入的数据传输到计算机进行处理。
然而,需要注意的是,矩阵键盘在处理多个按键同时按下的情况时可能会存在一定的限制,需要用户在使用时注意避免按键冲突的情况发生。
矩阵键盘的工作原理和扫描确认方式
来源:《AVR 单片机嵌入式系统原理与应用实践》M16 华东师范大学电子系 马潮 当键盘中按键数量较多时,为了减少对 I/O 口的占用,通常将按键排列成
矩阵形式,也称为行列键盘,这是一种常见的连接方式。矩阵式键盘接口见图 9-7 所示,它由行线和列线组成,按键位于行、列的交叉点上。当键被按下时,其交 点的行线和列线接通,相应的行线或列线上的电平发生变化,MCU 通过检测行 或列线上的电平变化可以确定哪个按键被按下。
图 9-7 为一个 4 x 3 的行列结构,可以构成 12 个键的键盘。如果使用 4 x 4 的行列结构,就能组成一个 16 键的键盘。很明显,在按键数量多的场合,矩 阵键盘与独立式按键键盘相比可以节省很多的 I/O 口线。
矩阵键盘不仅在连接上比单独式按键复杂,它的按键识别方法也比单独式 按键复杂。在矩阵键盘的软件接口程序中,常使用的按键识别方法有行扫描法和 线反转法。这两种方法的基本思路是采用循环查循的方法,反复查询按键的状态, 因此会大量占用 MCU 的时间,所以较好的方式也是采用状态机的方法来设计, 尽量减少键盘查询过程对 MCU 的占用时间。
key_return = K1_1; break; case 0b00001101: key_return = K1_2; break; case 0b00001011: key_return = K1_3; break; case 0b00010110: key_return = K2_1; break; case 0b00010101: key_return = K2_2; break; case 0b00010011: key_return = K2_3; break; case 0b00100110: key_return = K3_1; break; case 0b00100101: key_return = K3_2; break; case 0b00100011: key_return = K3_3; break;
矩阵键盘的按键识别方法
矩阵键盘的按键识别方法
在学习有关矩阵键盘的时候,往往要学会矩阵键盘的按键识别方法,那么矩阵键盘的按键识别方法有哪些呢?店铺带着你来了解方法一行扫描法
1、判断键盘中有无键按下将全部行线P1.4-P1.7置低电平,当然P1.0-P1.3为高电平(或许芯片内部已经将这些引脚它上拉),然后检测列线的状态。
只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按键之中。
若所有列线均为高电平,则键盘中无键按下。
2、判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。
其方法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。
在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。
若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。
方法二
先从P1口的高四位输出低电平,低四位输出高电平,从P1口的低四位读取键盘状态。
再从P1口的低四位输出低电平,高四位输出高电平,从P1口的高四位读取键盘状态。
将两次读取结果组合起来就可以得到当前按键的特征编码。
矩阵键盘的按键识别方法在学习有关矩阵键盘的时候,往往要学会矩阵键盘的按键识别方法,那么矩阵键盘的按键识别方法有哪些呢?店铺带着你来了解方法一行扫描法 1、判断键盘中有无键按下将全部行线P1.4-P1.7置低电平,当然P1.0-P1.3为高电平(或许芯片内推荐度:点击下载文档文档为doc格式。
实验7 矩阵按键识别技术
实验7 矩阵按键识别技术矩阵按键部份由16个轻触按键按照4行4列排列,连接到JP50端口。
将行线所接的单片机的I/O 口作为输出端,而列线所接的I/O口则作为输入。
这样,当按键没有按下时,所有的输出端都是高电平,代表无键按下。
行线输出是低电平,一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了。
相关原理:程序运行照片:接线方法:1、用一条8PIN数据排线,把矩阵按键部份的JP50,接到CPU部份的P1口JP44.2、接8位数码管的数据线。
将数码管部份的数据口 JP5接到CPU部份的P0口JP51.3、接8位数码管的显示位线。
将数码管部份的显示位口 JP8接到CPU部份的P2口JP52.;本程序实现扫描按键显示功能.;分别按16个键盘显示分别显示数字123A456B789C*0#D;键盘口P1,数码管显示第二位p21, 数码管段位p0口确定矩阵式键盘上何键被按下,介绍一种“行扫描法”。
行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键识别方法.程序流程图:8031单片机的P1口用作键盘I/O口,键盘的列线接到P1口的低4位,键盘的行线接到P1口的高4位。
列线P1.0-P1.3设置为输入线,行线P1.4-P.17设置为输出线。
4根行线和4根列线形成16个相交点。
1、检测当前是否有键被按下。
检测的方法是P1.4-P1.7输出全“0”,读取P1.0-P1.3的状态,若P1.0-P1.3为全“1”,则无键闭合,否则有键闭合。
2、去除键抖动。
当检测到有键按下后,延时一段时间再做下一步的检测判断。
3、若有键被按下,应识别出是哪一个键闭合。
方法是对键盘的行线进行扫描。
P1.4-P1.7按下述4种组合依次输出:在每组行输出时读取P1.0-P1.3,若全为“1”,则表示为“0”这一行没有键闭合,否则有键闭合。
由此得到闭合键的行值和列值,然后可采用计算法或查表法将闭合键的行值和列值转换成所定义的键值。
矩阵键盘的按键识别原理
矩阵键盘的按键识别原理嘿,朋友们!今天咱来唠唠矩阵键盘的按键识别原理。
你看啊,这矩阵键盘就像是一个小小的战场,每个按键都是一名勇敢的战士呢!想象一下,这些按键整齐地排列在那里,等待着我们去“召唤”它们。
那它到底是怎么识别我们按的是哪个键呢?其实啊,就像是一场巧妙的游戏。
矩阵键盘是通过行列交叉的方式来工作的哦!比如说,它有好多行和列,就像一个方格网。
当我们按下一个键时,就相当于在这个方格网上点亮了一个特定的点。
这就好像是在一群人中,你一下子就找到了你要找的那个人一样神奇!每个按键都有它自己独特的位置,通过行和列的组合,矩阵键盘就能准确地知道是哪个键被按下啦。
那它怎么知道这个键被按下了呢?这就得说到它的检测机制啦。
它会不停地去“巡逻”这些行列,一旦发现有某个地方的信号有变化,嘿嘿,那就说明有键被按下去啦!这多有意思呀!而且哦,矩阵键盘还很聪明呢!它不会因为你不小心碰到了别的键就乱了套,它能准确地识别出你真正想要按的那个键。
这就好像一个经验丰富的侦探,能从一堆线索中找到真正的关键信息。
你说这矩阵键盘是不是很厉害?它就静静地待在那里,随时准备为我们服务,只要我们一伸手,它就能快速响应。
想想我们日常生活中的各种电子设备,好多都有矩阵键盘的身影呢!从小小的遥控器到复杂的电脑键盘,它们都在默默地工作着。
我们每天都在和它们打交道,却很少有人真正去了解它们背后的原理。
现在你知道了矩阵键盘的按键识别原理,是不是对这些常见的东西又多了一份好奇和敬意呢?下次再使用有矩阵键盘的设备时,你可以在心里默默感叹一下它的神奇哦!反正我是觉得挺有意思的,它就像是一个隐藏在电子世界里的小秘密,等着我们去发现和探索。
这不就是科技的魅力所在嘛!所以呀,别小看了这些看似普通的东西,它们背后可都有着不简单的原理和故事呢!原创不易,请尊重原创,谢谢!。
按键的识别原理
按键的识别原理按键的识别原理是指当我们按下键盘上的按键时,计算机能够准确地识别出我们所按下的按键,并进行相应的操作。
按键的识别原理可以分为硬件部分和软件部分两个方面。
硬件部分:1. 键盘的工作原理:键盘是由一个个的按键开关组成的。
当按键被按下时,按键开关闭合,导通电路。
按键开关内部有一个弹簧,负责返回按键到原位。
这个闭合和断开的过程会改变键盘电路的导通情况,从而向计算机发送信号。
2. 扫描矩阵:键盘通常采用扫描矩阵的方法来连接按键。
扫描矩阵由行和列组成,它们交叉连接在一起形成一个网格。
每个按键都与一行和一列连接。
当按键被按下时,对应的行和列会发生电连接,通过检测连接的行列可以确定按下的按键。
软件部分:1. 中断机制:计算机通过中断机制来处理按键事件。
当键盘电路检测到按键被按下时,会向计算机发送中断信号,中断控制器会暂停当前的任务,跳转到相应的中断处理程序。
中断处理程序负责读取键盘输入缓冲区中的数据,并根据按键的码值执行相应的操作。
2. 键盘驱动程序:操作系统中的键盘驱动程序负责与硬件部分进行通信,并将按键事件转换成操作系统能够理解的数据。
它会将按键的扫描码转换成相应的字符或功能码,并将其存储在键盘输入缓冲区中,供应用程序或其他系统组件使用。
3. 事件触发机制:一些应用程序可能会使用事件触发机制来处理按键事件。
当键盘驱动程序检测到按键被按下时,会触发相应的按键事件,然后将事件传递给应用程序。
应用程序可以注册对特定按键事件的监听,当监听的按键事件被触发时,应用程序会执行相应的响应操作。
总结:按键的识别原理主要涉及键盘的物理结构和电路连接,中断机制以及键盘驱动程序等软件部分。
通过硬件的扫描矩阵和按键开关的闭合和断开,键盘可以检测到按键的按下和释放事件。
计算机通过中断机制和键盘驱动程序来处理按键事件,并将其转换成操作系统可以理解的数据。
应用程序可以根据按键的事件触发机制来响应按键事件。
这样,我们就能够通过按下键盘上的按键与计算机进行交互。
矩阵按键实训报告
一、实训背景随着电子技术的飞速发展,按键技术在电子设备中的应用越来越广泛。
矩阵按键因其结构紧凑、易于扩展等优点,被广泛应用于各类电子设备中。
为了提高学生对矩阵按键原理和应用的理解,本次实训选取了矩阵按键作为实训内容。
二、实训目的1. 理解矩阵按键的原理和结构;2. 掌握矩阵按键的驱动程序编写;3. 学会使用矩阵按键实现简单功能;4. 提高学生的动手能力和实践能力。
三、实训内容1. 矩阵按键原理与结构矩阵按键是一种利用行列交叉原理来检测按键状态的按键电路。
它由若干行和列组成,通过行列交叉的交叉点连接按键。
当按键被按下时,相应的行和列被连接,从而实现按键的识别。
2. 矩阵按键驱动程序编写以51单片机为例,介绍矩阵按键驱动程序的编写方法。
(1)初始化矩阵按键:设置行线为输出,列线为输入,并对行线进行上拉。
(2)扫描按键:从第一行开始,依次将行线置低电平,其他行线置高电平,然后读取列线的状态。
如果列线为低电平,则表示该行对应的按键被按下。
(3)消抖处理:为了避免按键抖动引起的误判,需要对按键状态进行消抖处理。
3. 使用矩阵按键实现简单功能以一个简单的计算器为例,介绍使用矩阵按键实现计算器功能的方法。
(1)设计计算器界面:根据计算器的功能需求,设计按键布局。
(2)编写按键扫描程序:根据按键布局,编写按键扫描程序,实现按键的识别。
(3)编写功能实现程序:根据计算器的功能需求,编写功能实现程序,如加、减、乘、除等。
四、实训过程1. 实训准备:准备51单片机开发板、矩阵按键模块、电源等实验器材。
2. 矩阵按键原理与结构学习:通过查阅资料,了解矩阵按键的原理和结构。
3. 矩阵按键驱动程序编写:根据实训要求,编写矩阵按键驱动程序。
4. 矩阵按键功能实现:使用矩阵按键实现计算器功能,包括按键扫描、消抖处理、功能实现等。
5. 实验调试:对实验程序进行调试,确保程序正常运行。
五、实训总结通过本次实训,我掌握了矩阵按键的原理和结构,学会了矩阵按键驱动程序的编写,以及使用矩阵按键实现简单功能的方法。
史上最详细矩阵键盘原理
case(0Xd0): KeyValue=KeyValue+8;break;
case(0Xe0): KeyValue=KeyValue+12;break;
}
while((a<50)&&(GPIO_KEY!=0xf0)) //检测按键松手检测
{
delay(1000);
a++;
//a 的作用是用于去抖动,重复检测 50 次//
}
}
}
}
void main()
{
LSA=0; //给一个数码管提供位选//
LSB=0; //给一个数码管提供位选//
LSC=0; //给一个数码管提供位选//
while(1)
//无限循环//
{
KeyDown();
//调用按键判断函数//
GPIO_DIG=smgduan[KeyValue]; //将按键数值赋给 P0 口,控制锁存器//
当接收到的数据低四位不全为高电平时说明有按键按下然后通过接收的数据值判断是哪一列有按键按下然后再反过来高四位输出高电平低四位输出低电平然后根据接收到的高四位的值判断是那一行有按键按下这样就能够确定是哪一个按键按下了
史上最详细单片机矩阵键盘原理 广东阳西福达名苑梁智钧 20180131 一、矩阵按键扫描原理 方法一: 逐行扫描:我们可以通过高四位轮流输出低电平来对矩阵键盘进行逐行扫描,当低四位接收到的数据不全为 1 的 时候,说明有按键按下,然后通过接收到的数据是哪一位为 0 来判断是哪一个按键被按下。 方法二: 行列扫描:我们可以通过高四位全部输出低电平,低四位输出高电平。当接收到的数据,低四位不全为高电平时, 说明有按键按下,然后通过接收的数据值,判断是哪一列有按键按下,然后再反过来,高四位输出高电平,低四位输 出低电平,然后根据接收到的高四位的值判断是那一行有按键按下,这样就能够确定是哪一个按键按下了。 二、原理图:
矩阵键盘工作原理
矩阵键盘工作原理1.按键扫描:矩阵键盘是由多个按键组成的,这些按键被排列成一个矩阵的形式。
在进行按键扫描时,会依次逐行或逐列地检测按键的状态,看是否有按键被按下。
通常,每行和每列都会有一个针脚来连接按键。
当按下一个按键时,该按键所在的行和列之间就会出现电性连通,形成一个按键矩阵电路。
2.按键编码:在按键扫描中,通过检测按键的行列连通状态可以确定哪个具体的按键被按下。
然而,矩阵键盘的针脚数量有限,无法通过直接连接给每一个按键独立编码的方式来实现,因此需要对按键信号进行编码。
一种常用的编码方式是使用行列编码器。
行列编码器通过感知具体的按键被按下的行和列连通状态来判断该按键的位置,并将该按键位置信息转化为一个对应的码值。
这个码值可以被传递给设备控制器或处理器,进而被进一步处理。
行列编码器通常通过矩阵按键的行列针脚输入来判断按键连通状态,然后将结果输出给设备控制器或处理器。
在实际应用中,矩阵键盘一般采用扫描式工作方式,即按键的行和列依次进行扫描。
具体工作步骤如下:1.首先,设备控制器或处理器会向矩阵键盘的行线输出一个低电平信号,同时将列线设置为输入状态。
2.然后,设备控制器或处理器会逐列检测按键的状态。
当有按键被按下时,该行和列之间会有电性连通,此时检测到的列的状态会改变。
设备控制器或处理器会将该连通的行列位置信息传递给行列编码器进行编码。
3.接下来,设备控制器或处理器会依次递增行的编号,重复上述步骤进行按键扫描,并实时更新按键状态信息,直到按键扫描完成。
总结起来,矩阵键盘的工作原理即通过扫描按键的行和列连通状态来检测按键是否被按下,然后通过行列编码器将按键位置信息编码为一个码值,最后将该码值传递给设备控制器或处理器进行处理。
通过这样的工作原理,矩阵键盘可以实现多个按键的同时检测和编码,为用户提供方便、高效的输入方式。
矩阵按键原理
矩阵按键原理
矩阵按键是一种常用的电子元件,它采用了矩阵排列的方式,可以实现多个按键的连接和控制。
其原理是利用了行与列的交叉点来表示一个按键的状态。
通常,矩阵按键由行连接和列连接组成。
行连接将多个按键的一端连接起来,而列连接将多个按键的另一端连接起来。
当按下某个按键时,会导致行和列的交叉点形成电路通路,从而产生一个电信号。
为了实现多个按键的输入和输出,矩阵按键通常会使用多路复用的方式。
具体地说,通过控制行和列的扫描,可以在任意时刻判断出是否有按键被按下,并确定被按下的按键是哪一个。
当进行按键扫描时,首先会将所有的行连接设置为高电平状态,而将所有的列连接设置为输入状态。
然后,逐个扫描每一行,将该行设置为低电平状态,并读取每一列的输入状态。
如果某一列检测到低电平状态,就说明该列与扫描的行相交的位置上有按键按下。
通过不断扫描行和列,可以得到所有按键的状态。
在使用矩阵按键时,可以通过处理被按下的按键信息,来实现不同的功能,例如控制开关、调节音量等。
总而言之,矩阵按键通过矩阵排列的方式,利用行与列的交叉点来表示按键状态,通过行和列的扫描,可以实现多个按键的输入和输出,并通过处理按键信息来实现不同的功能。
4×4矩阵式键盘识别技术
14.4×4矩阵式键盘识别技术1.实验任务如图4.14.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。
对应的按键的序号排列如图4.14.1所示错误!48C159D26AE37BF图4.14.12.硬件电路原理图图4.14.23.系统板上硬件连线(1.把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式键盘”区域中的C1-C4 R1-R4端口上;(2.把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P0.7/AD7对应着h。
4.程序设计内容(1.4×4矩阵键盘识别处理(2.每个按键有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
每个按键的状态同样需变成数字量“0”和“1”,,而接地是通过程序输出数开关的一端(列线)通过电阻接VCC字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5.程序框图错误!P3=FFH,P3.0=0有键按下吗?延时10ms真得有键按下吗?根据当前状态识别按键P3=FFH,P3.1=0有键按下吗?延时10ms真得有键按下吗?根据当前状态识别按键P3=FFH,P3.2=0有键按下吗?延时10ms真得有键按下吗?根据当前状态识别按键P3=FFH,P3.3=0有键按下吗?延时10ms真得有键按下吗?根据当前状态识别按键图4.14.3 6.汇编源程序KEYBUF EQU 30HORG 00HSTART: MOV KEYBUF,#2WAIT:MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHXRL A,#0FHLCALL DELY10MS MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY1MOV A,P3ANL A,#0FHCJNE A,#0EH,NK1 MOV KEYBUF,#0 LJMP DK1NK1: CJNE A,#0DH,NK2 MOV KEYBUF,#1 LJMP DK1NK2: CJNE A,#0BH,NK3 MOV KEYBUF,#2 LJMP DK1NK3: CJNE A,#07H,NK4 MOV KEYBUF,#3 LJMP DK1NK4: NOPDK1:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,ADK1A: MOV A,P3ANL A,#0FHJNZ DK1A NOKEY1:MOV P3,#0FFHCLR P3.5MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY2LCALL DELY10MS MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY2MOV A,P3ANL A,#0FHCJNE A,#0EH,NK5 MOV KEYBUF,#4 LJMP DK2NK5: CJNE A,#0DH,NK6 MOV KEYBUF,#5 LJMP DK2NK6: CJNE A,#0BH,NK7 MOV KEYBUF,#6 LJMP DK2NK7: CJNE A,#07H,NK8 MOV KEYBUF,#7 LJMP DK2NK8: NOPDK2:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,ADK2A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK2ANOKEY2:MOV P3,#0FFHCLR P3.6MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY3LCALL DELY10MS MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY3MOV A,P3ANL A,#0FHCJNE A,#0EH,NK9 MOV KEYBUF,#8LJMP DK3NK9: CJNE A,#0DH,NK10 MOV KEYBUF,#9LJMP DK3NK10: CJNE A,#0BH,NK11 MOV KEYBUF,#10 LJMP DK3NK11: CJNE A,#07H,NK12 MOV KEYBUF,#11 LJMP DK3NK12: NOPDK3:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,ADK3A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK3ANOKEY3:MOV P3,#0FFHCLR P3.7MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY4LCALL DELY10MS MOV A,P3ANL A,#0FHXRL A,#0FHMOV A,P3ANL A,#0FHCJNE A,#0EH,NK13 MOV KEYBUF,#12 LJMP DK4NK13: CJNE A,#0DH,NK14 MOV KEYBUF,#13 LJMP DK4NK14: CJNE A,#0BH,NK15 MOV KEYBUF,#14 LJMP DK4NK15: CJNE A,#07H,NK16 MOV KEYBUF,#15 LJMP DK4NK16: NOPDK4:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTR MOV P0,ADK4A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK4ANOKEY4:LJMP WAITDELY10MS:D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RETTABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07HDB 7FH,6FH,77H,7CH,39H,5EH,79H,71HEND7.C语言源程序#include <AT89X51.H>unsigned char code table[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c, 0x39,0x5e,0x79,0x71}; unsigned char temp;unsigned char key;unsigned char i,j;void main(void){while(1){P3=0xff;P3_4=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f; switch(temp){case 0x0e:key=7;break;case 0x0d:key=8;break;case 0x0b:key=9;break;case 0x07:key=10;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f; }}}P3=0xff;P3_5=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=11;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f; }}}P3=0xff;P3_6=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f; switch(temp){case 0x0e:key=1;break;case 0x0d:key=2;break;case 0x0b:key=3;break;case 0x07:key=12;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp & 0x0f; while(temp!=0x0f){temp=temp & 0x0f; }}}P3=0xff;P3_7=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=0;break;case 0x0d:key=13;break;key=14;break;case 0x07:key=15;break;}temp=P3;P1_0=~P1_0;P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f; }}}}}。
矩阵式键盘工作原理
矩阵式键盘工作原理
矩阵式键盘的工作原理是基于矩阵电路的设计。
该键盘由一组键开关组成,这些键开关呈现出行和列的网格状布局。
每个键开关都连接到一个行列交叉点。
在键盘上按下某个按键时,该按键对应的行列交叉点位置会发生变化。
这种变化可以通过键盘控制器或芯片中的扫描电路进行检测。
扫描电路会按顺序扫描每个行和列的交叉点,检测到键按下的时候会产生一个电信号。
当键盘的控制器检测到有按键按下时,它会将该按键的信息发送到计算机。
计算机接收到按键信息后,会根据键盘映射表将按键转换为对应的字符或功能。
这样,用户通过按下键盘上的按键,就能够输入字符或执行特定的功能。
整个矩阵式键盘的工作原理可以归纳为以下几个步骤:
1. 初始化:键盘控制器配置为扫描矩阵键盘。
2. 扫描:控制器按顺序扫描每个行和列的交叉点,检测到按键按下的时候产生一个电信号。
3. 检测:键盘控制器检测到按键按下的电信号后,将其转换为对应的按键信息。
4. 传输:键盘控制器将按键信息传输给计算机。
5. 转换:计算机根据键盘映射表将按键信息转换为对应的字符或功能。
6. 执行:计算机执行输入的字符或功能。
通过这样的工作原理,用户可以通过按下矩阵式键盘上的按键,实现对计算机的输入操作。
4乘4键盘_矩阵式键盘识别技术
14.4×4矩阵式键盘识别技术1.实验任务如图4.14.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。
对应的按键的序号排列如图4.14.1所示图4.14.12.硬件电路原理图图4.14.23.系统板上硬件连线(1.把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式键盘”区域中的C1-C4 R1-R4端口上;(2.把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P0.7/AD7对应着h。
4.程序设计内容(1.4×4矩阵键盘识别处理(2.每个按键有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
每个按键的状态同样需变成数字量“0”和“1”,开关的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5.程序框图图4.14.36.汇编源程序KEYBUF EQU 30HORG 00HSTART: MOV KEYBUF,#2 WAIT:MOV P3,#0FFHCLR P3.4MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY1LCALL DELY10MSMOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY1MOV A,P3ANL A,#0FHCJNE A,#0EH,NK1 MOV KEYBUF,#0LJMP DK1NK1: CJNE A,#0DH,NK2 MOV KEYBUF,#1LJMP DK1NK2: CJNE A,#0BH,NK3 MOV KEYBUF,#2LJMP DK1NK3: CJNE A,#07H,NK4 MOV KEYBUF,#3LJMP DK1NK4: NOPDK1:MOV A,KEYBUFMOV DPTR,#TABLE MOVC A,@A+DPTRMOV P0,ADK1A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK1ANOKEY1:MOV P3,#0FFHCLR P3.5MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY2LCALL DELY10MSMOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY2MOV A,P3ANL A,#0FHCJNE A,#0EH,NK5 MOV KEYBUF,#4LJMP DK2NK5: CJNE A,#0DH,NK6 MOV KEYBUF,#5LJMP DK2NK6: CJNE A,#0BH,NK7 MOV KEYBUF,#6LJMP DK2NK7: CJNE A,#07H,NK8 MOV KEYBUF,#7LJMP DK2NK8: NOPDK2:MOV A,KEYBUFMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ADK2A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK2ANOKEY2:MOV P3,#0FFHCLR P3.6MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY3LCALL DELY10MSMOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY3MOV A,P3ANL A,#0FHCJNE A,#0EH,NK9MOV KEYBUF,#8LJMP DK3NK9: CJNE A,#0DH,NK10 MOV KEYBUF,#9LJMP DK3NK10: CJNE A,#0BH,NK11 MOV KEYBUF,#10LJMP DK3NK11: CJNE A,#07H,NK12 MOV KEYBUF,#11LJMP DK3NK12: NOPDK3:MOV A,KEYBUFMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ADK3A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK3ANOKEY3:MOV P3,#0FFHCLR P3.7MOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY4LCALL DELY10MSMOV A,P3ANL A,#0FHXRL A,#0FHJZ NOKEY4MOV A,P3ANL A,#0FHCJNE A,#0EH,NK13MOV KEYBUF,#12LJMP DK4NK13: CJNE A,#0DH,NK14 MOV KEYBUF,#13LJMP DK4NK14: CJNE A,#0BH,NK15 MOV KEYBUF,#14LJMP DK4NK15: CJNE A,#07H,NK16 MOV KEYBUF,#15LJMP DK4NK16: NOPDK4:MOV A,KEYBUFMOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,ADK4A: MOV A,P3ANL A,#0FHXRL A,#0FHJNZ DK4ANOKEY4:LJMP WAITDELY10MS:MOV R6,#10D1: MOV R7,#248DJNZ R7,$DJNZ R6,D1RETTABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07HDB 7FH,6FH,77H,7CH,39H,5EH,79H,71HEND7. C语言源程序#include <AT89X51.H>unsigned char code table[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};unsigned char temp;unsigned char key;unsigned char i,j;void main(void){while(1){P3=0xff;P3_4=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f; switch(temp){case 0x0e:key=7;break;case 0x0d:key=8;break;case 0x0b:key=9;break;case 0x07:key=10;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) {temp=P3;temp=temp & 0x0f; }}}P3=0xff;P3_5=0;temp=P3;temp=temp & 0x0f; if (temp!=0x0f) {for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp & 0x0f; if (temp!=0x0f) {temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=4;break;case 0x0d:key=5;break;case 0x0b:key=6;break;case 0x07:key=11;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) {temp=P3;temp=temp & 0x0f; }}}P3=0xff;P3_6=0;temp=P3;temp=temp & 0x0f; if (temp!=0x0f) {for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp & 0x0f; if (temp!=0x0f) {temp=P3;temp=temp & 0x0f; switch(temp){case 0x0e:key=1;break;case 0x0d:key=2;break;case 0x0b:key=3;break;case 0x07:key=12;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) {temp=P3;temp=temp & 0x0f; }}}P3=0xff;P3_7=0;temp=P3;temp=temp & 0x0f; if (temp!=0x0f) {for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp & 0x0f; if (temp!=0x0f) {temp=P3;temp=temp & 0x0f; switch(temp){case 0x0e:key=0;break;case 0x0d:key=13;break;case 0x0b:key=14;break;case 0x07:key=15;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) {temp=P3;temp=temp & 0x0f; }}}}}。
013、4×4矩阵式键盘识别技术
13.4×4矩阵式键盘识别技术1.实验任务如图4.13.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。
对应的按键的序号排列如图4.13.1所示图4.13.12.硬件电路原理图图4.13.23.系统板上硬件连线(1.把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式键盘”区域中的C1-C4 R1-R4端口上;(2.把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P0.7/AD7对应着h。
4.程序设计内容(1.4×4矩阵键盘识别处理(2.每个按键有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
每个按键的状态同样需变成数字量“0”和“1”,开关的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5.程序框图图4.13.36.汇编源程序KEYBUFEQU30HORG00HSTART:MOVKEYBUF,#2 WAIT:MOVP3,#0FFHCLRP3.4MOVA,P3ANLA,#0FHXRLA,#0FH JZNOKEY1 LCALLDELY10MS MOVA,P3ANLA,#0FHXRLA,#0FH JZNOKEY1MOVA,P3ANLA,#0FH CJNEA,#0EH,NK1 MOVKEYBUF,#0 LJMPDK1NK1:CJNEA,#0DH,NK2 MOVKEYBUF,#1 LJMPDK1NK2:CJNEA,#0BH,NK3 MOVKEYBUF,#2 LJMPDK1NK3:CJNEA,#07H,NK4 MOVKEYBUF,#3 LJMPDK1NK4:NOPDK1:MOVA,KEYBUF MOVDPTR,#TABLE MOVCA,@A+DPTR MOVP0,ADK1A:MOVA,P3 ANLA,#0FHXRLA,#0FHJNZDK1ANOKEY1:MOVP3,#0FFHCLRP3.5MOVA,P3ANLA,#0FHXRLA,#0FH JZNOKEY2 LCALLDELY10MS MOVA,P3ANLA,#0FHXRLA,#0FH JZNOKEY2MOVA,P3ANLA,#0FH CJNEA,#0EH,NK5 MOVKEYBUF,#4LJMPDK2NK5:CJNEA,#0DH,NK6 MOVKEYBUF,#5 LJMPDK2NK6:CJNEA,#0BH,NK7 MOVKEYBUF,#6 LJMPDK2NK7:CJNEA,#07H,NK8 MOVKEYBUF,#7 LJMPDK2NK8:NOPDK2:MOVA,KEYBUF MOVDPTR,#TABLE MOVCA,@A+DPTRMOVP0,ADK2A:MOVA,P3ANLA,#0FHXRLA,#0FHJNZDK2ANOKEY2:MOVP3,#0FFHCLRP3.6MOVA,P3ANLA,#0FHXRLA,#0FHJZNOKEY3 LCALLDELY10MS MOVA,P3ANLA,#0FHXRLA,#0FHJZNOKEY3MOVA,P3ANLA,#0FHCJNEA,#0EH,NK9 MOVKEYBUF,#8 LJMPDK3NK9:CJNEA,#0DH,NK10 MOVKEYBUF,#9 LJMPDK3NK10:CJNEA,#0BH,NK11 MOVKEYBUF,#10 LJMPDK3NK11:CJNEA,#07H,NK12 MOVKEYBUF,#11 LJMPDK3NK12:NOPDK3:MOVA,KEYBUF MOVDPTR,#TABLE MOVCA,@A+DPTRMOVP0,ADK3A:MOVA,P3ANLA,#0FHXRLA,#0FHJNZDK3ANOKEY3:MOVP3,#0FFHCLRP3.7MOVA,P3ANLA,#0FHXRLA,#0FHJZNOKEY4 LCALLDELY10MS MOVA,P3ANLA,#0FHXRLA,#0FHJZNOKEY4MOVA,P3ANLA,#0FHCJNEA,#0EH,NK13 MOVKEYBUF,#12 LJMPDK4NK13:CJNEA,#0DH,NK13 MOVKEYBUF,#13 LJMPDK4NK13:CJNEA,#0BH,NK15 MOVKEYBUF,#13 LJMPDK4NK15:CJNEA,#07H,NK16 MOVKEYBUF,#15 LJMPDK4NK16:NOPDK4:MOVA,KEYBUF MOVDPTR,#TABLEMOVCA,@A+DPTRMOVP0,ADK4A:MOVA,P3ANLA,#0FHXRLA,#0FHJNZDK4ANOKEY4:LJMPWAITDELY10MS:MOVR6,#10D1:MOVR7,#248DJNZR7,$DJNZR6,D1RETTABLE:DB3FH,06H,5BH,4FH,66H,6DH,7DH,07HDB7FH,6FH,77H,7CH,39H,5EH,79H,71HEND7.C语言源程序#include<AT89X51.H>unsignedcharcodetable[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};unsignedchartemp;unsignedcharkey;unsignedchari,j;voidmain(void){while(1){P3=0xff;P3_4=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f; switch(temp){case0x0e:key=7;break;case0x0d:key=8;break;case0x0b:key=9;break;case0x07:key=10;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp&0x0f; while(temp!=0x0f) {temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_5=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f;switch(temp){case0x0e:key=4;break;case0x0d:key=5;break;case0x0b:key=6;break;case0x07:key=11;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp&0x0f; while(temp!=0x0f) {temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_6=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f; switch(temp){case0x0e:key=1;break;case0x0d:key=2;break;case0x0b:key=3;break;case0x07:key=12;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp&0x0f; while(temp!=0x0f) {temp=P3;temp=temp&0x0f;}}}P3=0xff;P3_7=0;temp=P3;temp=temp&0x0f;if(temp!=0x0f){for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp&0x0f;if(temp!=0x0f){temp=P3;temp=temp&0x0f; switch(temp){case0x0e:key=0;break;case0x0d:key=13;break;case0x0b:key=13;break;case0x07:key=15;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp&0x0f; while(temp!=0x0f) {temp=P3;temp=temp&0x0f; }}}}}。
按键控制键盘检测原理与应用
按键控制键盘检测原理与应用首先,键盘由许多按键组成,每个按键都与一个电路连接,通常以矩阵的形式排列。
键盘的每一列都对应一个行线和一个列线,而键盘的每一行则是由按键连接的。
当用户按下一个按键时,行线和列线之间会产生一个短路,形成一个通路,从而使得电流可以流动。
这里有两种常用的按键检测原理:矩阵检测原理和扫描检测原理。
矩阵检测原理是最常见的按键检测方法。
它将键盘上的按键排列成一个矩阵,通过检测行线和列线的电流变化来确定用户按下的是哪个按键。
在矩阵检测原理中,每按下一个按键,会在对应的行和列之间形成一个电流回路。
检测电路会周期性地扫描每一行和每一列,检测是否有电流流动,从而确定用户是否按下了一些按键。
扫描检测原理是另一种常用的按键检测方法。
它通过周期性地扫描每一个按键,并检测是否有按键被按下。
在扫描检测原理中,检测电路会依次给每个按键的行线上加上电压,并检测列线上的电压变化情况。
如果有电压变化,则表示有按键被按下。
按键控制键盘检测有广泛的应用。
最常见的应用是在计算机键盘和电视遥控器中。
在计算机键盘中,通过检测按键的信号来输入字符和执行命令。
而在电视遥控器中,通过检测按键的信号来控制电视的开关、频道和音量等功能。
此外,按键控制键盘检测还可以应用于人机交互设备,如触摸屏和游戏手柄等。
在触摸屏上,通过检测用户触摸的位置来实现相应的操作,从而实现与设备的交互。
在游戏手柄上,通过检测按键的信号来触发游戏中的不同操作,如跳跃、射击和切换武器等。
总之,按键控制键盘检测是通过检测按键的信号来实现相应操作的一种技术。
它的原理是基于键盘的物理结构和工作原理,通过分析按键行和列的输入信号来确定用户按下的是哪个按键,并将其转换为对应的字符或功能。
它有广泛的应用领域,包括计算机键盘、电视遥控器、触摸屏和游戏手柄等。
矩阵键盘的按键识别方法
矩阵键盘的按键识别方法矩阵键盘是一种常见的计算机输入设备,它使用了一种特殊的按键识别方法来将用户的按键输入转换为计算机可以理解的数字信号。
本文将介绍矩阵键盘的按键识别方法,重点讨论如何利用其独特的电路结构来实现按键识别和信号输出。
矩阵键盘通过一种由行和列组成的矩阵电路来识别按键。
每个按键都对应着矩阵中的一个交叉点,当用户按下某个按键时,会在该交叉点上产生一个电气信号。
为了识别用户按下的是哪个按键,矩阵键盘需要通过电路来扫描每个按键,并将其映射为相应的数字信号。
首先,矩阵键盘的电路结构通常由多个按键、行线和列线组成。
每个按键都连接着一根行线和一根列线,当用户按下某个按键时,该按键连接的行线和列线会产生接通信号。
其次,为了识别用户按下的是哪个按键,矩阵键盘需要通过一个扫描器来轮流扫描每个按键。
扫描器会按照顺序选择每一行或每一列,并将其连接到输入输出端口。
当某一行或列被选择时,与之相连的所有按键都会产生接通信号,而其他按键则不会产生信号。
接着,矩阵键盘会将扫描到的信号转换为数字信号,并输出给计算机或其他设备。
这一过程通常由矩阵键盘的控制芯片来完成,控制芯片会对扫描到的信号进行编码,并将其转换为计算机可以理解的数字信号。
最后,矩阵键盘的按键识别方法还需要考虑到防抖动和多键盘冲突的问题。
防抖动是指在用户按下按键时,可能会产生抖动信号,这会对按键识别造成干扰。
为了解决这一问题,矩阵键盘通常会在电路中加入防抖动电路来滤除无意识的按键信号。
而多键盘冲突是指在用户同时按下多个按键时,可能会导致按键识别混乱。
为了解决这一问题,矩阵键盘通常会采用键盘矩阵编码和解码技术来确保每个按键的信号都可以被准确识别。
综上所述,矩阵键盘的按键识别方法通过独特的电路结构和控制芯片来实现对用户按键输入的识别和信号输出。
通过扫描器的轮流扫描和控制芯片的编码转换,矩阵键盘可以准确地将用户的按键输入转换为计算机可以理解的数字信号。
同时,通过防抖动和多键盘冲突的处理,矩阵键盘也能够确保按键识别的准确性和稳定性。
单片机矩阵按键原理
单片机矩阵按键原理
单片机矩阵按键的原理主要是通过行列结构来识别按键。
具体来说,它使用4条I/O线作为行线,4条I/O线作为列线,形成了一个4x4的矩阵。
在行线和列线的每个交叉点上,设置一个按键。
当某个按键被按下时,对应的行线和列线会被连通,导致行线和列线的电平发生变化。
单片机通过逐行扫描或逐列扫描的方式,读取I/O口的电平变化,从而确定哪个按键被按下。
具体来说,在行列扫描中,单片机先从P1口的高四位(四个行)输出高电平,低四位(四个列)输出低电平,如果有按键按下,从P1口的高四位读取键盘状态,判断高四位的四行哪一行变成了低电平,就知道是第几行。
然后从P1口的低四位(四个列)输出高电平,高四位(四个行)输出低电平,从P1口的低四位读取键盘状态,判断低四位的四列哪一行变成了低电平,就知道是第几列。
将两次读取结果组合起来就可以得到当前按键的特征编码。
使用这种行列结构能够有效地提高单片机系统中I/O口的利用率,节约单片机的资源。
以上内容仅供参考,建议查阅关于单片机矩阵按键的书籍或者咨询专业技术人员获取更准确的信息。
行列式键盘的工作原理
行列式键盘的工作原理行列式键盘是一种特殊的计算机输入设备,它与传统的QWERTY键盘相比具有更高的输入效率和更好的人体工程学设计。
它的工作原理是通过将字母、数字和符号排列在不同的行和列上,根据用户输入的行列组合来识别所需的字符。
下面我将详细介绍行列式键盘的工作原理。
行列式键盘的设计灵感来源于打字机。
早期的打字机也是通过行和列的排列来确定输入的字符的。
行列式键盘则是将这一概念发扬光大,并融入了更先进的技术和设计理念。
首先,行列式键盘由键盘矩阵组成,其中每个键都与矩阵的某一行和某一列相连。
例如,键盘上的'A'键可能与第一行的第一列相连,而'B'键则与第一行的第二列相连。
这样,每一个按键都可以通过特定的行列组合来确定。
行列式键盘内部有一个行列状态识别器。
当用户按下一个键时,键盘会读取与该键相连的行和列的电信号,并将其传递给行列状态识别器进行解析。
行列状态识别器会根据接收到的行列组合来确定用户实际输入的字符。
为了提高输入效率,行列式键盘采用了一种称为“键矩阵”的技术。
键矩阵包含多个键盘矩阵的复制品,并且每个矩阵都与一个独立的行列状态识别器相连。
这些矩阵并行工作,可以同时接收多个按键的输入。
这样,用户可以在一个矩阵上按下一个键的同时,在另一个矩阵上按下另一个键,从而实现更快速的输入。
与传统的QWERTY键盘相比,行列式键盘在人体工程学设计方面也有一些改进。
它采用了一种称为“频率分配”的布局设计,这意味着经常用到的字符被分配到更容易按到的位置,以减少手指运动的距离和疲劳。
例如,经常用到的元音和常见的辅音被分布在靠近手指的位置,而不常用的字符则被放置在相对较远的位置。
这样,用户可以更快速地操作键盘,减少输入错误和手指的不必要移动。
此外,行列式键盘还可以通过自定义键位布局来提高输入效率。
用户可以根据自己的需求和偏好,将常用的字符和组合键放置在更容易按到的位置。
这种自定义布局使得行列式键盘适应不同用户的习惯,提供更个性化的输入方式。
矩阵键盘原理
矩阵键盘原理
矩阵键盘是一种常见的输入设备,由多个按键组成。
其原理是通过一种叫作矩阵扫描的方法来实现按键的检测和识别。
矩阵键盘的按键布局通常是以行和列的形式排列的。
每个按键都与一个行和一个列相交叉,并通过一个开关来连接对应的行和列。
当按下一个按键时,该按键所在的行和列会通过开关的闭合而导通。
从而电流得以流动,系统可以检测到按键的状态。
为了实现对按键的检测,系统会逐个扫描每一行,并检测每一列的状态。
这一过程是周期性进行的,通常以毫秒级的速度进行循环扫描。
当系统检测到闭合的开关时,就会确定该按键被按下。
矩阵键盘的优点在于可以通过少量的引脚来控制多个按键。
其基本原理是利用行列交叉的方式来编码按键,进而达到节省硬件资源的效果。
总体而言,矩阵键盘的原理是通过矩阵扫描方式实现按键的检测和识别。
它是一种简单而有效的输入设备,广泛应用于计算机、电子设备和各种控制系统中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵按键识别技术
矩阵按键部份由16个轻触按键按照4行4列排列,连接到JP50端口。
将行线所接的单片机的I/O口作为输出端,而列线所接的I/O口则作为输入。
这样,当按键没有按下时,所有的输出端都是高电平,代表无键按下。
行线输出是低电平,一旦有键按下,则输入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了。
相关原理:
程序运行照片:
接线方法:
1、用一条8PIN数据排线,把矩阵按键部份的JP50,接到CPU部份的P1口JP44.
2、接8位数码管的数据线。
将数码管部份的数据口 JP5接到CPU部份的P0口JP51.
3、接8位数码管的显示位线。
将数码管部份的显示位口 JP8接到CPU部份的P2口JP52.
;本程序实现扫描按键显示功能.
;分别按16个键盘显示分别显示数字123A456B789C*0#D
;键盘口P1,数码管显示第二位p21, 数码管段位p0口
确定矩阵式键盘上何键被按下,介绍一种“行扫描法”。
行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键识别方法.
程序流程图:
8031单片机的P1口用作键盘I/O口,键盘的列线接到P1口的低4位,键盘的行线接到P1口的高4位。
列线P1.0-P1.3设置为输入线,行线P1.4-P.17设置为输出线。
4根行线和4根列线形成16个相交点。
1、检测当前是否有键被按下。
检测的方法是P1.4-P1.7输出全“0”,读取
P1.0-P1.3的状态,若P1.0-P1.3为全“1”,则无键闭合,否则有键闭合。
2、去除键抖动。
当检测到有键按下后,延时一段时间再做下一步的检测判断。
3、若有键被按下,应识别出是哪一个键闭合。
方法是对键盘的行线进行扫描。
P1.4-P1.7按下述4种组合依次输出:
在每组行输出时读取P1.0-P1.3,若全为“1”,则表示为“0”这一行没有键闭合,否则有键闭合。
由此得到闭合键的行值和列值,然后可采用计算法或查表法将闭合键的行值和列值转换成所定义的键值。
4、为了保证键每闭合一次CPU仅作一次处理,必须去除键释放时的抖动。
汇编语言参考程序:
org 0000h
ajmp main
org 0080h
main:
mov dptr,#tab ;将表头放入DPTR
lcall key ;调用键盘扫描程序
movc a,@a+dptr ;查表后将键值送入ACC
mov p0,a ;将Acc值送入P0口
CLR P2.1 ;开显示
ljmp main ;返回反复循环显示
KEY: LCALL KS ;调用检测按键子程序
JNZ K1 ;有键按下继续
LCALL DELAY2 ;无键按调用延时去抖AJMP KEY ;返回继续检测按键
K1: LCALL DELAY2
LCALL DELAY2 ;有键按下延时去抖动LCALL KS ;再调用检测按键程序
JNZ K2 ;确认有按下进行下一步
AJMP KEY ;无键按下返回继续检测
K2: MOV R2,#0EFH ;将扫描值送入 R2暂存MOV R4,#00H ;将第一列值送入R4暂存
K3: MOV P1,R2 ;将R2的值送入P1口
L6: JB P1.0,L1 ;P1.0等于1跳转到L1 MOV A,#00H ;将第一行值送入ACC
AJMP LK ;跳转到键值处理程序
L1: JB P1.1,L2 ;P1.1等于1跳转到L2 MOV A,#04H ;将第二行的行值送入ACC AJMP LK ;跳转到键值理程序进行键值处理L2: JB P1.2,L3 ;P1.2等于1跳转到L3 MOV A,#08H ;将第三行的行值送入ACC
AJMP LK ;跳转到键值处理程
L3: JB P1.3,NEXT ;P1.3等于1跳转到NEXT处
MOV A,#0cH ;将第四行的行值送入ACC
LK: ADD A,R4 ;行值与列值相加后的键值送入A PUSH ACC ;将A中的值送入堆栈暂存
K4: LCALL DELAY2 ;调用延时去抖动程序
LCALL KS ;调用按键检测程序
JNZ K4 ;按键没有松开继续返回检测
POP ACC ;将堆栈的值送入ACC
RET
NEXT:
INC R4 ;将列值加一
MOV A,R2 ;将R2的值送入A
JNB ACC.7,KEY ;扫描完至KEY处进行下一扫描
RL A ;扫描未完将A中的值右移一位进行下一列的扫描MOV R2,A ;将ACC的值送入R2暂存
AJMP K3 ;跳转到K3继续
KS: MOV P1,#0FH ;将P1口高四位置0低四位值1 MOV A,P1 ;读P1口
XRL A,#0FH ;将A中的值与A中的值相异或
RET ;子程序返回
DELAY2: ;40ms延时去抖动子程序
MOV R5,#08H
L7: MOV R6,#0FAH
L8: DJNZ R6,L8
DJNZ R5,L7
RET
tab:
db 28h,34h,28h,34h,0a9h,60h,20h,7ah,20h,21h,61h,74h,30h,62h,0a2h,7eh ;0h0hc9878654a321 轮流显示键盘因为无法表达*# 就用H表示,B用8表示end。