高中物理图象问题分析
高中物理之力学图像三类问题、运动图像分析物体运动规律、动力学图像与牛顿运动定律、情景描绘或者选择图像

第5讲|谙熟“三看、两法”,破解力学图像三类问题[考法·学法]运动学图像和动力学图像一直是高考的热点,考查角度一般有三个:一是会识图,理解图线、斜率、截距、面积的意义,能根据需要列出函数关系式;二是会作图,依据物理现象、物理过程、物理规律作出图像;三是会用图,能结合物理公式和图像等解决物理问题。
高考中一般考查这三类问题:①应用运动图像分析物体的运动规律②应用动力学图像考查牛顿运动定律③根据物理情景描绘或者选择物理图像用到的思想方法主要有:①图像法②等效法③作图法一、应用运动图像分析物体的运动规律1.“三看”图像(1)看清坐标轴所表示的物理量:是运动学图像(v -t、x -t、a -t),还是动力学图像(F-a、F-t、F-x),明确因变量与自变量的制约关系。
(2)看图线本身:识别两个相关量的变化趋势,进而分析具体的物理过程。
(3)看交点、斜率和“面积”:明确图线与图线的交点、图线与坐标轴的交点、图线斜率、图线与坐标轴围成的面积的物理意义。
2.解答图像问题的“两法”(1)公式与图像的转化要作出一个确定的物理图像,需要得到相关的函数关系式。
在把物理量之间的关系式转化为一个图像时,最重要的就是要明确公式中的哪个量是自变量,哪些量是常量,关系式描述的是哪两个物理量之间的函数关系。
(2)图像与情境的转化运用物理图像解题,还需要进一步建立物理图像和物理情境之间的联系,根据物理图像,想象出图像所呈现的物理现象、状态、过程和物理变化的具体情境,因为这些情境中隐含着许多解题条件,这些过程中体现了物理量相互制约的规律,这些状态反映了理论结果是否能与现实相吻合,这些正是“审题”“分析”“审视答案”等解题环节所需要解决的问题。
[全练题点]1.(2018届高三·平顶山联考)设竖直向上为y轴正方向,如图所示曲线为一质点沿y轴运动的位置—时间(y -t)图像,已知图线为一条抛物线,则由图可知()A.t=0时刻质点速度为0B.0~t1时间内质点向y轴负方向运动C.0~t2时间内质点的速度一直减小D .t 1~t 3时间内质点相对坐标原点O 的位移先为正后为负解析:选C 在t =0时刻y -t 图线斜率不为0,说明t =0时刻质点速度不为0,0~t 1时间内质点向y 轴正方向运动,故A 、B 错误。
高中物理:动力学中的图像问题

高中物理:动力学中的图像问题1.常见的图像形式在动力学与运动学问题中,常见、常用的图像是位移图像(x -t 图像)、速度图像(v -t 图像)和力的图像(F -t 图像)等,这些图像反映的是物体的运动规律、受力规律,而绝非代表物体的运动轨迹.2.图像问题的分析方法遇到带有物理图像的问题时,要认真分析图像,先从它的物理意义、点、线段、斜率、截距、交点、拐点、面积等方面了解图像给出的信息,再利用牛顿运动定律及运动学公式解题.[典例2] 如图,质量为M 的长木板,静止放在粗糙的水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板都静止的过程中,物块和木板的v -t 图像分别如图中的折线所示,根据v -t 图像(g 取10 m/s 2),求:(1)m 与M 间动摩擦因数μ1及M 与地面间动摩擦因数μ2.(2)m 与M 的质量之比.(3)从物块冲上木板到物块和木板都静止的过程中,物块m 、长木板M 各自对地的位移.[解析] (1)由图可知,线段ac 为m 减速时的速度—时间图像,m 的加速度为 a 1=Δv 1Δt 1=4-104m /s 2=-1.5 m/s 2 对m ,由牛顿第二定律可得:-μ1mg =ma 1,所以μ1=a 1-g=0.15 由图可知,线段cd 为二者一起减速运动时的速度—时间图像,其加速度为a 3=Δv 3Δt 3=0-48m /s 2=-0.5 m/s 2 对m 和M 组成的整体,由牛顿第二定律可得:-μ2(m +M )g =(m +M )a 3所以μ2=a 3-g=0.05. (2)由图像可得,线段bc 为M 加速运动时的速度—时间图像,M 的加速度为a 2=Δv 2Δt 2=4-04m /s 2=1 m/s 2对M ,由牛顿第二定律可得:μ1mg -μ2(mg +Mg )=Ma 2把μ1、μ2代入上式,可得m ∶M =3∶2.(3)由图线acd 与横轴所围面积可求得m 对地位移:x m =12×4×6 m +(4+12)×42m =44 m 由图线bcd 与横轴所围面积可求得M 对地位移:x M =12×12×4 m =24 m. [答案] (1)0.15 0.05 (2)3∶2 (3)44 m 24 m[方法技巧]动力学中图像问题的处理技巧(1)图像信息①v -t 图像:可以从所提供图像获取运动的方向、瞬时速度、某时间内的位移以及加速度,结合实际运动情况可以确定物体的受力情况.②F -t 图像:首先应明确该图像表示物体所受的是哪个力,然后根据物体的受力情况确定加速度,从而研究它的运动情况.(2)图像问题两关注:正确认识图像的截距、斜率、面积以及正负的含义,要做到物体实际受力与运动情况的紧密结合.4.质量为2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图所示.重力加速度g 取10 m/s 2,则物体在t =0至t =12 s 这段时间的位移大小为( )A .18 mB .54 mC .72 mD .198 m解析:物体与地面间最大静摩擦力f =μmg =0.2×2×10 N=4 N .由题图知0~3 s 内,F =4 N ,说明物体在这段时间内保持静止.3~6 s 内,F =8 N ,说明物体做匀加速运动,加速度a=F -f m=2 m /s 2,6 s 末物体的速度v =at =2×3 m/s =6 m /s ,在6~9 s 内物体以6 m/s 的速度做匀速运动.9~12 s 内又以2 m/s 2的加速度做匀加速运动.作v -t 图像如图所示,故0~12 s 内的位移s =12×3×6×2 m +6×6 m =54 m .故B 项正确.答案:B5.(多选)如图甲所示,用一水平外力F 拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F ,物体做变加速运动,其加速度a 随外力F 变化的图像如图乙所示,重力加速度g 取10 m/s 2.根据图乙中所提供的信息可以计算出( )A .物体的质量B .斜面的倾角C .加速度由2 m /s 2增加到6 m/s 2的过程中,物体通过的位移D .加速度为6 m/s 2时物体的速度解析:由题图乙可知,当水平外力F =0时,物体的加速度a =-6 m /s 2,此时物体的加速度a =-g sin θ,可求出斜面的倾角θ=37°,选项B 正确;当水平外力F =15 N 时,物体的加速度a =0,此时F cos θ=mg sin θ,可得m =2 kg ,选项A 正确;由于不知道加速度与时间的关系,所以无法求出物体在各个时刻的速度,也无法求出物体加速度由2 m/s 2增加到6 m/s 2过程中的位移,选项C 、D 错误.答案:AB6.在水平地面上有一质量为2 kg 的物体在水平拉力F 的作用下由静止开始运动,10 s 后拉力大小减为F 3,该物体的运动速度随时间t 的变化规律如图所示(g 取10 m/s 2),求:(1)物体受到的拉力F 的大小.(2)物体与地面之间的动摩擦因数.解析:由v -t 图像可知,物体的运动分两个过程,设匀加速运动过程的加速度为a 1,匀减速运动过程的加速度为a 2,则由题图知a 1=8-010m /s 2=0.8 m/s 2 a 2=0-814-10m /s 2=-2 m/s 2 两过程物体受力分别如图甲、乙所示.加速过程:F -μmg =ma 1减速过程:F 3-μmg =ma 2(或μmg -F 3=m |a 2|) 联立以上各式解得F =8.4 N ,μ=0.34. 答案:(1)8.4 N (2)0.34。
高中物理【动力学图像问题】

专题课6动力学图像问题题型一由运动学图像求物体受力1.常见的图像有:v-t图像,a-t图像,F-t图像,F-x图像,a-F图像等。
2.图像间的联系:加速度是联系v-t图像与F-t图像的桥梁。
3.图像的应用(1)已知物体在一过程中所受的某个力随时间变化的图像,要求分析物体的运动情况。
(2)已知物体在一运动过程中速度、加速度随时间变化的图像,要求分析物体的受力情况。
(3)通过图像对物体的受力与运动情况进行分析。
4.解题策略(1)弄清图像斜率、截距、交点、拐点、面积的物理意义。
(2)应用物理规律列出与图像对应的函数方程式,进而明确“图像与公式”“图像与物体运动”间的关系,以便对有关物理问题作出准确判断。
一质量为m的乘客乘坐竖直电梯上楼,其位移x与时间t的关系图像如图所示。
乘客所受支持力的大小用F N表示,速度大小用v表示。
重力加速度大小为g。
以下判断正确的是()A.0~t1时间内,v增大,F N>mgB.t1~t2时间内,v减小,F N<mgC.t2~t3时间内,v增大,F N<mgD.t2~t3时间内,v减小,F N>mg[解析]由x-t图像的斜率表示速度,可知在0~t1时间内速度增大,即乘客的加速度向上,F N>mg;在t1~t2时间内速度不变,即乘客匀速上升,F N=mg;在t2~t3时间内速度减小,即乘客减速上升,F N<mg,故A正确,B、C、D错误。
[答案] A两物块A、B并排放在水平地面上,且两物块接触面为竖直面。
现用一水平推力F作用在物块A上,使A、B由静止开始一起向右做匀加速运动,如图甲所示。
在A、B的速度达到6 m/s时,撤去推力F。
已知A、B质量分别为m A=1 kg、m B=3 kg,A与水平地面间的动摩擦因数为μ=0.3,B与地面没有摩擦,B物块运动的v-t图像如图乙所示。
g取10 m/s2,求:(1)推力F的大小;(2)A物块刚停止运动时,物块A、B之间的距离。
高中物理高频考点《电场中的四类典型图像问题分析与强化训练》(附详细参考答案)

电场中的四类典型图像问题分析与强化训练(附详细参考答案)一、四类典型图像问题分析及例题讲解:以电场图象和电势图象切入命题的试题是高考中考试的重点光、热点和难点,如:E-x 图象、φ-x图象,或与粒子运动规律有关的图象,如:v-t图象。
掌握各个图象的特点,理解其斜率、截距、“面积”对应的物理意义,就能顺利解决有关问题,此类问题一般以选择题的形式出现,难度中等。
1、电场中粒子运动的v-t图象当带电粒子只在电场力作用下运动时,如果给出了粒子运动的速度图象,则从速度图象上能确定粒子运动的加速度方向,根据v-t图象的速度变化、斜率变化(加速度大小变化)情况,确定电荷所受电场力的方向与电场力的大小变化情况,进而可将粒子运动中经历的各点的场强方向、场强大小、电势高低及电势能的变化等情况判定出来。
【题1】(多选)如图甲,直线MN表示某电场中一条电场线,a、b是线上的两点,将一带负电荷的粒子从a点处由静止释放,粒子从a运动到b过程中的v-t图线如图乙所示,设a、b两点的电势分别为φa、φb,场强大小分别为E a、E b,粒子在a、b两点的电势能分别为W a、W b,不计重力,则有A.φa>φb B.E a>E b C.E a<E b D.W a>W b【答案】BD【题2】电场中的三条等势线如图中实线a、b、c所示,三条等势线的电势φa>φb>φc。
一电子以沿PQ方向的初速度,仅在电场力的作用下沿直线从P运动到Q,则这一过程中电子运动的v-t图象大致是图线中的【答案】A【解析】电子由P点运动到Q点的过程中,电场力所做的功为W=q(φP-φQ),因为q <0,且φP<φQ,所以W>0,由动能定理可知,电子的动能不断增大,即速度不断增大,选项C、D错误;P点附近等势面密集,故场强较大,电子在P点附近所受电场力大,电子的加速度也就大,对应v-t图象的斜率大,故由P到Q,v-t图象的斜率不断减小,选项A正确,选项B错误。
2、电场中的φ-x图象(1)在φ-x图象中,图线上任一点切线斜率的绝对值表示该点的电场强度沿x轴方向上的分量大小。
例说高中物理图像问题解法

屡见不鲜 的题型 . 其题型 种类繁 多 , 应接
解析 : ( 1 ) 由图知 : 在纵 轴( o轴 ) 上截
不暇 , 用以考 查学生物理概念 、 规律的掌 距是 F = 0时的加速度 ,只 受重力为重 力 的情况 C .过 程 中 电压 表 1 示 数 的变化 量 握 以 及 应 用 数 学 知识 处 理 物 理 问 题 的 能 加速度 , 甲、 乙截距相等 , 得g = gz .
电阻) , 选项 D正确.
因此 此 题 答 案 为 C .
三、 热、 光、 原 图像 问题
利 用图线的斜率、 截距解决 问题.
A B
例5 .在做 光 电效 应 实 验 中, 某金属被 光 照 射 发 生 了 光
/ e
/ /
嚣 L
0
t
0
£
C
D
示在 甲乙两地 , 各 自在保持 重物 质量不变 法错误的是 ( )
的情况下 , 用竖直向上的拉 力匀 加速提 升
重物 时, 重物加速 度 。的大小与拉力 F的
大小之间的关 系. 由图可以判断 : ( 1 ) 甲地的重力加速度 — — 乙地的 重力加速度 ; ( 填“ 大于” 、 “ 等 于” 、 “ 小于” ) ( 2) 甲地 的重物质 量 — — 乙地 的
的斜 率为 内电阻 的绝对值意 义 ,知 C选 项错误观点. 即 △ / AZ = r .
同理 : △ △ r 1 . ( 视 + r为 内
开始。物体受 到的摩擦 力大小 厂 随时 间 t 末 速 度 为 % 则
变化的关系图象为 图中的( ) . 物体在 时间 t 内
.
研究 图的点对应的状态是核心 .
高中物理图像法解决物理试题解题技巧和训练方法及练习题

高中物理图像法解决物理试题解题技巧和训练方法及练习题1.问题:一个球从斜面上下滚动,求滚动过程中球心的加速度。
解题方法:通过绘制球在不同位置的速度矢量图,可以发现球心的加速度大小恒定为g*sinθ,方向沿斜面向下。
2.问题:一个火箭垂直向上发射,求其高度和速度随时间的变化关系。
解题方法:绘制高度-时间和速度-时间图像,根据火箭发射时的初速度和加速度,分析其运动状态。
3.问题:一个物体从高处自由落下,求其下落时间和落地时的速度。
解题方法:通过绘制速度-时间图,找到物体的初速度和加速度,并利用运动学公式求解。
4.问题:两个弹簧同时用力拉伸,求弹簧的合力和合力的方向。
解题方法:绘制拉伸弹簧的位移-力图,根据弹簧的弹性系数和拉伸量求解合力大小和方向。
5.问题:一个半径为R的圆盘在水平桌面上绕自身垂直轴心旋转,求其角速度和角加速度。
解题方法:通过绘制角速度-时间和角加速度-时间图像,利用旋转的基本关系式求解。
6.问题:一个抛体做匀速圆周运动,求其速度和加速度的大小。
解题方法:绘制速度-时间和加速度-时间图像,根据圆周运动的特点求解。
7.问题:一个光滑水平桌面上有一个质量为m的物体,另一边有一个质量为2m的物体,求两个物体之间的摩擦力。
解题方法:绘制摩擦力-加速度图像,根据牛顿第二定律和摩擦力公式求解。
8.问题:一个光滑水平桌面上有一个质量为m的物体,通过绳子连接一个质量为2m的物体,求系统的加速度。
解题方法:绘制受力-加速度图像,根据牛顿第二定律和受力平衡条件求解。
9.问题:一个光滑水平桌面上有一个质量为m的物体,与墙面接触,求物体受到的压力大小和方向。
解题方法:绘制压力-受力图像,根据受力平衡条件和压力的定义求解。
10.问题:一个电流为I的导线在磁场中受到力F,求导线的长度和磁场的大小。
解题方法:绘制力-电流图像,利用洛伦兹力公式和导线长度的关系求解。
高中物理图像问题综合分析

图像问题一、函数图像重要信息①坐标:纵坐标,横坐标,纵坐标之差,横坐标之差。
涉及函数图像相关的问题,首先需要搞清楚纵横坐标分别表示什么物理量;而纵坐标之差,横坐标之差则分别表示纵坐标与横坐标表示的物理量的变化量。
函数图像的纵横坐标一般都表示状态量;如果为过程量,则表示从初始时刻到对应时刻的过程中的总量。
例如,W-t图像中,功W为过程量,于是W表示0~t时间内的总功;而t1~t2时间内,纵坐标的变化量则表示这段时间内的功。
另外,物理上,有时为了方便,纵坐标和横坐标都不一定是从零开始的,需格外注意。
②点:转折点,拐点,端点,断点,交点,截距。
将一个物理过程的各个阶段与图像中的每一段对应起来是有效提取信息前提条件;而将各个阶段与图像对应起来的关键在于将物理过程中的关键时刻,关键状态与图中的特殊点对应起来,这些点包括转折点,拐点,端点,断点,交点,截距(与坐标轴的交点)。
根据物理过程做物理量的函数图像时,也常常先描出关键时刻,关键状态在图像中对应的点。
另外,这些特殊点可能还对应一些临界情形;例如在同一直线上运动的两个物体的v-t图像,交点(彼此穿过对方图像)表示相对运动反向,从而也表示相距极远或极近。
③斜率:切线斜率,割线斜率,与原点连线斜率。
与原点连线斜率表示纵横坐标的比值;例如纯电阻元件U-I图像的点与原点的连线的斜率,表示该点对应的状态下,元件的电阻;理想气体的p-T图(或V-T图)上的点与原点连线的斜率,与该点对应的状态下,其体积(或压强)成反比。
割线斜率表示纵横坐标变化量的比值,如果有意义,通常是某物理量的平均值。
需要指出的是,物理量的平均值存在一个对什么的平均的问题;设A=ΔYΔX,若X表示时刻t,则是对时间的平均;若X表示位置x,则是对距离的平均。
例如:F̅=IΔt 表示力对时间的平均值;而F′̅=WΔx则表示力对距离的平均值;两者不能混淆!切线斜率表示纵横坐标变化量的比值在横坐标之差趋于零时的极限,数学上就是纵坐标作为横坐标的函数的导数,如果有意义,则表示某物理量的瞬时值。
高中物理《功能关系中的图像问题分析》

高中物理《功能关系中的图像问题分析》一、选择题(本题共计 7 小题,每题 3 分,共计21分,)1. 如图所示为某物体运动的图象,,,若将该物体的运动过程用图象表示出来,下列四幅图象中正确的是()A. B. C. D.2. 自由下落的物体,其动能与位移的关系如图所示,则图中直线的斜率表示该物体的()A.质量B.机械能C.重力大小D.重力加速度3. 质点运动的位移x与时间t的关系如图所示,其中不属于机械振动的是A. B. C. D.4. 如图所示,一小滑块(可视为质点)以某一初速度沿斜面向下滑动,最后停在水平面上.滑块与斜面间及水平面间的动摩擦因数相等,斜面与水平面平滑连接且长度不计,则该过程中,滑块的机械能与水平位移x关系的图线正确的是(取地面为零势能面)()A. B. C. D.5. 某物体沿光滑斜面由静止开始下滑至斜面底端的过程中,若不计空气阻力,下列图像中能正确表示该物体的机械能E随位移x变化规律的是()A. B. C. D.6. 质量为的物体,放在动摩擦因数的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功随位移变化的关系如图所示.重力加速度取,则()A.至的过程中,水平拉力为B.至的过程中,水平拉力为C.时,物体的速度为D.至的过程中,物体做匀加速运动7. 放在粗糙水平面上的物体受到水平拉力的作用,在0∼6s内其速度与时间图像和该拉力的功率与时间图像分别如图所示,下列说法正确的是()A.0∼6s内物体位移大小为36mB.0∼6s内拉力做的功为30JC.合外力在0∼6s内做的功与0∼2s内做的功相等D.滑动摩擦力大小为5N二、多选题(本题共计 5 小题,每题 3 分,共计15分,)8. 如图是物体运动的v−t图象,下列说法正确的是()A.4−6s速度方向和加速度方向相同B.4s时物体回到出发点C.6s内位移为3mD.2s时刻物体运动方向改变9. 如图甲所示,竖直放置的轻弹簧一端固定在水平地面上,一小球压在轻弹簧的上端而不栓连,从静止开始释放,在小球向上运动的过程中,规定运动的起点为重力势能的零势能点,小球机械能E随其位移大小x的变化规律如图乙所示,且曲线与平行与x轴的直线相切,则下列说法中正确的是()A.小球在0∼x1这段位移上加速度一直减小B.小球动能的最大值在0∼x1这段位移上的某个位置C.小球在0∼x1这段位移上的机械能守恒D.小球在x1∼x2这段位移上的机械能守恒10. 一足够长的粗糙斜面固定在水平地面上,可视为质点的物块从斜面底端以某一初速度冲上斜面。
高中物理图象问题分析

高中物理图象问题分析物理图象是物理学中重要的工具之一,它可以直观地表达物理规律和现象,帮助学生更好地理解物理概念和公式。
在高中物理中,图象问题也是学生必须面对的一个重要问题。
本文将从以下几个方面对高中物理图象问题进行深入分析。
一、掌握图象的基本要素要解决物理图象问题,首先需要掌握图象的基本要素。
物理图象通常包括横轴和纵轴,以及所描绘的曲线或数据点。
在分析图象时,要明确横轴和纵轴分别代表什么物理量,曲线的形状和趋势又代表了什么物理规律或现象。
还要注意图象中的标尺和单位,以及图象中的注释和说明。
二、识别常见的物理图象在高中物理中,常见的物理图象包括s-t图、v-t图、a-t图、b-q 图等。
每种图象都有其特定的物理意义和用途。
例如,s-t图可以用来表示物体在一段时间内的位移或路程,v-t图可以用来表示物体在一段时间内的速度变化等。
在解决图象问题时,要识别出对应的物理图象,并根据图象的特征和规律进行分析。
三、分析图象中的信息和规律物理图象中往往蕴含着大量的物理信息和规律。
在分析图象时,要通过观察和思考,发现图象中的信息,如曲线的形状、趋势、交点等,并尝试从中总结出物理规律。
例如,在v-t图中,可以通过观察曲线的形状和趋势,得出物体的运动状态和加速度等物理量;在a-t图中,可以通过观察曲线的形状和趋势,得出物体的加速度变化规律等。
四、运用图象解决问题运用物理图象可以解决一系列问题,例如求解物体的位移、速度、加速度等物理量,判断物体的运动状态和规律等。
在运用图象解决问题时,首先要根据问题的要求,选择合适的物理图象进行描绘;然后根据图象的特征和规律进行分析,得出问题的答案。
例如,在求解物体的位移时,可以通过s-t图的曲线面积来求解;在判断物体的运动状态时,可以通过v-t图的曲线形状来判断等。
高中物理图象问题需要学生掌握图象的基本要素,识别常见的物理图象,分析图象中的信息和规律,并运用图象解决问题。
通过这些步骤的分析和思考,学生可以更好地理解物理概念和公式,提高解题能力和思维水平。
高中物理物理解题方法:图像法习题知识归纳总结含答案解析

高中物理物理解题方法:图像法习题知识归纳总结含答案解析一、题方法:图像法1.图甲为某电源的U I -图线,图乙为某小灯泡的U I -图线,则下列说法中正确的是( )A .电源的内阻为5ΩB .小灯泡的电阻随着功率的增大而减小C .把电源和小灯泡组成闭合回路,小灯泡的功率约为0.3WD .把电源和小灯泡组成闭合回路,电路的总功率约为0.4W【答案】D【解析】【详解】A .根据闭合电路欧姆定律变形:U E Ir =-可得图像与纵轴的交点表示电动势,图像斜率的大小表示内阻,根据甲图电动势为:1.5V E =内阻为:1.0 1.55ΩΩ0.33r -== A 错误;B .根据乙图可知电流越大,小灯泡功率越大,根据欧姆定律变形得:U R I= 可知乙图线上某点与原点连线的斜率为电阻,所以小灯泡的电阻随着功率的增大而增大,B 错误;C .把电源和小灯泡组成闭合回路,将甲、乙两图叠加到一起:-曲线的交点即小灯泡的电压、电流,根据图像读数:两U IU≈0.125VI≈0.28A所以,小灯泡的功率为:==⨯≈0.1250.28W0.035WP UIC错误;D.回路中的总功率为:==⨯≈P EI1.50.28W0.42W总D正确。
故选D。
2.如图是某质点运动的速度图象,由图象得到的正确结果是A.0~1 s内的平均速度是2 m/sB.0~2 s内的位移大小是4 mC.0~1 s内的运动方向与2 s~4 s内的运动方向相反D.0~1 s内的加速度大小大于2 s~4 s内加速度的大小【答案】D【解析】0~1s内质点做匀加速直线运动,其平均速度为初末速度之和的一半即:,故A错误;在v-t图象中,图线与坐标轴所围的面积大小等于位移:,故B错误;速度的正负表示速度的方向,则知0~1s 内的运动方向与2~4s内的运动方向相同,故C错误;速度图象的斜率等于加速度,则知0~1s内的加速度大于2~4s内的加速度,故D正确。
所以D正确,ABC错误。
高中物理必修一图像问题

CE
t/s
A、在AB段,物体做匀速直线运动 D
B、在CD段和DE段,物体的速度方向不同
C、在C点,物体的速度为零,是速度方向发
生改变的临界点
D、在BD段,物体的加速度发生了改变
3、如图所示为甲、乙两质点的v-t图象。对于甲、
乙两质点的运动,下列说法中正确的是( A )
A.质点甲向所选定的正方向运动,质点乙与甲的运 动方向相反
X
X
X
X
4、图示为甲、乙、丙三物体运动的X-t 图象,则甲的速度是__5__m/s,乙的速 度是_2_._5_m/s,丙的速度是_-_5__m/s。
X
丙
x/m
A
B
5、某物体的x-t图像如 图所示,下列有关说法 o 正确的是( BD )
CE
t/s
A、在AB段,物体做匀速直线运动 D B、在CD段和DE段,物体的速度方向不同 C、在C点,物体的速度为零 D、在E点,物体的位移为零
B.质点甲、乙的速度相同
C.在相同的时间内,质点甲、乙的位移相同
D.不管质点甲、乙是否从同一地点开始运动,它们 之间的距离一定越来越大
4、某物体的v-t图像如图所示,下列有关说
法正确的是( C )
V/(m/s)
A、因为图线是一条斜向上的
直线,故其速度一直在增大
B、速度的方向不随时间变化
C、加速度的方向不随时间变 O 化
X/m
x4
D
x3 x2 x1
C
x
B
t
A x
t
O t1 t2 t3
t4
t/s
X-t图像中, 直线表示的是:物体做匀速直线运动
X/m
O
t/s
微专题13 牛顿运动定律应用之图像问题-2025版高中物理微专题

微专题13牛顿运动定律应用之图像问题【核心要点提示】动力学中常见的图象:v -t 图象、x -t 图象、F -t 图象、F -a 图象等.【核心方法点拨】(1)看清图象的横、纵坐标所表示的物理量及单位并注意坐标原来是否从0开始.(2)理解图象的物理意义,能够抓住图象的一些关键点,如斜率、截距、面积、交点、拐点等,判断物体的运动情况或受力情况,再结合牛顿运动定律求解.【经典例题选讲】【例题1】(2015·新课标全国Ⅰ)(多选)如图a ,一物块在t =0时刻滑上一固定斜面,其运动的vt 图线如图b 所示.若重力加速度及图b 中的v 0、v 1、t 1均为已知量,则可求出()A .斜面的倾角B .物块的质量C .物块与斜面间的动摩擦因数D .物块沿斜面向上滑行的最大高度【解析】由vt 图象可求知物块沿斜面向上滑行时的加速度大小为a =v0t 1,根据牛顿第二定律得mg sin θ+μmg cos θ=ma ,即g sin θ+μg cos θ=v 0t 1.同理向下滑行时g sin θ-μg cos θ=v1t 1,两式联立得sin θ=v 0+v 12gt 1,μ=v 0-v 12gt 1cos θ,可见能计算出斜面的倾角θ以及动摩擦因数,选项A 、C 正确;物块滑上斜面时的初速度v 0已知,向上滑行过程为匀减速直线运动,末速度为0,那么平均速度为v 02,所以沿斜面向上滑行的最远距离为x =v02t 1,根据斜面的倾角可计算出向上滑行的最大高度为x sin θ=v 02t 1×v 0+v 12gt 1=v 0(v 0+v 1)4g ,选项D 正确;仅根据vt 图象无法求出物块的质量,选项B 错误.【答案】ACD【变式1】(多选)(2018·广东深圳一模)如图甲所示,质量m =1kg 、初速度v 0=6m/s 的物块受水平向左的恒力F 作用,在粗糙的水平地面上从O 点开始向右运动,O 点为坐标原点,整个运动过程中物块速率的二次方随位置坐标变化的关系图象如图乙所示,g 取10m/s 2,下列说法中正确的是()A.t=2s时物块速度为零B.t=3s时物块回到O点C.恒力F大小为2ND.物块与水平面间的动摩擦因数为0.1解析:通过题图可知,物块在恒力F作用下先做匀减速直线运动,然后反向做匀加速直线运动,根据图线求出做匀加速直线运动和匀减速直线运动的加速度大小,结合牛顿第二定律求出恒力F和摩擦力的大小。
物理习题中的图像问题及方法分析

物理习题中的图象问题及分析李辉@ QQ:2362021239图象和语言文字、函数方程一样,属于一种表达工具。
既能帮助我们深入、直观地理解物理状态,也能反映出物理状态变化的规律,应用图象,既能进行定性分析、比较判断,又能进行定量的计算、论证,通过图象往往能找到巧妙的解题途径,把问题简单化。
一、图像问题的基本素养需要在以下方面下足基本功,努力让图像成为解题的潜意识。
(1)看清坐标轴所表示的物理量及单位,并注意坐标原点是否从零开始。
(2)图象上每一点都对应着两个数,沿图象上各点移动,反映着一个量随另一个量变化的函数关系,因此,图象都应与一个特定函数方程相对应。
(3)图象上任一点的斜率,反映了该点处一个量随另一个量变化的快慢,如v-t图象中的斜率为加速度,即为纵坐标的变化量除以横坐标的变化量所得的物理量。
(4)一般图象与它对应的横轴(或纵轴)之间的面积,往往也代表一个物理量,如v-t 图象中,图线与t轴所围成的面积代表位移等。
二、对物理习题的图像处理要求的三个层次:识图、画图、用图三、高中物理的两大类图像:1、无解析式的图像;2、有解析式的图像四、实例分析:1、无解析式的图像(实验数据的描绘,在习题中出现的作用是“参考”)【例题】如图甲所示是一只“6V、3.6W”小灯泡的伏安特性曲线.另有一只定值电阻R =16Ω,一只电动势E = 8V的电池组,其内阻不计.(1)当小灯泡在电路中正常发光时,其电阻值是多大?(2)若把小灯泡、定值电阻、电池组连接成如图乙所示的电路时,则小灯泡所消耗的电功率是多大?此时小灯泡的电阻又是多大?【例题】(2007上海)某同学设计了如图(a)所示电路研究电源输出功率变化情况.电源E电动势、内电阻恒定,R1为滑动变阻器,R2、R3为定值电阻,A、V为理想电表.R LE图乙U/V 图甲(1)若滑动片P由a滑至b时A示数一直变小,则R1和R2必须满足的关系是.(2)若R1=6Ω,R2=12Ω,电源内电阻r=6Ω,当滑动片P由a滑至b时,电源E的输出功率P随外电路总电阻R的变化关系如图(b)所示,则R3的阻值应该选择.(B)A.2ΩB.4ΩC.6ΩD.8Ω【变式】(2011•徐汇区二模)某同学设计了如图甲所示电路研究电源输出功率随外电阻变化的规律.电源电动势E恒定,内电阻r=6Ω,R1为滑动变阻器,R2、R3为定值电阻,A、V为理想电表.当滑动变阻器滑臂从a到b移动的过程中,输出功率随滑臂移动距离x的变化情况如乙图所示,则R1的最大阻值及R2、R3的阻值可能为下列哪组(A)A.12Ω、6Ω、6ΩB.6Ω、12Ω、4Ω C.12Ω、6Ω、2Ω D.6Ω、12Ω、8Ω2、有解析式的图像(解析式是核心)(1)在我们曾经错过的题目中体会图像的简洁与高效【例题】(2016汾阳中学高一期末考试)如图所示,甲从A地由静止匀加速跑向B地,当甲前进距B为S1时,乙从距B地S2处的C点由静止出发,加速度与甲相同,最后二人同时到达B地,则AB两地距离为()A.B.C.D.【例题】(2016•吕梁市一模改编)如图所示,足够长斜面倾角为30°,固定于水平面上.用轻绳相连的木块a、b在平行于斜面的恒定拉力作用下,沿斜面向上匀速运动.途中轻绳断裂,b由绳断处继续运动距离x后,撤去拉力.已知a的质量为m,b的质量为5m,a、b与斜面间的动摩擦因数均为,不计绳的长度,以下说法正确的是()A.绳断裂时,a的加速度g B.绳断裂时,b的加速度为gC.a与b间的最大距离为x D.a与b间的最大距离为x【例题】(2016.9第一次百校联A卷慢组)如图甲所示,有一块木板静止在足够长的粗糙水平面上,木板质量为M=4kg,长为L=1.4m;木块右端放的一小滑块,小滑块质量为m=1kg,可视为质点.现用水平恒力F作用在木板M右端,恒力F取不同数值时,小滑块和木板的加速度分别对应不同数值,两者的a﹣F图象如图乙所示,取g=10m/s2.求:(1)小滑块与木板之间的滑动摩擦因数,以及木板与地面的滑动摩擦因数.(2)若水平恒力F=27.8N,且始终作用在木板M上,当小滑块m从木板上滑落时,经历的时间为多长.【2015课标1卷】一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁.木板右端与墙壁的距离为5m,如图(a)所示,t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反,运过程中小物块始终未离开木板,已知碰撞后1s时间内小物块的v-t图线如图(b)所示.木板的质量是小物块质量的15倍,重力大小g取10m/s2.求(1)小物块与木板间的动摩擦因数μ1;(2)木板与地面间的动摩擦因数μ2;(3)求从木板撞到墙上开始计时到小物块速度减为0的过程中,小物块移动的距离x1和木板离开墙移动的距离x2;(4)根据题意求木板的最小长度L【变式】一长木板置于光滑水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4m,如图(a)所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=1s时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s时间内小物块的v-t图线如图(b)所示.小物块质量是木板质量的3倍,重力加速度大小g取10m/s2.求(1)木板与墙壁碰撞后,木板离开墙壁的最大距离;(2)小物块距离木板左端的最终距离【答案】:(1)木板与墙壁碰撞后,木板离开墙壁的最大距离为1.33m;(2)小物块距离木板左端的最终距离为4m.t【例题】(2015课标2卷)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin37°=)的山坡C,上面有一质量为m的石板B,其上下表面与斜坡平行;B上有一碎石堆A(含有大量泥土),A和B均处于静止状态,如图所示.假设某次暴雨中,A浸透雨水后总质量也为m(可视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数μ1减小为,B、C间的动摩擦因数μ2减小为0.5,A、B开始运动,此时刻为计时起点;在第2s末,B的上表面突然变为光滑,μ2保持不变.已知A开始运动时,A离B下边缘的距离l=27m,C足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g=10m/s2.求:(1)在0~2s时间内A和B加速度的大小(2)A在B上总的运动时间.【练习题】甲、乙两辆汽车同时通过公路上的同一地点,向同一方向运动,它们的瞬时速度依次为v1、v2(D)A.在t1时刻甲、乙两辆汽车再次相遇B.在t1时刻以后,乙车将在甲车前面C.在t2时刻以前,甲、乙两车间的距离始终在减小D.在t2时刻以前,甲车始终在乙车前面【变1】一个固定在水平面上的光滑物块,其左侧面是斜面AB,右侧面是曲面AC,如图所示。
高中物理运动学图像问题

速度的大小在数值上等于。
速度的大小在数值上等于 ,即v = ,如右图所示。
,如右图所示。
二、二、 直线运动的v t -图象图象 1. 匀速直线运动的v t -图象图象 ⑴匀速直线运动的v t -图象是与图象是与 。
⑵从图象不仅可以看出速度的大小,而且可以求出一段时间内的位移,其位移为⑷还可以根据图象求加速度,其加速度的大小等于⑷还可以根据图象求加速度,其加速度的大小等于 即a = ,, 越大,加速度也越大,反之则越小越大,加速度也越大,反之则越小越大,加速度也越大,反之则越小 三、区分s-t 图象、v t -图象图象⑴如右图为v t -图象,图象, A 描述的是描述的是 运动;B 描述的是述的是 运动;C 描述的是描述的是 运动。
动。
图中A 、B 的斜率为的斜率为 (“正”或“负”),表示物体作 运动;C 的斜率为的斜率为 (“正”或“负”),表示C 作 运动。
A 的加速度的加速度 (“大于”、“等于”或“小于”)高中物理高中物理运动学运动学图像问题 【基本规律】一、一、 匀速匀速直线直线运动的s-t 图象图象s-t 图象表示运动的图象表示运动的位移位移随时间的变化规律。
匀速直线运动的s-t 图象是一条是一条 2. 匀变速直线运动的v t -图象图象⑴匀变速直线运动的v t -图象是图象是 ⑵从图象上可以看出某一时刻⑵从图象上可以看出某一时刻瞬时速度瞬时速度的大小。
的大小。
⑶可以根据图象求一段时间内的位移,其位移为B的加速度。
的加速度。
图线与横轴t 所围的所围的面积面积表示物体运动的表示物体运动的 。
⑵如右图为s-t 图象, A 描述的是描述的是 运动;B 描述的是 运动;C 描述的是运动。
运动。
图中A 、B 的斜率为的斜率为 (“正”或“负”),表示物体向体向 运动;C 的斜率为的斜率为 (“正”或“负”),表示C 向 运动。
A 的速度的速度 (“大于”、“等于”或“小于”)B 的速度。
的速度。
探究“图像”在高中物理课堂教学中的应用

探究“图像”在高中物理课堂教学中的应用图像在高中物理课堂教学中的应用是一个非常重要的话题。
随着科技的不断发展,图像在教学中的应用变得越来越普遍。
在高中物理课堂上,图像不仅可以丰富教学内容,还可以激发学生的学习兴趣,提高他们的学习效果。
本文将探讨图像在高中物理课堂教学中的应用,包括其作用、方法和意义。
一、图像在高中物理课堂教学中的作用1. 提供直观的物理概念图像能够直观地向学生展示物理实验、现象和规律。
通过图像,学生可以更清晰地理解物理学中的抽象概念,比如力、速度、加速度等。
学生可以通过观察图像,加深对物理概念的理解,使知识更加深入。
2. 帮助学生发现物理规律通过图像,学生能够直观地观察到物理实验的结果和现象,从而发现物理规律。
学生可以通过分析图像,找出其中的规律并加以总结,这有利于提高学生的实验能力和动手能力。
3. 激发学生学习兴趣图像丰富了课堂教学内容,可以使学生在轻松愉快的氛围中学习,激发他们的学习兴趣。
学生对图像更容易产生兴趣,从而更主动地学习物理知识。
二、图像在高中物理课堂教学中的方法1. 利用示意图在教学过程中,老师可以通过示意图向学生展示物理实验、现象和规律。
示意图要简单明了,能够清晰地呈现物理概念,便于学生理解和记忆。
2. 展示真实图片在物理课堂上,老师可以通过展示真实图片来引入物理实验,向学生展示物理现象。
通过展示汽车撞击实验的图片来引入动量守恒定律,让学生通过观察图片发现物理规律。
3. 视频展示利用视频展示物理实验和现象是一种常见的教学方法。
视频能够直观地展现物理现象,对于一些复杂的物理实验尤其适用。
通过观看视频,学生可以更清晰地理解物理现象,从而掌握物理知识。
三、图像在高中物理课堂教学中的意义1. 丰富了课堂教学内容图像丰富了高中物理课堂教学内容,使学生在视觉上更加直观地了解物理知识,提高了教学的多样性和灵活性。
2. 提高了教学效果图像能够使学生更容易地理解和记忆物理知识,有助于提高他们的学习效果。
高中物理:图像、图形分析法

所谓图像分析法,就是利用图像本身数学特征所反映的物理意义解决物理问题(已知图像找出物理量间的函数关系)和确定物理量间的函数关系,作出物理图像来解决物理问题。
常用的有矢量图、坐标图和光路图等。
根据中学物理中所研究的物理规律,常用的数学函数图像有以下类型:1. 正比例函数:如F=kΔx,匀速直线运动中的s=v·t 等;2. 反比例函数:如物体受恒力作用时加速度与质量的关系a=F/m等;3. 一次函数:如U=ε-Ir等;4. 二次函数:如s=vt+等;在分析物理图像时首先要看清图像名称,搞清图像研究的是什么,再根据图线的一些特殊规律,并对照两个坐标轴上的物理量和单位,同时联想它们的物理过程,就容易搞清图像的物理意义,这样利用图像解题也就变得容易了。
对于已知题设条件来确定物理图像是一个比较复杂的过程,这里包括依据物理量间的函数关系作出物理图像,物理图像的变换;利用求出的物理图像解决物理问题等几个方面,这类问题中,关键是正确地寻找出物理量之间的联系,后找出这一联系的关键在于分析物理过程。
针对不同题型,图像的不同作用,可把图像法分类概括如下:1. 利用图像揭示物理规律。
(1)分析图像直接反映出来的问题;(2)定性地给出一些复杂物理过程的物理量之间的函数关系。
2. 利用图像分析物理过程和变化关系。
3. 利用图像简化繁琐的公式推算。
4. 利用图像分析实验误差,揭示物理规律。
5. 利用图像挖掘隐含条件,解综合题。
[例] 在2004年雅典奥运会上,我国运动员黄珊汕第一次参加蹦床项目的比赛即取得了第三名的优异成绩。
假设表演时运动员仅在竖直方向运动,通过传感器将弹簧床面与运动员间的弹力随时间变化的规律在计算机上绘制出如图所示的曲线,当地重力加速度为g=10m/s2,依据图象给出的信息,回答下列物理量能否求出,如能求出写出必要的运算过程和最后结果。
(1)蹦床运动稳定后的运动周期;(2)运动员的质量;(3)运动过程中,运动员离开弹簧床上升的最大高度;(4)运动过程中运动员的最大加速度。
高中物理-第12讲图像法

第12讲图像法分析物理问题1、通过给定图像,分析情景获得物理结论(2020年1月浙江选考)如图甲所示,在xOy 水平面内,固定放置着间距为l 的两平行金属直导轨,其间连接有阻值为R 的电阻,电阻两端连接示波器(内阻可视为无穷大),可动态显示电阻R 两端的电压。
两导轨间存在大小为B 、方向垂直导轨平面的匀强磁场。
t=0时一质量为m 、长为l 的导体棒在外力F 作用下从x=x 0位置开始做简谐运动,观察到示波器显示的电压随时间变化的波形是如图乙所示的正弦曲线。
取.则简谐运动的平衡位置在坐标原点O.不计摩擦阻力和其它电阻,导体棒始终垂直导轨运动。
(提示:可以用F-x 图象下的“面积”代表力F 所做的功)(1)求导体棒所受到的安培力F A 随时间t 的变化规律;(2)求在0至0.25T 时间内外力F 的冲量;(3)若t=0时外力F 0=1N ,l=1m ,T=2πs ,m=1kg ,R=1Ω,U m =0.5V ,B=0.5T ,求外力与安培力大小相等时棒的位置坐标和速度。
BlT U π2x m 0−=2、对物理情景的分析转化为直观的图像(2020年1月浙江选考)一个无风晴朗的冬日,小明乘坐游戏滑雪车从静止开始沿斜直雪道下滑,滑行54m后进入水平雪道,继续滑行40.5m 后减速到零。
已知小明和滑雪车的总质量为60kg,整个滑行过程用时10.5s,斜直雪道倾角为37°(sin37°=0.6)。
求小明和滑雪车(1)滑行过程中的最大速度v m的大小;(2)在斜直雪道上滑行的时间t1;(3)在斜直雪道上受到的平均阻力F f的大小。
运用V-t图像方便、快速3、通过图像对实验数据进行分析和处理(2020年1月浙江选考)在“测绘小灯泡的伏安特性曲线”实验中:①如图丙所示,已经连接了一部分电路,请在答题纸上对应位置将电路连接完整。
②合上开关后,测出9组I、U值,在I-U坐标系中描出各对应点,如图丁所示。
怎样认识高中物理图像问题

怎样认识高中物理图像问题
用图像表示物理规律是高中时期常遇到的问题,尽管不要求会利用图像解决问题,然而对图像的物理意义分析清晰,会有利于我们对问题的分析,加深对规律的明白得.解决问题时,会显得专门方便.处理图像问题,一样要注意以下几个关键问题:即“轴、点、线、面、斜、截”的含义.
1、轴:弄清直角坐标系中,横轴、纵轴代表的含义,即图像是描述哪两个物理量间的关系,是位移—时刻关系?依旧速度—时刻关系?等等……,同时注意单位及标度.
2、点:弄清图像上任一点的物理意义,实质是两个轴所代表的物理量的瞬时对应关系,如代表t时刻的位移s,或t时刻对应的速度等等.
3、线:图像上的一段直线或曲线一样对应一段物理过程,给出了纵轴代表的物理量随横轴代表的物理量的变化过程.
4、面:图像和坐标轴所夹的“面积”往往代表另一个物理量的变化规律,看两轴代表的物理量的“积”有无实际的物理意义,能够从物理公式分析,也可从单位的角度分析,如s—t图像“面积”无实际意义,不予讨论,图像“面积”代表对应的位移.
5、斜:即斜率,也往往代表另一个物理量的规律,看两轴所代表物理量的变化之比的含义.同样能够从物理公式或单位的角度分析,如s—t图像中,斜率代表速度等……
6、截:即纵轴截距,一样代表物理过程的初状态情形,即时刻为零时的位移或速度的值.因此,对物理图像的全面了解,还需同学们今后慢慢体会和提高,如对矢量及标量的正确处理分析等等……。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理图象问题分析《高考考试大纲》对学生物理学科的能力要求中明确指出,要求学生具有阅读图象、描述图象、运用图象解决问题的能力。
物理图象能形象地表达物理规律、直观地描述物理过程、鲜明地表示物理量之间的相互关系,是分析物理问题的有效手段之一,是当今高考出题的热点。
高考对图象考查的内容及命题形式主要有以下几个方面:①通过对物理过程的分析找出与之对应的图象并描绘出来;②通过对已知图象的分析寻找其内部蕴含的物理规律;③图象的转换——用不同的图象描述同一物理规律或结论;④综合应用物理图象分析解决问题。
图象问题的处理策略有两条途径:一是根据图象反映的函数关系,找到图象所反映的两个物理量间的关系,分析其物理意义和变化规律。
二是既能根据图象的定义把图象反映的规律对应到实际过程中去,又能将实际过程的抽象规律对应到图象中去,最终根据实际过程的物理规律进行判断。
这样,才抓住了解决图象问题的根本。
一、图象所反映出的物理意义:1.坐标轴的物理意义弄清两个坐标轴表示的物理量及单位.注意坐标原点是否从零开始;注意纵轴物理量为矢量情况时,横轴以上表示此物理量为正,横轴以下表示此物理量为负.2.图线形状注意观察图象形状是直线、曲线还是折线等,从而弄清图象所反映的两个物理量之间的关系,明确图象反映的物理意义.3.斜率图线上某点的斜率表示两物理量增量的比值,反映该点处一个量随另一个量变化的快慢.几种常见图象斜率的物理意义:(1)变速直线运动的x-t图象,纵坐标表示位移,横坐标表示时间,因此图线中某两点连线的斜率表示平均速度,图线上某一点切线的斜率表示瞬时速度;(2)v -t图线上两点连线的斜率和某点切线的斜率,分别表示平均加速度和瞬时加速度;(3)线圈的Φ-t图象(Φ为磁通量),斜率表示感应电动势;(4)恒力做功的W-l图象(l为恒力方向上的位移),斜率表示恒力的大小;(5)沿电场线方向的φ-x图象(φ为电势,x为位移),其斜率的大小等于电场强度;(6)用自由落体运动测量重力加速度实验的v2-h图象(v为速度,h为下落位移),其斜率为重力加速度的2倍.4.面积的物理意义图线与横轴所围的面积常代表一个物理量,这个物理量往往就是纵、横轴所表示的物理量的乘积的物理意义.几种常见图象面积的物理意义:(1)在直线运动的v-t图象中,图线和时间轴之间的面积,等于速度v与时间t的乘积,因此它表示相应时间内质点通过的位移;(2)在a-t图象中,图线和时间轴之间的面积,等于加速度a与时间t的乘积,表示质点在相应时间内速度的变化量;(3)线圈中电磁感应的E-t图象(E为感应电动势),图线跟t坐标轴之间的面积表示相应时间内线圈磁通量的变化量;(4)力F移动物体在力的方向上产生一段位移x,F -x图象中图线和l坐标轴之间的面积表示F做的功,如果F是静电力,此面积表示电势能的减小量,如果F是合力,则此面积表示物体动能的增加量;(5)静电场中的E-x图象(E为电场强度,x为沿电场线方向的位移),图线和x坐标轴之间的面积表示相应两点间的电势差.5.交点、拐点的物理意义交点往往表示不同对象达到的某一物理量的共同点,如在同一U -I坐标系中,电阻的U-I图线和电源的U-I图线的交点表示两者连成闭合电路时的工作点;拐点既是坐标点,又是两种不同变化情况的交界点,即物理量之间的突变点.二、处理图象的基本思路:1.公式与图象的转化要作出一个确定的物理图象,需要得到相关的函数关系式.在把物理量之间的关系式转化为一个图象时,最重要的就是要明确公式中的哪个量是自变量,哪些是常量,关系式描述的是哪两个物理量之间的函数关系,那么这两个物理量就是物理图象中的两个坐标轴.2.图象与情景的转化运用物理图象解题,还需要进一步建立物理图象和物理情景的联系,根据物理图象,想象出图象所呈现的物理现象、状态、过程和物理变化的具体情景,因为这些情景中隐含着许多解题条件,这些过程中体现了物理量相互制约的规律,这些状态反映了理论结果是否能与合理的现实相吻合,这些正是“审题”“分析”“审视答案”等解题环节所需要解决的.三、题型汇总:题型1 对图象物理意义的理解【例1】甲、乙两车从同一地点沿同一方向做直线运动,其v-t 图象如图1所示.关于两车的运动情况,下列说法正确的是( )图1A.在t=1 s时,甲、乙相遇B.在t=2 s时,甲、乙的运动方向均改变C.在t=4 s时,乙的加速度方向改变D.在t=2 s到t=6 s内,甲相对乙做匀速直线运动解析:在t=1 s时,甲、乙速度相等,乙车的位移比甲车的大,选项A错误;t=2 s时,甲、乙两车的速度开始减小,但运动方向不变,选项B错误;乙在2 s~6 s内加速度都相同,选项C错误;2 s~6 s内,甲、乙图象的斜率相同即加速度相同,故甲相对乙做匀速直线运动,选项D正确.答案 D【题后反思】图象问题往往隐含着两个变量之间的关系,因此要通过有关的物理概念和规律建立函数关系,并注意理解其斜率或面积的物理意义.【强化训练1】2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功.图2(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止,某次降落,以飞机着舰为计时零点,飞机在t=0.4 s时恰好钩住阻拦索中间位置,其着舰到停止的速度—时间图线如图(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约为 1 000 m.已知航母始终静止,重力加速度的大小为g.则( )(a) (b)图2A.从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的1/10B.在0.4 s~2.5 s时间内,阻拦索的张力几乎不随时间变化C.在滑行过程中,飞行员所承受的加速度大小会超过2.5gD.在0.4 s~2.5 s时间内,阻拦系统对飞机做功的功率几乎不变解析:由v-t图象中图线与t轴围成的面积,可估算出飞机在甲板上滑行的距离约为103 m,即大约是无阻拦索时的110,A正确.由题图的斜率可知飞机钩住阻拦索后加速度大约保持在a=27.6 m/s2>2.5g,故C正确;飞机的速度很大,空气阻力的影响不能忽略,且阻力随速度的减小而减小,所以要保持加速度不变,阻拦索的张力要逐渐减小,B错误;由P=Fv知,阻拦索对飞机做功的功率逐渐减小,故D错误.答案AC题型2 图象选择问题【例2】一小球自由下落,与地面发生碰撞,原速率反弹.若从释放小球开始计时,不计小球与地面发生碰撞的时间及空气阻力.则下列图中能正确描述小球位移x、速度v、动能E k、机械能E与时间t关系的是 ( )解析:小球自由下落,做初速度为零的匀加速运动;与地面发生碰撞,原速率反弹,做竖直上抛运动,速度图象B正确;小球下落时,速度与时间成正比,位移和动能都与时间的二次方成正比,位移图象A、动能图象C均错误;机械能保持不变,机械能图象D正确.答案BD【题后反思】此类问题应根据物理情景,找出两个物理量间的变化关系,寻求两物理量之间的函数关系,然后选择出正确的图象;若不能找到准确的函数关系,则应定性判断两物理量间的变化关系,特别要注意两种不同变化的交界点,对应图象中的拐点.【强化训练2】如图3所示,质量为m的滑块从斜面底端以平行于斜面的初速度v0冲上固定斜面,沿斜面上升的最大高度为H.已知斜面倾角为α,斜面与滑块间的动摩擦因数为μ,且μ<tan α,最大静摩擦力等于滑动摩擦力,取斜面底端为零势能面,则能表示滑块在斜面上运动的机械能E、动能E k、势能E p与上升高度h之间关系的图象是 ( )图3解析:滑块机械能的变化量等于除重力外其余力做的功,故滑块机械能的减小量等于克服阻力做的功,故上行阶段:E=E0-F阻h sin α,下行阶段:E=E0′-F阻hsin α,故B错误;动能的变化量等于外力的总功,故上行阶段:-mgh-F阻hsin α=E k-E0,下行阶段:mgh-F阻hsin α=E k-E0′,C错,D对;上行阶段:E p=mgh,下行阶段:E p=mgh,A错误.答案 D【强化训练3】如图4所示,A、B为两个等量正点电荷,O为A、B连线的中点.以O为坐标原点、垂直AB向右为正方向建立Ox 轴.下列四幅图分别反映了在x轴上各点的电势φ(取无穷远处电势为零)和电场强度E的大小随坐标x的变化关系,其中正确的是( )图4解析:在两个等量正点电荷连线的垂直平分线上,O点电势最高,由于为非匀强电场,选项A、B关于电势的图线错误.O点电场强度为零,无穷远处电场强度为零,中间有一点电场强度最大,所以电场强度E的大小随坐标x的变化关系正确的是C.答案 C题型3 图象变换问题【例3】如图5甲所示,在圆形线框区域内存在匀强磁场,磁场的方向垂直于纸面向里.若磁场的磁感应强度B按照图乙所示规律变化,则线框中的感应电流I(取逆时针方向的电流为正)随时间t 的变化图线是( )图5解析:圆形线框内,从t=0时刻起磁感应强度均匀增大,根据法拉第电磁感应定律和闭合电路欧姆定律可知,此过程产生恒定的感应电动势和感应电流,磁感应强度增大到最大后开始均匀减小,产生与前面过程中方向相反的恒定的感应电动势和感应电流;由楞次定律可知,在前半段时间产生的感应电流方向为逆时针方向,为正值;后半段时间产生的感应电流方向为顺时针方向,为负值,所以感应电流I随时间t的变化图线是A.答案 A【题后反思】对于图象变换问题,应注意划分不同的时间段或者运动过程,逐个过程画出与之对应的图象.有时图象间具有某种关系,如本题中B-t图象的斜率表示单位面积内感应电动势的大小,其与电流大小成正比,找到这个关系后就可以很容易的找到正确选项.【强化训练4】光滑水平面上静止的物体,受到一个水平拉力F 作用开始运动,拉力随时间变化的图象如图6所示,用E k、v、x、P分别表示物体的动能、速度、位移和水平拉力的功率,下列四个图象中分别定性描述了这些物理量随时间变化的情况,正确的是( )图6解析: 物体在水平拉力F 作用下,做匀加速直线运动,选项B正确;其位移x =12at 2,选项C 错误;由动能定理,Fx =F·12at 2=E k ,选项A 错误;水平拉力的功率P =Fv ,选项D 正确.答案 BD题型4 图象作图问题【例4】如图7甲所示,水平地面上有一块质量M =1.6 kg ,上表面光滑且足够长的木板,受到大小F =10 N 、与水平方向成37°角的拉力作用,木板恰好能以速度v 0=8 m/s 水平向右匀速运动.现有很多个质量均为m =0.5 kg 的小铁块,某时刻在木板最右端无初速度地放上第一个小铁块,此后每当木板运动L =1 m 时,就在木板最右端无初速度地再放上一个小铁块.取g =10 m/s 2,cos 37°=0.8,sin 37°=0.6,求:甲 乙图7(1)木板与地面间的动摩擦因数μ;(2)第一个小铁块放上后,木板运动L 时速度的大小v 1; (3)请在图乙中画出木板的运动距离x 在0≤x≤4L 范围内,木板动能变化量的绝对值|ΔE k |与x 的关系图象(不必写出分析过程,其中0≤x≤L 的图象已画出).解析: (1)对木板受力分析,由平衡条件 Fcos 37°=μ(Mg -Fsin 37°)解得木板与地面间的动摩擦因数μ=0.8. (2)第一个小铁块放上后,对木板由动能定理有 Fcos 37°L-μ(Mg +mg -Fsin 37°)L=12Mv 21-12Mv 2化简得:-μmgL =12Mv 21-12Mv 2解得木板运动L 时速度的大小 v 1=v 20-2μmgLM=59 m/s(3)木板动能变化量的绝对值|ΔE k |与x 的关系图象如图所示.答案 (1)0.8 (2)59 m/s (3)见解析图题型5 图象与情景结合分析物理问题【例5】(14分)如图8甲所示,光滑水平面上的O 处有一质量为m =2 kg 物体.物体同时受到两个水平力的作用,F 1=4 N ,方向向右,F 2的方向向左,大小如图乙所示,x 为物体相对O 的位移.物体从静止开始运动,问:甲 乙图8(1)当位移为x =0.5 m 时物体的加速度多大?(2)物体在x =0到x =2 m 内何位置物体的加速度最大?最大值为多少?(3)物体在x =0到x =2 m 内何位置物体的速度最大?最大值为多少?解析:(1)由题图乙可知F 2与x 的函数关系式为: F 2=(2+2x) N当x =0.5 m 时,F 2=(2+2×0.5) N=3 N (2分) F 1-F 2=maa =F 1-F 2m =4-32 m/s 2=0.5 m/s 2(2分)(2)物体所受的合力为F 合=F 1-F 2=[4-(2+2x)] N =(2-2x) N (1分) 作出F 合-x 图象如图所示:从图中可以看出,当x =0时,物体有最大加速度a 0 F0=ma 0a 0=F 0m =22m/s 2=1 m/s 2(2分)当x =2 m 时,物体也有最大加速度a 2.F 2=ma 2a 2=F 2m =-22 m/s 2=-1 m/s 2 负号表示加速度方向向左.(2分)(3)当物体的加速度为零时速度最大.从上述图中可以看出,当x =1 m 时,a 1=0,速度v 1最大. (1分) 从x =0至x =1 m 合力所做的功为W 合=12F 合x =12×2×1 J=1 J (1分)根据动能定理,有 E k1=W 合=12mv 21=1 J(2分)所以当x =1 m 时,物体的速度最大,为 v 1=2E k1m= 2×12m/s =1 m/s (1分) 答案 (1)0.5 m/s 2 (2)x =0时有最大加速度a 0,a 0=1 m/s 2;x =2 m 时,也有最大加速度a 2,a 2=-1 m/s 2,负号表示加速度方向向左 (3)x =1 m 时,物体的速度最大,最大为1 m/s 【强化训练5】 如图9甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),试求:图9(1)当t =1.5 s 时,重力对金属棒ab 做功的功率;(2)金属棒ab 从开始运动的1.5 s 内,电阻R 上产生的热量; (3)磁感应强度B 的大小.解析: (1)金属棒先做加速度减小的加速运动,t =1.5 s 后以速度v t 匀速下落,由题图乙知v t =11.2-7.02.1-1.5 m/s =7 m/s由功率定义得t =1.5 s 时,重力对金属棒ab 做功的功率 P G =mgv t =0.01×10×7 W=0.7 W(2)在0~1.5 s ,以金属棒ab 为研究对象,根据动能定理得 mgh -W 安=12mv 2t -0解得W 安=0.455 J闭合回路中产生的总热量Q =W 安=0.455 J 电阻R 上产生的热量Q R =RR +rQ =0.26 J(3)当金属棒匀速下落时,由共点力平衡条件得mg =BIL 金属棒产生的感应电动势E =BLv t 则电路中的电流I =BLv tR +r代入数据解得B =0.1 T答案 (1)0.7 W (2)0.26 J (3)0.1 T四、专题突破强化训练(限时:45分钟)一、单项选择题1. 一质点自x 轴原点O 出发,沿正方向以加速度a 运动,经过t 0时间速度变为v 0,接着以加速度-a 运动,当速度变为-v 02时,加速度又变为a ,直至速度变为v 04时,加速度再变为-a ,直至速度变为-v 08,….其v -t 图象如图1所示,则下列说法中正确的是( )图1A .质点运动方向一直沿x 轴正方向B .质点运动过程中离原点的最大距离为v 0t 02C .质点运动过程中离原点的最大距离为v 0t 0D .质点最终静止时离开原点的距离一定大于v 0t 0解析: 质点运动方向先沿x 轴正方向,2t 0时间后沿x 轴负方向,再沿x 轴正方向,往返运动,选项A 错误.质点运动过程中离原点的最大距离为v 0t 0,选项B 错误,C 正确.由题图结合数学知识可知,质点最终静止时离开原点的距离一定小于v 0t 0,选项D 错误.答案 C2.如图2所示,靠在竖直粗糙墙壁上的物块在t=0时由无初速度释放,同时开始受到一随时间变化规律为F=kt的水平力作用,用a、v、F f和E k分别表示物块的加速度、速度、物块所受的摩擦力、物块的动能,下列图象能正确描述上述物理量随时间变化规律的是( )图2解析:根据题述,物块与竖直墙壁之间的压力随时间增大,开始,物块从静止无初速度释放,所受摩擦力逐渐增大,物块做初速度为零、加速度逐渐减小的加速运动,达到最大速度后逐渐减小,选项A错误.由mg-μkt=ma,选项B正确.物块运动时所受摩擦力F f=μkt,速度减为零后F f=mg,选项C错误.物块动能E k=12mv2,随时间增大,但不是均匀增大,达到最大速度后逐渐减小,但不是均匀减小,选项D错误.答案 B3. 如图3所示,一轻弹簧竖直固定在水平地面上,弹簧正上方有一个小球自由下落.从小球接触弹簧上端O 点到将弹簧压缩到最短的过程中,小球的加速度a 随时间t 或者随距O 点的距离x 变化的关系图线是 ( )图3解析: 小球从接触弹簧上端O 点到将弹簧压缩到最短的过程中,所受弹力F =kx ,由牛顿第二定律,mg -kx =ma ,解得a =g -k m x ,小球先做加速度减小的加速运动,后做加速度增大的减速运动,故选项B 正确,A 、C 、D 错误.答案 B4. 如图4(a)所示,在竖直向上的匀强磁场中,水平放置一个不变形的铜圆环,规定从上向下看时,铜环中的感应电流I 沿顺时针方向为正方向.图(b)表示铜环中的感应电流I 随时间t 变化的图象,则磁场B 随时间t 变化的图象可能是下图中的 ( )图4解析:由题图(b)可知,从1 s到3 s无感应电流产生,所以穿过圆环的磁通量不变,所以排除C选项,对于A选项,从0到1 s,磁通量不变,感应电流也为零,所以可排除;从电流的方向看,对于B选项,从0到1 s,磁通量增大,由楞次定律可知感应电流沿顺时针方向,对于D选项,从0到1 s感应电流沿逆时针方向,故选项B 正确.答案 B5.如图5甲所示,圆环形线圈P用四根互相对称的轻绳吊在水平的天棚上,四根绳的结点将环分成四等份,图中只画出平面图中的两根绳,每根绳都与天棚成30°角,圆环形线圈P静止且环面水平,其正下方固定一螺线管Q,P和Q共轴,Q中通有按正弦函数规律变化的电流,其i-t图象如图乙所示,线圈P所受的重力为mg,每根绳受的拉力用F T表示.则( )甲乙图5A.在t=1.5 s时,穿过线圈P的磁通量最大,感应电流最大B.在t=1.5 s时,穿过线圈P的磁通量最大,此时F T=0.5mgC.在t=3 s时,穿过线圈P的磁通量的变化率为零D.在0~3 s内,线圈P受到的安培力先变大再变小解析:由题图可知,t=1.5 s时螺线管中的电流最大,磁场最强,所以穿过P环的磁通量最大,但是此时磁通量的变化率为零,故P环中没有感应电动势即没有感应电流,也就不受安培力的作用,所以选项A错,B正确,同理可知,选项C、D错误.答案 B6.如图6,静止在光滑地面上的小车,由光滑的斜面AB和粗糙的平面BC组成(它们在B处平滑连接),小车右侧与竖直墙壁之间连接着一个力传感器,当传感器受压时,其示数为正值,当传感器被拉时,其示数为负值.一个小滑块从小车A点由静止开始下滑至C点的过程中,传感器记录到的力F与时间t的关系图中可能正确的是 ( )图6解析:小滑块从小车A点由静止开始沿斜面(斜面倾角为θ)下滑时,对斜面压力等于mgcos θ,该力在水平方向的分力mgcos θsin θ,方向水平向右;小滑块由B点滑动到C点的过程,BC面对小滑块有向右的摩擦力,滑块对BC面有向左的滑动摩擦力,所以,传感器记录到的力F 随时间t 的关系图中可能正确的是D.答案 D 二、多项选择题7. 如图7所示,质量为m 的滑块以一定初速度滑上倾角为θ的固定斜面,同时施加一沿斜面向上的恒力F =mgsin θ;已知滑块与斜面间的动摩擦因数μ=tan θ,取出发点为参考点,下列图象中能正确描述滑块运动到最高点过程中产生的热量Q 、滑块动能E k 、势能E p 、机械能E 随时间t 、位移x 变化关系的是 ( )图7解析: 根据滑块与斜面间的动摩擦因数μ=tan θ可知,滑动摩擦力等于重力沿斜面向下的分力.施加一沿斜面向上的恒力F =mgsin θ,物体机械能保持不变,重力势能随位移x 均匀增大,选项C 、D 正确.产生的热量Q =F f x ,随位移均匀增大,滑块动能E k 随位移x 均匀减小,x =vt -12(gsin θ)t 2,选项A 、B 错误.答案 CD8. 一汽车沿直线由静止开始向右运动,汽车的速度和加速度方向始终向右.汽车速度的二次方v 2与汽车前进位移x 的图象如图8所示,则下列说法正确的是 ( )图8A .汽车从开始运动到前进x 1过程中,汽车受到的合外力越来越大B .汽车从开始运动到前进x 1过程中,汽车受到的合外力越来越小C .汽车从开始运动到前进x 1过程中,汽车的平均速度大于v 02D .汽车从开始运动到前进x 1过程中,汽车的平均速度小于v 02解析: 由v 2=2ax 可知,若汽车速度的二次方v 2与汽车前进位移x 的图象为直线,则汽车做匀加速运动.由汽车速度的二次方v 2与汽车前进位移x 的图象可知,汽车的加速度越来越大,汽车受到的合外力越来越大,选项A 正确,B 错误;根据汽车做加速度逐渐增大的加速运动,可画出速度图象如图所示,根据速度图象可得出,汽车从开始运动到前进x 1过程中,汽车的平均速度小于v 02,选项C错误,D 正确. 答案 AD9.如图9,在直角坐标系y轴上关于坐标原点对称的两点固定有两等量点电荷,若以无穷远处为零电势点,则关于x轴上各点电势φ随x坐标变化图线的说法正确的是 ( )图9A.若为等量异种点电荷,则为图线①B.若为等量异种点电荷,则为图线②C.若为等量正点电荷,则为图线②D.若为等量正点电荷,则为图线③解析:若为等量异种点电荷,x轴上各点电势φ相等,各点电势φ随x坐标变化的图线则为图线①,选项A正确,B错误.若为等量正点电荷,坐标原点电势最高,沿x轴正方向和负方向电势逐渐降低,各点电势φ随x坐标变化的图线则为图线③,选项C错误,D正确.答案AD10.图10甲中的变压器为理想变压器,原线圈匝数n1与副线圈匝数n2之比为10∶1,变压器的原线圈接如图乙所示的正弦式交流电,电阻R1=R2=R3=20 Ω和电容器C连接成如图甲所示的电路,其中,电容器的击穿电压为8 V,电压表为理想交流电表,开关S处于断开状态,则( )图10A .电压表的读数约为7.07 VB .电流表的读数约为0.05 AC .电阻R 2上消耗的功率为2.5 WD .若闭合开关S ,电容器会被击穿解析: 由变压器变压公式,副线圈输出电压最大值为20 V ,电压表的读数为U R2=202×2020+20 V≈7.07 V,选项A 正确;变压器输出功率为P 2=U 2I 2=U 22R 1+R 2=102240W =5.0 W ,U 1=2002V =100 2 V ,由P 1=U 1I 1=5.0 W 可得电流表的读数为240 A≈0.035 A,选项B 错误;电阻R 2上消耗的功率为P 22=2.5 W ,选项C 正确;若闭合开关S ,R 1和R 3并联部分电压最大值为203 V<8 V ,电容器不会被击穿,选项D 错误.答案 AC三、非选择题11.如图11甲,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,电阻箱的阻值范围为0~4 Ω,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨距为L=2 m,重力加速度g=10 m/s2.轨道足够长且电阻不计.图11(1)当R=0时,求杆ab匀速下滑过程中产生感应电动势E的大小及杆中的电流方向;(2)求金属杆的质量m和阻值r;(3)求金属杆匀速下滑时电阻箱消耗电功率的最大值P m;(4)当R=4 Ω时,随着杆ab下滑,求回路瞬时电功率每增大1 W的过程中合外力对杆做的功W.解析:(1)由题图乙可知,当R=0时,杆最终以v=2 m/s匀速运动,产生感应电动势E=BLv=0.5×2×2 V=2 V杆中电流方向从b→a(2)最大速度为v m,杆切割磁感线产生的感应电动势E=BLv m由闭合电路欧姆定律:I=ER+r杆达到最大速度时满足mgsin θ-BIL =0 解得:v m =mgsin θB 2L 2R +mgsin θB 2L 2r由题图乙可知:斜率为k =4-22 m/(s·Ω)=1 m/(s·Ω),纵截距为v 0=2 m/s即mgsin θB 2L 2r =v 0,mgsin θB 2L 2=k解得m =0.2 kg ,r =2 Ω (3)金属杆匀速下滑时电流恒定 mgsin θ-BIL =0 I =mgsin θBL =1 AP m =I 2R m =4 W(4)由题意:E =BLv ,P =E 2R +r得P =B 2L 2v 2R +rΔP =B 2L 2v 22R +r -B 2L 2v 21R +r由动能定理得W =12mv 22-12mv 21故W =m R +r2B 2L 2ΔP代入数据,解得W =0.6 J答案 (1)2 V ,电流方向由b→a (2)0.2 kg 2 Ω (3)4 W (4)0.6 J。