(完整)人教版数学七年级上册相反数和绝对值练习题
七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)
2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。
人教版七年级数学上册第一章 专题训练(一) 数轴、相反数与绝对值的应用
8.如图所示,一个单位长度表示2,观察图形,回答问题: (1)若B与D所表示的数互为相反数,则点D所表示的数为多少? (2)若A与D所表示的数互为相反数,则点D所表示的数为多少? (3)若B与F所表示的数互为相反数,则点D所表示的数的相反数为多少?
解:(1)因为B与D所表示的数互为相反数,且B与D之间有4个单位长度, 每个为2,所以可得点D所表示的数为4 (2)同理A与D所表示的数互为相反数,且它们之间距离为10, 所以点D表示的数为5 (3)B与F所表示的数互为相反数,B,F两点间距离为12, 可得C,D中间的点为原点,则D表示的数为2,它的相反数为-2
15.(1)式子|m-3|+6的值随m的变化而变化, 当m为何值时,|m-3|+6有最小值?最小值是多少? (2)当a为何值时,式子8-|2a-3|有最大值?最大值是多少? 解:(1)当m-3=0,即m=3时,|m-3|+6有最小值,最小值为6
(2)当 2a-3=0,即 a=32 时,8-|2a-3|有最大值,最大值为 8
解:(1)因为|a|=5,|b|=2,所以a=5或-5,b=2或-2, 由数轴可知,a<b<0,所以a=-5,b=-2 (2)表示a,b两数的点之间的距离为3
(3)①当点 C 在点 B 右侧时,根据题意,可知点 C 到点 B 距离为32 , 则点 C 表示的数为-12 ; ②当点 C 在点 B 左侧时,根据题意,可知点 C 到点 B 距离为34 , 则点 C 表示的数为-141 . 综上所述,点 C 表示的数为-12 或-141
用“<”把各数连接起来为-2.5<-|-2|<0<12 <2<-(-3)
3.有理数a,b,c在数轴上的对应点如图所示:
(1)在横线上填入“>”或“<”; a__<__0,b_>___0,c_<___0,|c|__<__|a|; (2)试在数轴上找出表示-a,-b,-c的点; (3)试用“<”号将a,-a,b,-b,c,-c,0连接起来. 解:(2)略 (3)a<-b<c<0<-c<b<-a
人教版七年级数学上册练习题
人教版七年级数学上册练习题数轴、相反数、绝对值巩固练习一、填空题:1.若上升5 m 记作+5 m,则-8 m 表示 ;如果-10元表示支出10元,那么+50元表示 ;如果零上5℃记作+5℃,那么零下2℃记作 ;太平洋中的马里亚纳海沟深达11 034 m,可记作海拔-11 034 m (即低于海平面11 034 m ),则比海平面高50 m 的地方,它的高度记作海拔 ,比海平面低30 m 的地方,它的高度记作海拔 .2.(实验月考)在数轴上大于-4.12的负整数有 .3.(阳光月考)到原点的距离等于3的数是 .4.(外中月考)数轴上表示-2和+10的两个点分别为A,B,则A,B 两点间的距离是 .5. (二中月考 )在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N,则点N 表示的数是 .6.(三中月考)已知数轴上点A 与原点的距离为2,则点A 对应的有理数是 ,点B 与点A 之间的距离为3,则点B 对应的有理数是 .7.填空:5.3-= ; 21+= ; 5--= ; 若x<0,则x = ,x -= ; 若m<n,则m n -=. 8.(育才月考)若3a =,则a= ;若3a -=,则a= ; 若2a -=,a<0,则a= ;若a b =,b=7,则a= ; 若a b =,b=7,a ≠b,则a= . 9.填空:(1)311--= -311 ;(2)2.42.4--= - = ; (3)53++-= + = ; (4)22--+=| - |= ; (5)3 6.2-⨯= × = ; (6)21433-÷-= = = . 10.把下列各数填入它所在的集合里: 2,7,32-,0,2 018,0.618,3.14,-1.732,-5,+3①正数集合:{ } ②负数集合:{ } ③整数集合:{ } ④非正数集合:{ } ⑤非负整数集合:{ } ⑥有理数集合:{ } 二、选择题:11.(外中月考)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B-3 C .+3 D .+412.(实验月考)某超市出售的三种品牌的洗衣液袋上分别标有净重为(800±2) g,(800±3) g,(800±5) g 的字样,从中任意拿出两袋,它们的质量最多相差( ) A .10 g B .8 g C .7 g D .5 g13.(市直期末)a,b 为有理数,在数轴上的位置如图所示,则下列关于a,b,0三者之间的大小关系,正确的是( )aA .0<a<bB .a<0<bC .b<0<aD .a<b<014.(三中月考)文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A .玩具店 B .文具店 C .文具店西边40米 D .玩具店东边60米15.(育才月考)下列各组数中,互为相反数的是( ) A .0.4与-0.41 B .3.8与-2.9 C .)8(--与8- D .)3(+-与(3)+- 16.(实验月考)下列化简不正确的是( ) A .( 4.9) 4.9--=+ B .( 4.9) 4.9-+=- C .[]( 4.9) 4.9-+-=+ D .[]( 4.9) 4.9+-+=+ 17.(外中月考)下列各数中,属于正数的是( ) A .)2(-+ B .3的相反数 C .)(a -- D .-3的相反数 18.(三中月考)有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数 19.(阳光月考)下列说法正确的是( ) A .一个数的绝对值一定大于它本身 B .只有正数的绝对值等于它本身 C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数 20.(市直期末)若x x =-,则x 的取值范围是( ) A .1x =- B .0x = C .x ≥0 D .x ≤0 三、解答题:21.(市直期中22.请判断下列说法的正误.(对的打“√”,错的打“×”)(1)所有的有理数都能用数轴上的点表示。
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。
【初中数学】人教版七年级上册第1课时 绝对值 (练习题)
人教版七年级上册第1课时绝对值(150)1.已知点M,N,P,Q在数轴上的位置如图所示,则其中对应的数的绝对值最大的点是()A.MB.NC.PD.Q2.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.−4B.−2C.0D.43.一个数a在数轴上的对应点在原点左边,且|a|=4,则a的值为()A.4或−4B.4C.−4D.以上都不对4.下列判断正确的有()①有理数的绝对值一定是正数; ②如果两个数的绝对值相等,那么这两个数相等; ③绝对值等于它本身的数一定不是负数; ④绝对值等于1的数有两个A.1个B.2个C.3个D.4个5.计算:(1)|−35|+|+21|+|−27|;(2)|−345|−|−45|+|−312|(3)|−49|×|−217|.6.出租车司机小李某天下午的营运全是在东、西走向的人民大街进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,−3,+14,−11,+10,若汽车耗油量为0.06升/千米,则这天下午汽车共耗油多少?7.数学老师出了如下一道计算题,孙良看了看说:“这么多数怎么算啊?”请聪明的你来帮他解决吧!写出你的解题过程.计算:|1−12|+|12−13|+|13−14|+|1 4−15|+…+|12016−12017|+|12017−12018|.8.−2017的绝对值是()A.−2017B.2017C.12017D.−120179.|−15|等于()A.−15B.15C.5D.−510.一个数的绝对值等于3,这个数是()A.3B.−3C.±3D.1311.如图,数轴上有A,B,C,D四个点,其中表示的数的绝对值等于2的点是()A.点AB.点BC.点CD.点D12.下列说法正确的是()A.绝对值等于它本身的数只有0B.绝对值等于它本身的数是正数C.绝对值等于它本身的数有0和正数D.绝对值等于它本身的数的相反数是负数13.求−2,−13,7.2,0,8的绝对值.14.已知x=8,y=−2,求|x|−4|y|的值.15.已知零件的标准直径是100mm,超过标准直径的数量(mm)记作正数,不足标准直径的数量(mm)记作负数,检验员某次抽查了五件样品,检查结果如下:(1)试指出哪件样品的大小最符合要求;(2)如果规定误差的绝对值在0.18mm之内是正品,误差的绝对值在0.18mm~0.22mm之间是次品,误差的绝对值超过0.22mm是废品,那么这五件样品分别属于哪类产品?16.|−13|的相反数是()A.13B.−13C.3D.−317.数轴上表示2的点到原点的距离是,所以|2|=;数轴上表示−2的点到原点的距离是,所以|−2|=;数轴上表示0的点到原点的距离是,所以|0|=.参考答案1.【答案】:D【解析】:因为点Q到原点的距离最远,所以点Q对应的数的绝对值最大2.【答案】:B【解析】:设A,B表示的数分别为a,b,则|a|=|b|=2.又因为a<b,所以a=−2,b=2,所以答案选B3.【答案】:C【解析】:数a在数轴上的对应点在原点的左边,则a为负数,且|a|=4,所以a=-4.4.【答案】:B【解析】:①不正确,因为0的绝对值是0;②不正确,这两个数还可能互为相反数;③正确,因为负数的绝对值等于它的相反数;④正确,因为1和−1的绝对值都等于1.5(1)【答案】原式=35+21+27=83(2)【答案】原式=345−45+312=612(3)【答案】原式=49×157=1056.【答案】:共行驶:|+15|+|−3|+|+14|+|−11|+|+10|=15+3+14+11+10=53(千米),所以共耗油:53×0.06=3.18(升).答:这天下午汽车共耗油3.18升【解析】:共行驶:|+15|+|−3|+|+14|+|−11|+|+10|=15+3+14+11+10=53(千米),所以共耗油:53×0.06=3.18(升).答:这天下午汽车共耗油3.18升7.【答案】:原式=1−12+12−13+13−14+…+12016−12017+12017−12018=1−12018=20172018【解析】:原式=1−12+12−13+13−14+…+12016−12017+12017−12018=1−12018=201720188.【答案】:B【解析】:因为−2017到原点的距离为2017,所以−2017的绝对值为2017.故选 B9.【答案】:B10.【答案】:C【解析】:因为a =3,所以a =±3.故选C .11.【答案】:A【解析】:绝对值等于2的数是−2和2, ∴表示的数的绝对值等于2的点是点A . 故选A12.【答案】:C13.【答案】:|−2|=2,|−13|=13,|7.2|=7.2,|0|=0,|8|=8.【解析】:略14.【答案】:当x =8,y =−2时,|x|−4|y|=|8|−4×|−2|=0【解析】:当x =8,y =−2时,|x|−4|y|=|8|−4×|−2|=015(1)【答案】因为|0.1|=0.1,|−0.15|=0.15,|−0.2|=0.2,|−0.05|=0.05,|−0.25|=0.25, 又因为0.05<0.1<0.15<0.2<0.25, 所以第4件样品的大小最符合要求(2)【答案】因为|0.1|=0.1<0.18,|−0.15|=0.15<0.18,|−0.05|=0.05<0.18,所以第1,2,4件样品是正品; 因为|−0.2|=0.2,0.18<0.2<0.22,所以第3件样品是次品; 因为|−0.25|=0.25>0.22,所以第5件样品是废品16.【答案】:B【解析】:因为|−13|=13,13的相反数是−13,所以|−13|的相反数是−13.故选 B17.【答案】:2;2;2;2;0;0【解析】:根据绝对值的性质即可解答.。
七年级数学上册《数轴、相反数、绝对值》专题练习(含答案)
七年级数学上册《数轴、相反数、绝对值》专题练习(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.-5的绝对值为( )A.-5 B.5 C.-15D.152.-18的相反数是( )A.-8 B.18C.0.8 D.83.在下面所画的数轴中,你认为正确的数轴是( )4.下列说法正确的是( )A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为( )A.-3 B.5 C.6 D.7 6.若a=7,b=5,则a-b的值为( )A.2 B.12C.2或12 D.2或12或-12或-2 7.实数a,b在数轴上的位置如图所示,以下说法正确的是()A . a +b =0B . b <aC . a b >0D . |b |<|a |8.下列式子不正确的是 ( )A .44-=B .1122=C .00=D . 1.5 1.5-=-9.如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子a -b +c 2-d 的值是 ( )A .-2B .-1C .0D .110.如果abcd<0,a +b =0,cd>0,那么这四个数中的负因数至少有 ( )A .4个B .3个C .2个D .1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数. 13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A ,B 表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x 的值,使1x -=x -1成立,你写出的x 的值是______.17.若x ,y 是两个负数,且x<y ,那么x _______y .18.如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB =BC ,若a >b >c ,则该数轴的原点O 的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6.3),+(-32),12,312.20.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-132,4 ,2.5,0,1,-(-7),-5,-112.21.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x-=1,这样的数x可以是0或2.1x-=2的几何意义可仿上解释为:在数轴上____________________________,(1)等式2其中x 的值可以是______________.(2)等式3x +=2的几何意义可仿上解释为:在数轴上____________________________,其中x 的值可以是______________.(3)在数轴上,表示数x 的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x 的相反数是_______,m +12n 的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=12(2+6),那么到点100和到点999距离相等的点表示的数是_______;到点m 和点-n 距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m 和点n 之间的距离是_______.25.(6分)设0a b c ++=,0abc >,求b c c a a b a b c+++++的值。
七年级数学上册相反数与绝对值练习题(进阶篇)
七年级数学上册相反数与绝对值练习题
(进阶篇)
1. 相反数练题
1. 求下列数的相反数:
a) -3
b) 5
c) -7
d) 12
2. 如果一个数的相反数是15,这个数是多少?
3. 如果两个数的和为0,它们互为相反数。
找出与下列数互为相反数的数:
a) 9
b) -2
c) 0
4. 如果一个数的相反数是它自身的2倍,这个数是多少?
2. 绝对值练题
1. 求下列数的绝对值:
a) 4
b) -9
c) 0
d) -2.5
2. 如果一个数的绝对值是25,这个数可能是多少?
3. 绝对值是正数,求下列数的绝对值所代表的数的符号:
a) -6
b) 0
c) 3
4. 如果两个数的绝对值相等,它们有可能是相反数吗?
3. 相反数与绝对值综合练题
1. 求下列数的相反数,并计算其绝对值:
a) 10
b) -15
c) 7
d) -3.5
2. 如果一个数的相反数的绝对值是20,这个数可能是多少?
3. 互为相反数且绝对值相等的两个数是什么?
4. 如果一个数的相反数的绝对值是它自身的2倍,这个数是多少?
以上是七年级数学上册相反数与绝对值的进阶练习题。
希望能
够帮助你巩固理解和运用相反数与绝对值的概念。
如果有任何问题,请随时向我提问。
祝你学习顺利!。
七年级相反数和绝对值练习题(完整资料).doc
此文档下载后即可编辑七年级数学相反数和绝对值测试题班级 姓 名 得分一、选择题(每题3分,共30分)1、有一种记分法,80分以上如85分记为+5分.某学生得分为72分,则应记为( )A .72分B .+8分C .-8分D .-72分2. 下列各数中,互为相反数的是( ) A 、│-32│和-32B 、│-23│和-32C 、│-32│和23D 、│-32│和32 3. 下列说法错误的是 ( ) A 、一个正数的绝对值一定是正数 B 、一个负数的绝对值一定是正数 C 、任何数的绝对值都不是负数 D 、任何数的绝对值 一定是正数 4、若向西走10m 记为-10m ,如果一个人从A 地出发先走+12m 再走-15m ,又走+18m ,最后走-20m ,则此人的位置为 ( )A .在A 处B .离A 东5mC .离A 西5mD .不确定5、一个数的相反数小于它本身,这个数是 ( )A.任意有理数B.零C.负有理数D.正有理数6. │a│= -a,a一定是()A、正数B、负数C、非正数D、非负数7. 下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
8.下列说法中,正确的是().(A)|-a|是正数(B)|-a|不是负数(C)-|a|是负数(D)不是正数9、如图所示,用不等号连接|-1|,|a|,|b|是()A.|-1|<|a|<|b| B.|a|<|-1|<|b|C.|b|<|a|<|-1| D.|a|<|b|<|-1|10. -│a│= -3.2,则a是()A、3.2B、-3.2C、 3.2D、以上都不对二、填空题(每题3分,共30分)11. 如a = +2.5,那么,-a=如果-a= -4,则a=12. ―(―2)= ;与―[―(―8)]互为相反数.13. 如果a 的相反数是最大的负整数,b的相反数是最小的正整数,a+b= .14. a -b的相反数是.15. 如果a 和b是符号相反的两个数,在数轴上a所对应的数和b所对应的点相距6个单位长度,如果a=-2,则b 的值为.16. 在数轴上与表示3的点的距离等于4的点表示的数是_______.17、如果将点B向左移动3个单位长度,再向右移动5个单位长度,这时点B表示的数是0,那么点B原来表示的数是____________.18. 若a,b互为相反数,则|a|-|b|=______.19.若,3=x则_____=x;若,3=xx;若,3=x且0<x;则_____=且0>x,则_____x;=20. 若a为整数,|a|<1.999,则a可能的取值为_______.三、解答题(共40分)31. 计算│0.25│×│+8.8│×│-40│(6分)。
人教版 七年级数学上册 绝对值以及相反数题型
绝对值的七种常见的应用题型已知一个数求这个数的绝对值1.化简: (1)|-(+7)|=_______; (2)-|-8|=_______;(3)⎪⎪⎪⎪-⎪⎪⎪⎪+47=_______; (4)-|-a| (a <0)=_______. 已知一个数的绝对值求这个数2.若|a|=2,则a =________.3.若|x|=|y|,且x =-3,则y =____________.4.绝对值不大于3的所有整数为_______________________.5.若|-x|=-(-8),则x =__________,若|-x|=|-2|,则x =____________.绝对值在求字母的取值范围中的应用6.如果|-2a|=-2a ,则a 的取值范围是( ) A .a>0 B .a ≥0 C .a ≤0 D .a<0 7.若|x|=-x ,则x 的取值范围是____________.8.若|x -2|=2-x ,则x 的取值范围是___________________.绝对值在比较大小中的应用9.把-(-1),-23,-⎪⎪⎪⎪-45,0用“>”连接___________________________. 绝对值非负性在求字母值中的应用10.(1)已知|a|=5,|b|=8,且a<b ,则a =________,b =________;(2)有理数a ,b 在数轴上的位置如图所示,若|a|=4,|b|=2,则a =________,b =________.(第10题)11.若⎪⎪⎪⎪a -12+⎪⎪⎪⎪b -13+⎪⎪⎪⎪c -14=0,求a +b -c 的值.绝对值非负性在求最值中的应用12.根据|a|≥0这条性质,解答下列问题:(1)当a =________时,|a -4|有最小值,此时最小值为________; (2)当a =_______时,|a -1|+3有最小值,这个最小值为________ (3)当a 取何值时,4-|a|有最大值?这个最大值是多少?绝对值在实际中的应用13.某工厂生产一批零件,零件质量要求为“零件的长度可以有0.2 cm 的误差”.现抽查5个零件,超过规定长度的厘米数记为正,不足规定长度的厘米数记为负,检查结果如下表:零件号数 ① ② ③ ④ ⑤ 数据+0.13-0.25+0.09-0.11+0.23(1)指出哪些零件是合格产品(即在规定误差范围内);(2)在合格产品中,几号产品的质量最好?为什么?试用绝对值的知识说明.数轴在有理数中五种常见应用用数轴表示有理数14.如图,在数轴上表示数-2的点是( ) A .P B .Q C .M D .N15.如图,数轴上点M 表示的数是________.16.如图,在没有标出原点的数轴上每相邻两刻度之间的距离为1个单位长度,A ,B ,C ,D 四点表示的有理数都是整数,若A,B表示的有理数a,b满足2b+a=4,那么数轴的原点只能是A,B,C,D四点中的哪个点?为什么?(第3题)用数轴表示相反数17.数轴上的点A到原点的距离为9,则点A表示的数是()A.9 B.-9 C.9或-9 D.4.5或-4.518.已知有理数a,-3,b在数轴上对应的点的位置如图所示,在数轴上标出a,-3,b的相反数对应的点.用数轴表示绝对值19 .如图,数轴的单位长度为1,如果点B表示的数的绝对值是点A表示的数的绝对值的3倍,那么点A表示的数是____________.20.已知x是整数,且3≤|x|<5,则x=______________.用数轴比较有理数的大小21.如图,点A,B,C,D在数轴上表示的数分别是a,b,c,d,则这四个数中最大的一个是_______.22.如图,数轴上A,B两点分别表示数a,b,则|a|与|b|的大小关系是()A.|a|>|b| B.|a|=|b| C.|a|<|b| D.无法确定23.将下列各数在数轴上表示出来,并用“<”将它们连接起来.-5.5,4,-2,3.25,0,-1.用数轴说明覆盖整点问题24.数轴上表示整数的点称为整点,某数轴的单位长度是1 cm,若在该数轴上随意画出一条长为2 016 cm的线段AB,则线段AB盖住的整点有________个?答案1.解:(1)原式=7.(2)原式=-8. (3)原式=47.(4)原式=a.2.±2 3. ±3 4. 0,±1,±2,±35.±8;±2 6. C 7.x≤08 .x≤29.-(-1)>0>-23>-⎪⎪⎪⎪-4510.解:(1)±5;8 (2)a =4,b =±2. 11.解:由题意得a =12,b=13,c =14.所以a +b -c =12+13-14=712.12.解: (1)4;0(2)因为|a -1|≥0,所以当a =1时,|a -1|+3有最小值.这个最小值是3. (3)因为|a|≥0,所以-|a|≤0,所以当a =0时,4-|a|有最大值,这个最大值是4.13.解:(1)因为|+0.13|=0.13<0.2,|-0.25|=0.25>0.2,|+0.09|=0.09<0.2,|-0.11|=0.11<0.2,|+0.23|=0.23>0.2,所以①③④号零件是合格产品.(2)在合格产品中,③号产品的质量最好.因为|+0.09|<|-0.11|<|+0.13|.所以质量最好的产品是③号零件.14.B 15.116.解:D 点.理由如下:若点C 为原点,则A 表示1,B 表示6,则2b +a =13,不符合题意;若A 为原点,则A 表示0,B 表示5,则2b +a =10,不符合题意;若D 为原点,则A 表示-2,B 表示3,则2b +a =4,符合题意;若B 为原点,则A 表示-5,B 表示0,则2b +a =-5,不符合题意.故D 点为原点.17.C18.解:如图所示.19.-1或220.-4或-3或3或4 点拨:首先在数轴上找到符合条件的所有有理数的范围,再从其中选出整数.如图,阴影部分就是绝对值小于5,而不小于3的所有有理数的范围,观察可知,其中包含的整数有-4,-3,3,4.(第7题)21.b 22.A23.解:如图所示.(第10题)所以-5.5 <-2<-1<0<3.25<4.24.分析:线段 的长 端点为整点 端点不为整点 1 cm 盖住2个整点 盖住1个整点 2 cm 盖住3个整点盖住2个整点… … … n cm 盖住(n +1)个 整点盖住n 个整点解:(1)当长度为2 016 cm 的线段AB 的两端点A 与B 均为整点时,线段AB 盖住的整点有2 016+1=2 017(个).(2)若A 点不是整点,则B 点也不是整点,即当长度为2 016 cm 的线段AB 的两端点A 与B 均不为整点时,线段AB 盖住的整点有2 016个.综上所述,线段AB 盖住的整点有2 017个或2 016个.。
新人教版七年级上册有理数、数轴、相反数、绝对值数学测试试卷
新人教版七年级上册有理数、数轴、相反数、绝对值数学测试试卷一、选择题(每题3分,共45分)1、下列既不是正数又不是负数的是( )A 、-1B 、+3C 、0.12D 、02、下列说法正确的是( )A 、整数就是正整数和负整数B 、分数包括正分数、负分数C 、正有理数和负有理数组成全体有理数D 、一个数不是正数就是负数。
3、下列一定是有理数的是( )A 、πB 、aC 、a+2D 、72 4、 如图所示,点M 表示的数是( )A. 2.5B.C.D. 1.55、下列说法正确的是( )A. 有原点、正方向的直线是数轴B. 数轴上两个不同的点可以表示同一个有理数C. 有些有理数不能在数轴上表示出来D. 任何一个有理数都可以用数轴上的点表示6、数轴上原点及原点右边的点表示的数是( )A. 正数B. 负数C. 非负数D. 非正数7、 数轴上点M 到原点的距离是5,则点M 表示的数是( )A. 5B.C. 5或D. 不能确定8、 在数轴上表示的点中,在原点右边的点有( ) A. 0个 B. 1个 C. 2个 D. 3个9、下列几组数中是互为相反数的是 ( )A ―17和0.7 B 13和―0.333 C ―(―6)和6 D ―14和0.25 10、一个数在数轴上所对应的点向左移6个单位后,得到它的相反数的点,则这个数是( )A 3B - 3C 6D -611、一个数是7,另一个数比它的相反数大3.则这两个数的和是( )A -3B 3C -10D 1112、若a=-3,则-a=( )A. -3B. 3C. -3或3D. 以上答案都不对13、下列各组数中,互为相反数的是( )A. ∣-32∣与-32B. ∣-32∣与-23C. ∣-32∣与32D. ∣-32∣与23 14、下列各式中,正确的是( )A. -∣-16∣>0B. ∣0.2∣>∣0.2∣C. -74>- 75D.∣-6∣<0 15、在-0.1,-21,1,21这四个数中,最小的一个数是( ) A. -0.1 B. -21 C. 1 D. 21 二、填空(每小题3分,共36分)1、 最大的负整数是___________;小于3的非负整数有______________________。
人教版 七年级数学上册 第1章 数轴、相反数和绝对值 专题练习(含答案)
人教版七年级数学上册第1章数轴、相反数和绝对值专题练习(含答案)例1:若(a-1)2 +||b-2=0,则以a、b为边长的等腰三角形的周长为_________.例2:若实数a、b满足04|2|=-++ba,则ba2= .例3:若实数、y满足|4|80x y-+-=,则以x、的值为边长的等腰三角形的周长为。
例4:已知8,2,a b a b b a==-=-,则a b+的值是()1066101010A B C D---、、、或、或题型精练1、如图5-1,数轴上点P表示的数可能是()77 3.210A B C D---、、、、2、如图5-2,数轴上的点A表示的数为a,则1a等于()A、12-B、12C、-2D、23、如图5-3,若将三个数3-,7,11表示在数轴上,其中能被如图所示的阴影覆盖的数是.4、如图5-4,在数轴上点A和点B之间表示的整数点有_________个.x y-201P-3-123图5-1图5-2-201-3-123图5-3图5-4BA2-75、如图5-5,数轴上两点A 、B 分别表示实数a 、b ,则下列四个数中最大的一个数是 ( ) A 、aB 、C 、1aD 、1b6、如图5-6,数轴上表示数3的点是_______________.7、实数a ,在数轴上对应点的位置如图5-7所示,则a (填“<”、“>”或“=”) .8、实数a 、两数在数轴上的位置如图5-8所示,下列结论正确的是 ( )0A a b B a b ->+>、、 00C a b D b a -<-<、、9、如图5-9,数轴上A B ,两点表示的数分别为1-和3,点B 关于点A 的对称点为C ,则点C 所表示的数 为( )A 、23--B 、13--C 、23-+D 、13+10、已知a 、两数在数轴上所对应的点如图5-10所示,,,M a b N a b H a b G a b =+=-+=-=--,下列各式正确的是 ( )A M N H GB H M G NC H M N GD G H M N>>>>>>>>>>>>、、、、11、如果上升3米记作+3米,那么下降2米记作 米.12、把温度计显示的零上5℃用+5℃表示,那么-2℃应表示为________. 13、如果+3吨表示运入仓库的大米吨数,那么运出5吨大 米表示为 ( ) A 、-5吨 B 、+5吨 C 、-3吨 D 、+3吨 14、如果+20%表示增加20%,那么-6%表示 ( ) A 、增加14% B 、增加6% C 、减少6% D 、减少26%15、如果向东走80 m 记为80 m ,那么向西走60 m 记为 ( ) A 、-60 mB 、︱-60︱mC 、-(-60)mD 、m 16、点A ,B ,C ,D 在数轴上的位置如图5-11所示,其中表示-2的相反数的点是___________.601-10 -3-2A BCD图5-1111-0A B5-5图0 -2 1 -3 -1 2 35-6图A B C 5-7图a b5-9图CB O A 5-10图1-a1b。
七年级数学上册 相反数与绝对值练习人教版
相反数与绝对值练习练习一(A级)一、选择题:(1)a的相反数是( )(A)-a (B)1a(C)-1a(D)a-1(2)一个数的相反数小于原数,这个数是( )(A)正数 (B)负数 (C)零 (D)正分数(3)一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是( )(A)-2 (B)2 (C)52(D)-52(4)一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为12单位长,则这个数是( )(A)12或-12(B)14或-14(C)12或-14(D)-12或14二、填空题(1)一个数的倒数是它本身,这个数是________;一个数的相反数是它本身,这个数是__________;(2)-5的相反数是______,-3的倒数的相反数是____________ 。
(3)103的相反数是________,1132⎛⎫-⎪⎝⎭的相反数是_______,(a-2)的相反数是______;三、判断题:(1)符号相反的数叫相反数;() (2)数轴上原点两旁的数是相反数;()(3)-(-3)的相反数是3;() (4)-a一定是负数;()(5)若两个数之和为0,则这两个数互为相反数;()(6)若两个数互为相数,则这两个数一定是一个正数一个负数。
()练习一(B级)1.下列各数:2,0.5,23,-2,1.5,-12,-32,互为相反数的有哪几对?2.化简下列各数的符号:(1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)] 。
3.数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为 2,求B点和C点各对应什么数?4.若a>0>b,且数轴上表示a的点A与原点距离大于表示b的点B 与原点的距离,试把a,-a,b,-b这四个数从小到大排列起来。
5.一个正数的相反数小于它的倒数的相反数,在数轴上,这个数对应的点在什么位置?6.如果a,b表示有理数,在什么条件下,a+b和a-b互为相反数?a+b与a-b的积为2?练习二(A级)一、选择题:1.已知a≠b,a=-5,|a|=|b|,则b等于( )(A)+5 (B)-5 (C)0 (D)+5或-52.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( )(A)-m (B)m (C)±m (D)2m3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( ) (A)<1><2><3>; (B)<1><2<4>; (C)<1><3><4>; (D)<2><3><4>5.一个数等于它的相反数的绝对值,则这个数是( )(A)正数和零; (B)负数或零; (C)一切正数; (D)所有负数6.已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不能确定 D.a=b7.-103,π,-3.3的绝对值的大小关系是( )(A)103->|π|>|-3.3|; (B)103->|-3.3|>|π|;(C)|π|>103->|-3.3|; (D)103->|π|>|-3.3|8.若|a|>-a,则( )(A)a>0 (B)a<0 (C)a<-1 (D)1<a二、填空题:(1)在数轴上表示一个数的点,它离开原点的距离就是这个数的____________;(2)绝对值为同一个正数的有理数有_______________个;(3)一个数比它的绝对值小10,这个数是________________;(4)一个数的相反数的绝对值与这个数的绝对值的相反数的关系是______________;(5)一个数的绝对值与这个数的倒数互为相反数,则这个数是________________;(6)若a<0,b<0,且|a|>|b|,则a与b的大小关系是______________;(7)绝对值不大一3的整数是____________________,其和为_____________;(8)在有理数中,绝对值最小的数是_____;在负整数中,绝对值最小的数是_____;(9)设|x|<3,且x>1x,若x为整数,则x=_________________;(10)若|x|=-x,且x=1x,则x=_________________。
人教版七年级上册数学第一章1.2.4绝对值与相反数练习题(word版 无答案)
绝对值与相反数一、基础知识: 1.绝对值的意义:数轴上表示一个数的点与________的距离叫做这个数的绝对值。
2.相反数的意义:________不同、________ 相同的两个数叫做互为相反数,其中一个数叫做另一个的________。
0的相反数是________。
3.一个数的绝对值与这个数本身或它的相反数的关系:⑴、a>0时,a =________;⑵、a=0时,a =________;⑶、a<0时,a =________。
4.一个数a 的绝对值与0的大小关系: a _______0 5.比较大小:⑴、若a>0、b>0,且a >b ,则a ________b; ⑵、若a<0、b<0,且a >b ,则a ________b 。
在数轴上右边的点表示的数总比左边的点表示的数_______。
二、经典例题:例1.求下列各数的绝对值:(1)52; (2)-13; (3)0.变式训练:求下列各数的绝对值:(1)4; (2)-2。
例2.下列各组数中,互为相反数的是( ) A .|-23|与-23 B .|-23|与-32 C .|-23|与23 D .|-23|与32变式训练1:若a 与b 互为相反数,则a+b=________.变式训练2:3的相反数是_______, -4的相反数是_______。
例3.若│a │=3.2,则a 是( )A.3.2B.-3.2C.±3.2D.以上都不对变式训练1:若│a │=4,│b │=3,且a>0,b<0,则a=______,b=_______. 变式训练2:若│a │=8,│b │=5,且a+b>0,那么a-b 的值是( ) A.3或13 B.13或-13 C.3或-3 D.-3或-13例4.若a =a,则a _______0()≤<≥>或、、填. 变式训练1:若a = - a,则a _______0()≤<≥>或、、填. 变式训练2:若│a-b │=b-a ,则a ,b 的大小关系是________.例5.已知a 、b 、c 三数在数轴的位置如图所示,化简||||||a b c a b c++=_______变式训练:数a 、b 、c 在数轴上对应的点如图所示,化简:│a+c │-│a │+│b │=_______.例6.若│a │=0,则a=_______变式训练1:若│a-3│=0,则a=_______变式训练2:若│a-3│+2+b =0,则a=_______,b=______ 变式训练3:已知│a-3│+│2b+4│+│12c-2│=0,则a+b+c=______。
人教版版七年级上册数学期中常考题《相反数与绝对值》专项复习
人教版七年级上册数学期中常考题《相反数与绝对值》专项复习一.选择题(共5小题)1.(2021春•杨浦区校级期中)下列说法正确的是()A.符号相反的两个数互为相反数B.一个数的相反数一定是正数C.一个数的相反数一定比这个数本身小D.一个数的相反数的相反数等于原数2.(2020秋•锦州期末)在﹣1,0,,﹣4这四个数中,绝对值最大的数是()A.﹣1B.0C.D.﹣43.(2021春•巩义市期末)如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个有理数中,绝对值最小的一个是()A.p B.q C.m D.n 4.(2021•寻乌县模拟)2020的相反数是()A.2020B.﹣2020C.D.﹣5.(2021•长丰县模拟)﹣2021的绝对值是()A.2021B.C.﹣D.﹣2021二.填空题(共5小题)6.(2021春•杨浦区期中)比较大小:﹣|﹣3|﹣3.34(填“>”、“<”或“=”).7.(2021春•浦东新区校级期中)用“<”号连接:﹣(﹣2.2),﹣1,﹣|﹣3 |:.8.(2021春•抚远市期末)的相反数是.9.(2021春•普陀区期末)是的相反数.10.(2021春•海淀区校级期末)如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是.三.解答题(共5小题)11.(2020秋•济宁期中)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,+(﹣3),0,,.12.(2020秋•临湘市期中)已知x、y两数在数轴上表示如图.(1)试在数轴上找出表示﹣x,﹣y的点,并用“<”连接x,y,﹣x,﹣y.(2)化简:|2x﹣3y|﹣|y|+|x|.13.已知4a﹣1与﹣(a+14)互为相反数,求a的值.14.写出1、﹣|﹣3|、﹣2.5,﹣(﹣4)四个数的相反数,并将这四个数连同它们的相反数一并在数轴上表示出来.15.已知m、n为整数,且|m﹣2|+|m﹣n|=1,求m+n的值.参考答案一.选择题(共5小题)1.(2021春•杨浦区校级期中)下列说法正确的是()A.符号相反的两个数互为相反数B.一个数的相反数一定是正数C.一个数的相反数一定比这个数本身小D.一个数的相反数的相反数等于原数【考点】相反数.【专题】实数;符号意识.【分析】利用相反数的意义对每个选项进行辨别,对于错误的选项可以举出反例,选出正确选项.【解答】解:相反数是只有符号不同的两个数,零的相反数仍旧是零.∵3和﹣5的符号相反,但3和﹣5不是相反数,∴A选项错误;∵5的相反数是﹣5,∴B选项错误;∵﹣2的相反数是2,2>﹣2,∴C选项错误;∵一个数的相反数的相反数是它本身,∴D选项正确;故选:D.【点评】本题主要考查了相反数的意义,熟记相反数的定义是解题的关键.2.(2020秋•锦州期末)在﹣1,0,,﹣4这四个数中,绝对值最大的数是()A.﹣1B.0C.D.﹣4【考点】绝对值;有理数大小比较.【专题】实数;数感.【分析】首先求出﹣1,0,,﹣4这四个数的绝对值各是多少;然后根据有理数大小比较的方法,判断出绝对值最大的数是哪个即可.【解答】解:|﹣1|=1,|0|=0,||=,|﹣4|=4,∵4>>1>0,∴在﹣1,0,,﹣4这四个数中,绝对值最大的数是﹣4.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.(2021春•巩义市期末)如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个有理数中,绝对值最小的一个是()A.p B.q C.m D.n【考点】数轴;绝对值.【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最小,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最小的点M表示的数m,故选:C.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.4.(2021•寻乌县模拟)2020的相反数是()A.2020B.﹣2020C.D.﹣【考点】相反数.【专题】实数;运算能力.【分析】利用相反数的定义得出答案.【解答】解:2020的相反数是:﹣2020.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题的关键.5.(2021•长丰县模拟)﹣2021的绝对值是()A.2021B.C.﹣D.﹣2021【考点】绝对值.【专题】实数;运算能力.【分析】根据绝对值的意义,负数的绝对值是它的相反数即可求出答案.【解答】解:﹣2021的绝对值即为:|﹣2021|=2021.故选:A.【点评】本题主要考查了绝对值的意义,熟记绝对值的意义是解题的关键.二.填空题(共5小题)6.(2021春•杨浦区期中)比较大小:﹣|﹣3|>﹣3.34(填“>”、“<”或“=”).【考点】相反数;绝对值;有理数大小比较.【专题】实数;数感.【分析】两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:﹣|﹣3|=,||=,|﹣3.34|=3.34,而,∴﹣|﹣3|>﹣3.34,故答案为:>.【点评】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.(2021春•浦东新区校级期中)用“<”号连接:﹣(﹣2.2),﹣1,﹣|﹣3|:﹣|﹣3|<<﹣(﹣2.2).【考点】相反数;绝对值;有理数大小比较.【专题】实数;运算能力.【分析】由相反数及绝对化简各项,再比较大小即可求解.【解答】解:∵﹣(﹣2.2)=2.2,﹣|﹣3|=﹣3,﹣3<<2.2,∴﹣|﹣3|<<﹣(﹣2.2),故答案为﹣|﹣3|<<﹣(﹣2.2).【点评】本题主要考查有理数大小的比较,由相反数及绝对值化简各数是解题的关键.8.(2021春•抚远市期末)的相反数是﹣2.【考点】相反数.【分析】根据相反数的定义解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.【点评】本题考查了相反数的定义,主要利用了负数的绝对值等于它的相反数,是基础题.9.(2021春•普陀区期末)是的相反数.【考点】相反数.【分析】只有符号不同的两个数叫做互为相反数,由此可得出答案.【解答】解:3的相反数是﹣3.故答案为:﹣3.【点评】本题考查了相反数的知识,掌握相反数的定义是解答本题的关键.10.(2021春•海淀区校级期末)如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是.【考点】数轴;绝对值;有理数大小比较.【专题】实数;推理能力.【分析】根据图示,可得:哪个点离原点越近,则哪个点所对应的数的绝对值就越小,据此判断出绝对值最小的数对应的点是哪个即可.【解答】解:∵A,B,C,D四个点中,点B离原点最近,∴绝对值最小的数对应的点是B.故答案为:B.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.三.解答题(共5小题)11.(2020秋•济宁期中)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,+(﹣3),0,,.【考点】数轴;绝对值;有理数大小比较.【专题】实数;数感;几何直观.【分析】把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“<”连接起来.【解答】解:+(﹣3)=﹣3,=,=,如图,∴<|﹣3|.【点评】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.12.(2020秋•临湘市期中)已知x、y两数在数轴上表示如图.(1)试在数轴上找出表示﹣x,﹣y的点,并用“<”连接x,y,﹣x,﹣y.(2)化简:|2x﹣3y|﹣|y|+|x|.【考点】数轴;绝对值;有理数大小比较.【专题】实数;数感.【分析】(1)根据数轴表示数的方法得到y<0<x,且|y|<|x|,据此判断即可;(2)由y<0<x,得到2x﹣3y>0,然后利用绝对值的代数意义将所求式子化简,合并后即可得到结果.【解答】解:(1)由题意得:y<0<x,且|y|<|x|,∴﹣x<y<﹣y<x;(2)∵y<0<x,∴2x﹣3y>0,∴|2x﹣3y|﹣|y|+|x|=2x﹣3y+y+x=3x﹣2y.【点评】此题考查了数轴以及有理数比较大小,涉及到的知识有:绝对值的代数意义,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.13.已知4a﹣1与﹣(a+14)互为相反数,求a的值.【考点】相反数.【分析】根据互为相反数的两个数的和等于0列出方程求解即可.【解答】解:由题意得,4a﹣1﹣(a+14)=0,4a﹣1﹣a﹣14=0,解得a=5.【点评】本题考查了相反数的定义,是基础题,熟记概念并列出方程是解题的关键.14.写出1、﹣|﹣3|、﹣2.5,﹣(﹣4)四个数的相反数,并将这四个数连同它们的相反数一并在数轴上表示出来.【考点】数轴;相反数.【分析】直接利用相反数的定义分别得出各数的相反数,进而在数轴上表示即可.【解答】解:1的相反数为:﹣1;﹣|﹣3|的相反数为:3;﹣2.5的相反数为:2.5;﹣(﹣4)的相反数为:﹣4.如图所示:【点评】此题主要考查了相反数以及数轴,正确在数轴上确定各数的位置是解题关键.15.已知m、n为整数,且|m﹣2|+|m﹣n|=1,求m+n的值.【考点】绝对值.【专题】实数;运算能力.【分析】根据条件|m﹣2|+|m﹣n|=1,分情况讨论①|m﹣2|=0时,|m﹣n|=1;②|m﹣2|=1时,|m﹣n|=0;然后分别可以求出m的值,进而得到n的值,最后分别计算m+n的值.【解答】解:分两种情况:①当|m﹣2|=0时,|m﹣n|=1,∴m=2,n=1或n=3,∴m+n=3或5.②当|m﹣2|=1时,|m﹣n|=0,∴m=3或m=1,n=m,∴m+n=6或2.综上,m+n的值为2或3或5或6.【点评】此题考查了绝对值的意义.解题的关键是掌握有理数的绝对值的定义和数学中的分类讨论思想的运用,分类讨论时要考虑全面,此题比较简单,基础性较强.。
最新人教版七年级数学上册第一章相反数和绝对值练习题
人教版七年级数学上册第一章有理数相反数和绝对值一、选择题。
1.如果x 与y 2互为相反数,那么 ( )A .02=-y xB .02=+y xC .x ·2y=0D .0=x ,02=y2.下列说法正确的是 ( )A .-6是相反数B .43-与43互为相反数C .-5是5的相反数D .41-是4的相反数3. 如果一个数的相反数是负数,那么这个数一定是( )A. 正数B. 负数C. 零D. 正数、负数或零4.绝对值等于其相反数的数一定是 ( )A .负数B .正数C .负数或零D .正数或零5.绝对值不大于6.1的整数有( )A .6个B .7个C .10个D .11个二、填空题。
1.在数轴上,表示数-4,3.6,53-,0,313,322-,-2的点中,在原点左边的点有 个.2. 写出数轴上点A,B,C,D,E 所表示的数:3. 在数轴上表示下列各数,并用“<”连接起来。
3,—3,1.5,—1.5, 04. 数轴上与原点的距离是8的点有___________个,这些点表示的数是___________;与原点的距离是9的点有___________个,这些点表示的数是___________。
5. 数轴上与原点的距离是b (b >0)的点有_______个,这些点表示的数是___________.6.只有__________的两个数,叫做互为相反数.0的相反数是_______.7.+6的相反数是______;______的相反数是-11; 531-与______互为相反数.8.若x 的相反数是-10,则______=x ;若15-=a ,则________=-a .9.化简下列各数的符号:()____8=+-, ()____3.2=--, ()[]____9=-+-.10.写出下列各数的相反数,并在数轴上把这些相反数表示出来:+2,-3,0,-(-1),213-,-(+2).11.—19的相反数是_ ____;_______的相反数是-234。
数学人教版七年级上册相反数练习题
一、填空题 1.-2的相反数是 ,0.5的相反数 是 ,0的相反数是 。 2.如果a的相反数是-3,那么a= . 3.如a=+2.5,那么,-a= .如-a= -4, 则a= ________ 4.如果 a,b互为相反数,那a+b= , 2a+2b = . 5.―(―2)= , 与―[―(―8)]互 为相反数.
• 26.小李在做题时,画了一个数轴,在数轴上原 有一点A, 其表示的数是-3,由于粗心,把数 轴的原点标错了位置,使点A正好落在-3的 相反数的位置,想一想,要把数轴画正确,原点 要向哪个方向移动几个单位长度? • 27.如果a 和 b表示有理数,在什么条件下, a +b 和a -b互为相反数? • 28.如图是一个正方形纸盒的展开图,在其中 的四个正方形内标有数字1,2,3和-3,要在 其余的正方形内分别填上―1,―2,使得按虚 线折成的正方体后,相对面上的两个数互为 相反数,则A处应填 . •
• 6.如果a 的相反数是最大的负整数,b的相反 数是最小的正整数,则a+b= . • 7.a-2的相反数是3,那么, a= . • 8.一个数的相反数大于它本身,那么,这个数 是 .一个数的相反数等于它本身,这 个数是 ,一个数的相反数小于它本身,这 个数是 . • 9. .a- b的相反数是 . • 10.若果 a 和 b是符号相反的两个数,在数轴 上a所对应的数和 b所对应的点相距6个单位 长度,如果a=-2,则b的值为 .
• 19.一个数是7,另一个数比它的相反数大3. 则这两个数的和是 ( ) • A -3 B 3 பைடு நூலகம் -10 D 11 • 20.如果2(x+3) 与3(1-x)互为相反数,那么x 的值是 ( ) • A -8 B 8 C -9 D 9
七年级数学上册相反数与绝对值练习题(拔高篇)(2021年整理)
(完整)七年级数学上册相反数与绝对值练习题(拔高篇)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)七年级数学上册相反数与绝对值练习题(拔高篇)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)七年级数学上册相反数与绝对值练习题(拔高篇)(word版可编辑修改)的全部内容。
一、选择题1.-3的绝对值是( A )(A)3 (B)-3 (C)13 (D)-132. 绝对值等于其相反数的数一定是( C )A.负数B.正数 C.负数或零D.正数或零3. 若│x│+x=0,则x一定是()A.负数B.0 C.非正数D.非负数4、-│-6+1│的相反数是()A、5B、- 5C、7D、-75、绝对值最小的有理数的倒数是()A、1B、-1C、0D、不存在6、在有理数中,绝对值等于它本身的数有()A、1个B、2个C、3个D、无数多个7、│-3│的相反数是()A、3B、-3C、D、-8、下列各数中,互为相反数的是()A、│-3│和-3B、│-2。
5│和-﹝—2.5﹞C、│-9 │和9D、│7│和79、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数10、│a│= -a,a一定是( )A、正数B、负数C、非正数D、非负数11、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数12、-│a│= -3.2,则a是()A、3。
七年级相反数和绝对值练习题
七年级相反数和绝对值练习题TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】相反数和绝对值练习题姓 名一、填空题1. 如a = +,那么,-a = 如果-a= -4,则a=2. 如果 a,b 互为相反数,那么a+b= ,2a+2b = 61a+61b= 2009b a += . )(b a +π=3. ―(―2)= ; 与―[―(―8)]互为相反数.4. 如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,a+b= .5. a - b 的相反数是 .6. 如果 a 和 b 是符号相反的两个数,在数轴上a 所对应的数和 b 所对应的点相距6个单位长度,如果a=-2,则b 的值为 .7. 在数轴上与表示3的点的距离等于4的点表示的数是_______.8. 若一个数的绝对值是它的相反数,则这个数是_______.9. 若a ,b 互为相反数,则|a|-|b|=______.10.若,3=x 则_____=x ;若,3=x 且0<x ;则_____=x ;若,3=x 且0>x ,则_____=x ;11. 若,0>a 则____=a ;若,0<a 则____=a ;若,0=a 则____=a ;12. 若a 为整数,|a|<,则a 可能的取值为_______.13. 若,5-=x 则_____=x ;若,5--=x 则_____=x ;若0>x ,则______=x x;若0<x ,则______=x x。
14. ,11a a -=-则a 的取值范围是 15. 210--x 的最小值为16. 若04312=-+-y x ,则=+y x17. 如果a =b ,那么a 与b 的关系是18. 若|x +2|+|y-3|=0,则x=___,y=_____.19. 绝对值等于它本身的有理数是 ,绝对值等于它的相反数的数是20. │x │=│-3│,则x= ,若│a │=5,则a=21. 12的相反数与-7的绝对值的和是二、选择题22. 下列各数中,互为相反数的是( )A 、│-32│和-32B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 23. 下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数24. │a │= -a,a 一定是( )A 、正数B 、负数C 、非正数D 、非负数25. 下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
希望教育 七年级数学正负数-绝对值测试题
班级 姓 名 得分 (满分100)
一、选择题(每题3分,共30分)
1、有一种记分法,80分以上如85分记为+5分.某学生得分为72分,则应记为( )
A .72分
B .+8分
C .-8分
D .-72分
2. 下列各数中,互为相反数的是 ( )
A 、│-
32│和-32 B 、│-23│和-3
2 C 、│-32│和2
3 D 、│-32│和32 3. 下列说法错误的是 ( )
A 、一个正数的绝对值一定是正数
B 、一个负数的绝对值一定是正数
C 、任何数的绝对值都不是负数
D 、任何数的绝对值 一定是正数
4、若向西走10m 记为-10m ,如果一个人从A 地出发先走+12m 再走-15m ,又走+18m ,最
后走-20m ,则此人的位置为 ( )
A .在A 处
B .离A 东5m
C .离A 西5m
D .不确定
5、一个数的相反数小于它本身,这个数是 ( )
A .任意有理数
B .零
C .负有理数
D .正有理数
6. │a │= -a,a 一定是 ( )
A 、正数
B 、负数
C 、非正数
D 、非负数
7. 下列说法正确的是 ( )
A 、两个有理数不相等,那么这两个数的绝对值也一定不相等
B 、任何一个数的相反数与这个数一定不相等
C 、两个有理数的绝对值相等,那么这两个有理数不相等
D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
8.下列说法中,正确的是 ( ).
(A )|-a|是正数 (B )|-a|不是负数 (C )-|a|是负数 (D )不是正数
9、如图所示,用不等号连接|-1|,|a|,|b|是 ( )
A .|-1|<|a|<|b|
B .|a|<|-1|<|b|
C .|b|<|a|<|-1|
D .|a|<|b|<|-1|
10. -│a │= -3.2,则a 是( )
A 、3.2
B 、-3.2
C 、±3.2
D 、以上都不对
二、填空题(每题3分,共30分)
11. 如a = +2.5,那么,-a = 如果-a= -4,则a=
12. ―(―2)= ; 与―[―(―8)]互为相反数.
13. 如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,a+b= .
14. a - b 的相反数是 .
15. 如果 a 和 b 是符号相反的两个数,在数轴上a 所对应的数和 b 所对应的点相距6个单
位长度,如果a=-2,则b 的值为 .
16. 在数轴上与表示3的点的距离等于4的点表示的数是_______.
17、如果将点B 向左移动3个单位长度,再向右移动5个单位长度,这时点B 表示的数是
0,那么点B 原来表示的数是____________.
18. 若a ,b 互为相反数,则|a|-|b|=______.
19.若,3=x 则_____=x ;若,3=x 且0<x ;则_____=x ;若,3=x 且0>x ,则
_____=x ;
20. 若a 为整数,|a|<1.999,则a 可能的取值为_______.
三、解答题(共40分)
31. 计算│0.25│×│+8.8│×│-40│(6分)
32、计算(6分)
33、比较下列各组数的大小:(8分)
34. 已知│a│=3,│b│=5,a与b异号,求a与b的值。
(10分)
35、质检员抽查某种零件的长度,超过规定长度的记为正数,不足规定长度的记为负数.检查结果如下:第一个为0.13毫米,第二个为-0.2毫米,第三个为-0.1毫米,第四个为0.15毫米,则长度最小的零件是第几个?哪一个零件与规定长度的误差最小?(10分)
补充练习
1. 已知b a 和互为相反数,m 、n 互为倒数,(),2--=c 求
c mn b a ++.
2. 已知
y x y x y x +>==求且,,12,7的值.
3. 已知c b a c b a 32,0432++=-+-+-计算.
4. 在数轴上有三个点A 、B 、C ,如图所示:
⑴将B 点向左移动4个单位,此时该点表示的数是多少?
⑵将C 点向左移动6个单位得到数x 1,再向右移2个单位得到x 2,x 1,x 2分别是多少?用“>”把B ,x 1,x 2连接起来.
⑶怎样移动A 、B 、C 中的两点,才能使3个点表示的数相同?有几种方法?。