化工原理第五章_传热过程计算与换热器

合集下载

传热过程的计算

传热过程的计算

第五节 传热过程的计算化工生产中广泛采用间壁换热方法进行热量的传递。

间壁换热过程由固体壁的导热和壁两侧流体的对流传热组合而成,导热和对流传热的规律前面已讨论过,本节在此基础上进一步讨论传热的计算问题。

化工原理中所涉及的传热过程计算主要有两类:一类是设计计算,即根据生产要求的热负荷,确定换热器的传热面积;另一类是校核计算,即计算给定换热器的传热量、流体的流量或温度等。

两者都是以换热器的热量衡算和传热速率方程为计算基础。

4-5-1 热量衡算流体在间壁两侧进行稳定传热时,在不考虑热损失的情况下,单位时间热流体放出的热量应等于冷流体吸收的热量,即:Q=Q c =Q h (4-59) 式中 Q ——换热器的热负荷,即单位时间热流体向冷流体传递的热量,W ; Q h ——单位时间热流体放出热量,W ; Q c ——单位时间冷流体吸收热量,W 。

若换热器间壁两侧流体无相变化,且流体的比热容不随温度而变或可取平均温度下的比热容时,式(4-59)可表示为()()1221t t c W T T c W Q pc c ph h -=-= (4-60) 式中 c p ——流体的平均比热容,kJ/(kg ·℃); t ——冷流体的温度,℃; T ——热流体的温度,℃; W ——流体的质量流量,kg/h 。

若换热器中的热流体有相变化,例如饱和蒸气冷凝,则()12t t c W r W Q pc c h -== (4-61) 式中 W h ——饱和蒸气(即热流体)的冷凝速率,kg/h ; r ——饱和蒸气的冷凝潜热,kJ/kg 。

式(4-61)的应用条件是冷凝液在饱和温度下离开换热器。

若冷凝液的温度低于饱和温度时,则式(4-61)变为()[]()122t t c W T T c r W Q pc c s ph h -=-+= (4-62) 式中 c ph ——冷凝液的比热容,kJ/(kg ·℃); T s ——冷凝液的饱和温度,℃。

化工原理_17换热器的传热计算

化工原理_17换热器的传热计算
T2 T1 (T1 t1)
22
二、传热单元数法
(2)传热单元数 NTU 由换热器热平衡方程及总传热速率微分方程
dQ qm,hcphdT qm,ccpcdt K (T t)dS
对于冷流体 dt KdS
T t qm,ccpc
23
二、传热单元数法
积分上式得
t2 dt S KdS
(NTU )c t1 T t 0 qm,ccpc
11
一、平均温度差法
逆流:
采用逆流操作,若换热介质流量一定,则可 以节省传热面积,减少设备费;若传热面积一定, 则可减少换热介质的流量,降低操作费,因而工 业上多采用逆流操作。
并流:
若对流体的温度有所限制,如冷流体被加热 时不得超过某一温度,或热流体被冷却时不得低 于某一温度,则宜采用并流操作。
12
Qmax (qmcp )min (T1 t1)
较小者具 有较大温

换热器中可 能达到的最
大温差
式中 qmCp 称为流体的热容量流率,下标 min表 示两流体中热容量流率较小者,并称此流体为最
小值流体。
20
二、传热单元数法
若热流体为最小值流体,则传热效率为
qm,hcph (T1 T2 ) T1 T2
通常在换热器的设计中规定,t 值不应小
于0.8,否则值太小,经济上不合理。若低于此
值,则应考虑增加壳方程数,将多台换热器串
联使用,使传热过程接近于逆流。
18
二、传热单元数法
1. 传热效率ε 换热器的传热效率ε定义为
实际的传热量QT
最大可能的传热量Qmax
19
二、传热单元数法
定义最大可能传热量
基于冷流体的传热单元数

化工原理第五章传热过程计算与换热器

化工原理第五章传热过程计算与换热器

5.4 传热效率和传热单元数
• 当传热系数K和比热cpc为常数时,积分上式可得
• 式中NTUc(Number of Transfer Unit)称为对冷流体而言的传热单 元数,Dtm为换热器的对数平均温差。
• 同理,以热流体为基准的传热单元数可表 示
• 在换热器中,传热单元数定义 为
5.4 传热效率和传热单元数
• 2.由选定的换热器型式计算传热系数K;
• 3.由规定的冷、热流体进出口温度计算参数e、CR; • 4.由计算的e、CR值确定NTU。由选定的流动排布型
式查取e—NTU算图。可能需由e—NTU关系反复计算 NTU;
• 5.计算所需的传热面积

5.5 换热器计算的设计型和操作型问题
• 例5-2 一列管式换热器中,苯在换热器的管内 流动,流量为1.25 kg/s,由80℃冷却至30℃; 冷却水在管间与苯呈逆流流动,冷却水进口温 度为20℃,出口温度不超过50℃。若已知换热 器的传热系数为470 W/(m2·℃),苯的平均 比热为1900 J/(kg·℃)。若忽略换热器的散 热损失,试分别采用对数平均温差法和传热效 率—传热单元数法计算所需要的传热面积。
• 如图5-4所示,按照冷、热流 体之间的相对流动方向,流体之 间作垂直交叉的流动,称为错流 ;如一流体只沿一个方向流动, 而另一流体反复地折流,使两侧 流体间并流和逆流交替出现,这
种情况称为简单折流。
•图 P2
•55
5.3 传热过程的平均温差计算
•通常采用图算法,分三步: •① 先按逆流计算对数平均温差Dtm逆; •② 求出平均温差校正系数φ;
•查图 φ
•③ 计算平均传热温差: • 平均温差校正系数 φ <1,这是由于在列管式换热器内增设了

化工原理5.1-5.2化工生产中的传热过程及传导传热

化工原理5.1-5.2化工生产中的传热过程及传导传热

r1
d1
Q

2Lt
b

r2 r1 ln r2

2Lt
b
rm

r1

多层圆筒壁的传导传热:
Q
2Lt
1 ln d n1
n
dn

例题
5-1 若炉灶的炉壁顺序地由厚24cm耐火砖(=0.90 W.m-1. K-1)、12cm绝热砖(=0.20 W.m-1.K-1)和24cm建筑砖( = 0.63W.m-1.K-1)砌成,传热稳定后,耐火砖的内壁面温度为 940℃,建筑砖的外壁面温度为50 ℃.试求每秒钟每平方米 壁面因传导传热所散失的热量,并求各砖层交界面的温度.
对数平均值:rm (r2 r1 )
ln( r2 ) r1
Q

2Lt
b
r2 r1 ln r2

2Lt
b
rm

r1

r
r2 r1
Q
t1
t2
圆筒壁的传导传热
多层圆筒壁的传导传热:
Q
2L(t1 t4 )
1 ln r2 1 ln r3 1 ln r4
1 r1 2 r2 3 r3
显热(sensible heat) = 物质质量×比定压热容×温度变化
= m×cp×△t (无相变)
定态传热和非定态传热
定态传热(steady heat transfer):传热面各点的温度不随
时间而改变。
均衡的连续操作
t t(x, y, z)
非定态传热(non-steady heat transfer):传热面各点温度 随时间而变化。
热层,第一层是40mm厚的矿渣棉(=0.07 W.m-1.K-1),第二层

化工原理第五章传热

化工原理第五章传热

第五章传热一、基本知识1. 下列关于传热与温度的讨论中正确的是。

①绝热物系温度不发生变化②恒温物体与外界(环境)无热能交换③温度变化物体的焓值一定改变④物体的焓值改变,其温度一定发生了变化2. 下列关于温度梯度的论断中错误的是。

①温度梯度决定于温度场中的温度分布②温度场中存在温度梯度就一定存在热量的传递③热量传递会引起温度梯度的变化④热量是沿温度梯度的方向传递的3. 传热的目的为。

①加热或冷却②换热,以回收利用热量③保温④萃取4. 根据冷、热两流体的接触方式的不同,换热器包括()等类型。

①直接混合式②蓄热式③间壁式④沉降式5. 热量传递的基本方式为。

①热传导(简称导热)②对流传热③热辐射④相变传热6. 下列有关导热系数论断中正确的是——。

①导热系数入是分子微观运动的一种宏观表现②导热系数入的大小是当导热温差为「C、导热距离为1m导热面积为lm2 时的导热量,故入的大小表示了该物质导热能力的大小,入愈大,导热越快③一般来说,金属的导热系数数值最大,固体非金属次之,液体较小,气体最小④大多数金属材料的导热系数随温度的升高而下降,而大多数非金属固体材料的导热系数随温度的升高而升高⑤金属液体的导热系数大于非金属液体的导热系数,非金属液体中除水和甘油外,绝大多数液体的导热系数随温度的升高而减小,一般情况下,溶液的导热系数低于纯液体的导热系数⑥气体的导数系数随温度的升高而增大,在通常压力下,导热系数与压力变化的关系很小,故工程计算中可不考虑压力的影响7. 气体的导热系数值随温度的变化趋势为。

①T升高,入增大②T升高,入减小③T升高,入可能增大或减小④T变化,入不变8. 空气、水、金属固体的导热系数分别为入l、入2、入3,其大小顺序。

①入l >入2>入3 ②入l <入2<入3 ③入2>入3>入l ④入2<入3<入l9. 水银、水、软木的导热系数分别为入l、入2、入3其大小顺序为。

①入l>入2>入3 ②入l<入2<入3 ③入l>入3>入2 ④入3>入l>入210. 下列比较铜、铁、熔化的铁水三种物质导热系数的大小论断中正确的是。

化工原理 传热计算

化工原理 传热计算
K 1 2 1 2
(2)污垢的影响
1 1 Rs1 b d1 Rs2 d1 1 d1
K 1
dm
d2 2 d2
(3)若两侧流体的对流传热系数相差较大,如α1>>α2,则
K≈α2,即总传热系数接近α较小的流体的对流传热系数。强 化传热的途径必须提高α小,即降低热阻大的流体的热阻。
(4)K 获取: 通过上述公式求算。 从有关手册和专著中获得,如《化工工艺设计手册》,
2500
45 22.5
20 50 20
=0.0004+0.00058+0.000062+0.000625+0.025 =0.0267 m2·K/W K=37.5 W/m2·K
(2)α1增大一倍,即α1=5000W/m2·K时传热系数
1
=0.0002+0.00058+0.000062+0.000625+0.025=0.0265 m2·K/W
K ''
K '' =70.4 W/m2·K
K值增加的百分率
K '' K 100% 70.4 37.5 100% 87.8%
K
37.5
由本例可以清楚地看到,要提高K值,就要设法减小主要热阻项。
关于总传热系数K的讨论:
(1)对于平壁或薄壁圆筒:有A1=A2=Am, 则:
1 1 b 1 1 1
4.4 传热计算
4.4.1 热量衡算-热负荷的计算
Cool fluid
Q放=Q吸 Q损
Hot
fluid
若无相变,忽略热损失:
Q qm1cP1 (T1 T2 ) qm2cP2 (t2 t1 )

化工原理第五章传热过程计算与换热器

化工原理第五章传热过程计算与换热器

一.恒温差传热
T
t
tm T t
t
二.变温差传热
T
t1 0
T1
t1 浙江大学0本科生课程
过程工程原理
t
并流 t
0
T1 t2
t
A0 T1
T2 t2 t2
t
逆流 t
A0 第五章 传热过程计算与换热器
A T2
A T2 t1
A
13/25
§5.2.4 tm的计算
T1 t1
以冷、热流体均无相变、逆流流动为例:
t
T
11/2t5
1 1 b 1
T
KA 1 A1 Am 2 A2
Tw tw
考虑到实际传热时间壁两侧还有污垢热
阻,则上式变为:
t
1 1
KA 1 A1
Ra1
b
Am
Ra2
1
2 A2
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
12/25
§5.2.4 tm的计算
Q KAtm
T1
T
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
25/25
幻灯片2目录
习题课
浙江大学本科生课程 化工原理
第五章 传热过程计算与换热器
26/14
设 计 型
习题课 操作型 t1
LMTD法:
对数平均温差法
Q Ktm A
(1) T1
T2
Q mhc ph T1 T2 (2)
Q mc c pc t2 t1
浙江大学本科生课程
过程工程原理
第五章 传热过程计算与换热器
14/25
§5.2.4 tm的计算

“化工原理”第5章_《传热》_复习题

“化工原理”第5章_《传热》_复习题

“化工原理”第五章传热复习题一、填空题2. (2分)某间壁换热器中,流体被加热时,圆形直管内湍流的传热系数表达式为_____________________ .当管内水的流速为0.5m/s时,计算得到管壁对水的传热系数a =2・61(kW/(m2.K)).若水的其它物性不变,仅改变水在管内的流速,当流速为0.8m/s时,此时传热系数a = _______________ .6. (2分)实现传热过程的设备主要有如下三种类型7. (2分)热量传递的方式主要有三种:____16. (2分)对流传热中的努塞特准数式是__________ ,它反映了__________________ 。

仃.(2分)对流体传热中普兰德准数式为________________ ,它反映了______________________________ 。

20. (2分)用冷却水将一定量的热流体由100C冷却到40C,冷却水初温为15 C,在设计列管式换热器时,采用两种方案比较,方案I是令冷却水终温为30 C,方案口是令冷却水终温为35C,贝U用水量W, _______________ W2,所需传热面积A, _______ A?。

21. (2分)列管式换热器的壳程内设置折流挡板的作用在于______________________ , 折流挡板的形状有22. (5分)在确定列管换热器冷热流体的流径时,一般来说,蒸汽走管______ ;易结垢的流体走管_________ ;高压流体走管_______ ;有腐蚀性流体走管 _______ ;粘度大或流量小的流体走管_______ 。

23. (2分)列管换热器的管程设计成多程是为了__________________________ ;在壳程设置折流挡板是为了25.. 当水在圆形直管内作无相变强制湍流对流传热时,若仅将其流速提高1倍,则其对流传热系数可变为原来的_________ 倍。

《化工原理》传热计算

《化工原理》传热计算
若不计热损失,则:热流体的放热量 = 冷流体的吸热量
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r
若热损失为Q损,则:
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r +Q损
(4)冷热流体均有相变
热流体的放热量 = W1 ·Cp1·(T1-T2 )+ W1R 冷流体的吸热量 = W2 ·Cp2 ·(t2 - t1) + W2 ·r
1 1 1
K
i
o
设 1 10;2 1000 则
K 1
1
10
1 1 1 1
1 2 10 1000
现提高 α2 10000

K
1 11
1 2
1
1
1
10 10000
10
若提高 α1 100
K
1
1
1
1
1
1
100

1 2 100 1000
若 i o 则 K o
管壁外侧对流传热控制
四、平均温度差的计算
1、恒温差传热
壁面两侧进行热交换的冷热流体,其温度不 随时间及位置而变化。
2、变温差传热
采用对数平均值计算平均温度差(传热平均推 动力)。
(1) 并流
冷热流体流动方向相同。
tm并
t1 t2 ln t1
T1
t1 T2 t2
ln T1 t1
t2
T2 t2
(2) 逆流
Q热
T
TW 1
α1 S1
Q壁
TW
b
tw
λ Sm
Q冷

化工原理.传热过程的计算

化工原理.传热过程的计算

管内对流:
dQ2 b dAm (Tw tw )
dQ3 2dA2(tw-t)
对于稳态传热 dQ dQ1 dQ2 dQ3
总推动 力
dQ T Tw Tw tw tw t
T t
1
b
1
1b 1
1dA1 dAm 2dA2 1dA1 dAm 2dA2
总热阻
dQ T t 1
KdA
第五节 传热过程的计算
Q KAtm
Q — 传热速率,W K — 总传热系数,W /(m20C) A — 传热面积,m2 tm — 两流体间的平均温度差,0 C
一、热量衡算
t2 , h2
热流体 qm1, c p1
T1, H1
T2 , H 2
冷流体 qm2, cp2,t1, h1
无热损失:Q qm1H1 H 2 qm2 h2 h1
变形:
dQ dT
qm1 c p1=常数
dQ dt
qm2c p2=常数
d (T t) dT dt 常数 dQ dQ dQ
斜率=dt t1 t2
dQ
Q
由于dQ KtdA
d(t) t1 t2
KtdA
Q
分离变量并积分:
Q KA t1 t2 ln t1 t2
tm
t1 t2 ln t1
t2
讨论:(1)也适用于并流 (2)较大温差记为t1,较小温差记为t2 (3)当t1/t2<2,则可用算术平均值代替
tm (t1 t2 ) / 2
(4)当t1=t2,tm t1=t2
结论: (1) 就提高传热推动力而言,逆流优于并流。 当换热器的传热量Q及总传热系数K相同的条 件下,采用逆流操作,所需传热面积最小。

化工原理,第五章-4

化工原理,第五章-4

2 ms1 热流体 K
由于1
T1 T2 ,T2 T1 1 T1 t1 T2 T1 t1 另一方面, NTU 2 K
K NTU1 ms1 ms1c p1 又 CR1 CR1 ms 2c p 2
1
t 2 53.4C
Q Kd1l逆tm逆
l逆 1.56m
浙江大学化学工程研究所
本章习题和小结 t 1 =2 0 ℃
并流时: Q、t2、K与逆流时相同
油 216kg/h T 1 =150 ℃ c p=2.0 kJ/kgK , 2 2 =1.5 kW/m K

1
2
=3.5kW/m K c p =4.187 kJ/kgK 216kg/h
2 CR1 CR 2 t2 t1 由Q ms 2c p 2 t2 t1 Q 由于 2 , t2 t1 2 T1 t1 t2 T1 t1 浙江大学化学工程研究所

定性分析与定量计算
例2:一套管换热器用饱和水蒸汽加热某液体。 (1)保持t1、ms2不变,当饱和蒸汽的压力增大时, Q、t2怎样变化? (2) 保持t1和蒸汽压力不变,ms2增大时, Q、t2怎样变化?
K 666.7 W / m K 150 80 100 20 74.9C t
2
m


80 C
20 C
ln
150 80 100 20
Q ms1c p1 150 100 ms 2c p 2 80 20 ms1c p1 ms 2c p 2
t 1 =20 ℃
K 0.894kW m 2 K
(以外表面为基准)
2.0150 80 4.187t 2 20

化工原理传热过程的计算

化工原理传热过程的计算
液体-气体
K 700~1800
300~800 200~500 50~300
100~350 50~250 10~60
两流体 气体-气体 蒸气冷凝-气体 液体沸腾-液体 液体沸腾-气体 水蒸气冷凝-水 有机物冷凝-有机物 水蒸气冷凝-水沸腾 水蒸气冷凝-有机物沸腾
K 10~40 20~250 100~800 10~60 1500~4700 40~350 1500~4700 500~1200
Q ─ 热流体放出或冷流体吸收的热量,W; qm1,qm2 ─ 热冷流体的质量流量,kg/s; h1,h2 ─ 冷流体的进出口焓,J/kg; H1,H2 ─ 热流体的进出口焓, J/kg 。
1.无相变,且Cp可视为常数
热量衡算式:
Q qm1c p1 T1 T2 qm2cp2 t2 t1
式中: cp1,cp2 ── 热冷流体的比热容, J/(kg·℃) ; t1,t2 ── 冷流体的进出口温度, ℃ ; T1,T2 ── 热流体的进出口温度, ℃ 。
1 K
1
1
Rd1
b
Rd 2
1
2
当传热壁热阻很小,可忽略,且流体清洁,污
垢热阻液可忽略时,则:
11 1
K 1 2
(7)换热器中总传热系数的经验值
两流体 水-水 有机物-水
有机物粘度μ<0.5mPa·s μ=0.5~1.0mPa·s μ>1.0mPa·s
有机物-有机物 冷流体粘度μ<1.0mPa·s μ>1.0mPa·s
2.有相变时
2.1 饱和蒸汽冷凝:
Q qm1r qm2c p2 t2 t1
r ─热流体的汽化潜热,kJ/kg;
2.2 冷凝液出口温度T2低于饱和温度TS :

化工原理课后答案(中国石化出版社)-第5章----传热

化工原理课后答案(中国石化出版社)-第5章----传热

第五章 传热1.一立式加热炉炉墙由厚150mm 的耐火材料构成,其导热系数为λ1=1.3W/(m ·K),其内外表面温度为ll00℃及240℃,试求通过炉墙损失的热量(W/m 2);若外加一层25mm ,λ2=0.3W/(m·K)的绝热材料,并假定炉内壁温度仍为1100℃,而热损失降至原来的57%,求绝热层外壁温度及两层交界面处的温度。

解:211213.74533.115.02401100m W b t t AQ q =-=-==λ24.424857.0'm W q q ==4.42483.0025.03.115.01100'3221131=+-=+-==t b b t t A Qq λλ解得:3t =255.8℃4.42483.115.01100''21121=-=-==t b t t A Q q λ解得:'2t =609.8℃2某加热炉炉墙由耐火砖、绝热层与普通砖组成,耐火砖里侧温度为900℃,普通砖外侧温度为50℃,各层厚度分别为:耐火砖140mm ,绝热层(石棉灰)20mm ,普通砖280mm ;各层导热系数:λ1=0.93W /(m·K),λ2=0.064W /(m·K),λ3=0.7W/(m·K)。

(1)试求每m 2炉墙的热损失;(2)若普通砖的最高耐热温度为600℃,本题条件下,是否适宜? 解: (1)2332211419.9847.028.0064.002.093.014.050900m W b b b t t q =++-=++-=λλλ (2)2333439.9847.028.050m W t b t t q =-=-=λ 解得:3t =444℃ 适宜3.用平板法测定某固体的导热系数,试件做成圆形薄板,直径d =120mm ,厚度为δmm ,与加热器的热表面及冷却器的冷表面直接接触。

所传递的热量(一维导热),用加热器的电能消耗计算之。

第5章 化工原理 传热学

第5章 化工原理 传热学

(6)


总推动力 总热阻
(7)
推广至n层平壁,多层平壁的热传导速率方程式 t tn 1 t Q 1 bi R S 温差与热阻的关系: i
(8)
各层的温差与热阻成正比,温差越大,热阻越大。

5.2.4 圆筒壁的稳定热传导
(1)单层圆筒壁的稳定热传导

5.2 热传导
5.2.1 傅里叶定律 5.2.2 热导率 5.2.3 平壁的稳定热传导 5.2.4 圆筒壁的稳定热传导

5.2.1傅里叶定律
温度场
温度的分布状况。
等温面和等温线 温度梯度 沿等温面法线方向的温度的变化率。
gradt lim
熔盐加热系统是管道 化溶出的关键工序,管道 化溶出工艺中,氧化铝矿 浆加热过程全部在多套管 中完成。
氧化铝管道化溶出 alumina tube digestion
回转窑:有气体流动、燃料燃烧、热 量传递和物料运动等过程所组成的。 回转窑使燃料能充分燃烧,燃料燃 烧的热量能有效的传给物料,物料 接受热量后发生一系列的物理化学 变化,最后形成成品熟料。
推广至 n 层圆筒壁, 多层圆筒壁的热传导速率方程式
Q t1 t n / r ) i 2li i 1
(12)
多层圆筒壁热传导

5.3 两流体间的热量传递
5.3.1 两流体通过间壁传热的分析 5.3.2 传热速率和传热系数 5.3.3 传热温差和热量衡算 5.3.4 复杂流向时的平均温差
q
dQ dA
(1)
传热速率=传热推动力(温度差) /传热热阻

(4)稳态传热和非稳态传热
稳态传热
物理量不随时间而变
Q, q, T f ( x, y, z )

化工原理讲稿(中国石油大学)第五章 传热3

化工原理讲稿(中国石油大学)第五章  传热3
以套管换热器为例:
热流体放出热量: Q1 m1[ 1 c p ,1 T1 T2 ] 冷流体吸收热量: Q2 m2 [ 2 c p , 2 t 2 t1 ] 能量守恒: Q1=Q2+Qf
Qf=0
Q1=Q2
第五节 两流体间的传热计算
例: 在一套管换热器中,用冷却水将1.25kg/s的
第五节 两流体间的传热计算
四、 总传热系数K
总传热系数 K 综合反映传热设备性能,流动状况和流体物 性对传热过程的影响。
物理意义:
Q K A t m
表征间壁两侧流体传热过程的强弱程度。 K = f(流体物性、操作条件、换热器本身特性等)
第五节 两流体间的传热计算
㈠ 传热系数K 的确定方法
T t m Q
1 K x Ax
推动力 阻力
--传热速率方程式
Q K x Ax T t m
第五节 两流体间的传热计算
1 1 1 K x A x i Ai Am o Ao
平壁:Ai=Am=Ao
Q = K· A· △tm
圆筒壁:Ai≠Am≠Ao
Q = Ki· Ai· △tm= Km· Am· △tm =Ko· Ao· △ tm
1 1 Ko o

Ko o
若αo >>αi,1/αo可忽略,此时有:
1 1 Ki i

Ki i
第五节 两流体间的传热计算
结论:
称1/αo 或1/αi 称为控制热阻,即α小一侧的热阻对传热起决定性作用, 如水蒸汽和空气换热;
当存在控制性热阻时,K 值总是接近α小的值; 当存在控制性热阻,壁温(Tw、tw)总是接近于α大的流体主体温度 欲有效提高 K 值,应采取措施提高控制性热阻侧的α。

化工原理_15传热过程概述

化工原理_15传热过程概述

16
热辐射
热辐射
因热的原因而产生的电磁波在空间的传递 称为热辐射。 1. 可以在完全真空的地方传递而无需任何介质。
2. 不仅产生能量的转移,而且还伴随着能量形 式的转换。
3. 任何物体只要在绝对零度以上,都能发射辐 射能,但仅当物体的温度较高、物体间的温度 差较大时,辐射传热才能成为主要的传热方式。
t1 tn 1 Q bi S i
32
二、多层平壁的一维稳态热传导
接触热阻
因两个接触表面粗糙不平而产生的附加热阻。
接触热阻包括通过实际接触面的导热热阻和 通过空穴的导热热阻(高温时还有辐射传热)。
接触热阻与接触面材料、表面粗糙度及接触 面上压力等因素有关,可通过实验测定。
33
二、多层平壁的一维稳态热传导
第五章 传 热
学习目的 与要求
通过本章学习,掌握传热的基本原理和规律 ,并运用这些原理和规律去分析和计算传热过程 的有关问题。
1
第五章 传 热
5.1 传热过程概述
2
概述
传热
热量从高温度区向低温度区移动的过程称为热 量传递,简称传热。 化工生产中对传热过程的要求 一是强化传热过程,如各种换热设备中的传热。 二是削弱传热过程,如对设备或管道的保温,以 减少热损失。
对流
对流是由流体内部各部分质点发生宏观运 动和混合而引起的热量传递过程 对流传热 在化工生产中特指流体与固体壁面之间的 热量传递过程。
14
对流
对流传热速率可由牛顿冷却定律描述
dQ t dS
微分对流 传热通量 对流传 热系数 温度差
15
第五章 传 热
5.1 传热过程概述 5.1.1 热传导及导热系数 5.1.2 对流 5.1.3 热辐射

柴诚敬化工原理课后答案(05)第五章 传热过程基础

柴诚敬化工原理课后答案(05)第五章 传热过程基础

第五章 传热过程基础1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m ,实验测得电流表读数为0.5 A ,伏特表读数为100 V ,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。

解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即 Lt t SQ 21-=λ 式中 W 50W 1005.0=⨯==IV Qm 02.0C 50C 200m 02.0212=︒=︒==L t t S ,,, 将上述数据代入,可得()()()()C m W 333.0C m W 5020002.002.05021︒⋅=︒⋅-⨯⨯=-=t t S QL λ2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 mm 厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。

设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为20.30.0003t λ=+,W /(m C)⋅︒。

两式中的t 可分别取为各层材料的平均温度。

解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即 Q Q Q ==21 (5-32) 或 23221211b t t S b t t SQ -=-=λλ (5-32a ) 式中 115000.80.00060.80.0006 1.250.00032t t t λ+=+=+⨯=+21000.30.00030.30.00030.3150.000152t t t λ+=+=+⨯=+代入λ1、λ2得2.0100)00015.0315.0(4.01500)0003.025.1(-+=-+t t t t解之得C 9772︒==t t())()C m W 543.1C m W 9770003.025.10003.025.11︒⋅=︒⋅⨯+=+=t λ则 ()22111m W 2017m W 4.09771500543.1=-⨯=-=b t t S Q λ3.外径为159 mm 的钢管,其外依次包扎A 、B 两层保温材料,A 层保温材料的厚度为50 mm ,导热系数为0.1 W /(m·℃),B 层保温材料的厚度为100 mm ,导热系数为1.0 W /(m·℃),设A 的内层温度和B 的外层温度分别为170 ℃和40 ℃,试求每米管长的热损失;若将两层材料互换并假设温度不变,每米管长的热损失又为多少?解:()()mW 150m W 100159100502159ln 0.11159502159ln 1.014017014.32ln 21ln 2123212121=++⨯++⨯+-⨯⨯=+-=r r r r t t L Q πλπλA 、B 两层互换位置后,热损失为()()mW 5.131m W 100159100502159ln 1.01159502159ln 0.114017014.32ln 21ln 2123212121=++⨯++⨯+-⨯⨯=+-=r r r r t t L Q πλπλ4.直径为57mm 3.5φ⨯mm 的钢管用40 mm 厚的软木包扎,其外又包扎100 mm 厚的保温灰作为绝热层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
后页
返回 主题
5.2.3 总传热系数与壁温计算
• 将看作常数,因而求得的局部传热系数K‘亦为常数,不 随管长变化,而作为全管长上的总传热系数K ,故式 (5-5)可改写为
1 1 Ao b Ao 1 K o i Ai Am o
选取不同的传热面积作为传热过程计算基准时,其总传热系数的数值不 同。因此,在指出总传热系数的同时,还必须注明传热面的计算基准。
如果在换热器中存在热损失,则在换热器中的传热速率为
mc ( H c 2 H c1 ) Qc Q mh ( H h1 H h 2 ) Qh
式中Q‘h为热流体对环境的散热量,W;Q’C为冷流体对环境的散 热量,W。
前页
5
后页
返回 主题
5.2.2 传热速率方程
• 如前图5-2所示,在换热器中,任取一微元段dl, 对应于间壁的微元传热面积dAo,热流体对冷 流体传递热量的传热速率可表示为
后页
返回 主题
5.2.3 总传热系数与壁温计算
• 4.壁温的计算
在选用换热器的类型和材料时都需要知道间壁的壁温, 根据式(5-2a)可以写出热流体侧的壁温计算式
t wh t h Q i Ai
由式(5-2b)和式(5-2c)同样可写出冷流体侧的壁温 计算式 bQ Q t wc t wh t wc t c Am o Ao
返回 主题
5.3 传热过程的平均温差计算
• 1.恒温差传热
在换热器中,间壁两侧的流体均存在相变时,两流体 温度分别保持不变,这种传热称为恒温差传热。在恒 温差传热中,由于两流体的温差处处相等,传热过程 的平均温差即是发生相变两流体的饱和温度之差。
• 2.变温差传热
若间壁传热过程中有一侧流体没有相变,则流体的温 度沿流动方向是变化的,传热温差也随流体流动的位 置发生变化,这种情况下的传热称为变温差传热。在 变温差传热时,传热过程平均温差的计算方法与流体 的流动排布型式有关。 返回
前页
15
后页
返回 主题
5.2.3 总传热系数与壁温计算
• 讨论
强化空气侧的对流传热所提高的总传热系数远 较强化冷却水侧的对流传热的效果显著。因此, 要提高一个具体传热过程的总传热系数,必须 首先比较传热过程各个环节上的分热阻,对分 热阻最大的环节进行强化,这样才能使总传热 系数显著提高。
前页
16
后页
dA
1 d (t ) 1 K mc c pc mh c ph t
上式在整个传热面积A上积分,得
前页
19

t 2
t1
1 1 1 d (t ) K mc c pc mh c ph t
A dA 0

后页
返回 主题5.3Leabharlann 传热过程的平均温差计算前页
2
对流
后页
返回 主题
5.2 传热过程的基本方程
• 5.2.1 热量衡算方程 • 5.2.2 传热速率方程
• 5.2.3 总传热系数和壁温的计算
前页
3
后页
返回 主题
5.2.1 热量衡算方程
• 热量衡算方程反映了冷、热流体在传热过程中温度变化 的相互关系。根据能量守恒原理,在传热过程中,若忽 略热损失,单位时间内热流体放出的热量等于冷流体所 吸收的热量。
前页
22
返回 主题
5.3 传热过程的平均温差计算
通常采用图算法,分三步: ① 先按逆流计算对数平均温差tm逆; ② 求出平均温差校正系数φ;
f ( P, R )
P R= tc 2 tc1 冷流体温升 th1 tc1 两流体最初温差 th1 th 2 热流体温降 tc 2 tc1 冷流体温升
• 如图5-1所示,热流体通过间壁与冷流体进行 热量交换的传热过程分为三步进行:
(1)热流体以对流传热方式将热 量传给固体壁面; (2)热量以热传导方式由间壁的 热侧面传到冷侧面; (3)冷流体以对流传热方式将间 壁传来的热量带走。
对流 热传导 Q th
twh
Q
热流体
twc
冷流体
tc
图5-1中还示出了沿热量传递方向从 热流体到冷流体的温度分布情况。 图5-1 流体通过间壁的热量交换
以上关系式表明,当间壁的导热系数很大时,间壁两侧的壁面温 度可近似认为相等,而且间壁的温度接近于对流传热系数较大一 侧的流体温度。 返回
前页
14
后页
主题
5.2.3 总传热系数与壁温计算
• 例5-1 一空气冷却器,空气横向流过管外壁,对流传 热系数o=100 W/(m2· ℃)。冷却水在管内流动,i= 6000W/(m2· ℃)。冷却水管为f25×2.5mm的钢管, 其导热系数=45 W/(m· ℃)。试求(1)在该状况下 的总传热系数;(2)若将管外空气一侧的对流传热系 数提高一倍,其他条件不变,总传热系数有何变化; (3)若将管内冷却水一侧的对流传热系数提高一倍, 其他条件不变,总传热系数又有何变化。
Ao b Ao 1 1 Ao 1 R si R so K o i Ai Ai Am o
工 业 上 常 见 流 体 污 垢 热 阻 的 大 致 范 围 为 0.9×10-4 ~ 17.6×10-4 (m2· K)/W 。
前页
12
后页
返回 主题
5.2.3 总传热系数与壁温计算
图5-2为一稳态逆流操作的 套管式换热器,热流体走管 内,冷流体走环隙。
dQ mh dHh mc dHc
对于整个换热器,其热量 的衡算式为
图5-2 套管换热器中的传热过程
Q mh ( H h1 H h 2 ) mc ( H c 2 H c1 )
前页
4
后页
返回 主题
5.2.1 热量衡算方程
第五章 传热过程计算与换热器
• • • • • • • 5.1 传热过程分析 5.2 传热过程的基本方程 5.3 传热过程的平均温差计算 5.4 传热效率和传热单元数 5.5 换热器计算的设计型和操作型问题 5.6 传热系数变化的传热过程计算 5.7 换热器
前页
1
后页
返回 主题
5.1 传热过程分析
5.2.3 总传热系数与壁温计算
• 1.总传热系数的计算
据牛顿冷却定律和傅立叶定律 内 dQi th twh 1 侧 i dAi
(5-2a)
间 壁
dQm
t wh t wc b dAm
外 侧
后页
dQo
t wc tc 1 o dAo
(5-2b)
8
前页
(5-2c)
返回 主题
后页
返回 主题
5.3 传热过程的平均温差计算
讨论:
1) Δtm虽是从逆流推导来的,但对并流和单侧传热也适用; 2)习惯上将较大温差记为t1,较小温差记为t2; 3)当t1/t2<2时, Δtm可用算术平均值代替;工程 计算对于 误差<4%的情况可接受。即: 4)当t1=t2时,tm t1=t2
t h tc dQ K (th tc )dAo 1 K dAo
(5-1) ——微分传热速率方程
式中K'表示局部传热系数,W/(m2· ℃);th、tc分 别为热流体和冷流体的局部平均温度,℃。
返回 主题
前页
6
后页
5.2.2 传热速率方程
• 对于整个换热器,传热速率方程可写为
Q Ktm A
总传热系数K,W/(m2· ℃) 850 ~ 1700 340 ~ 910 60 ~ 280 17 ~ 280 1420 ~ 4250 30 ~ 300 455 ~ 1140 60 ~ 170 2000 ~ 4250 455 ~ 1020 140 ~ 425
水蒸气冷凝 水蒸气冷凝 水蒸气冷凝
前页
13
前页
17
后页
主题
5.3 传热过程的平均温差计算
• 1.并流和逆流时的传热温差
图P253
以逆流传热过程为例,设热流体的进、出口温 度分别为th1和th2;冷流体的进、出口温度分 别为tc1和tc2。假定:
(1)冷、热流体的比热容cpc、cph在整个传热面上都是常量; (2)总传热系数K在整个传热面上不变; (3)换热器无散热损失。
式中Q为换热器总传热面积上的传热速率,W;为传热的总推动力,℃。 对比式(5-1)和式(5-4),若以间壁外侧面为传热面积计算基准, 则其局部传热系数为
1 1 b 1 dAo i dAi dAm o dAo Ko
前页

9
1 1 dAo b dAo 1 (5-5) i dAi dAm o Ko
如对应于Ai的总传热系数Ki
1 1 b Ai 1 Ai K i i Am o Ao
前页
10
后页
返回 主题
5.2.3 总传热系数与壁温计算
• 对于内、外径分别为 di 和 do ,长为L的圆管,由于,总 传热系数Ko还可以表示为
1 1 do b do 1 Ko i di dm o
• 3.换热器中总传热系数的范围
在进行换热器的传热计算时,通常需要先估计传热系数。表5-1 列出了常见的列管式换热器中传热系数经验值的大致范围。
表5-1 列管式换热器中总传热系数的大致范围
热 流 体 水 轻油 重油 气体 水蒸气冷凝 水蒸气冷凝
低沸点烃类蒸汽冷凝(常压) 高沸点烃类蒸汽冷凝(减压)
冷 流 体 水 水 水 水 水 气体 水 水 水沸腾 轻油沸腾 重油沸腾
得:
将上式代入式(5-6)得 : ln
t 2 t 2 t1 KA Q t1
相关文档
最新文档