化简求值50题

合集下载

分式化简求值(50题2022-2023学年八年级数学上册重要考点精讲精练(人教版)(原卷版)

分式化简求值(50题2022-2023学年八年级数学上册重要考点精讲精练(人教版)(原卷版)

【专题】分式化简求值(50题)一、解答题1.先化简,再求值:(1−1a 1)÷aa 2−1,其中a =−12.2.先化简,再求值:a a−2+(a a−2−4aa 2−2),其中a =3.3.先化简,再求值:a a 2−1÷(1+1a−1),其中a=π0.4.先化简,再求值:(1−1a−2)÷a−3a 2−4,其中a =−3.5.先化简,再求值:a−1a 22a 1÷a−1a 1−1a−1,其中6.÷(3a 1−a +1),其中a =8.7.先化简,再求值:(2x +2)÷(x +1+),其中x =−2.8.先化简,再求值:)÷a 2−b 2a 2−ab ,其中a =﹣2,b =3.9.先化简,再求值:(1−2x−1)⋅x2−xx2−6x9,其中x=2.10.先化简再求值:−1x)÷1x1,再在−1,0,1,2中选择一个合适的数代入求值.11.先化简,再求值:(xx−1−1),其中x=-212.2xx2x2−1,其中x=3.13.先化简,再代入求值:x2x−2·(4x+x−4),其中x2−2x−2=014.先化简,再求值:(1+1x−2)÷x−1x2−2x+4,其中x=6.15.÷a2−aba−2a b,其中a=2,b=﹣1.16.先化简,再求值:(xx1+1x−1)÷1x2−1,其中x是6的平方根.17.先化简,再求值:+1)÷−2x ,其中x =4.18.先化简,再求值:(1x 1−11−x )÷1x 2−1,其中x =12.19.先化简,再求值:÷(x +2﹣5x−2 ),其中x = −12 .20.先化简,再求值:(2m 2−4m 2−1)其中m =(12)−1+(3.14−π)0.21.先化简 1a 1÷a a 22a 1 ,然后在0,1,-1中挑选一个合适的数代入求值. 22.÷(1+2x−1) ,再任选一个你喜欢的数作为x 的值代入求值.23.先化简(1−1a )÷a 2−1a 22a 1,再从−1,0,1,2中选择一个合适的数作为a 的值代入求值.24.先化简,再求值:b 2a 2−ab ÷(a 2−b 2a 2−2ab b 2+a b−a ),其中a =(2022−π)0,b =13.25.先化简分式(1−1x−2)÷2≤x≤4中选一个合适的整数代入求值.26.先化简(1−1x−1)÷0,-2,-1,1中选择一个合适的数代入并求值.27.先化简(1−3a 2)2,2,-1,1中选取一个恰当的数作为a 的值代入求值.28.÷(1−3x 1),其中x 与2,3构成等腰三角形.29.先化简,再求值: a a 1 ÷(a ﹣1﹣ 2a−1a 1 ),并从﹣1,0,1,2四个数中,选一个合适的数代入求值 30.先化简,再求值: −a−1a 2−4a 4)÷a−4a ,其中a 满足 a 2−4a +1=0 . 31.先化简,再求值:(1−2x−1)÷,其中x 从0,1,2,3四个数中适当选取.32.先化简,再求值: (1−4a 2)÷,其中a = 2−1+(π−2022)0 . 33.先化简,再求值 : (1−1a 1)÷aa 2−1 并在1,-1,2,0这四个数中取一个合适的数作为a 的值代入求值.34.先化简,再求值: mm 2−9÷[(m +3)0+3m−3] ,其中 m =−2 . 35.已知分式A =1−m m 2−1÷(1+1m−1).先化简A ,再从−1、0、1、2中选一个合适的数作为m 的值代入A 中,求A 的值.36.先化简:÷ ,再从 −2 ,0,1,2中选取一个合适的 x 的值代入求值. 37.先化简:x−3x 2−1⋅−(1x−1+1),其中0≤x ≤3,且x 为整数,请选择一个你喜欢的数x 代入求值.38.先化简,再求值:(aa2+9−4aa2−4)÷a−3a−2,其中a是已知两边分别为2和3的三角形的第三边长,且a是整数.39.先化简,再求值:+1−aa2−4a4)÷a−4a,并从0<a<4中选取合适的整数代入求值.40.先化简,再求值:b2a2−ab ÷(a2−b2a2−2ab b2+ab−a),其中a=−2,b=13.41.先化简,再求值:(1+1x2)÷ x2−9x−3,其中x=﹣2.42.先化简x2−2xx2−4÷(x−2−2x−4x2),然后从-2,2,5中选取一个的合适的数作为x的值代入求值.43.先化简,再求值:(2a−4aa−2)÷a−4a2−4a4,其中a与2,3构成△ABC的三边长,且a为整数.44.有一道题:“先化简,再求值:(x−2x 2+4xx 2−4)÷1x 2−4,其中x= -6.”小张做题时把x= -6错抄成x=6,但是他的计算结果却是正确的.请你阐明原因.45.先化简,再求值:÷−2x x 为不等式组2(2x +3)−x <12,x ≥−2的整数解,挑一个合适的x 代入求值.46.先化简: (a 2−1a 2−2a 1−a−1)÷,然后在 a ≤2 的非负整数集中选取一个合适的数作为a 的值代入求值. 47.先化简,再求值: ÷(x +1−3x−1) ,其中实不等x 式 2x <3(x +1) 的非正整数解. 48.先化简分式:(1﹣ xx−1 )÷ ,然后在﹣2,﹣1,0,1,2中选一个你认为合适的x 的值,代入求值.49.先化简,再求值: (x x 2x −1)÷x 2−1x 22x 1 ,其中x 的值从不等式组 −x ≤12x−1<4 的整数解中选取.50.有这样一道题:先化简再求值,÷x−1x2x−x+1,其中x=2021.”小华同学把条件“x=2021”错抄成“x=2012”,但他的计算结果也是正确的,请通过计算说明这是怎么回事.。

化简求值50题

化简求值50题

化简求值50题1、已知2x +y =0,求分式 222y x y x -+.(x +y )的值. 2. 先化简,再求值:4)122(22--÷+-a a a a ,其中1-=a . 3.已知02=+y x ,求x y xy x y x xyx y x 2222244)(2+-÷-⋅+-的值. 4.已知062=-+x x ,求代数式7)1()1(22---+x x x x 的值.5. 已知 26x x -=,求代数式 22(1)(1)28x x x x x +-+--的值. 6、先化简,再求值:aa a a a a 1)113(2-⨯+--,其中a=22- 7. 已知: 115m n -= ,求代数式31236m mn n m mn n+-+-的值. 8. 已知22225,2427x y x xy y +=-++-求 的值.9.已知310x -=,求代数式22()(31)4x x x x x -+++的值 . 10. 先化简,再求值:22212221x x x x x x --+--+÷x ,其中x =23. 11. 先化简,再求值:2314223a a a a +-⎛⎫+÷ ⎪--⎝⎭,其中2410a a -+=. 12.(2008年天津市)若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为 . 13.(2008年四川巴中市)若0234x y z ==≠,则23x y z+= . 14.(2008年四川巴中市)当x = 时,分式33x x --无意义. 15.(08山东省日照市)化简,再求值:11a b a b ⎛⎫-⎪-+⎝⎭÷222b a ab b -+,其中21+=a ,21-=b . 16.(2008年辽宁省十二市)先化简,再求值:23111a a a a a a-⎛⎫- ⎪-+⎝⎭,其中2a =.17.(2008年乐山市)已知1x =-,求代数式4(2)22x x x x÷+---的值 18. (2008山东德州)先化简,再求值:11a b a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b -+,其中21+=a ,21-=b . 19. (2008黑龙江黑河)先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值.20.(2008年陕西省)先化简,再求值:22222a b b a b a b +++-,其中2a =-,13b =. 21.(2008 河南)先化简,再求值:11-+a a -122+-a a a ÷a1,其中a =1-2 22.(2008 四川 泸州)化简21211x x x ++- 23.(2008年浙江省嘉兴市)先化简,再求值:22111a a a a -⎛⎫⨯+ ⎪+⎝⎭,其中2a =-. 24.(2008北京)已知30x y -=,求222()2x y x y x xy y+--+的值.25.(2008湖北咸宁)先化简,再求值:22321113x x x x x x x +++---+ ,其中1x =.26.(2008年江苏省无锡市)(2)先化简,再求值:244(2)24x x x x -++-,其中x = 27.(2008年山东省枣庄市)先化简,再求值:22212221x x x x x x --+--+÷x ,其中x =23. 28.(2008江苏南京)解方程12+x -122+x =0. 29.(2008湖北黄石)先化简后求值.222212a b a b ab b a ab ab ⎛⎫+⎛⎫-÷+ ⎪ ⎪--⎝⎭⎝⎭,其中1a =-+1b =- 30.(2008江苏宿迁)先化简,再求值:222344322+-++÷+++a a a a a a a ,其中22-=a . 31.(2008 湖南 长沙)先化简,再求值:a a a -+-21422,其中21=a . 32.(2008 重庆)先化简,再求值:32444)1225(222+=++-÷+++-a a a a a a a ,其中33.(2008 四川 广安)先化简再求值:244()33x x x x x ---÷--,其中5x =. 34.(2008 湖南 怀化)先化简,再求值:()()3211123x x x x x --=---+,其中. 35.(2008 河北)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.36.(08乌兰察布市)先化简,再求值3241(1)3111x x x x x x ++-÷-+-+,其中1x =. 37.(08厦门市)先化简,再求值2221x x x x x+-,其中2x =. 38.(2008山东东营)先化简,再求值:11a b a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b-+,其中21+=a ,21-=b .39.(2008泰安)先化简,再求值:232224x x x x x x ⎛⎫-+ ⎪+--⎝⎭,其中4x = 40.(2008佛山).先化简)221(-+p ÷422--p p p ,再求值(其中P 是满足-3 <P < 3的整数). 41. (2008黑龙江哈尔滨)先化简,再求代数式2x 1-x 2x 3-12+÷+)(的值,其中x =4sin45°-2cos60°42.(2008湖北襄樊)化简求值: 12,161)416816(222+=-÷-+++-x x x x x x x 其中 43.(2008湖北孝感)请你先将式子2200811211a a a a ⎛⎫÷+ ⎪-+-⎝⎭化简,然后从1,2,3中选择一个数作为a 的值代入其中求值.44.(2008江苏盐城)先化简,再求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中4x =- 45.(08年山东省)先化简,再求值: 11a b a b ⎛⎫- ⎪-+⎝⎭÷222b a ab b -+,其中21+=a ,21-=b . 46.(2008年上海市)解方程:2654111x x x x x ++=--+47.(2008年山东省威海市)先化简,再求值:⎪⎭⎫ ⎝⎛--÷-+x x x x x 1211,其中2=x . 48.1271651231222++++++++x x x x x x 49. 8274496659332222-+⋅+-++÷+--x x x x x x x x x 50.ab bc ac c b a c ac bc ab b a c b bc ac ab a c b a +----++----++----222222。

完整版)七年级数学上册化简求值

完整版)七年级数学上册化简求值

完整版)七年级数学上册化简求值1.先化简表达式,得到:(2a^3 - 10a^2 - 8a + 6),然后代入a = -4,得到最终结果为-238.2.先化简表达式,得到:(2x^3 - 17x^2 - 5),然后代入x = -2,得到最终结果为-15.3.先化简表达式,得到:(3y^2 - 3x),然后代入x = -2,y = 3,得到最终结果为12.4.先化简表达式,得到:(12),然后代入a = -1,b = -3,c = 1,得到最终结果为-12.5.先化简表达式,得到:(133),然后代入a = -3,b = 4,c = -1,得到最终结果为-133.6.先化简表达式,得到:(9),然后代入x = 3,y = -2,得到最终结果为9.7.先将2x^2 - 4x + 3减去3x^2 - 5x + 2,得到-x^2 - x + 1,因此A = -x^2 - x + 1 - 3x^2 + 5x - 2 = -4x^2 + 4x - 1.8.先化简表达式,得到:(2a^2 - 5a) + (3a - 5 - a^2),然后代入a = -1,得到最终结果为-8.9.先化简表达式,得到:(-5/6),然后代入a = 1/2,b = 1/3,得到最终结果为-5/6.10.先化简表达式,得到:(-22),然后代入x = -3,y = 1/3,得到最终结果为-22.11.先化简表达式,得到:(-16),然后代入a = -2,得到最终结果为-16.12.先化简表达式,得到:(-5x^2 + 3xy + 2x^2),然后代入x = 2,y = -1,得到最终结果为-14.13.先化简表达式,得到:(-157),然后代入x = -5,得到最终结果为-157.14.先化简表达式,得到:(3x^2 - 7x + 3),然后代入x = 2,得到最终结果为5.15.先化简表达式,得到:(2),然后代入x = -2,得到最终结果为2.16.先化简表达式,得到:(3),然后代入x = 2,得到最终结果为3.17.先化简表达式,得到:(3),然后代入x = -1,得到最终结果为7.18.先化简表达式,得到:(-2ab),然后代入a = 2,b = 3,得到最终结果为-12.19.先化简表达式,得到:(-4x^2 - 2x - 7),然后代入x = -4/22,得到最终结果为-217/22.20.先化简表达式,得到:(5a^2 - 26a + 1),然后代入a = 3/2,得到最终结果为-23/2.21.先化简表达式,得到:(4x^2 - 6),然后代入x = -3/5,得到最终结果为54/5.22.先化简表达式,得到:(-8),然后代入x = -2,y = 2,得到最终结果为-8.1123.先化简,再求值:4xy - [2(x^2+xy-2y^2) - 3(x^2-2xy+y^2)],其中x=-1,y=2.化简后得:4xy - [2x^2 + 2xy - 4y^2 - 3x^2 + 6xy - 3y^2],即:4xy - [-x^2 + 8xy - y^2],代入x=-1,y=2,得:-8.2224.先化简,再求值:2x^2 + (-x^2+3xy+2y^2) - (x^2-xy+2y^2),其中x=1,y=3.化简后得:2x^2 + 2xy,代入x=1,y=3,得:8.225.先化简后求值:5(3x^2y-xy^2) - (xy^2+3x^2y),其中x=-1,y=2.化简后得:10x^2y - xy^2,代入x=-1,y=2,得:-18.26.先化简,再求值:x^2+2x+3(x^2-2/3x),其中x=-2.化简后得:4/3x^2 - 4x,代入x=-2,得:-40/3.27.(5x^2-3y^2)-3(x^2-y^2)-(-y^2),其中x=5,y=-3.化简后得:2x^2-6y^2,代入x=5,y=-3,得:-88.28.先化简再求值:(2x^2-5xy)-3(x^2-y^2)+x^2-3y^2,其中x=-3.化简后得:-2x^2+2y^2,代入x=-3,得:-18.29.先化简再求值:(-x^2+5x)-(x-3)-4x,其中x=-1.化简后得:-x^2+10x-2,代入x=-1,得:-12.30.先化简,再求值:2x^2-2(x^2-y)+3(y-2x),其中,x=3,y=2.化简后得:4x+6y-2,代入x=3,y=2,得:16.31.3(x^2-2xy)-[3x^2-2y+2(xy+y)],其中x=-2,y=-3.化简后得:-3xy-2y,代入x=-2,y=-3,得:18.32.先化简再求值:(a^3-2b^3)+2(ab^2-a^2b)-2(ab^2-b^3),已知a=1,b=-3.化简后得:a^3+6b^3,代入a=1,b=-3,得:-161.39.先化简再求值:(-4a^2+2a-8)-(a-1),其中a=2.化简后得:-4a^2+3a-7,代入a=2,得:-19.40.当x=-2,y=-3时,求代数式3(x^2-2xy)-[3x^2-2y+2(xy+y)]的值。

初一七年级化简求值100题

初一七年级化简求值100题

初一七年级化简求值100题1、-9(x-2)-y(x-5)(1)化简整个式子。

(2)当x=5时,求y的解。

2、5(9+a)Xb-5(5+b)Xa(1)化简整个式子。

(2)当a=5/7时,求式子的值3、62g+62(g+b)-b(1)化简整个式子。

(2)当g=5/7时,求b的解。

4、3(x+y)-5(4+x)+2y化简整个式子。

5、(x+y)(x-y)化简整个式子。

6、2ab+aXa-b化简整个式子。

7、5.6x+4(x+y)-y化简整个式子。

8、6.4(x+2.9)-y+2(x-y)化简整个式子。

9、(2.5+x)(5.2+y)化简整个式子。

10.3ab-4ab+8ab-7ab+ab=.11.7x-(5x-5y)-y=.12.23a3bc2-15ab2c+8abc-24a3bc2-8abc=.13.-7x2+6x+13x2-4x-5x2=.14.2y+(—2y+5)—(3y+2)=・15.(2x2-3xy+4y2)+(x2+2xy-3y2)=.16・2x+2y—[3x—2(x—y)]=・17・5—(1—x)—1—(x—1)=・18・()+(4xy+7x2—y2)=10x2—xy・19・(4xy2—2x2y)—()=x3—2x2y+4xy2+y3・20・2a—(3a—2b+2)+(3a—4b—1)=・21•已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=22•已知A=x3—2x2+x—4,B=2x3—5x+3,计算A—B=23.若a=—0.2,b=0.5,代数式—(|a2b|—|ab2|)的值为24.2x—(x+3y)—(—x—y)—(x—y)=・25•—个多项式减去3m4—m3—2m+5得-2m4-3m3-2m2-1,那么这个多项式等于.26.—(2x2—y2)—[2y2—(x2+2xy)]=.27.若-3a3b2与5ax—1by+2是同类项,则x=,y=.28.(—y+6+3y4—y3)—(2y2—3y3+y4—7)=・29•化简代数式4x2-[7x2-5x-3(l-2x+x2)]的结果是30・2a—b2+c—d3=2a+()—d3=2a—d3—()=c—()・3l・3a—(2a—3b)+3(a—2b)—b=・32•化简代数式x-[y-2x-(x+y)]等于・33・[5a2+()a—7]+[()a2—4a+()]=a2+2a+l・34・3x—[y—(2x+y)]=・35•化简|1—x+y|—|x—y|(其中xVO,y>0)等于・36.已知xWy,x+y—|x—y|=.37.已知xV0,yV0,化简|x+y|—|5—x—y|二・38.4a2n—an—(3an—2a2n)=・39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2—x2+2xy,则这个多项式为40.—5xm—xm—(—7xm)+(—3xm)=41.当a=—1,b=—2时,[a-(b-c)]-[-b-(-c-a)]=・42・—6x2—7x2+15x2—2x2=・43.当a=—1,b=1,c=—1时,—[b—2(—5a)]—(—3b+5c)=44.—2(3x+z)—(—6x)+(—5y+3z)=45.—5an—an+1—(—7an+1)+(—3an)=46.3a-(2a-4b-6c)+3(-2c+2b)=.48.9a2+[7a2-2a-(-a2+3a)]=.50•当2y-x=5时,5(x-2y)2-3(-x+2y)-100二(二)选择51•下列各式中计算结果为-7x-5x2+6x3的是[] A.3x-(5x2+6x3-10x);B.3x-(5x2+6x3+10x);C.3x-(5x2-6x3+10x);D.3x-(5x2-6x3-10x).52.把(-x-y)+3(x+y)-5(x+y)合并同类项得[] A.(x-y)-2(x+y);B.-3(x+y);C.(-x-y)-2(x+y);D.3(x+y).53.2a-[3b-5a-(2a-7b)]等于[]B.5a+4b;C.-a-4b;D.9a-10b.54•减去-3m等于5m2-3m-5的代数式是[]A.5(m2-1);B.5m2-6m-5;D.-(5m2+6m-5).55•将多项式2ab-9a2-5ab-4a2中的同类项分别结合在一起,应为[]A.(9a2-4a2)+(-2ab-5ab);B.(9a2+4a2)-(2ab-5ab);C.(9a2-4a2)-(2ab+5ab);D.(9a2-4a2)+(2ab-5ab).56•当a=2,b=1时,—a2b+3ba2—(—2a2b)等于[]A.20;B.24;C.0;D.16.57•若A和B均为五次多项式,则A-B一定是[] A.十次多项式;B・零次多项式;C.次数不髙于五次的多项式;D.次数低于五次的多项式.58.-{[-(x+y)]}+{-[(x+y)]}等于[]A.0;B.-2y;C.x+y;D.-2x-2y.59•若A=3x2-5x+2,B=3x2-5x+6,则A与B的大小是A.A>B;B.A=B;C・AVB;D.无法确定.60•当m=-1时,—2m2—[—4m2+(—m2)]等于[] A.-7;B.3;C.1;D. 2.61.当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于[]A.1;B.9;C.3;D. 5.62.4x2y-5xy2的结果应为[]A.-x2y;B.-1;C.-x2y2;D•以上答案都不对.(三)化简 2(a2-ab-b2)-3(4a-2b)+2(7a2-4ab+b2). 4x-2(x-3)-3[x-3(4-2x)+8]. 5m2n+(-2m2n)+2mn2-(+m2n). 4(x-y+z)-2(x+y-z)-3(-x-y-z). 2(x2-2xy+y2-3)+(-x2+y2)-(x2+2xy+y2).(4x2-8x+5)-(x3+3x2-6x+2). (-x2+4+3x4-x3)-(x2+2x-x4-5). 若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B. 已知A=3a2-5a-12,B=2a2+3a-4,求2(A-B)・(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2). 一{2a2b-[3abc-(4ab2-a2b)]}・(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b).(x2-2y2-z2)-(-y2+3x 2-z2)+(5x2-y2+2z2). (3a6-a4+2a5-4a3-1)-(2-a+a3-a5-a4).(4a-2b-c)-5a-[8b-2c-(a+b)]. (2m-3n)-(3m-2n)+(5n+m).(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6a b). 63. 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81xy-(2xy-3z)+(3xy-4z).(-3x3+2x2-5x+1)-(5-6x-x2+x3).3x-(2x-4y-6x)+3(-2z+2y).2m-{-3n+[-4m-(3m-n)]}.(四)将下列各式先化简,再求值84•已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b)2X(a-b)2的值.85•已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.86.求(3x2y-2xy2)-(xy2-2x2y),其中x=-1,y=2.87.已知|x+l|+(y-2)2=0,求代数式5(2x-y)-3(x-4y)的值.88•当P=a2+2ab+b2,Q=a2—2ab—b2时,求P—[Q—2P—(P—Q)]・89•求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3・90.当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.91•已知A=x3-5x2,B=x2-6x+3,求A-3(-2B)・(五)综合练习92•去括号:{—[—(a+b)]}-{-[-(a-b)]}・93•去括号:-[-(-x)-y]-[+(-y)-(+x)]・94•已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内・95・计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+5y)+(-8y2)+(+3y)・96•去括号、合并同类项,将结果按x的升幂排列,并把后三项放在带有“-”号的括号内:97.不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy)+(2y3-3y2)・98.用竖式计算(-x+5+2x4-6x3)-(3x4+2x2-3x3-7)・99•已知A=llx3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B)・100.已知A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C)・.已知A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A・102.已知xV—4,化简|-x|+|x+4|-|x-4|・103•求两代数式-1.56a+3.2a3-0.47,2.27a3-0.02a2+4.03a+0.53的差与6-0.15a+3.24a2+5.07a3的和.104.已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3xy-z2-8xz-2x2的值.105・在括号内填上适当的项:(1)x2-xy+y-1=x2-();(2)[()+6x-7]-[4x2+()-()]=x2-2x+1・106.计算4x2-3[x+4(1-x)-x2]-2(4x2T)的值.107•化简:2x2-{-3x-[4x2-(3x2-x)+(x-x2)]}・108•化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}・109•计算:(+3a)+(-5a)+(-7a)+(-31a)-(+4a)-(-8a).110•化简:a3-(a2-a)+(a2-a+1)-(1-a4+a3)・111.将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4・112.把多项式4x2y-2xy2+4xy+6-x2y2+x3-y2的三次项放在前面带有“-”号的括号内,二次项放在前面带有“+”号的括号内,四次项和常数项放在前面带有“-”号的括号内.113.合并同类项:7x-1.3z-4.7-3.2x-y+2.1z+5-0.1y・114.合并同类项:5m2n+5mn2-mn+3m2n-6mn2-8mn・115.把下列多项式的括号去掉,合并同类项,并将其各项放在前面带有“-”号的括号内,再求2x-2[3x-(5x2-2x+1)]-4x2的值,其中x=-1・116.去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].117•在括号内填上适当的项:[()-9y+()]+2y2+3y-4=11y2-()+13・118・在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-()][y+()]・119・在括号内填上适当的项:(3x2+xy-7y2)-()=y2-2xy-x2・。

化简求值50道及答案

化简求值50道及答案

化简求值50道及答案化式求值就是数学中的一种求值方法,是指用已知的数值来代入化式中,得到化式结果的过程。

这种方法在数学中非常常见,也是数学中基本的计算方式之一。

为了帮助大家更好地掌握化式求值的方法,本文将为大家介绍50道化式求值的题目及其答案。

希望能对大家在数学学习中提供一定的帮助。

一、基础题1. 如果 a=2,b=3,求下面式子的值:a+b答案:52. 如果 a=2,b=3,c=4,求下面式子的值:a+b+c答案:93. 如果 a=2,b=3,c=4,求下面式子的值:a-b+c答案:34. 如果 a=2,b=3,c=4,求下面式子的值:a*b答案:65. 如果 a=2,b=3,c=4,求下面式子的值:a*b*c答案:24二、进阶题6. 如果 x=3,y=4,求下面式子的值:2*x+3*y答案:187. 如果 a=2,b=3,c=4,求下面式子的值:a^2+b^2+c^2答案:298. 如果 a=2,b=3,c=4,求下面式子的值:a^3+b^3+c^3答案:739. 如果 a=2,b=3,求下面式子的值:a^2-b^2答案:-510. 如果 a=2,b=3,c=4,求下面式子的值:(a+b)^2-c答案:21三、高阶题11. 如果 a=2,b=3,c=4,求下面式子的值:a^2+b^2-2*a*b 答案:-112. 如果 a=2,b=3,c=4,求下面式子的值:(a+b)*(a-b)+c答案:913. 如果 a=2,b=3,c=4,求下面式子的值:(a+b)*(a-b)+c^2答案:1714. 如果 a=2,b=3,c=4,求下面式子的值:(a+b)^3-3*a*b*(a+b)答案:12515. 如果 a=2,b=3,c=4,求下面式子的值:a^3+b^3+c^3-3*a*b*c答案:9四、挑战题16. 如果 a=2,b=3,c=4,求下面式子的值:a^3-b^3+c^3-3*a*b*c答案:1017. 如果 a=2,b=3,c=4,求下面式子的值:(a+b)*(a-b)^2+(b+c)*(b-c)^2+(c+a)*(c-a)^2答案:6118. 如果 a=2,b=3,c=4,求下面式子的值:(a+b+c)^3-3*(a^2+b^2+c^2)*(a+b+c)+3*a*b*c答案:-4519. 如果 a=2,b=3,c=4,求下面式子的值:a^4+b^4+c^4-4*a*b*c*(a^2+b^2+c^2)+2*a^2*b^2+2*a^2*c^2+2*b^2*c^2答案:5720. 如果 a=2,b=3,c=4,求下面式子的值:(a+b+c)^4-2*(a^2+b^2+c^2)*(a+b+c)^2+2*(a^3+b^3+c^3)*(a+b+c)+12*a*b*c*( a^2+b^2+c^2)-3*a^2*b^2*c^2答案:1550五、总结本文介绍了50道化式求值的题目及其答案,涉及到了基础、进阶、高阶和挑战四个难度等级。

化简求值经典练习五十题(带答案解析)

化简求值经典练习五十题(带答案解析)

化简求值经典练习五十题(带答案解析)化简求值经典练习五十题一.选择题(共1小题)1.(2013秋•包河区期末)已知a﹣b=5,c+d=2,则(b+c)﹣(a﹣d)的值是()A.﹣3B.3C.﹣7D.7 二.解答题(共49小题)2.(2017秋•庐阳区校级期中)先化简,再求值:(1)化简:(2x2﹣+3x)﹣4(x﹣x2+)(2)化简:(3)先化简再求值:5(3a2b﹣ab2)﹣2(ab2+3a2b),其中a=,b=.3.(2017秋•包河区校级期中)先化简,再求值2x2y﹣2(xy2+2x2y)+2(x2y﹣3xy2),其中x=﹣,y=24.(2017秋•瑶海区期中)先化简,再求值:3a2b﹣[2a2b ﹣(2ab﹣a2b)﹣其中a=﹣1,b=﹣2.第1页(共20页)4a2]﹣ab2,5.(2017秋•巢湖市期中)先化简,再求值:﹣3[y﹣(3x2﹣3xy)]﹣[y+2(4x2﹣4xy)],其中x=﹣3,y=.5.(2017秋•柳州期中)先化简,再求值:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2),个中x=,y=﹣3.6.(2017秋•蜀山区校级期中)先化简,再求值:,其中a=﹣1,b=.7.(2017秋•安徽期中)先化简,再求值:3x2﹣[7x﹣(4x﹣2x2)];其中x=﹣2.8.(2015秋•淮安期末)先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),个中a=﹣2,b=3.第2页(共20页)9.(2015秋•南雄市期末)已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.10.(2015秋•庐阳区期末)先化简,再求值:2x3+4x﹣(x+3x2+2x3),个中x=﹣1.11.(2015秋•淮北期末)先化简,再求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),个中12.(2015秋•包河区期末)先化简,再求值:2a2﹣[a2﹣(2a+4a2)+2(a2﹣2a)],个中a=﹣3.13.(2014秋•成县期末)化简求值:若(x+2)2+|y﹣1|=0,求4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.第3页(共20页),.14.(2014秋•合肥期末)先化简,再求值:3a2b+(﹣2ab2+a2b)﹣2(a2b+2ab2),其中a=﹣2,b=﹣1.16.(2015秋•包河区期中)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=﹣2.17.(2015秋•包河区期中)理解与思考:在某次作业中有这样的一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b把式子5a+3b=﹣4双方同乘以2,得10a+6b=﹣8.仿照小明的解题方法,完成下面的问题:(1)假如a2+a=0,则a2+a+2015=.(2)已知a﹣b=﹣3,求3(a﹣b)﹣5a+5b+5的值.(3)已知a2+2ab=﹣2,ab﹣b2=﹣4,求2a2+ab+b2的值.第4页(共20页)18.(2013秋•蜀山区校级期末)先化简,再求值(4x3﹣x2+5)+(5x2﹣x3﹣4),个中x=﹣2.19.(2013秋•寿县期末)先化简,再求值:2(3x3﹣2x+x2)﹣6(1+x+x3)﹣2(x+x2),个中x=20.(2013秋•包河区期末)先化简,再求值:﹣ab2+(3ab2﹣a2b)﹣2(ab2﹣a2b),其中a=﹣,b=﹣9.21.(2014秋•合肥校级期中)先化简求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,个中x=,y=﹣1.22.(2014秋•包河区期中)先化简,再求值:﹣(x2+5x﹣4)+2(5x﹣4+2x2),其中,x=﹣2.第5页(共20页).23.(2012秋•包河区期末)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.24.(2012秋•蜀山区期末)若a=|b﹣1|,b是最大的负整数,化简并求代数式3a﹣[b ﹣2(b﹣a)+2a]的值.25.(2012秋•靖江市期末)化简求值6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],其中x=4,y=﹣.26.(2013秋•包河区期中)先化简,再求值:(2a+5﹣3a2)+(2a2﹣5a)﹣2(3﹣2a),其中a=﹣2.27.(2011秋•瑶海区期末)化简并求值:3(x2﹣2xy)﹣[(﹣xy+y2)+(x2﹣2y2)],其中x,y 的值见数轴表示:第6页(共20页)28.(2012秋•泸县期中)先化简,再求值(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,其中a=4;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),其中a=﹣3,b=﹣2.28.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.30.(2010秋•长丰县校级期中)化简计算:(1)3a2﹣2a﹣a2+5a(2)(3)若单项式31.(2010秋•包河区期中)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣xy2),其中:第7页(共20页)与﹣2xmy3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn),y=﹣3.32.(2008秋•牡丹江期末)先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.33.(2007秋•淮北期中)先化简,再求值3a+abc﹣c2﹣3a+c2﹣c,其中a=﹣,b=2,c=﹣3.33.(2017秋•丰台区期末)先化简,再求值:5x2y+[7xy﹣2(3xy﹣2x2y)﹣xy],其中x=﹣1,y=﹣.34.(2017秋•惠山区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.35.(2017秋•翁牛特旗期末)先化简再求值:2(ab﹣a+b)﹣(3b+ab),其中2a+b=﹣5.第8页(共20页)36.(2017秋•利辛县期末)先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),个中x=,y=﹣137.(2017秋•鄞州区期末)先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=338.(2017秋•埇桥区期末)先化简,再求值:2(x2y﹣y2)﹣(3x2y﹣2y2),个中x=﹣5,y=﹣.39.(2017秋•南平期末)先化简,再求值:(5x+y)﹣(3x+4y),个中x=,y=.40.(2016秋•武安市期末)求2x ﹣[2(x+4)﹣3(x+2y)]﹣2y的值,个中第9页(共20页).41.(2016秋•崇安区期末)先化简,再求值:(8mn﹣3m2)﹣5mn﹣2(3mn﹣2m2),其中m=2,n=﹣.43.(2017春•广饶县校级期中)先化简,再求值:(1)2y2﹣6y﹣3y2+5y,其中y=﹣1.(2)8a2b+2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a=2,b=3.44.(2017秋•邗江区校级期中)有这样一道题:“计算(2x4﹣4x3y﹣2x2y2)﹣(x4﹣2x2y2+y3)+(﹣x4+4x3y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,你能说明这是为什么吗?45.(2016秋•资中县期末)先化简,再求值:2(x2﹣xy)﹣(3x2﹣6xy),其中x=2,y=﹣1.46.(2017秋•雁塔区校级期中)先化简,再求值:(1)3(a2﹣ab)﹣(a2+3ab2﹣3ab)+6ab2,其中a=﹣1,b=2.(2)4x2﹣3(x2+2xy﹣y+2)+(﹣x2+6xy﹣y),其中x=2013,y=﹣1.第10页(共20页)46.(2017秋•黄冈期中)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的值无关,求代数式a2﹣2b+4ab的值.47.(2017秋•岑溪市期中)先化简下式,再求值,2(3a2b+ab2)﹣6(a2b+a)﹣2ab2﹣3b,其中a=,b=3.49.(2017秋•蚌埠期中)先化简再求值:求5xy2﹣[2x2y﹣(2x2y﹣3xy2)]的值.(其中x,y两数在数轴上对应的点如图所示).50.(2017秋•夏邑县期中)如图,一只蚂蚁从点A沿数轴向右匍匐2个单元长度抵达点B,点A透露表现的数n为﹣,设点B所透露表现的数为m.(1)求m的值;(2)对﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]化简,再求值.第11页(共20页)参考谜底与试题剖析一.选择题(共1小题)1.解:∵a﹣b=5,c+d=2,∴原式=b+c﹣a+d=﹣(a﹣b)+(c+d)=﹣5+2=﹣3,故选:A.二.解答题(共49小题)2.解:(1)原式=2x2﹣+3x﹣4x+4x2﹣2=6x2﹣x﹣;(2)原式=x﹣2x+y2+x﹣y2=y2;(3)原式=15a2b﹣5ab2﹣2ab2﹣6a2b=9a2b﹣7ab2,当a=﹣,b=时,原式=+3.解:当x=﹣,y=2时,原式=2x2y﹣2xy2﹣4x2y+2x2y﹣6y2=﹣2xy2﹣6y2=﹣2×(﹣)×4﹣6×4=2﹣24=﹣224.解:原式=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab2 =4a2+2ab﹣ab2当a=﹣1,b=﹣2时,原式=4+4+4=12.第12页(共20页)=.5.解:原式=﹣3y+9x2﹣9xy﹣y﹣8x2+8xy=x2﹣xy﹣4y当x=﹣3,y=时,原式=9+1﹣=6.解:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2)=2xy﹣2xy+4x2y2+6xy﹣10x2y2=6xy﹣6x2y2,当x=,y=﹣3时,原式=﹣6﹣6=﹣12.7.解:原式=2a2﹣ab+2a2﹣8ab﹣ab=4a2﹣9ab,当a=﹣1,b=时,原式=4+3=7.8.解:原式=3x2﹣(7x﹣4x+2x2)=3x2﹣7x+4x﹣2x2=x2﹣3x当x=﹣2时,原式=(﹣2)2﹣3×(﹣2)=4﹣(﹣6)=10.9.解:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣2,b=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.第13页(共20页)10.解:∵(x+2)2+|y﹣|=0,∴x=﹣2,y=,则原式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2=x2y﹣xy2+4=2++4=6.11.解:原式=2x3+4x﹣x﹣3x2﹣2x3=3x﹣3x2,当x=﹣1时,原式=﹣3﹣3=﹣6.12.解:原式=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当,.13.解:原式=2a2﹣a2+2a+4a2﹣2a2+4a=3a2+6a,当a=﹣3时,原式=27﹣18=9.14.解:∵(x+2)2+|y﹣1|=0,∴x+2=0,y﹣1=0,即x=﹣2,y=1,则原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=﹣2,y=1时,原式=1﹣10=﹣9.15.解:原式=3a2b﹣2ab2+a2b﹣2a2b﹣4ab2=2a2b﹣6ab2,当a=﹣2,b=﹣1时,原式=2×4×(﹣1)﹣6×(﹣2)×1=4.16.解:原式=x﹣2x+y2﹣x+y2=﹣当x=﹣2,y=﹣2时,原式=17.解:(1)∵a2+a=0,第14页(共20页)x+y2,.∴原式=2015;故答案为:2015;(2)原式=3a﹣3b﹣5a+5b+5=﹣2(a﹣b)+5,当a﹣b=﹣3时,原式=6+5=11;(3)原式=(4a2+7ab+b2)=[4(a2+2ab)﹣(ab﹣b2)],当a2+2ab=﹣2,ab﹣b2=﹣4时,原式=×(﹣8+4)=﹣2.18.解:原式=4x3﹣x2+5+5x2﹣x3﹣4=3x3+4x2+1,当x=﹣2时,原式=﹣24+16+1=﹣7.19.解:原式=6x3﹣4x+2x2﹣6﹣6x﹣6x3﹣2x﹣2x2=﹣12x﹣6,当x=﹣,原式=﹣12×(﹣)﹣6=10﹣6=4;20.解:原式=﹣ab2+3ab2﹣a2b﹣2ab2+2a2b=a2b,当a=﹣,b=﹣9时,原式=×(﹣9)=﹣4.21.解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=,y=﹣1时,原式=﹣=﹣.22.解:原式=﹣x2﹣5x+4+10x﹣8+4x2=3x2+5x﹣4,当x=﹣2时,原式=12﹣10﹣4=﹣2.23.解:原式=(3x2y﹣xy2)﹣3(x2y﹣2xy2)=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当x=﹣1,y=﹣2时,原式=5xy2=5×(﹣1)×(﹣2)2=﹣20.24.解:∵最大的负整数为﹣1,∴b=﹣1,∴a=|﹣1﹣1|=2,原式=3a﹣b+2b﹣2a﹣2a=b﹣a,当a=2,b=﹣1时,原式=﹣1﹣2=﹣3.第15页(共20页)25.解:6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],=6x2﹣3xy2+4xy2﹣6﹣7x2,=﹣x2+xy2﹣6;当x=4,y=26.解:原式=2a+5﹣3a2+2a2﹣5a﹣6+4a=﹣a2+a﹣1,将a=﹣2代入,原式=﹣(﹣2)2+(﹣2)﹣1=﹣7.27.解:原式=3x2﹣6xy+xy+y2﹣x2+2y2=2x2﹣根据数轴上点的位置得:x=2,y=﹣1,则原式=8+11+1=20.28.解:(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,=5a2﹣|a2﹣2a+5a2﹣6a3|,=5a2﹣|6a2﹣2a﹣6a3|,=5a2﹣6a2+2a+6a3,=﹣a2+2a+6a3把a=4代入得:﹣16+8+384=376;时,原式=﹣42+4×﹣6=﹣21.xy+y2,(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),=﹣2﹣2a+3b﹣1﹣3a﹣2b,=﹣5a+b﹣3把a=﹣3,b=﹣2.代入得:﹣5×(﹣3)+(﹣2)﹣3=10.29.解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).第16页(共20页)∵x=﹣2,∴原式=﹣16.30.解:(1)3a2﹣2a﹣a2+5a,=(3﹣1)a2+(5﹣2)a,=2a2+3a;(2)(﹣8x2+2x﹣4)﹣(x﹣1),=﹣2x2+x﹣1﹣x+,=﹣2x2﹣;(3)∵单项式∴m=2,n=3,与﹣2xmy3是同类项,(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)=m+3n﹣3mn+4m+2n﹣2mn=(1+4)m+(﹣3﹣2)mn+(3+2)n=5m﹣5mn+5n,当m=2,n=3时,原式=5×2﹣5×2×3+5×3=10﹣30+15=﹣5.31.解:(3x2y﹣xy2)﹣3(x2y﹣xy2),=3x2y﹣xy2﹣3x2y+3xy2,=2xy2;当x=,y=﹣3时,原式=2xy2=2××(﹣3)2=9.32.解:原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=33.解:原式=3a﹣3a+abc﹣c2+c2﹣c第17页(共20页)=abc﹣c,当a=﹣,b=2,c=﹣3时原式=abc﹣c=﹣×2×(﹣3)﹣(﹣3)=1+3=4.34.解:原式=5x2y+7xy﹣6xy+4x2y﹣xy=9x2y,当x=﹣1,y=﹣时,原式=﹣6.35.解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时原式=﹣6+4=﹣2.36.解:原式=ab﹣2a+2b﹣3b﹣ab=﹣2a﹣b=﹣(2a+b),当2a+b=﹣5时,原式=5.37.解:原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2,当x=,y=﹣1时,原式=6×()2×(﹣1)﹣6××(﹣1)2=﹣﹣3=﹣4.38.解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.39.解:原式=2x2y﹣2y2﹣3x2y+2y2=﹣x2y,当x=﹣5,y=﹣时,原式=第18页(共20页).40.解:原式=5x+y﹣3x﹣4y=2x﹣3y,当x=,y=时,原式=2×﹣3×=1﹣2=﹣1.41.解:原式=2x﹣2x﹣8+3x+6y﹣2y=3x+4y﹣8,当x=,y=时,原式=1+2﹣8=﹣5.42.解:原式=8mn﹣3m2﹣5mn﹣6mn+4m2=m2﹣3mn,当m=2,n=﹣时,原式=4+2=6.43.解:(1)原式=﹣y2﹣y,当y=﹣1时,原式=﹣1+1=0;(2)原式=8a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣3ab2,当a=2,b=3时,原式=﹣54.44.解:原式=2x4﹣4x3y﹣2x2y2﹣x4+2x2y2﹣y3﹣x4+4x3y﹣y3=﹣2y3,当y=﹣1时,原式=2.故“x=”错抄成“x=﹣”,但他计较的成效也是精确的.45.解:原式=2x2﹣2xy﹣3x2+6xy=﹣x2+4xy,当x=2,y=﹣1时,原式=﹣4﹣8=﹣12.46.解:(1)原式=3a2﹣3ab﹣a2﹣3ab2+3ab+6ab2=2a2+3ab2,当a=﹣1,b=2时,原式=2﹣12=﹣10;第19页(共20页)(2)原式=4x2﹣3x2﹣6xy+3y﹣6﹣x2+6xy﹣y=2y﹣6,当y=﹣1时,原式=﹣2﹣6=﹣8.47.解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式的值与x的值无关,∴2﹣2b=0,a+3=0,解得:a=﹣3,b=1,将a=﹣3,b=1代入得:原式=4.5﹣2﹣12=﹣9.5.48.解:原式=6a2b+2ab2﹣6a2b﹣6a﹣2ab2﹣3b=﹣6a﹣3b,当a=,b=3时,原式=﹣6×﹣3×3=﹣12.49.解:原式=5xy2﹣[2x2y﹣2x2y+3xy2]=5xy2﹣2x2y+2x2y﹣3xy2=2xy2,当x=2,y=﹣1时,原式=4.50.解:(1)m=﹣+2=;(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn] =﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn。

化简求值50道(你值得拥有)

化简求值50道(你值得拥有)

化简求值50道(你值得拥有)1.先化简,再求值:(+)/(÷),其中x=-1.2.化简求值:(a^2+1)/(a-1),a取-1、0、1、2中的一个数。

3.先化简,再求值:(√3-1)/(√3+1)。

4.先化简,再求值:(1-1/3+1/5-1/7+1/9)/(1+1/3+1/5+1/7+1/9)。

5.先化简,再求值:(1/(1+x)+x/(1-x^2)),其中x=(-1)+(-1)*tan60°。

6.先化简,再求值:(a^2+1)/(a^3-a),其中a=-1.7.先化简,再求值:(1-x)/(x^2-x-1),其中x满足x^2-x-1=0.8.先化简,再求值:(a+2)/(a^2+3a-1),其中a满足a^2+3a-1=0.9.先化简,再求值:(x-max)/(x-min),其中x为数据-1,-3,1,2的极差。

10.先化简,再求值:(√2+1)/(√2-1)。

11.化简求值:(1+√2)/(√2-1)。

12.先化简,再求值:(x^2-3)/(x-√3)。

13.先化简,再求值:(a+b)/(a-b),其中a=-1,b=1+√2.14.先化简,再求值:(x+1)/(x^2-1)其中x≠-1.15.先化简,再求值:(x-2)/(x^2+1),其中x=2.16.先化简,再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值:(x+1)/(x-2)。

17.先化简,再求值:(1/x)+(x/1),其中x的值为方程2x=5x-1的解。

18.先化简:(x^2-1)/(x+1)。

19.先化简,再求值:(√(x+3)-1)/(√(x+3)+1),其中x=-1.20.先化简,再求值:(-2)/(x^2-4),其中x=2.21.先化简,再求值:(1-a)/(a^2+2a+1),其中a=-1/2.22.先化简,再求值:(-1)/(a^2-b^2),其中a=1,b=-1.23.先化简代数式(-a)/(a^2+1),再从1,2三个数中选择适当的数作为a的值代入求值。

化简求值50道

化简求值50道

化简求值1.先化简,再求值:(+)÷,其中x=﹣1.2.化简求值:,a取﹣1、0、1、2中的一个数.3.先化简,再求值:÷﹣,其中x=﹣4.4.先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°.5.先化简,再求值:,其中.6.先化简,再求值:,其中a=﹣1.7.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.8.先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.9.先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.10.先化简,再求值:(+)÷,其中a=2﹣.11.化简求值:(﹣)÷,其中a=1﹣,b=1+.12.先化简,再求值:(x﹣)÷,其中x=cos60°.13.先化简,再求值:(﹣)÷,其中x=﹣1.14.先化简,再求值:(x+1﹣)÷,其中x=2.15.先化简,再求值:(﹣)÷,其中a2+a﹣2=0.16.先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.17.先化简,再求值:÷(﹣)+,其中x的值为方程2x=5x﹣1的解.18.先化简:(x ﹣)÷,再任选一个你喜欢的数x代入求值.19.先化简,再求值:÷(2+),其中x=﹣1.20.先化简,再求值:(﹣),其中x=2.21.先化简,再求值:(1﹣)÷,其中a=.22.先化简,再求值:(﹣1)÷,其中a=+1,b=﹣1.23.先化简代数式(﹣)÷,再从0,1,2三个数中选择适当的数作为a的值代入求值.24.先化简,再求值:(x﹣1﹣)÷,其中x 是方程﹣=0的解.25.先简化,再求值:(﹣)+,其中a=+1.26.先化简,后计算:(1﹣)÷(x ﹣),其中x=+3.27.先化简,再求值:(1﹣)÷,其中x=3.28.先化简,再求值:(﹣)÷,其中x=()﹣1﹣(π﹣1)0+.29.先化简,再求值:()÷,其中a,b 满足+|b ﹣|=0.30.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.31. 先化简再求值:22121124x xx x++⎛⎫-÷⎪+-⎝⎭,其中tan601x=︒﹣.32.先化简22144111x xx x-+⎛⎫-÷⎪--⎝⎭,然后从22x-≤≤的范围内选取一个合适的整数作为x的值代入求值.33. 先化简,再求值:2234221121x xx x x x++⎛⎫-÷⎪---+⎝⎭,其中x是不等式组40251xx+>⎧⎨+<⎩的整数解.34. 先化简224442x x x x x x -+⎛⎫÷- ⎪-⎝⎭,然后从x <<x 的值代入求值. 35. 先化简,再求值:222441112a a a a a a -+++∙---,其中 1.a = 36. 先化简:221112a a a a a ---÷+,再选取一个合适的a 值代入计算. 37. 先化简,再求代数式2112x x xx x x ++⎛⎫+÷ ⎪+⎝⎭的值,其中12x =+°. 38. 先化简,再求代数式的值. 222()111a a a a a ++÷++-,其中2012(1)tan 60a ︒=-+. 39. 先化简,再求值:22211212x x x x x x x ++-÷-+-+,其中2x =. 40. 先化简,再求值:221111x x x x x ÷--+-,其中2tan 45.x =41. 先化简,再求值:22()ab b a b a a a ---÷,其中sin30a =°,tan 45b =°. 42.先化简,再求值:22222a ab b b a b a b -++-+,其中2 1.a b =-=, 43.已知211=-a ,请先化简,再求代数式的值:412)211(22-++÷+-a a a a 44.已知11)a b a b +=≠,求()()a b b a b a a b ---的值.45.先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程62=-x x 的根. 46.先化简,再求值:222)1()1(12)111(--+++⋅+-x x x x x x x 其中21=x . 47.先化简,再求值.(a b ab a 22--)·222b a ab a -+ , 其中a =1,3-<b <-3且b 为整数.48.先化简,后计算:22819169269a a a a a a --÷⋅++++,其中3a =.49.先化简代数式22321124a a a a -+⎛⎫-÷ ⎪+-⎝⎭,再从2-,2,0三个数中选一个恰当的数作为a 的值代入求值.50.化简分式2221121x x x xx x x x-⎛⎫-÷⎪---+⎝⎭,并从13x-≤≤中选一个你认为适合的整数x代入求值.51. 化简代数式22112x xx x x--÷+,并判断当x满足不等式组()21216xx+<⎧⎪⎨->-⎪⎩时该代数式的符号.参考答案与试题解析1.(2014•遂宁)先化简,再求值:(+)÷,其中x=﹣1.••﹣.2.(2014•达州)化简求值:,a取﹣1、0、1、2中的一个数.•﹣﹣,﹣3.(2014•黔东南州)先化简,再求值:÷﹣,其中x=﹣4.•﹣﹣=﹣=4.(2014•抚顺)先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°.••x=1+2+25.(2014•苏州)先化简,再求值:,其中.(+÷×==6.(2014•莱芜)先化简,再求值:,其中a=﹣1.÷7.(2014•泰州)先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.•﹣•﹣=8.(2014•凉山州)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.÷•.9.(2014•烟台)先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.÷•===10.(2014•鄂州)先化简,再求值:(+)÷,其中a=2﹣.+•时,原式.11.(2014•宁夏)化简求值:(﹣)÷,其中a=1﹣,b=1+.••,b=1+.12.(2014•牡丹江)先化简,再求值:(x﹣)÷,其中x=cos60°.÷时,原式﹣13.(2014•齐齐哈尔)先化简,再求值:(﹣)÷,其中x=﹣1.••14.(2014•安顺)先化简,再求值:(x+1﹣)÷,其中x=2.﹣]••,﹣15.(2014•毕节地区)先化简,再求值:(﹣)÷,其中a2+a﹣2=0.÷•==.16.(2014•娄底)先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代÷•==17.(2014•重庆)先化简,再求值:÷(﹣)+,其中x的值为方程2x=5x﹣1的解.÷•,时,原式.18.(2014•抚州)先化简:(x﹣)÷,再任选一个你喜欢的数x代入求值.••19.(2014•河南)先化简,再求值:÷(2+),其中x=﹣1.,再把÷÷•﹣=20.(2014•郴州)先化简,再求值:(﹣),其中x=2.﹣]•+•=21.(2014•张家界)先化简,再求值:(1﹣)÷,其中a=.÷•=.22.(2014•成都)先化简,再求值:(﹣1)÷,其中a=+1,b=﹣1.••﹣+1+﹣.23.(2014•六盘水)先化简代数式(﹣)÷,再从0,1,2三个数中选择适当的数作为a的值代入••=2a+824.(2014•重庆)先化简,再求值:(x﹣1﹣)÷,其中x是方程﹣=0的解.÷•,x=时,原式﹣25.(2014•随州)先简化,再求值:(﹣)+,其中a=+1.﹣﹣.26.(2014•黄石)先化简,后计算:(1﹣)÷(x﹣),其中x=+3.÷•,+3=27.(2014•永州)先化简,再求值:(1﹣)÷,其中x=3.﹣)××代入,得===故答案为:28.(2014•本溪)先化简,再求值:(﹣)÷,其中x=()﹣1﹣(π﹣1)0+.﹣]÷×)+=29.(2014•荆州)先化简,再求值:()÷,其中a,b满足+|b﹣|=0.﹣]••=,﹣,﹣30.(2014•深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.•。

专题3整式的化简求值专项训练50题

专题3整式的化简求值专项训练50题

专题3整式的化简求值专项训练50题考试时间:100分钟;满分:100分姓名:___________班级:___________考号:___________ 1.(2020秋•北碚区校级期末)先化简,再求值:若多项式x2﹣2mx+3与13x2+2x﹣1的差与x的取值无关,求多项式4mn﹣[3m﹣2m2﹣6(12−23mn+16n2)]的值.2.(2020秋•高邮市期末)有这样一道题:“求(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中x=12021,y=﹣1”.小明同学把“x=12021”错抄成了“x=−12021”,但他的计算结果竟然正确,请你说明原因,并计算出正确结果.3.(2020秋•铜梁区校级期末)有一道数学题:“求(x2+2y2)+3(x2+y2)﹣4x2,其中x=13,y=2.”粗心的小李在做此题时,把“x=13”错抄成了“x=3”,但他的计算结果却是正确的,请你通过计算说明为什么?4.(2020秋•恩施市期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x 的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.5.(2020秋•永年区期末)已知:关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项.求代数式3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)的值.6.(2020秋•宛城区校级月考)课堂上李老师把要化简求值的整式(7a2﹣6a2b+3a2b)﹣3(﹣a2﹣2a2b+a2b)﹣(10a2﹣3)写完后,让王红同学任意给出一组a、b的值,老师自己说答案,当王红说完:“a=38,b=﹣32”后,李老师不假思索,立刻就说出答案是3.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”.你相信吗?请你说明其中的道理.7.(2020秋•青羊区校级月考)已知关于x,y的式子(2x2+mx﹣y+3)﹣(3x﹣2y+1﹣nx2)的值与字母x的取值无关,求式子(m+2n)﹣(2m﹣n)的值.8.(2020秋•海珠区校级期中)已知:A=3x2+mx−13y+4,B=6x﹣3y+1﹣3nx2,当x≠0且y≠0时,若3A−13B的值等于一个常数,求m,n的值,及这个常数.9.(2020秋•富县校级期中)已知:A=2x2+6x﹣3,B=1﹣3x﹣x2,C=4x2﹣5x﹣1,当x=−32时,求代数式A﹣3B+2C的值.10.(2020秋•未央区校级期中)有这样一道题,当a=1,b=﹣1时,求多项式:3a3b3−12a2b+b ﹣(4a3b3−14a2b﹣b2)﹣2b2+3+(a3b3+14a2b)的值”,马小虎做题时把a=1错抄成a =﹣1,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.11.(2020秋•成都期末)已知A=a﹣2ab+b2,B=a+2ab+b2.(1)求14(B﹣A)的值;(2)若3A﹣2B的值与a的取值无关,求b的值.12.(2020秋•夏津县期末)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a x﹣2b2与13ab y是同类项,求2B﹣A的值.13.(2020秋•北碚区期末)已知代数式A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.(1)当x=y=﹣1时,求2A+4B的值;(2)若2A+4B的值与x的取值无关,求y的值.14.(2020秋•淅川县期末)已知M=4x2+10x+2y2,N=2x2﹣2y+y2,求:(1)M﹣2N;(2)当5x+2y=2时,求M﹣2N的值.15.(2020秋•南关区校级期末)已知:A=x−12y+2,B=x﹣y﹣1.(1)化简A﹣2B;(2)若3y﹣2x的值为2,求A﹣2B的值.16.(2020秋•青山湖区月考)已知:A=2ab﹣a,B=﹣ab+2a+b.(1)计算:5A﹣2B;(2)若5A﹣2B的值与字母b的取值无关,求a的值.17.(2020秋•义马市期中)已知A=x2+3xy﹣12,B=2x2﹣xy+y.(1)当x=y=﹣2时,求2A﹣B的值;(2)若2A﹣B的值与y的取值无关,求x的值.18.(2020秋•萧山区月考)已知A=ax2﹣3x+by﹣1,B=3﹣y﹣x+232,且无论x,y为何值时,A﹣3B的值始终不变.(1)分别求a、b的值;(2)求b a的值.19.(2020秋•江汉区月考)先化简再求值,A=2x2−12x+3,B=x2+mx+12.(1)当m=﹣1,求5(A﹣B)﹣3(﹣2B+A);(2)若A﹣2B的值与x无关,求m2﹣[﹣2m2﹣(2m+6)﹣3m].20.(2021秋•株洲期末)已知:A=x2+3y2﹣2xy,B=2xy+2x2+y2.(1)求3A﹣B;(2)若x=1,=−12.求(4A+2B)﹣(A+3B)的值.21.(2020秋•广州期中)已知M=2x2+ax﹣5y+b,N=bx2−32x−52y﹣3,其中a,b为常数.(1)求整式M﹣2N;(2)若整式M﹣2N的值与x的取值无关,求(a+2M)﹣(2b+4N)的值.22.(2020秋•江城区期中)已知多项式A=2x2+mx−12y+3,B=3x﹣2y+1﹣nx2.(1)已知A﹣B的值与字母x的取值无关,求字母m、n的值?(2)在(1)的条件下,求2A+3B的值?23.(2020秋•庐江县期中)数学课上,张老师出示了这样一道题目:“当a=12,b=﹣2时,求多项式7a3+3a2b+3a3+6a3b﹣3a2b﹣10a3﹣6a3b﹣1的值”解完这道题后,小阳同学指出:“a=12,b=﹣2是多余的条件”.师生讨论后,一致认为小阳说法是正确的.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目:“无论x,y取任何值,多项式2x2+ax﹣5y+b ﹣2(bx2−32x−52y﹣3)的值都不变,求系数a,b的值”.请你解决这个问题.24.(2020秋•双流区校级期中)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.25.(2020秋•温县期中)已知代数式A=x2+12xy﹣2y2,B=32x2﹣xy﹣y2,C=﹣x2+8xy﹣3y2.(1)求2(A﹣B)−12C.(2)当x=2.y=﹣1时,求出2(A﹣B)−12C的值.26.(2020秋•解放区校级期中)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1.(1)求﹣A﹣2B的值;(2)若﹣A﹣2B的值与x的值无关,求y的值.27.(2020秋•丰城市校级期中)(1)已知,A=2x2+3xy﹣2x﹣1,B=﹣x2﹣xy+1,若3A+6B 的值与x的取值无关,求y的值.(2)定义新运算“@”与“⊕”:a@b=r2,a⊕b=K2.若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A和B的大小.28.(2020秋•江汉区期中)已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1.(1)计算4A﹣(3A+2B);(2)若a=1和a=0时(1)中式子的值相等,求12b﹣2(b−13b2)+(−32b+13b2)的值.29.(2020秋•沙坪坝区校级期中)若A=2x2+xy+3y2,B=x2﹣xy+2y2.(1)若(1+x)2与|2x﹣y+2|为相反数,求2A﹣3(2B﹣A)的值;(2)若x2+y2=4,xy=﹣2,求A﹣B的值.30.(2020秋•滨海新区期中)已知A=2x2+3xy﹣2x﹣1,B=﹣x2+12B+23.(1)当x=﹣1,y=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与x的取值无关,求y的值.31.(2020秋•二七区校级期中)已知A=a2+2ab+b2,B=a2﹣2ab+b2.(1)当a=1,b=﹣2时,求14(B﹣A)的值;(2)如果2A﹣3B+C=0,那么C的表达式是什么?32.(2020秋•潮南区期中)已知多项式A=4x2+my﹣12与多项式B=nx2﹣2y+1.(1)当m=1,n=5时,计算A+B的值;(2)如果A与2B的差中不含x和y,求mn的值.33.(2020秋•高邮市期中)已知A=x2﹣2xy,B=y2+3xy.(1)若A﹣2B+C=0,试求C;(2)在(1)的条件下若A=5,求2A+4B﹣2C的值.34.(2020秋•洪山区期中)已知A=2x2+4xy﹣2x﹣3,B=﹣x2+xy+2.(1)求3A﹣2(A+2B)的值;(2)当x取任意数,B+12A的值都是一个定值时,求313A+613B﹣27y3的值.35.(2020秋•平阴县期中)张老师让同学们计算“当a=0.25,b=﹣0.37时,求代数式(13+2a2b+b3)﹣2(a2b−13)﹣b3的值”.解完这道题后,小明同学说“a=0.25,b=﹣0.37是多余的条件”.师生讨论后一致认为这种说法是正确的,老师和同学们对小明敢于提出自己的见解投去了赞赏的目光.(1)请你说明小明正确的理由.(2)受此启发,老师又出示了一道题目:无论x、y取何值,多项式﹣3x2y+mx+nx2y﹣x+3的值都不变.则m=,n=.36.(2020秋•锦江区校级期中)(1)如图:化简|b﹣a|+|a+c|﹣|a+b+c|.(2)已知:ax2+2xy﹣y﹣3x2+bxy+x是关于x,y的多项式,如果该多项式不含二次项,求代数式3ab2﹣{2a2b+[4ab2−13(6a2b﹣9a2)]}﹣(−14a2b﹣3a2)的值.37.(2020秋•武侯区校级期中)已知关于x、y的代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y ﹣1)的值与字母x的取值无关.(1)求a和b值.(2)设A=a2﹣2ab﹣b2,B=3a2﹣ab﹣b2,求3[2A﹣(A﹣B)]﹣4B的值.38.(2021秋•卧龙区期末)数学课上,老师出示了这样一道题目:“当a=12,b=﹣2时,求多项式7a3+3a2b+3a3+6a3b﹣3a2b﹣10a3﹣6a3b﹣1的值”解完这道题后,张恒同学指出:“a=12,b=﹣2是多余的条件”.师生讨论后,一直认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目:“无论x取任何值,多项式﹣3x2+mx+nx2﹣x+3的值都不变,求系数m、n的值”.请你解决这个问题.39.(2020秋•张店区期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是中学教学课题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣5(a﹣b)2+7(a﹣b)2的结果是.(2)已知x2﹣2y=1,求3x2﹣6y﹣5的值.(3)拓展探索:已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.40.(2020秋•天河区期末)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简2A﹣3B;(2)当x+y=67,xy=﹣1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求2A﹣3B的值.41.(2020秋•讷河市期末)已知代数式A=2x2+3xy+2y,B=x2﹣xy+x.(1)求A﹣2B;(2)当x=﹣1,y=3时,求A﹣2B的值;(3)若A﹣2B的值与x的取值无关,求y的值.42.(2020秋•路北区期末)已知含字母a,b的代数式是:3[a2+2(b2+ab﹣2)]﹣3(a2+2b2)﹣4(ab﹣a﹣1)(1)化简代数式;(2)小红取a,b互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0,那么小红所取的字母b的值等于多少?(3)聪明的小刚从化简的代数式中发现,只要字母b取一个固定的数,无论字母a取何数,代数式的值恒为一个不变的数,那么小刚所取的字母b的值是多少呢?43.(2020•路北区三模)已知A=x2﹣mx+2,B=nx2+2x﹣1.(1)求2A﹣B,并将结果整理成关于x的整式;(2)若2A﹣B的结果与x无关,求m、n的值;(3)在(2)基础上,求﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]的值.44.(2020秋•偃师市月考)我们知道,4x﹣2x+x=(4﹣2+1)x=3x.类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.(1)若把(a﹣b)2看成一个整体,则合并4(a﹣b)2﹣8(a﹣b)2+3(a﹣b)2的结果是.(2)已知x2﹣2y=4,求8y﹣4x2+3的值.(3)已知a﹣2b=4,2b﹣c=﹣7,c﹣d=11,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.45.(2020秋•船山区校级月考)一个多项式的次数为m,项数为n,我们称这个多项式为m次多项式或者m次n项式,例如:5x3y2﹣2x2y+3xy为五次三项式,2x2﹣2y2+3xy+2x 为二次四项式.(1)﹣3xy+2x2y2﹣4x3y3+3为次项式.(2)若关于x、y的多项式A=ax2﹣3xy+2x,B=bxy﹣4x2+2y,已知2A﹣3B中不含二次项,求a+b的值.(3)已知关于x的二次多项式,a(x3﹣x2+3x)+b(2x2+x)+x3﹣5在x=2时,值是﹣17,求当x=﹣2时,该多项式的值.46.(2020秋•海州区校级期中)有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b成一个整体,把式子5a+3b=﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2+a=1,则2a2+2a+2020=.(2)已知a﹣b=﹣3,求5(a﹣b)﹣7a+7b+11的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+92ab+3b2的值.47.(2020秋•海珠区校级期中)已知A=3x2+y2﹣2xy,B=xy﹣y2+2x2,求:(1)2A﹣3B;(2)若|2x﹣3|=1,y2=16,|x﹣y|=y﹣x,求2A﹣3B的值.(3)若x=4,y=﹣8时,代数式ax3+12by+5=18,那么x=﹣128,y=﹣1时,求代数式3ax﹣24by3+10的值.48.(2020秋•宁明县期中)在某次作业中有这样的一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b,把式子5a+3b=﹣4两边同乘以2,得10a+6b=﹣8,仿照小明的解题方法,完成下面的问题:(1)如果a2+a=0,则a2+a+2020=;(2)已知a﹣b=﹣2,求3(a﹣b)﹣5a+5b+6的值;(3)已知a2+2ab=3,ab﹣b2=﹣4,求a2+32ab+12b2的值,49.(2020秋•温江区校级期中)已知代数式2x2+ax﹣y+6−12bx2﹣4x﹣5y﹣1的值与字母x 的取值无关.(1)求出a、b的值.(2)若A=2a2﹣ab+2b2,B=a2﹣ab+b2,求(2A﹣B)﹣3(A﹣B)的值.(3)若P=4x2y﹣5x2y b﹣(m﹣5)x a y3与Q=﹣5x n y4+6xy﹣3x﹣7的次数相同,且最高项的系数也相同,求5m﹣2n的值.50.(2021秋•东城区期末)一般情况下,对于数a和b,2+4≠r2+4(“≠”不等号),但是对于某些特殊的数a和b,2+4=r2+4.我们把这些特殊的数a和b,称为“理想数对”,记作<a,b>.例如当a=1,b=﹣4时,有12+−44=1+(−4)2+4,那么<1,﹣4>就是“理想数对”.(1)<3,﹣12>,<﹣2,4>可以称为“理想数对”的是;(2)如果<2,x>是“理想数对”,那么x=;(3)若<m,n>是“理想数对”,求3[(9−4p−8(−76p]−4−12的值.11。

初三30道化简求值带答案

初三30道化简求值带答案

初三30道化简求值带答案1、(3X+2Y)+(4X+3Y)其中X=5,Y=3解:原式=3X+2Y+4X+3Y=7X+5Y当X=5,Y=3时原式=5*7+(-3)*5=202、(5a²-3b²)+(a²+b²)-(5a²+3b²),其中a=-1,b=1=5a²-3b²+a²+b²-5a²-3b²=a²-5b²=(-1) ²-5*1²=1-5=-43、2 (3a- ab) -3 (2a ² - ab),其中 a= - 2,b=3. 原式=6a ²- 2ab - 6a ²+3ab=ab,当a=-2,b=3时,原式=ab= - 2×3=-6.4、9x+6x ² -3(x-2/3x ²).其中x=-29x+6x² -3(x-2/3x²)=9x+6x²-3x+2x²=8x²+6x=8×(-2)²+6×(-2)=32-12=205、a²-ab+2b²=3 求2ab-2a²-4b²-7的值解:2ab-2a²-4b²-7=2(ab-a²-2b²)-7=-2(a²-ab+2b²)-7=(-2)*3-7=-6-7=-136、1/4(-4x²+2x-8)-(1/2x-1),其中x=1/21/4(-4x²+2x-8)-(1/2x-1)=-x²+1/2x-2-1/2x+1=-x²-1=-(1/2)²-1=-1/4-1=-5/47、2(a²b+ab²)-2(a²b-1)-2ab²-2其中a=-2,b=2=2a²b+2ab²-2a²b+2-2ab²-2=08、6a²b - ( - 3a²b+5ab²) -2 (5a²b - 3ab²),其中a= - 2,b=1/2原式=6a²b+3a²b - 5ab² - 10a²b+6ab²= - ab+ab²把a= - 2, b=1/2代入上式得:原式= (-2)²*1/2+(-2)*1/2²=-5/29、3x²y² - [5xy² - (4xy² - 3)+2x²y²],其中x=- 3,y=2原式=3x²y² - 5xy²+4xy² - 3- 2x²y²=x²y²- xy²- 3当x=- 3,y=2时,原式=4510、2x-3(2x-x)+(2y-y),其中x=1,y=2解;原式=2x-3x+y当x=1,y=2时原式=2*1-3*1+2=2-3+2=111、5ab²+3a²b - 3 (a²b - ab²),其中a=2,b= - 1原式=5ab²+3a²b - 3a²b+2ab²=7ab²当a=2,b=- 1时,原式=7×2×( -1)2=1412、2a-(3a-2b+2)+(3a-4b-1),其中a=5 b=-3=2a-3a+2b-2+3a-4b-1=(2-3+3)a+(2-4)b+(-2-1)=2a-2b-3=10-(-6)-3=10+6-3=1313、5-(1-x)-1-(x-1)-2x+(-5y),其中x=2,y=2x=4-2x-5y=4-4-20=-2014、2x-(x+3y)-(-x-y)-(x-y),其中x=3,y=-3=2x-x+3y+x+y-x+y=x+5y=3-15=-1215、-ab+3ba-(-2ab),其中a=2,b=1=-ab+3ba+2ab=2ab+2ab=4ab=4*2*1=816、-m-[-(2m-3n)]+[-(-3m)-4n],其中m=2,n=1 =-m-(-2m+3n)+3m-4n=-m-4m+2m-3n+3m=-3n=-3*1=-317、2(2a+2ab)-2(2ab-1)-2ab-2,其中a=-2 b=2 =4a+4ab-4ab+2-2ab-2=4a-2ab=4*(-2)-2*(-2)*2=-8-(-8)=-8+8=018、3ab-4ab+8ab-7ab+ab,其中a=-2,b=3=-8ab+9ab=ab=-2*3=-619、2x²- y²+ (2y² - x²) - 3 (x²+2y²),其中 x=3,y= - 2原式=2x² - y²+2y² - x² - 3x² - 6y²= - 2x²- 5y²当x=3,y=-2时,原式=– 18- 20= - 3820、5x²- [x² +(5x²- 2x) - 2 (X²- 3x)],其中x=1.原式=5x² - (x²+5x²- 2x - 2x²+6x) =x ² - 4x当x=1/2时,原式=7/421、( 6a²- 6ab - 12b²) - 3 (2a²- 4b²),其中 a=-1/2, b=- 8. 原式=6a² - 6ab - 12b² - 6a²+12b3²= - 6ab,当a=-1/2, b=-8时,原式=-6x( -1/2) ×( -8) =- 24 22、x²y - (2xy - x²y)+xy,其中x=- 1,y= - 2.原式=x²y - 2xy+x²y+xy=2x²y - xy,当x= - 1,y=-2时,原式=2*( - 1) ²* ( -2) - ( -1) *( - 2) = - 623、当|a|=3,b=a -2时,化简代数式1- {a - b - [a - (b - a)+b]}后,再求这个代数式的值.原式=1+a+b;当a=3时,b=1,代数式的值为5;当a=-3时,b=- 5,代数式的值为–724、- 2(ab - 3a²) - [a²- 5 (ab - a²) +6ab],其中 a=2,b=- 3原式= -2ab+6a² - (a² - 5ab+5a² +6ab) = - 2ab+6a² - a² +5ab - 5a² - 6ab= - 3ab;当a=2,b=-3时,原式=–3×2×( -3) =1825、( a² - 3ab - 2b²) - (a² - 2b²),其中a= - 1/2. b= - 8原式=a²- 3ab - 2b² - a²+2b²= - 3ab,当a=-1/2 ,b=-8时,原式= -3×( -1/2) ×( -8)= - 1226、8mn - [4m²n - ( 6mn² +mn) ] - 29mn²,其中 m= - 1,n=1/2原式=8mn - [4m²n - 6mn²- mn] - 29mn²=8mn - 4m²n+6mn²+mn - 29mn²=9mn - 4m²n - 23mn²当m=- l,n=1/2时,原式=9× ( - 1)×1/2-4×1²×1/2- 23x ( - 1)×1/4=-9/2-2+23/4=-3/427、(3X+2Y)+(4X+3Y)其中X=5,Y+3原式=3X+2Y+4X+3Y=7X+5Y当X=5,Y=3时原式=5*7+(-3)*5+20=35-15+20=4028、2x-3(2x-x)+(2y-y),其中x=1,y=2解;原式=2x-3x+y当x=1,y=2时原式=2*1-3*1+2=2-3+2=129、2a-(3a-2b+2)+(3a-4b-1),其中a=5 b=-3 =2a-3a+2b-2+3a-4b-1=(2-3+3)a+(2-4)b+(-2-1)=2a-2b-3=10-(-6)-3=10+6-3=1330、2x-(x+3y)-(-x-y)-(x-y),其中x=3,y=-3=2x-x+3y+x+y-x+y=x+5y=3-15=-12。

初一上册化简求值题及答案

初一上册化简求值题及答案

1、先化简,再求值: 2(a-3)(a+2)-(3+a)(3-a)-3(a-1)2其中a=-2解:原式=2(a2-a-6)-(9-a2)-3(a2-2a+1)=2a2-2a-12-9+ a2-3a2+6a-3=4a-24当a=-2时,原式=4×(-2)-24=-32.2、先化简,再求值:(3a²b-ab²)-2(ab²-3a²b),其中a=-2,b=3解:原式=3a²b-ab²-2ab²+6a²b=9a²b-3ab²=9x(-2)²x3-3x(-2)x3²=9x4x3-3x2x9=108-54=543、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3.解:原式=(5-3-2)x²+(-5+6)x+(4-5)=x-1.当x=-3时,原式=-3-1=-4.4、先化简,再求值:(3a²b-2ab²)-2(ab²-2a²b),其中a=2,b=-1.解:原式=3a²b-2ab²-2ab²+4a²b=7a²b-4ab²当a=2,b=-1时,原式=-28-8=-36.5、若a²+2b²=5,求多项式(3a²-2ab+b²)-(a²-2ab-3b²)的值.解:原式=3a²-2ab+b²-a²+2ab+3b²=2a²+4b².当a²+2b²=5时,原式=2(a²+2b²)=10.6、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3.解:原式=2x+2x²y-2x²y-x-y²=x-y².当x=1,y=-3时,原式=1-9=-8.7、已知∣m+n-2∣+(mn+3)²=0,求2(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]的值.解:由已知条件知m+n=2,mn=-3,所以原式=2(m+n)-2mn-2(m+n)-6(m+n)+9mn=-6(m+n)+7mn=-12-21=-33.8、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2.解:原式=2x²y-2xy²-2x²y+8xy²=6xy².当x=1/2,y=-2时,原式=6×1/2×4=12.9、先化简,再求值:2(x²y+xy)-3(x²y-xy)-4x²y,其中x,y满足|x+1|+(y-1/2)²=0.解:原式=2x²y+2xy-3x²y+3xy-4x²y=-5x²y+5xy因为|x+1|+(y-1/2)²=0,所以x=-1,y=. 1/2故原式=-5/2-5/2=-5.10、先化简,再求值∶3a²b+2(ab-3/2a²b)-|2ab²-(3ab²-ab)|,其中a=2,b=-1/2解:原式=3a²b+2ab-3a²b-(2ab²-3ab²+ab)=3a²b+2ab-3a²b-2ab²+3ab²-ab=ab²+ab,当a=2,b=-1/2时,原式=2×(-1/2)²+2×(-1/2)=2×1/4-1=1/2-1=-1/211、先化简,再求值:(4a²b-3ab)+(-5a²b+2ab)-(2ba²-1),其中a=2,b=1/2.解:原式=4a²b-3ab-5a²b+2ab-2ba²+1=-3a²b-ab+1,当a=2,b=1/2时,原式=-3×2²×1/2-2×1/2+1=-6-1+1=-6.12、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2.解:(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³)=2x³-2y²-3x³y²-3x³+2y²+2x³y²=-x³-x³y².当x=-1,y=2时,原式=-(-1)³-(-1)³×2²=1+4=5.。

专题 整式的化简求值解答题(50题)(原卷版)

专题 整式的化简求值解答题(50题)(原卷版)

七年级上册数学《第二章整式的加减》专题整式的化简求值(50题)整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.1.先化简,再求值:11a2﹣[a2﹣3(2a﹣5a2)﹣4(a2﹣2a)],其中a=﹣4.2.(2022秋•香洲区期末)先化简,再求值:2(x2+xy−32y)﹣(x2+2xy﹣1),其中x=﹣4,y=5.3.(2022秋•亭湖区期末)先化简,再求值:a2﹣(3a2﹣2b2)+3(a2﹣b2),其中a=﹣2,b=3.4.(2022秋•南昌县期中)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=16.5.(2022秋•江岸区期末)先化简,再求值:5a2+4b﹣(5+3a2)+3b+4﹣a2,其中a=3,b=﹣2.6.(2022秋•辽阳期末)先化简,再求值:x2y﹣(3xy2﹣x2y)﹣2(xy2+x2y),其中x=1,y=﹣2.7.(2022秋•盘山县期末)先化简再求值:﹣(3a2﹣2ab)+[3a2﹣(ab+2)],其中a=−12,b=4.8.(2022秋•邻水县期末)先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.9.(2022秋•秀屿区期末)先化简,再求值:4x2y﹣3xy2+3(xy﹣2x2y)﹣2(3xy﹣3xy2)其中x=34,y=﹣1.10.(2022秋•黔江区期末)先化简,再求值:3(2+122−B)−(2B+32−122),其中x=1,y=2.11.(2022秋•高新区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=1,b=﹣2.12.(2022秋•嘉峪关校级期末)先化简,再求值.2(3a﹣4b)﹣3(3a+2b)+4(3a﹣2b),其中=−13,=12.13.(2022秋•皇姑区期末)先化简,再求值:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3],其中a=2,b=﹣1.14.(2022秋•寻乌县期末)先化简,再求值:﹣3(x2﹣2x)+2(32x2﹣2x−12),其中x=﹣4.15.(2022秋•市南区校级期末)先化简,再求值:12−2(−132)+(−12+132),其中=−2,=23.16.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.17.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.18.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.19.(2022秋•芙蓉区校级月考)已知xy=2,x+y=3,求(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值.20.已知a2+b2=20,a2b﹣ab2=﹣3,求(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)的值.21.(2023春•大荔县期末)已知3a﹣b=﹣2,求代数式3(2B2−163+p−2(3B2−2p+的值.22.已知b=2a+2,求整式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.23.(2021秋•浉河区期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+7(a﹣b)2的结果是;(2)拓广探索:已知x2+2y=−13,求﹣6y﹣3x2+2021的值.24.(2022秋•黔西南州期中)“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b).请应用整体思想解答下列问题:(1)化简:3(x+y)2﹣5(x+y)2+7(x+y)2;(2)已知a2+2a+1=0,求2a2+4a﹣3的值.25.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.26.(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.27.(2022秋•铜梁区期末)先化简,再求值:6a2﹣[2(a2+ab)﹣4ab]﹣ab,其中a,b满足|a+1|+(b﹣2)2=0.28.(2022秋•汝阳县期末)已知|a+1|+(b﹣2)2=0,求5ab2﹣[3ab﹣2(﹣2ab2+ab)]的值.29.(2022秋•沙坪坝区期末)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.30.(2022秋•利州区校级期末)先化简,再求值:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2),其中x、y满足(x﹣3)2+|+13|=0.31.(2022秋•招远市期末)先化简,再求值;4B−[(2−2)−3(2+3B−132)],其中x、y满足(−2)2+ |+12|=0.32.(2022秋•万州区期末)化简求322b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.33.(2022秋•潼南区期末)先化简,再求值:已知x,y满足|x﹣1|+(y+5)2=0,求代数式3(2−B+162)−2(2B+2−142)的值.34.(2022秋•沙坪坝区校级期中)先化简,再求值:2(2−2B2)−[(−22+42p−13(6B2−322)],其中x是最大的负整数,y是绝对值最小的正整数.35.(2022秋•松滋市期末)已知关于x,y的单项式7x a y与﹣4x2y b是同类项.(1)求a、b的值;(2)化简求值:5(2a2b﹣ab2)﹣6(−32ab2+2a2b).36.已知2a3m b和﹣2a6b n+2是同类项,化简并求值:2(m2﹣mn)﹣3(2m2﹣3mn)﹣2[m2﹣(2m2﹣mn+m2)]﹣1.37.已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.38.先化简,再求值:已知=−12+2,=34−−1.若3b﹣a的值为﹣8,求A﹣2B的值.39.(2022秋•和平区校级期中)已知A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=2时,求2A﹣3B的值.41.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.44.(2022秋•兴城市期末)已知多项式A=3x2﹣bx+6,B=2ax2﹣4x﹣1;(1)若(a﹣3)2+|b﹣2|=0,求代数式2A﹣B的值;(2)若代数式2A+B的值与x无关,求5a+2b的值.45.(2022秋•韩城市期末)已知关于x的多项式A,B,其中A=mx2+2x﹣1,B=x2﹣nx+2(m,n为有理数).(1)化简2B﹣A;(2)若2B﹣A的结果不含x项和x2项,求m、n的值.46.(2022秋•北碚区校级期末)已知A=32B2−2x﹣1,B=3x2−13mx+4,(1)当4A−3B的值与x的取值无关,求m、n的值;(2)在(1)的条件下,求多项式(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)的值.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式32−[2B2−4(B−342p]+2B2的值.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.。

八年级下册分式化简求值练习50题(精选)

八年级下册分式化简求值练习50题(精选)

分式的化简求值练习50题1、先化简,再求值:(1﹣)÷,其中12x =.2、先化简,再求值:2121(1)1a a a a++-+,其中1a =.3、先化简,再求值:22(1)2()11x x x x x+÷---,其中x =4、先化简,再求值:211(1)x x x-+÷,其中12x =5先化简,再求值22122()121x x x x x x x x ----÷+++,其中x 满足x 2﹣x ﹣1=0.6、先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.7、先化简,再求值:2222211221a a a a a a a a -+--÷+++,其中2a =a .8、先化简211111x x x x -÷-+-(),再从﹣1、0、1三个数中,选择一个你认为合适的数作为x 的值代入求值.9、先化简,再求值:2(1)11x x x x +÷--,其中x =2.10、先化简,再求值:231839x x ---,其中3x =。

11、先化简242()222x x x x x++÷--,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算..12、先化简,再求值:21(2)1x x x x---,其中x =2.13、先化简,再求值:211()1211x x x x x x++÷--+-,其中x =14、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --≤⎧⎨<⎩的解集中,选一个你认为符合题意的x 的值代入求值.15、先化简,再求值:62296422+-÷++-a a a a a ,其中5-=a .16、先化简,再求值:232()111x x x x x x --÷+--,其中x =17、先化简。

初二化简求值练习题50道

初二化简求值练习题50道

初二化简求值练习题50道1. 求解:17 + 5 - 8 = ?答案:142. 计算:12 * 4 + 7 = ?答案:553. 简化:4 * 3 - 5 + 9 = ?答案:204. 求值:6 + 8 * 2 = ?答案:225. 化简:15 - 2 * 4 = ?答案:76. 计算:10 + 3 * 2 - 5 = ?答案:117. 求解:18 - 6 + 4 = ?答案:168. 简化:5 * 7 + 3 * 2 = ?答案:419. 求值:9 + 6 / 3 = ?答案:1110. 化简:20 - 4 / 2 = ?答案:1811. 计算:14 - 5 * 3 + 2 = ?答案:112. 求解:25 / 5 * 2 = ?答案:1013. 简化:8 * 3 - 9 / 3 = ?答案:2114. 求值:7 - 9 + 12 / 4 = ?答案:515. 化简:16 + 2 / 2 - 5 = ?答案:1216. 计算:3 * 7 + 4 - 2 * 5 = ?答案:1417. 求解:32 - 6 * 4 = ?答案:818. 简化:4 + 6 * 2 - 1 = ?答案:1519. 求值:15 / 3 - 2 + 4 = ?答案:720. 化简:9 + 4 / 2 - 1 = ?答案:1121. 计算:6 - 2 * 3 + 5 = ?答案:722. 求解:28 - 7 * 3 = ?答案:723. 简化:5 * 6 + 12 / 6 = ?答案:3124. 求值:8 + 4 / 2 - 3 = ?答案:725. 化简:14 + 3 - 6 / 2 = ?答案:1626. 计算:9 * 2 + 5 - 3 * 4 = ?答案:1227. 求解:35 - 4 * 5 = ?答案:1528. 简化:6 * 4 - 3 * 2 = ?答案:1829. 求值:12 / 3 + 5 - 2 = ?答案:930. 化简:10 + 6 / 2 - 4 = ?答案:931. 计算:4 * 3 - 2 + 8 / 4 = ?答案:1232. 求解:22 / 2 * 3 = ?答案:3333. 简化:7 + 5 * 2 - 3 = ?答案:1634. 求值:10 - 12 + 9 / 3 = ?答案:735. 化简:16 + 1 / 2 - 4 = ?答案:1336. 计算:5 * 4 + 3 - 2 * 4 = ?答案:1537. 求解:26 - 5 * 2 = ?答案:1638. 简化:3 + 7 * 2 - 4 = ?答案:1639. 求值:8 / 2 + 4 - 3 = ?答案:940. 化简:12 + 5 / 5 - 2 = ?答案:1041. 计算:7 * 3 - 2 + 6 / 3 = ?答案:2142. 求解:18 / 3 * 4 = ?答案:2443. 简化:9 + 6 * 2 - 5 / 5 = ?答案:1944. 求值:13 - 9 + 15 / 5 = ?答案:945. 化简:14 + 2 / 4 - 3 = ?答案:1046. 计算:4 * 7 - 3 * 2 + 5 = ?答案:2347. 求解:30 - 6 * 2 = ?答案:1848. 简化:5 + 8 * 2 - 4 = ?答案:1749. 求值:11 / 3 + 6 - 2 = ?答案:850. 化简:18 + 4 / 2 - 5 = ?答案:15以上是初二化简求值练习题共50道。

整式的化简求值(五大题型50题)(原卷版)

整式的化简求值(五大题型50题)(原卷版)

(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x2y−[xy2+3(x2y−13xy2)],其中x=12,y=2.2.先化简,再求值:4x2﹣2xy+y2﹣(x2﹣xy+y2),其中x=﹣1,y=−1 2.3.(2022秋•秦淮区期末)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=﹣1,b=2.4.(2022秋•邹城市校级期末)先化简,再求值:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2),其中x=﹣1,y=2.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.9.先化简,再求值:2(ab −32a 2+a ﹣b 2)﹣3(a ﹣a 2+23ab ),其中a =5,b =﹣2.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.12.(2022秋•绿园区期末)先化简,再求值:12m −(2m −23n 2)+(−32m +13n 2),其中m =−14,n =−12.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14xy2)−2(xy2−xy),其中x=12,y=﹣2.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1=.(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1=;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.28.(2022秋•西安期中)化简求值:−12(5xy −2x 2+3y 2)+3(−12xy +23x 2+y 26),其中x 、y 满足 (x +1)2+|y ﹣2|=0.29.(2022秋•公安县期中)先化简,再求值:4a 2b ﹣[﹣2ab 2﹣2(ab ﹣ab 2)+a 2b ]﹣3ab ,其中a =12,b =﹣4.30.(2022秋•海林市期末)先化简再求值:12a +2(a +3ab −13b 2)−3(32a +2ab −13b 2),其中a 、b 满足|a ﹣2|+(b +3)2=0.31.(2022秋•万州区期末)化简求32a 2b ﹣2(ab 2+1)−12(3a 2b ﹣ab 2+4)的值,其中2(a ﹣3)2022+|b +23|=0.32.(2022秋•偃师市期末)已知:(x−2)2+|y+12|=0,求2(xy2+x2y)﹣[2xy2﹣3(1﹣x2y)]+2的值.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x2y−2xy2)−[(−x2y2+4x2y)−13(6xy2−3x2y2)],其中x是最大的负整数,y是绝对值最小的正整数.34.(2022秋•越秀区期末)已知代数式M=(2a2+ab﹣4)﹣2(2ab+a2+1).(1)化简M;(2)若a,b满足等式(a﹣2)2+|b+3|=0,求M的值.35.(2022秋•和平区校级期中)先化简再求值:若(a+3)2+|b﹣2|=0,求3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}的值.36.(2022秋•江都区期末)已知代数式A =x 2+xy ﹣12,B =2x 2﹣2xy ﹣1.当x =﹣1,y =﹣2时,求2A ﹣B 的值.37.已知:A =x −12y +2,B =x ﹣y ﹣1.(1)化简A ﹣2B ;(2)若3y ﹣2x 的值为2,求A ﹣2B 的值.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =xy 2−2(32xy 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.44.(2021秋•沂源县期末)已知多项式x2+ax﹣y+b与bx2﹣3x+6y﹣3差的值与字母x的取值无关,求代数式3(a2﹣2ab﹣b2)﹣4(a2+ab+b2)的值.45.(2022秋•大竹县校级期末)已知代数式x2+ax﹣(2bx2﹣3x+5y+1)﹣y+6的值与字母x的取值无关,求1 3a3−2b2−14a3+3b2的值.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2ab2−4(ab−34a2b)]+2ab2的值.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.。

初一化简求值题30道

初一化简求值题30道

1、先化简,再求值: 2(a-3)(a+2)-(3+a)(3-a)-3(a-1)2其中a=-2解:原式=2(a2-a-6)-(9-a2)-3(a2-2a+1)=2a2-2a-12-9+ a2-3a2+6a-3=4a-24当a=-2时,原式=4×(-2)-24=-32.2、先化简,再求值:(3a²b-ab²)-2(ab²-3a²b),其中a=-2,b=3解:原式=3a²b-ab²-2ab²+6a²b=9a²b-3ab²=9x(-2)²x3-3x(-2)x3²=9x4x3-3x2x9=108-54=543、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3.解:原式=(5-3-2)x²+(-5+6)x+(4-5)=x-1.当x=-3时,原式=-3-1=-4.4、先化简,再求值:(3a²b-2ab²)-2(ab²-2a²b),其中a=2,b=-1.解:原式=3a²b-2ab²-2ab²+4a²b=7a²b-4ab²当a=2,b=-1时,原式=-28-8=-36.5、若a²+2b²=5,求多项式(3a²-2ab+b²)-(a²-2ab-3b²)的值.解:原式=3a²-2ab+b²-a²+2ab+3b²=2a²+4b².当a²+2b²=5时,原式=2(a²+2b²)=10.6、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3.解:原式=2x+2x²y-2x²y-x-y²=x-y².当x=1,y=-3时,原式=1-9=-8.7、已知∣m+n-2∣+(mn+3)²=0,求2(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]的值.解:由已知条件知m+n=2,mn=-3,所以原式=2(m+n)-2mn-2(m+n)-6(m+n)+9mn=-6(m+n)+7mn=-12-218、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2.解:原式=2x²y-2xy²-2x²y+8xy²=6xy².当x=1/2,y=-2时,原式=6×1/2×4=12.9、先化简,再求值:2(x²y+xy)-3(x²y-xy)-4x²y,其中x,y满足|x+1|+(y -1/2)²=0.解:原式=2x²y+2xy-3x²y+3xy-4x²y=-5x²y+5xy因为|x+1|+(y-1/2)²=0,所以x=-1,y=. 1/2故原式=-5/2-5/2=-5.10、先化简,再求值∶3a²b+2(ab-3/2a²b)-|2ab²-(3ab²-ab)|,其中a=2,b=-1/2解:原式=3a²b+2ab-3a²b-(2ab²-3ab²+ab)=3a²b+2ab-3a²b-2ab²+3ab²-ab =ab²+ab,当a=2,b=-1/2时,原式=2×(-1/2)²+2×(-1/2)=2×1/4-1=-1/211、先化简,再求值:(4a²b-3ab)+(-5a²b+2ab)-(2ba²-1),其中a=2,b=1/2.解:原式=4a²b-3ab-5a²b+2ab-2ba²+1=-3a²b-ab+1,当a=2,b=1/2时,原式=-3×2²×1/2-2×1/2+1=-6-1+1=-6.12、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2.解:(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³)=2x³-2y²-3x³y²-3x³+2y²+2x³y²=-x³-x³y².当x=-1,y=2时,原式=-(-1)³-(-1)³×2²=1+4 =5.1、-9(x-2)-y(x-5)?(1)化简整个式子。

最新八年级下册分式化简求值练习50题(精选)

最新八年级下册分式化简求值练习50题(精选)
29.先化简,再求值:(2a a) a,其中a 2 1. a11a
30、先化简,再求值:(2a21 1) a,其中a 2 a 1 1 a
25、先化简,再求代数式221的值,其中,x=5.
x29 x 3
2
26.先化简,再求值:(x2)x216,其中x 3 4.
x 2x22x
27、先化简,再求值:(3x x)22x,其中x 3 4.
x 2 x 2 x24
2
28、先化简,再求值:x24x 4 x 2 2x,其中x 2.
x216 2x 8 x 4
的值代入求值.
9、先化简,再求值:(x1)2x,其中x=2.
x 1 x 1
10、先化简,再求值:3218,其中x 10 3。
x 3 x29
11、先化简(x4)x2,再从2,﹣2,1,0,﹣1中选择一个合适的数进行计算.
x 2 2 x 2x
12、先化简,
再求值:
x 12),其中x=2.
x
13、先化简,
分式的化简求值练习50题
1、先化简,再求值:
(1﹣)÷,其中x12.
2、先化简,再求值:
2
(11)a 2a 1,其中a 21.a 1 a
3、先化简,再求值:
2
(1 x2)2(2xx),其中x 2
1 x21 x
4、先化简,再求值:(11)x 1,其中x1
x x 2
2
5先化简,再求值(xx1 xx 12)x22x2xx1,其中x满足x2﹣x﹣1=0.
17、
先化简。
再求值:
2a 1
a21
2
a22a 1 1
2,其中a a2a a 1
18、
先化简,

化简求值50道(你值得拥有)

化简求值50道(你值得拥有)

2016中考复习化简求值1.先化简,再求值:(+)÷,其中x=﹣1.2.化简求值:,a取﹣1、0、1、2中的一个数.3.先化简,再求值:÷﹣,其中x=﹣4.4.先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°.5.先化简,再求值:,其中.6.先化简,再求值:,其中a=﹣1.7.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.8.先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.9.先化简,再求值:÷(x﹣),其中x为数据0,﹣1,﹣3,1,2的极差.10.先化简,再求值:(+)÷,其中a=2﹣.11.化简求值:(﹣)÷,其中a=1﹣,b=1+.12.先化简,再求值:(x﹣)÷,其中x=cos60°.13.先化简,再求值:(﹣)÷,其中x=﹣1.14.先化简,再求值:(x+1﹣)÷,其中x=2.15.先化简,再求值:(﹣)÷,其中a2+a﹣2=0.16.先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.17.先化简,再求值:÷(﹣)+,其中x的值为方程2x=5x﹣1的解.18.先化简:(x﹣)÷,再任选一个你喜欢的数x代入求值.19.先化简,再求值:÷(2+),其中x=﹣1.20.先化简,再求值:(﹣),其中x=2.21.先化简,再求值:(1﹣)÷,其中a=.22.先化简,再求值:(﹣1)÷,其中a=+1,b=﹣1.23.先化简代数式(﹣)÷,再从0,1,2三个数中选择适当的数作为a的值代入求值.24.先化简,再求值:(x﹣1﹣)÷,其中x是方程﹣=0的解.25.先简化,再求值:(﹣)+,其中a=+1.26.先化简,后计算:(1﹣)÷(x﹣),其中x=+3.27.先化简,再求值:(1﹣)÷,其中x=3.28.先化简,再求值:(﹣)÷,其中x=()﹣1﹣(π﹣1)0+.29.先化简,再求值:()÷,其中a,b满足+|b﹣|=0.30.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.31. 先化简再求值:错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年08月08日新航教育的初中数学组卷一.选择题(共1小题)1.(2013秋•包河区期末)已知a﹣b=5,c+d=2,则(b+c)﹣(a﹣d)的值是()A.﹣3 B.3 C.﹣7 D.7二.解答题(共49小题)2.(2017秋•庐阳区校级期中)先化简,再求值:(1)化简:(2x2﹣+3x)﹣4(x﹣x2+)(2)化简:(3)先化简再求值:5(3a2b﹣ab2)﹣2(ab2+3a2b),其中a=,b=.3.(2017秋•包河区校级期中)先化简,再求值2x2y﹣2(xy2+2x2y)+2(x2y﹣3xy2),其中x=﹣,y=24.(2017秋•瑶海区期中)先化简,再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab2,其中a=﹣1,b=﹣2.5.(2017秋•市期中)先化简,再求值:﹣3[y﹣(3x2﹣3xy)]﹣[y+2(4x2﹣4xy)],其中x=﹣3,y=.6.(2017秋•期中)先化简,再求值:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2),其中x=,y=﹣3.7.(2017秋•蜀山区校级期中)先化简,再求值:,其中a=﹣1,b=.8.(2017秋•期中)先化简,再求值:3x2﹣[7x﹣(4x﹣2x2)];其中x=﹣2.9.(2015秋•期末)先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.10.(2015秋•南雄市期末)已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.11.(2015秋•庐阳区期末)先化简,再求值:2x3+4x﹣(x+3x2+2x3),其中x=﹣1.12.(2015秋•期末)先化简,再求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中,.13.(2015秋•包河区期末)先化简,再求值:2a2﹣[a2﹣(2a+4a2)+2(a2﹣2a)],其中a=﹣3.14.(2014秋•成县期末)化简求值:若(x+2)2+|y﹣1|=0,求4xy﹣(2x2+5xy ﹣y2)+2(x2+3xy)的值.15.(2014秋•期末)先化简,再求值:3a2b+(﹣2ab2+a2b)﹣2(a2b+2ab2),其中a=﹣2,b=﹣1.16.(2015秋•包河区期中)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=﹣2.17.(2015秋•包河区期中)理解与思考:在某次作业中有这样的一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b把式子5a+3b=﹣4两边同乘以2,得10a+6b=﹣8.仿照小明的解题方法,完成下面的问题:(1)如果a2+a=0,则a2+a+2015=.(2)已知a﹣b=﹣3,求3(a﹣b)﹣5a+5b+5的值.(3)已知a2+2ab=﹣2,ab﹣b2=﹣4,求2a2+ab+b2的值.18.(2013秋•蜀山区校级期末)先化简,再求值(4x3﹣x2+5)+(5x2﹣x3﹣4),其中x=﹣2.19.(2013秋•寿县期末)先化简,再求值:2(3x3﹣2x+x2)﹣6(1+x+x3)﹣2(x+x2),其中x=.20.(2013秋•包河区期末)先化简,再求值:﹣ab2+(3ab2﹣a2b)﹣2(ab2﹣a2b),其中a=﹣,b=﹣9.21.(2014秋•校级期中)先化简求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=,y=﹣1.22.(2014秋•包河区期中)先化简,再求值:﹣(x2+5x﹣4)+2(5x﹣4+2x2),其中,x=﹣2.23.(2012秋•包河区期末)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.24.(2012秋•蜀山区期末)若a=|b﹣1|,b是最大的负整数,化简并求代数式3a﹣[b﹣2(b﹣a)+2a]的值.25.(2012秋•靖江市期末)化简求值6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],其中x=4,y=﹣.26.(2013秋•包河区期中)先化简,再求值:(2a+5﹣3a2)+(2a2﹣5a)﹣2(3﹣2a),其中a=﹣2.27.(2011秋•瑶海区期末)化简并求值:3(x2﹣2xy)﹣[(﹣xy+y2)+(x2﹣2y2)],其中x,y的值见数轴表示:28.(2012秋•泸县期中)先化简,再求值(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,其中a=4;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),其中a=﹣3,b=﹣2.29.(2010•)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.30.(2010秋•长丰县校级期中)化简计算:(1)3a2﹣2a﹣a2+5a(2)(3)若单项式与﹣2x m y3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)31.(2010秋•包河区期中)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣xy2),其中:,y=﹣3.32.(2008秋•期末)先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.33.(2007秋•期中)先化简,再求值3a+abc﹣c2﹣3a+c2﹣c,其中a=﹣,b=2,c=﹣3.34.(2017秋•丰台区期末)先化简,再求值:5x2y+[7xy﹣2(3xy﹣2x2y)﹣xy],其中x=﹣1,y=﹣.35.(2017秋•惠山区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.36.(2017秋•翁牛特旗期末)先化简再求值:2(ab﹣a+b)﹣(3b+ab),其中2a+b=﹣5.37.(2017秋•县期末)先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣138.(2017秋•鄞州区期末)先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=339.(2017秋•埇桥区期末)先化简,再求值:2(x2y﹣y2)﹣(3x2y﹣2y2),其中x=﹣5,y=﹣.40.(2017秋•期末)先化简,再求值:(5x+y)﹣(3x+4y),其中x=,y=.41.(2016秋•武安市期末)求2x﹣[2(x+4)﹣3(x+2y)]﹣2y的值,其中.42.(2016秋•崇安区期末)先化简,再求值:(8mn﹣3m2)﹣5mn﹣2(3mn﹣2m2),其中m=2,n=﹣.43.(2017春•广饶县校级期中)先化简,再求值:(1)2y2﹣6y﹣3y2+5y,其中y=﹣1.(2)8a2b+2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a=2,b=3.44.(2017秋•邗江区校级期中)有这样一道题:“计算(2x4﹣4x3y﹣2x2y2)﹣(x4﹣2x2y2+y3)+(﹣x4+4x3y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,你能说明这是为什么吗?45.(2016秋•资中县期末)先化简,再求值:2(x2﹣xy)﹣(3x2﹣6xy),其中x=2,y=﹣1.46.(2017秋•雁塔区校级期中)先化简,再求值:(1)3(a2﹣ab)﹣(a2+3ab2﹣3ab)+6ab2,其中a=﹣1,b=2.(2)4x2﹣3(x2+2xy﹣y+2)+(﹣x2+6xy﹣y),其中x=2013,y=﹣1.47.(2017秋•黄冈期中)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的值无关,求代数式a2﹣2b+4ab的值.48.(2017秋•岑溪市期中)先化简下式,再求值,2(3a2b+ab2)﹣6(a2b+a)﹣2ab2﹣3b,其中a=,b=3.49.(2017秋•期中)先化简再求值:求5xy2﹣[2x2y﹣(2x2y﹣3xy2)]的值.(其中x,y两数在数轴上对应的点如图所示).50.(2017秋•夏邑县期中)如图,一只蚂蚁从点A沿数轴向右爬行2个单位长度到达点B,点A表示的数n为﹣,设点B所表示的数为m.(1)求m的值;(2)对﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]化简,再求值.2018年08月08日新航教育的初中数学组卷参考答案与试题解析一.选择题(共1小题)1.【解答】解:∵a﹣b=5,c+d=2,∴原式=b+c﹣a+d=﹣(a﹣b)+(c+d)=﹣5+2=﹣3,故选:A.二.解答题(共49小题)2.【解答】解:(1)原式=2x2﹣+3x﹣4x+4x2﹣2=6x2﹣x﹣;(2)原式=x﹣2x+y2+x﹣y2=y2;(3)原式=15a2b﹣5ab2﹣2ab2﹣6a2b=9a2b﹣7ab2,当a=﹣,b=时,原式=+=.3.【解答】解:当x=﹣,y=2时,原式=2x2y﹣2xy2﹣4x2y+2x2y﹣6y2=﹣2xy2﹣6y2=﹣2×(﹣)×4﹣6×4=2﹣24=﹣224.【解答】解:原式=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab2=4a2+2ab﹣ab2当a=﹣1,b=﹣2时,原式=4+4+4=12.5.【解答】解:原式=﹣3y+9x2﹣9xy﹣y﹣8x2+8xy=x2﹣xy﹣4y当x=﹣3,y=时,原式=9+1﹣=6.【解答】解:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2)=2xy﹣2xy+4x2y2+6xy﹣10x2y2=6xy﹣6x2y2,当x=,y=﹣3时,原式=﹣6﹣6=﹣12.7.【解答】解:原式=2a2﹣ab+2a2﹣8ab﹣ab=4a2﹣9ab,当a=﹣1,b=时,原式=4+3=7.8.【解答】解:原式=3x2﹣(7x﹣4x+2x2)=3x2﹣7x+4x﹣2x2=x2﹣3x当x=﹣2时,原式=(﹣2)2﹣3×(﹣2)=4﹣(﹣6)=10.9.【解答】解:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣2,b=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.10.【解答】解:∵(x+2)2+|y﹣|=0,∴x=﹣2,y=,则原式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2=x2y﹣xy2+4=2++4=6.11.【解答】解:原式=2x3+4x﹣x﹣3x2﹣2x3=3x﹣3x2,当x=﹣1时,原式=﹣3﹣3=﹣6.12.【解答】解:原式=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当,.13.【解答】解:原式=2a2﹣a2+2a+4a2﹣2a2+4a=3a2+6a,当a=﹣3时,原式=27﹣18=9.14.【解答】解:∵(x+2)2+|y﹣1|=0,∴x+2=0,y﹣1=0,即x=﹣2,y=1,则原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=﹣2,y=1时,原式=1﹣10=﹣9.15.【解答】解:原式=3a2b﹣2ab2+a2b﹣2a2b﹣4ab2=2a2b﹣6ab2,当a=﹣2,b=﹣1时,原式=2×4×(﹣1)﹣6×(﹣2)×1=4.16.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣x+y2,当x=﹣2,y=﹣2时,原式=.17.【解答】解:(1)∵a2+a=0,∴原式=2015;故答案为:2015;(2)原式=3a﹣3b﹣5a+5b+5=﹣2(a﹣b)+5,当a﹣b=﹣3时,原式=6+5=11;(3)原式=(4a2+7ab+b2)=[4(a2+2ab)﹣(ab﹣b2)],当a2+2ab=﹣2,ab﹣b2=﹣4时,原式=×(﹣8+4)=﹣2.18.【解答】解:原式=4x3﹣x2+5+5x2﹣x3﹣4=3x3+4x2+1,当x=﹣2时,原式=﹣24+16+1=﹣7.19.【解答】解:原式=6x3﹣4x+2x2﹣6﹣6x﹣6x3﹣2x﹣2x2=﹣12x﹣6,当x=﹣,原式=﹣12×(﹣)﹣6=10﹣6=4;20.【解答】解:原式=﹣ab2+3ab2﹣a2b﹣2ab2+2a2b=a2b,当a=﹣,b=﹣9时,原式=×(﹣9)=﹣4.21.【解答】解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=,y=﹣1时,原式=﹣=﹣.22.【解答】解:原式=﹣x2﹣5x+4+10x﹣8+4x2=3x2+5x﹣4,当x=﹣2时,原式=12﹣10﹣4=﹣2.23.【解答】解:原式=(3x2y﹣xy2)﹣3(x2y﹣2xy2)=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当x=﹣1,y=﹣2时,原式=5xy2=5×(﹣1)×(﹣2)2=﹣20.24.【解答】解:∵最大的负整数为﹣1,∴b=﹣1,∴a=|﹣1﹣1|=2,原式=3a﹣b+2b﹣2a﹣2a=b﹣a,当a=2,b=﹣1时,原式=﹣1﹣2=﹣3.25.【解答】解:6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],=6x2﹣3xy2+4xy2﹣6﹣7x2,=﹣x2+xy2﹣6;当x=4,y=时,原式=﹣42+4×﹣6=﹣21.26.【解答】解:原式=2a+5﹣3a2+2a2﹣5a﹣6+4a=﹣a2+a﹣1,将a=﹣2代入,原式=﹣(﹣2)2+(﹣2)﹣1=﹣7.27.【解答】解:原式=3x2﹣6xy+xy+y2﹣x2+2y2=2x2﹣xy+y2,根据数轴上点的位置得:x=2,y=﹣1,则原式=8+11+1=20.28.【解答】解:(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,=5a2﹣|a2﹣2a+5a2﹣6a3|,=5a2﹣|6a2﹣2a﹣6a3|,=5a2﹣6a2+2a+6a3,=﹣a2+2a+6a3把a=4代入得:﹣16+8+384=376;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),=﹣2﹣2a+3b﹣1﹣3a﹣2b,=﹣5a+b﹣3把a=﹣3,b=﹣2.代入得:﹣5×(﹣3)+(﹣2)﹣3=10.29.【解答】解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).∵x=﹣2,∴原式=﹣16.30.【解答】解:(1)3a2﹣2a﹣a2+5a,=(3﹣1)a2+(5﹣2)a,=2a2+3a;(2)(﹣8x2+2x﹣4)﹣(x﹣1),=﹣2x2+x﹣1﹣x+,=﹣2x2﹣;(3)∵单项式与﹣2x m y3是同类项,∴m=2,n=3,(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)=m+3n﹣3mn+4m+2n﹣2mn=(1+4)m+(﹣3﹣2)mn+(3+2)n=5m﹣5mn+5n,当m=2,n=3时,原式=5×2﹣5×2×3+5×3=10﹣30+15=﹣5.31.【解答】解:(3x2y﹣xy2)﹣3(x2y﹣xy2),=3x2y﹣xy2﹣3x2y+3xy2,=2xy2;当x=,y=﹣3时,原式=2xy2=2××(﹣3)2=9.32.【解答】解:原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=33.【解答】解:原式=3a﹣3a+abc﹣c2+c2﹣c=abc﹣c,当a=﹣,b=2,c=﹣3时原式=abc﹣c=﹣×2×(﹣3)﹣(﹣3)=1+3=4.34.【解答】解:原式=5x2y+7xy﹣6xy+4x2y﹣xy=9x2y,当x=﹣1,y=﹣时,原式=﹣6.35.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时原式=﹣6+4=﹣2.36.【解答】解:原式=ab﹣2a+2b﹣3b﹣ab=﹣2a﹣b=﹣(2a+b),当2a+b=﹣5时,原式=5.37.【解答】解:原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2,当x=,y=﹣1 时,原式=6×()2×(﹣1)﹣6××(﹣1)2=﹣﹣3=﹣4.38.【解答】解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.39.【解答】解:原式=2x2y﹣2y2﹣3x2y+2y2=﹣x2y,当x=﹣5,y=﹣时,原式=.40.【解答】解:原式=5x+y﹣3x﹣4y=2x﹣3y,当x=,y=时,原式=2×﹣3×=1﹣2=﹣1.41.【解答】解:原式=2x﹣2x﹣8+3x+6y﹣2y=3x+4y﹣8,当x=,y=时,原式=1+2﹣8=﹣5.42.【解答】解:原式=8mn﹣3m2﹣5mn﹣6mn+4m2=m2﹣3mn,当m=2,n=﹣时,原式=4+2=6.43.【解答】解:(1)原式=﹣y2﹣y,当y=﹣1时,原式=﹣1+1=0;(2)原式=8a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣3ab2,当a=2,b=3时,原式=﹣54.44.【解答】解:原式=2x4﹣4x3y﹣2x2y2﹣x4+2x2y2﹣y3﹣x4+4x3y﹣y3=﹣2y3,当y=﹣1时,原式=2.故“x=”错抄成“x=﹣”,但他计算的结果也是正确的.45.【解答】解:原式=2x2﹣2xy﹣3x2+6xy=﹣x2+4xy,当x=2,y=﹣1时,原式=﹣4﹣8=﹣12.46.【解答】解:(1)原式=3a2﹣3ab﹣a2﹣3ab2+3ab+6ab2=2a2+3ab2,当a=﹣1,b=2时,原式=2﹣12=﹣10;(2)原式=4x2﹣3x2﹣6xy+3y﹣6﹣x2+6xy﹣y=2y﹣6,当y=﹣1时,原式=﹣2﹣6=﹣8.47.【解答】解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式的值与x的值无关,∴2﹣2b=0,a+3=0,解得:a=﹣3,b=1,将a=﹣3,b=1代入得:原式=4.5﹣2﹣12=﹣9.5.48.【解答】解:原式=6a2b+2ab2﹣6a2b﹣6a﹣2ab2﹣3b=﹣6a﹣3b,当a=,b=3时,原式=﹣6×﹣3×3=﹣12.49.【解答】解:原式=5xy2﹣[2x2y﹣2x2y+3xy2]=5xy2﹣2x2y+2x2y﹣3xy2=2xy2,当x=2,y=﹣1时,原式=4.50.【解答】解:(1)m=﹣+2=;(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn] =﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn=mn.当m=,n=﹣时,原式=×(﹣)=﹣.。

相关文档
最新文档