信号与系统 系统函数的零极点分析
信号、系统分析与控制 第9章 系统函数的零极点
2. 离散系统函数的零极点
M
离散系统函数的多项式形式为:
H (z)
B(z) A(z)
bj z j
j0
N
ai z i
b0 a0
b1z 1 ... bm z m a1z 1 ... an z n
(9.1.2)
将系统函数进行因式分解,可采用根的形式表示多项式,即 i0
M
H (z)
Y (z)
➢ 说明系统正弦稳态特性。
➢ 研究系统的稳定性。从系统函数的极点分布可以了解系统的固有频率,进而了解系统冲激响应的模式,也就 是说可以知道系统的冲激响应是指数型、衰减振荡型、等幅振荡型、还是几者的组合,从而可以了解系统的
响应特性及系统是否稳定。
1. 连续系统的零极点
系统函数一般以多项式形式出现,分子多项式和分母多项式都可以分解成线性因子的乘积,即连续系统函数:
➢ 可预测系统的时域特性。确定系统函数H(s)、H(z)。 ➢ 可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算系统函数的留数、极点和增益; ➢ 可以用函数sos=zp2sos(z,p,k)完成将高阶系统分解为2阶系统的串联。
➢ 描述系统的频响特性。从系统的零、极点分布可以求得系统的频率响应特性,从而可以分析系统的正弦稳态 响应特性。 使用h=freqz(num,den,w)函数可求系统的频率响应。
2. 使用多项式的roots()函数分别求出多项式和的根,获得系统函数的极点、零点。
3. 用用zero(sys)和pole(sys)函数直接计算零极点,sys表示系统传递函数。用法如下:
z = zero(sys):返回 LTI模型 sys的零点z 的列向量。
[z,gain] = zero(sys):同时返回增益gain。
信号与线性系统分析-第7章
2
σ
根据初值定理,有
Ks h(0 ) lim sH ( s ) lim 2 K s s s 2 s 5
2s H ( s) 2 s 2s 5
第 3页
二、系统函数H(· )与系统的因果性
因果系统是指:系统的零状态响应yzs(.)不会出现于f(.)
第 13 页
§7.2
一、稳定系统的定义
系统的稳定性
一个系统,若对任意的有界输入,其零状态响应 也是有界的,则称该系统是有界输入有界输出(Bound Input Bound Output------ BIBO)稳定的系统,简称为稳 定系统。 即:若系统对所有的激励 |f(.)|≤Mf ,其零状态响应 |yzs(.)|≤My(M为有限常数),则称该系统稳定。
③ H(s)在虚轴上的高阶极点或右半平面上的极点,其 所对应的响应函数都是递增的。 即当t→∞时,响应均趋于∞。系统稳定?
第 8页
复习:s域与z域的关系
z=esT
s
1 ln z 式中T为取样周期 T
如果将s表示为直角坐标形式 s = +j ,将z表示为 极坐标形式 z = ej = eT , = T 由上式可看出: s平面的左半平面(<0)--->z平面的单 位圆内部(z=<1) s平面的右半平面(>0)--->z平面的单位圆外部(z=>1)
第 6页
系统稳定性问题?
系统的稳定性如何?
系统稳定:若系统对所有的激励 |f(.)|≤Mf ,其零状态 响应 |yzs(.)|≤My(M为有限常数),则称该系统稳定。 (2)在虚轴上 (a)单极点p=0或p12=±jβ, 则响应为Kε(t)或Kcos(βt+θ)ε(t)→稳态分量 (b) r重极点,相应A(s)中有sr或(s2+β2)r,其响应函数为
§4-6 系统函数与系统的频响特性
H (s)
k s1
(s 1)(s 2 )
H ( j)
k j1
( j 1)( j 2 )
系统函数的零极图如下:
《Signals & Systems》
《信号与系统》
大连海事大学信息科学技术学院
⑴ 当Ω=0,零点矢量的模等于0,相角
等于π/2,幅频响应|H( jΩ)|=0;极点 矢量的相角均等于零, φ(Ω)= (π/2)。 1
如上两例RC电路,试根据其零极图,粗略的画出其频响曲线。
先看以电容电压为输出的情况。其零极 图如下:
R
ui (t)
C
uo (t)
⑴ 当Ω=0,极点矢量指向原点,其模长 为α,相角等于0;于是 |H( jΩ)|=α/α=1,φ(Ω)=0。
⑵ 当Ω↑,极点矢量模↑,相角↑; |H( jΩ)|↓,φ(Ω)=-arctg(Ω/α)↓。
《信号与系统》
大连海事大学信息科学技术学院
§4-6 系统函数的零极点分布与系统的频率响应
一、H(s)与H(jΩ)
由前所讲,拉氏变换是傅氏变换由实频域Ω至复频域s的推广, 傅氏变换是拉氏变换在s平面虚轴上的特例。即
j
H ( j) H (s) |s j
二、H(s)的零极点分布与H(jΩ)
由于H(s)一般是有理分式,即它可表示为
s
C (s p1)(s p2)
上式中 1 ( 1 )2 4
p1,2 RC
RC 2
LC
1 ( 1 )2 1 2RC 2RC LC
《Signals & Systems》
《信号与系统》
大连海事大学信息科学技术学院
令 1
2RC
1 LC
实验三零极点分布对系统频率响应地影响(数字信号实验)
备注:(1)、按照要求独立完成实验内容。
(2)、实验结束后,把电子版实验报告按要求格式改名(例:09号_张三_实验七.doc)后,实验室统一刻盘留档。
实验三零极点分布对系统频率响应的影响一、实验目的学习用分析零极点分布的几何方法分析研究信号和系统频率响应。
二、实验原理如果知道信号的Z变换以及系统的系统函数H(z),可以得到它们的零极点分布,由零极点分布可以很方便地对它们的频率响应进行定性分析。
信号的幅度特性由零点矢量长度之积除以极点矢量的长度之积,当频率ω从0变化到2π时,观察零点矢量长度和极点矢量长度的变化,重点观察那些矢量长度较短的情况。
另外, 由分析知道, 极点主要影响频率响应的峰值,极点愈靠近单位圆,峰值愈尖锐;零点主要影响频率特性的谷值,零点愈靠近单位圆,谷值愈深,如果零点在单位圆上,那么频率特性为零。
根据这些规律可以定性画出频率响应的幅度特性。
峰值频率和谷值频率可以近似用响应的极点和零点的相角表示,例如极点z1=0.9ejπ/4,峰值频率近似为π/4,极点愈靠近单位圆,估计法结果愈准确。
本实验借助计算机分析信号和系统的频率响应,目的是掌握用极、零点分布的几何分析法分析频率响应,实验时需要将z=ejω代入信号的Z变换和系统函数中,再在0~2π之间,等间隔选择若干点,并计算它的频率响应。
三、实验内容(包括代码与产生的图形)要求:不仅打印幅度特性曲线,而且要有系统频率特性的文字分析。
1. 假设系统用下面差分方程描述:y(n)=x(n)+ay(n-1)假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。
a=0.7代码:B=1;a=0.7A=[1,-a];subplot(3,1,3);zplane(B,A);xlabel('ʵ²¿Re');ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼');grid on[H,w]=freqz(B,A,'whole');subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('·ùƵÏìÓ¦ÌØÐÔ');axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2);grid on;axis([-0.1,2.1,-3,3]);xlabel('\omega/\pi');ylabel('\phi(\omega)');title('ÏàƵÏìÓ¦ÌØÐÔ');图像:-505-101实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.6 1.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-22ω/πφ(ω)相频响应特性a=0.8代码:B=1;a=0.8A=[1,-a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi');ylabel('\phi(\omega)'); title('ÏàƵÏìÓ¦ÌØÐÔ');图像:-6-4-20246实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.61.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-202ω/πφ(ω)相频响应特性a=0.9代码:B=1;a=0.9A=[1,-a];subplot(3,1,3);zplane(B,A); xlabel('ʵ²¿Re'); ylabel('Ð鲿Im');title('y(n)=x(n)-ay(n-1)´«Ê亯ÊýÁã¡¢¼«µã·Ö²¼'); grid on[H,w]=freqz(B,A,'whole'); subplot(3,1,2);plot(w/pi,abs(H),'linewidth',2); grid on ;xlabel('\omega/\pi'); ylabel('|H(e^j^\omega)|'); title('·ùƵÏìÓ¦ÌØÐÔ'); axis([0,2,0,6]);subplot(3,1,1);plot(w/pi,angle(H),'linewidth',2); grid on ;axis([-0.1,2.1,-3,3]); xlabel('\omega/\pi'); ylabel('\phi(\omega)'); title('ÏàƵÏìÓ¦ÌØÐÔ');图像:-505-101实部Re虚部I my(n)=x(n)-ay(n-1)传输函数零、极点分布00.20.40.60.81 1.2 1.4 1.6 1.825ω/π|H (e j ω)|幅频响应特性0.20.40.60.81 1.2 1.41.61.82-22ω/πφ(ω)相频响应特性分析:由y (n )=x (n )+ay (n -1)可知:H[z]=B[z]/A[z]=1/(1-az^(-1))系统极点z=a ,零点z=0,当B 点从w=0逆时针旋转时,在w=0点,由于极点向量长度最短,形成波峰,并且当a 越大,极点越接近单位圆,峰值愈高愈尖锐;在w=pi 点形成波谷;z=0处零点不影响幅频响应。
第5章 系统函数与零、极点分析改
解 研究表明,该系统的微分方程为 即 从而得系统函数
由上式可得该系统的模拟框图,如图 (b)所示。
电子与信息工程学院
k b
电子与信息工程学院
§5.2 系统函数的零、极点
5.2.1零、极点的概念
零点: H(s)分子多项式N(s)=0的根,z1,z2, zm 极点: H(s)分母多项式D(s)=0的根,p1,p2, pn
H (s) I2 (s) 转移电流比 I1(s)
H (s) U2 (s) 转移阻抗 I1(s)
H (s) I2 (s) 转移导纳 U1(s)
双口传递函数 (转移函数)
电子与信息工程学院
H(s)的特性: H(s)是联系输入和响应的纽带和桥梁,是系
统频率特性H(j)的S域表示;
H(s)取决于系统的结构和元件参数,与系统 的起始状态、激励和相应无关;
锁相环是一个相位负反馈控制系统,应用很广。当 输入相位与输出相位的瞬时相位差恒定时,称为系 统锁定。
电子与信息工程学院
例 锁相环及其阶跃响应:
三阶琐相环系统
电子与信息工程学院
该系统函数
显然
a1a2 > a0a3
故系统稳定,且阶跃响应
电子与信息工程学院
复习
一、系统函数的一般概念
即有如下关系:
电子与信息工程学院
H(s)的特性: H(s)是联系输入和响应的纽带和桥梁,是系
统频率特性H(j)的S域表示;
H(s)取决于系统的结构和元件参数,与系统 的起始状态、激励和相应无关;
H(s)是一个实系数有理分式,它决定了系统 的特征根(固有频率);
H(s)为系统冲激响应的拉氏变换。
电子与信息工程学院
信号与系统系统函数的零极点分析课件
和相频特性。
零点对系统幅值的影响
02
零点的位置会影响系统的幅值响应,可能导致系统幅值出现峰
值或谷值。
零点对系统相位的影响
03
零点的位置也会影响系统的相位响应,可能导致系统相位出现
滞后或超前。
零点对系统稳定性的影响
零点位置与系统稳定性
零点的位置与系统的稳定性密切相关,某些位置的零点可能导致 系统不稳定。
02
频率响应分析
零极点分布影响系统的频率响应特性,通过分析零极点 可以预测系统的频率响应行为。
03
系统设计
通过合理设计系统的零极点,可以实现特定的系统性能 指标,如快速响应、低超调量等。
03 系统函数的零点分析
零点对系统性能的影响
零点位置影响系统性能
01
零点位置的不同会导致系统性能的差异,例如系统的幅述线性时不变系统动态 特性的数学模型,通常表示为复平面 上的函数。
性质
系统函数具有线性、时不变性和因果 性等基本性质,这些性质决定了系统 的动态行为。
零点的定义与性质
定义
零点是系统函数在复平面上的根,即 使得系统函数值为零的点。
性质
零点对系统动态行为的影响主要体现 在系统的传递函数中,影响系统的频 率响应特性。
信号合成与分解
通过分析信号的零极点分布,可以将复杂信 号分解为简单信号的叠加,反之亦然。
在通信系统中的应用
调制解调
在通信系统中,零极点分析用于分析信号的 调制解调过程,以优化信号传输的质量。
信道均衡
在数字通信中,信道均衡器通过调整零极点 位置来补偿信道对信号的畸变影响。
1.谢谢聆 听
极点影响系统噪声性能
极点的位置也会影响系统的噪声性能,极点靠近虚轴时,系统对噪声的抑制能力较强。
信号与系统分析总结与简述题
信号与系统分析简述题一、简述《信号与系统》的主要研究内容。
《信号与系统》主要是以线性时不变系统作为研究对象,当信号作用与线性时不变系统时,从输入输出描述法和状态变量法来研究系统响应。
当求得系统响应后,根据系统的激励与响应之间的关系求得系统函数,进而根据系统的固有属性来研究系统的内在属性,例如:因果性、稳定性和滤波特性等。
二、输入输出描述法和状态变量分析法的区别。
输入输出描述法:将系统看作一个黑匣子,根据系统的输入和基本属性来求解系统的输出响应,只描述系统单输入和单输出的关系,而不讨论系统内部的结构。
状态变量分析法:通过列些系统的状态方程和输出方程,进而求解得出系统函数和各响应。
不仅揭示了系统的内部特性,还可以用来描述非线性、时变系统和多输入多输出系统。
三、简述常用的输入输出描述法及其优缺点。
常用的输入输出描述法主要包括时域分析和变换域分析。
时域分析法:主要通过系统的微分方程(差分方程)、激励和起始状态,利用经典法、双零法和卷积法等来求解系统响应。
该方法均在时域中进行计算,物理概念清晰,但是计算量大。
变换域分析法:对于连续系统来说主要包括傅里叶变换和拉普拉斯变换;对于离散系统来说,则采用z变换。
变换域求解的计算量小,但是物理意义不清晰,因此常常会进行逆变换,将结果变换成时域的形式。
四、如何判断系统的因果性、稳定性、滤波特性等。
当用系统作用表示时,可通过定义法即响应不得超前激励,有界输入有界输出来判断因果稳定;当用h(t)表示时,则通过u(t)和绝对可积来判断因果稳定;当用系统函数来表示时,对于连续系统,通过系统函数的极点只能分布在s平面的左半开平面来判断,对于离散系统,通过系统函数的极点只能位于单位圆内来判断。
滤波特性则是通过系统函数的零极点分布粗略画出幅频特性曲线,根据幅频特性曲线的走势来判断。
五、连续时间信号、离散时间信号、模拟信号和数字信号有什么区别。
连续时间信号是指时间自变量在其定义的范围内,除若干不连续点以外均是连续的。
信号与系统 系统函数的零极点分析
信号与5系.7统.3二、系系统统函零数极的极点点、与零系点与统系频统频率率特响性应的关的系关系
频率特性 频率特性指系统在正弦信号激励下稳态响应随信号频率的变化情况。 实际上就是系统的傅里叶变换
主要是指幅频特性和相频特性。
在系统是稳定的前提下,系统频率响应和系统函数的关系为
H (? ) ? H (s) 2)2
在虚轴上
h(t) ? t sin ωtu(t),t ? ? ,h(t) 增幅振荡
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
几种典型情况
j?
jω0
?α
O
? jω0
α
?
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
总体来说,系统函数 H(极s) 点 p ?对? ?时j?域响应特性关系如下
5.7.1 系统函数零极点定义
系统函数零点:使 H (s) ? 0 的 s 值。
系统函数极点:使 H ( s ) ? ? 的 s 值。
对系统函数分子分母多项式进行因式分解得
H (s) ? K(s ? z1)(s ? z2 )L (s ? zm ) (s ? p1)(s ? p2 )L (s ? pn )
将矢量图画在复平面内
信号与系统
五.零极点与系统频率响应的关系
零点: j? ? zr ? Nr e j? r
Nr
zr
?r
jω
σ
O
极点: j? ? pk ? Mke j?k
?k
pk
zr
Mk
Nr
?r
jω
σ
O
信号与系统
五.零极点与系统频率响应的关系
H (? ) ? K
r ?1 n
信号与系统_第六章 系统函数与零极点分析
F ( s) Y ( s ) = H ( s) F ( s) = N ( s ) D( s) F ( s) 设一个中间变量 X ( s) = 则: D( s)
Y ( s) = N ( s) X ( s)
E-mail:lynwindsent@
U ( s) H ( s) = = Zin ( s) I ( s)
输入阻抗或策动点阻抗
返 回
E-mail:lynwindsent@
Tel:22896276
广东医学院生物医学工程教研室
信号与线性系统
(2)
+ U1(s) -
I1(s) 系 统
I2(s) + U2(s)
U2 ( s) H ( s) = U1 ( s) I2 ( s) H ( s) = I1 ( s) H ( s) =
广东医学院生物医学工程教研室
信号与线性系统
回忆一下在频域中,系统函数的定义: 回忆一下在频域中,系统函数的定义: 称为系统的频率特性, 关系为: 关系为 H( jω) 称为系统的频率特性,与h(t)关系为:
H( jω) = ∫ h(t )e jωt dt
∞
∞
1 jωt h( jω) = ∫ H( jω)e dt 2π ∞
返 回 E-mail:lynwindsent@ Tel:22896276
广东医学院生物医学工程教研室
信号与线性系统
6.2系统函数的零, 6.2系统函数的零,极点 系统函数的零
N ( s) 一,系统函数可以表示为 H ( s) = D( s) 分母多项式的根称为函数的极点, 分母多项式的根称为函数的极点,分子多项式的根称
(a s (b s
《信号与系统》课程讲义4-4
j 2
j1
j
0
1
复数极点 复数零点
j1
成对出现
j 2
§4.4 系统函数零极点∽时域特 性和稳定性
s( s 2)(s 3) [例1]: ② H ( s) ( s 1) 2
解: ② 极点: s = -1 (二阶) s = ∞ (一阶) 零点: s = 0 (一阶) s = -2(一阶) s = -3(一阶)
§4.4 系统函数零极点∽时域特 性和稳定性
s[( s 1)2 1] [例1]: ① H ( s) ( s 1)2 ( s 2 4)
解:
极点:s = -1 (二阶) s = j2 (一阶) s = -j2(一阶) 零点:s = 0 (一阶) s = 1+j1(一阶) s = 1-j1 (一阶) s = ∞ (一阶)
r (0 ) 1 ,r(0 ) 1 ,e(t ) u(t )
解:
s 1 1 H ( s) 2 s 3s 2 s 2 全部
固有频率
零、极点相消 丢失固有频率
1 1 1 1 1 1 Rzs ( s ) ( ) rzs (t ) (1 e 2t )u (t ) s2 s 2 s s2 2
10 40 10 t 10 t 10 v2 (t ) [ cos 4t sin 4t e ]u (t ) [ e cos(4t 76 )]u (t ) 17 17 17 17 17
自由响应 强迫响应
§4.4 系统函数零极点∽时域特 性和稳定性
三、H(s)极点与系统稳定性关系
n
pi t
K e
k 1 k
v
pk t
自由响应 强迫响应 (系统函数极点形成) (激励函数极点形成)
第7章_系统函数
n
a m ( z p i )
i1
第七章 系统函数
7.1 系统函数与系统特性
一、系统函数的零、极点分布图
极(零)点的分布类型:
✓ 一阶实极(零)点:位于 s 或 z 平面的实轴上
✓ 一阶共轭虚极(零)点:位于 s 或 z 平面虚轴上,且对称于实轴
✓ 一阶共轭复极(零)点:位于 s 或 z 平面上,并且对称于实轴
i 1
H(j
)bmB1B2 amA 1A2
Bej(12 m) m
Aej(12 m) m
H(j) bmB1B2 Bm
其中
amA1A2 Am
() (1 2 m ) - (1 2 m )
据模、辐角随 的变化,可绘出幅频特性曲线和相频特性曲线。
第七章 系统函数
7.1 系统函数与系统特性
7.2 系统的因果性与稳定性
二、系统的稳定性
例 y(k)+1.5y(k-1)-y(k-2)= f(k-1) (1) 若为因果系统,求h(k),并判断是否稳定。 (2) 若为稳定系统,求h(k).
解 H ( z ) 1 1 .5 z z 1 1 z 2 z 2 1 z . 5 z 1 ( z 0 .5 z )z ( 2 ) z 0 .4 0 z . 5 z 0 . 4 2 z
称 B() 0 的根 1,2, n为系统函数 H ( ) 的零点 。
第七章 系统函数
7.1 系统函数与系统特性
一、系统函数的零、极点分布图
系统函数可以写为:
m
H (s) B (s) A(s)
bm
(s j)
j1 n
a m ( s p i )
i1
m
H ( z)
B(z)
大连理工大学 信号与系统实验4 离散时间LIT系统分析 实验报告
大连理工大学实验报告学院(系):电信专业:电子信息工程班级:姓名:学号:组: 实验时间:实验室:创新园C221 实验台: 指导教师签字:成绩:实验四:离散时间LIT 系统分析一、实验结果与分析1.试用MATLAB 命令求解以下离散时间系统的单位冲激响应。
(1)[][][][][]34121y n y n y n x n x n +-+-=+-(2)[][][][]5611022y n y n n x n +-+-= 解:(1)a =[3 4 1];b=[1 1]; n=0:30;impz(b,a,30),grid ontitle('系统单位冲激响应h(n)')(2)a=[2.5 6 10];b=[1]; n=0:30;impz(b,a,30),grid ontitle('系统单位冲激响应h(n)')2.已知某系统的单位冲激响应为[][][]{}7108nh n u n u n ⎛⎫=-- ⎪⎝⎭,试用MATLAB 求当激励信号为[][][]5x n u n u n =--时系统的零状态响应。
解:定义函数conv_m 如下:function [y,ny]=conv_m(x,nx,h,nh)ny1=nx(1)+nh(1);ny2=nx(length(x))+nh(length(h)); ny=[ny1:ny2]; y=conv(x,h) 主程序: nx=-1:6; nh=-2:12;x=heaviside(nx)- heaviside (nx-5);h=(7/8).^nh.*( heaviside (nh)- heaviside (nh-10)); [y,ny]=conv_m(x,nx,h,nh); subplot(311)stem(nx,x,'fill'),grid on xlabel('n'),title('x(n)') axis([-4 16 0 3]) subplot(312)stem(nh,h','fill'),grid on xlabel('n'),title('h(n)') axis([-4 16 0 3]) subplot(313)stem(ny,y,'fill'),grid onxlabel('n'),title('y(n)=x(n)*h(n)') axis([-4 16 0 3])3.试用MATLAB 画出下列因果系统的系统函数零极点分布图,并判断系统的稳定性。
《信号与系统》实验报告
《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。
通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。
本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。
本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。
每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。
在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。
1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。
通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。
信号与系统——系统函数
36
对于非最小相移函数
(s s2 )(s s ) H b ( s) (s s1 )(s s ) * (s s2 )(s s ) (s s2 )(s s2 ) * (s s1 )(s s ) (s s2 )(s s2 )
* 2 * 1 * 2 * 1
st s j
e
jT
因果离散系统,若极点均在单位圆内,则在单位 圆上(|z|=1)也收敛
bm e
j 1
jT
z j
H (e jT )
e
n i 1
jT
pi
j
bm B1B2 ...Bme j 1 2 ...m A1 A2 ...An e j 1 2 ... n
1 极点:p1 , R1C1 1 p2 R2C 2 零点: z1 0 2/7/2019
-π/2
33
最小相移函数
零、极点均位于s平面左半开平面
* (s s2 )(s s2 ) H a ( s) * (s s1 )(s s1 )
极点位于s平面左半开平面,零点位于s平 面右半开平面
2/7/2019
11
几种典型情况
jω0
j
α
O
α
jω0
2/7/2019
12
2.离散系统:
Z平面:
单位圆内:p=-1/3,h(k)= (-1/3)k (k)
单位圆上:p=1,h(k)= (1)k(k),有限值. 单位圆外:p=2,h(k)= (2)k (k) →∞
Im[z] Z平面
→0
增幅
θ0 z 1 单位圆内
单位圆外
信号与系统的实验报告(2)
信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。
L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。
L=laplace(F,t)用t 替换结果中的变量s 。
F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。
F=ilaplace(L,x)用x 替换结果中的变量t 。
2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。
对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。
清华大学信号与系统课件第五章S域分析、极点与零点
2019/11/15
课件
22
本节作业
• 5-1,5-3,5-8,5-10, • 5-6*,5-9*,5-11* , • 5-13,
2019/11/15
课件
23
§5.2- 暂态响应与稳态响应
• 系统H(s)的极点一般是复数,讨论它们 实部和虚部对研究系统的稳定性很重要
• 不稳定系统 Repi0增幅
j
0
p1
h(t)
0
et t
H(s) 1
S
h(t) et
2019/11/15
课件
7
(2) 几种典型的极点分布——
(d)一阶共轭极点在虚轴上
j
p1 j1
h(t)
0
0
t
p 2 j1
H(s) 1
h(t)sin 1t.u(t)
2019/11/15
S 2
2
0 p1 t
H (s) 1 S
2019/11/15
h(t)u(t)
课件
5
(2) 几种典型的极点分布—— (b)一阶极点在负实轴
j
0
p1
h(t)
e t
t
H(s) 1
S
h(t) et
2019/11/15
课件
6
(2) 几种典型的极点分布—— (c)一阶极点在正实轴
幅度该变
相位偏移
2019/11/15
课件
34
H(j0)H0ej0
H(j)H(j)ej(j)
若 0 换成 变量
系统频率
特性
幅频特性 相位特性
2019/11/15
系统函数的零极点分布决定时域特性
目录1.引言 (2)2.虚拟仪器开发软件Labview入门 (3)2.1 Labview简介 (3)2.2 利用Labview编程完成习题设计 (3)3.利用LabVIEW实现系统函数的零极点分布决定时域特性的设计 (20)3.1系统函数的零极点分布决定时域特性的基本原理 (20)3.2系统函数的零极点分布决定时域特性的编程设计及实现 (22)3.3运行结果及分析 (23)4. 总结 (25)5.参考文献 (25)1.引言冲激响应h(t)与系统函数H(s) 从时域和变换域两方面表征了同一系统的本性。
在s 域分析中,借助系统函数在s平面零点与极点分布的研究,可以简明、直观地给出系统响应的许多规律。
系统的时域、频域特性集中地以其系统函数的零、极点分布表现出来。
主要优点:可以预言系统的时域特性;便于划分系统的各个分量(自由/强迫,瞬态/稳态);可以用来说明系统的正弦稳态特性。
2.虚拟仪器开发软件Labview入门2.1 Labview简介LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C 和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。
LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一种用图标代替文本行创建应用程序的图形化编程语言。
传统文本编程语言根据语句和指令的先后顺序决定程序执行顺序,LabVIEW 则采用数据流编程方式,程序框图中节点之间的数据流向决定VI及函数的执行顺序。
VI指虚拟仪器,是LabVIEW]的程序模块。
LabVIEW 提供很多外观与传统仪器(如示波器、万用表)类似的控件,可用来方便地创建用户界面。
用户界面在LabVIEW中被称为前面板。
使用图标和连线,可以通过编程对前面板上的对象进行控制。
《信号与系统》课程讲义4-5
§4.5系统函数零极点∽频响特性一、频响特性1.概念①系统在正弦信号激励下稳态响应随信号频率的变化情况②H (s )稳定系统0sin()m E t ω0()lim ()~ss t r t r t ω→∞=③包括:幅频特性、相频特性§4.5系统函数零极点∽频响特性00120012...j j n nK K K K K s j s j s p s p s p ωωωω−=++++++−−−−j e H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000−=−−⋅=⋅+=−−=−ϕωωωωωωje H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000ϕωωωωωω=⋅=⋅−==2.稳定系统的频响特性)()(220s H s E s R m zs ωω+=①系统响应:000()j H j H e ϕω=000()j H j H e ϕω−−=令则§4.5系统函数零极点∽频响特性0000()lim ()j t j tss zs j j t r t r t K e K e ωωωω−−→∞==+)sin()(2000)()(00000ϕωωωϕωϕ+=+−=++−t H E e e jE m t j j t j m 0000sin()sin()m ss m E t r E H t ωφωφϕ+→=++②0000cos()cos()m ss m E t r E H t ωφωφϕ+→=++§4.5系统函数零极点∽频响特性③ωω()H s 当正弦激励信号频率改变时,将代入得到频率响应()()()|()j s j H j H s H j e ϕωωωω===幅频特性相频特性§4.5系统函数零极点∽频响特性[例1]求系统的稳态响应22()3()2()2()3()d d dr t r t r t e t e t dt dt dt ++=+()sin cos 2e t t t=+解:222323()()3232s j H s H j s s j ωωωω++=→=+++−2(arctan arctan3)33213(1)1310j j H j ej −+==+4(arctan arctan3)32345(2)26210j j H j ej π−−+==−+()ss r t 13251()sin(arctan arctan 3)cos(2arctan arctan 3)10332210ss r t t t π=+−++−−§4.5系统函数零极点∽频响特性c ωω()H j ωc c ωωωω<⎫⎬>⎭时,网络允许信号通过低通特性时,网络不允许信号通过cωω()H j ωc c ωωωω<⎫⎬>⎭时,网络不允许信号通过高通特性时,网络允许信号通过1c ω2c ωω()H j ω带阻特性3.滤波网络分类:幅频特性1c ω2c ωω()H j ω带通特性1c ω§4.5系统函数零极点∽频响特性1111()()()()()()mmj j j j nniii i K s z K j z H s H j s p j p ωωω====−−=→=→−−∏∏∏∏Oσ⋅×ip jz iθj ψj ωi M jN ,j i z p 频率特性取决于零、极点的分布4.频响特性的S 平面几何分析法()H j ωjj j j j z N eψω−=ij i i j p M eθω−=→令§4.5系统函数零极点∽频响特性121212121212[()()]1212()()()m nm n j j j m j j j n j m nj N e N e N e H j KM e M e M e N N N KeM M M H j e ψψψθθθψψψθθθϕωωω+++−+++=== 1212()()()m n ϕωψψψθθθ=+++−+++ 1212()m nN N N H j KM M M ω= 其中Oσ⋅×ip jz iθj ψj ωiM jN §4.5系统函数零极点∽频响特性RC 21()()11()V s R sH s V s R s sC RC ===++CR++-1v -2v 【例2】研究图示的高通滤波网络的频响特性10z =零点:11p RC=−极点:解:转移函§4.5系统函数零极点∽频响特性()|()s j H s H j ωω==11()1211()j j j N e V H j e M e V ψϕωθω==→211111,()V N V M ϕωψθ==−O ×j ω1M 1N 1θ190ψ=σ1RC−以矢量因子表示为1211111110,000,90()90N V N M RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩0ω=时,§4.5系统函数零极点∽频响特性121111111222,2245,90()45N V N M RC RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩ 1211111190,90()0N V M V θψϕω⎧→⇒→⎪⎨⎪→=→=⎩1RC ω=时,此点为高通滤波网络截止频率点ω→∞时,45 901RCω()ϕωO ()H j ω221§4.5系统函数零极点∽频响特性s RC 21()()()V j H j V j ωωω=1122R C R C ++-1v -2v C1R1C2R2++--3v 3kv 【例3】由平面几何法研究下图所示二阶系统的频响特性,,且§4.5系统函数零极点∽频响特性1311211112112223221()()1()()11()()()()()1sC V s V s R V s k s sC H s V s R C s s R R C R C V s kV s R sC ⎧⎪⎪=⎪+⎪⇒==⎨⎪++⎪=⎪+⎪⎩i 1121122110;,z p p R C R C ==−=−O ×j ω1M 1N 1θ190ψ= σ111R C −×2M 2θ221R C−解:零、极点为:1122R C R C 由于221R C −,所以靠近原点,111R C −离开较远。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)2
在虚轴上
h(t) t sin ωtu(t),t ,h(t) 增幅振荡
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
几种典型情况
j
jω0
α
O
jω0
α
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
总体来说,系统函数 H(极s) 点 p 对 时j域响应特性关系如下
k 1
j zr
则系统的幅频特性为
H () K
r 1 n
j pk
k 1
m
n
系统的相频特性为 () arg j zr arg j pk
r 1
k 1
令
j zr Nre jr
j pk M k e jk
有
m
( j zr )
m
(s zj)
K
j 1 n
(s pk )
k 1
在复平面上,零点用“o”表示,
极点用“×”表示,标出系统的
零极点的位置,称为系统的
零极点图
z1, z2 , , zm 是系统零点
p1, p2 , , pn 是系统极点
j
0
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
信号与系统
5.7.2 系统零极点与冲激响应模式的关系
1、极点的影响
H (s)
1 s2
极点在原点
h(t) tu(t),t , h(t)
重 极
H
(s)
(s
1 a)2
Байду номын сангаас
极点在实轴上
点 h(t) t et u(t),α 0,t ,h(t) 0
H
(s)
2ωs (s2 ω2
5.7.1 系统函数零极点定义
系统函数零点:使 H (s) 0的 s 值。
系统函数极点:使 H (s) 的 s 值。
对系统函数分子分母多项式进行因式分解得
H (s) K (s z1)(s z2 )L (s zm ) (s p1)(s p2 )L (s pn )
1、极点的影响
H(s) 1 , s
p1 0 在原点 h(t) L1[H (s)] u(t)
H(s) 1 , sa
p1 a
单
a 0 在左实轴上,h(t) eat u(t) ,指数衰减
极
a 0 在右实轴上,h(t) eat u(t), a 0 指数增长
r1 n
() r r ( j pk )
r1
k 1 k 1
m
( j zr )
m
Nre jr
H () H (s) K s j
r 1 n
K
r 1 n
( j pk )
M ke jk
k 1
k 1
将 j zr j pk 都看作是两矢量之差,
m
N re jr
H () K
r 1 n
K
r 1 n
( j pk )
M k e jk
k 1
k 1
信号与系统
五.零极点与系统频率响应的关系
所以幅频特性为
m
Nr
H () K
r 1 n
Mk
k 1
相频特性为 m
( j zr )
H () H (s) K m s j n
系统零极点与系统时域响应的关系
2、零点的影响
系统零点分布只影响系统时域响应的幅度和相位,对时域响应模式没有 影响。比如已知系统函数及相应响应
H1 (s)
(s
s 1 1)2
32
s4 H2 (s) (s 1)2 32
h1(t) L1[H1(s)] et cos(3t)u(t)
用零极点形式表示为 m
( j zr )
H () H (s) K s j
r1 n
( j pk )
k 1
信号与系统
5.7.3
m
系统零极点与系统频率响应的关系( j zr )
H () H (s) K s j
r1 n
( j pk )
m
点
ω
H(s)
,
s2 ω2
p1,2 jω在虚轴上
h(t) sin ωtu(t) 等幅振荡
H
(s)
(s
ω α)2
ω2
p1 α jω
p2 α j 共轭根
当 α 0 ,极点在左半平面,衰减振荡 h(t) et sin ωtu(t) 当 α 0 ,极点在右半平面,增幅振荡 h(t) et sin ωtu(t)
信号与系统
系统函数的应用
求系统的零状态响应:
方法一: H (s) h(t) y(t) x(t) h(t)
方法二: Y (s) H (s)X (s) y(t)
即 x(t)
X (s)
H (s)X (s)
L
H (s)
L-1
yZS (t)
信号与系统
§5.7系统函数的零极点分析
信号与系统
信号与系统
五.零极点与系统频率响应的关系
例:已知系统的零极点图如图所示,定性画出各系统对应的幅频特性
j
j
j
0
(a) j
0
(b) j
0
(c) j
0
(d )
0
(e)
0
(f)
信号与系统
五.零极点与系统频率响应的关系
解:对应系统的幅频特性为
j
H ()
0
j
0
H ()
0
信号与5系.7统.3二系、系统统函零数极的极点点与、零系点与统系频统频率率响特性应的关的系关系
频率特性 频率特性指系统在正弦信号激励下稳态响应随信号频率的变化情况。 实际上就是系统的傅里叶变换
主要是指幅频特性和相频特性。
在系统是稳定的前提下,系统频率响应和系统函数的关系为
H () H (s) s j
(1)极点的实部 决定了时域响应指数衰减或增长的快慢,
离虚轴越远,指数衰减或增长越快,所以称为衰减因子,
若 ,0响应为衰减形式,若 ,响 0应为增长形式,若 ,
响应振幅0 为常数。
(2)极点的虚部 决定了振荡的快慢, 离实轴越远,振
荡越快,称为振荡频率。若 ,响0应不振荡。
信号与系统
将矢量图画在复平面内
信号与系统
五.零极点与系统频率响应的关系
零点: j zr Nre jr
Nr
zr
r
jω
σ O
极点: j pk M k e jk
k pk
zr
Mk
Nr r
jω
σ O
信号与系统
五.零极点与系统频率响应的关系
定性地画系统的幅频特性时 的规律:
(1)在原点 j 0是否有零点,若有,则 H (0) 0 否则 H ()
h2 (t) L1[H2 (s)] et cos(3t)u(t) et sin(3t)u(t) et[cos(3t) sin(3t)]u(t) et 2 sin(3t 45o )u(t)
两系统函数仅是零点不同,它们对应的冲激响应仅是响应幅度和相位不同, 响应波形的模式均为衰减振荡模式
0
信号与系统
五.零极点与系统频率响应的关系
j
H ()
0
j
0
0
H ()
0
信号与系统
五.零极点与系统频率响应的关系
j
H ()
0
j
0
H ()
0
0
信号与系统
【例 5-7-3】非常详细,自学。
(4) 虚轴若有零点zr jr ,则当 j 通过零点zr jr 时,
H () 0
(5) 虚轴若有极点 pk jk ,则当 j 通过极点 pk jk 时,
H ()
(6) 在 j 处主要看零点极点的个数,
若零点比极点多,则 H () 若极点比零点多,则 H () 0 若零点和极点一样多,则 H () 为某一有限值。
从某一数值开始。
(2)当点 j 沿正虚轴向上移动时,如果点 j 离零点越来越近时,
则 H () 越来越小,反之,H () 越来越大。
(3)当点 j 沿正虚轴向上移动时,如果点 j 离极点越来越近时,
则 H () 越来越大,反之,H () 越来越小。
信号与系统
五.零极点与系统频率响应的关系