2018-2019年安徽省合肥市庐江县八年级(上)期末数学试卷(解析版)
安徽省合肥2018-2019学年八年级上册期末模拟检测卷(有答案)-(数学)-优选
2018-2019学年八年级上沪科版数学期末测试卷满分:150分 姓名: 得分:一、 选择题(每题4分,共40分)1.在下面四个图案中,如果不考虑字母和文字,那么不是轴对称图形的是( )A B C D2.在平面直角坐标系中,若点P (x-3,x )在第二象限,则x 的取值范围为( )A 30<<xBC 0>xD 3>x3.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等。
正确的命题的个数是( )A 2B 3C 4D 54.如图,过点A 的一次函数的图像与正比例函数x y 2=的图像相交于点B ,能表示这个一次函数图像的方程是( )0303203032=-+=+-=--=+-y x D x y C y x B y x A5.如图所示,的度数为则。
1,39,//,90c 中,ABC 在△∠=∠=∠B AB EF ( ) 。
52D 38C 51B 39A6.如图,已知AC 平分∠PAQ ,点B ,B '分别在边AP 、AQ 上,如果添加一个条件,即可推出B A AB '=,那么该条件不可以的是( ) CB A ABCD B AC ACB C C B BC B ACB B A '∠=∠'∠=∠'=⊥' 7.如图所示,为估计池塘岸边AB 两点的距离,小方在池塘的一侧选取一点O ,测得OA=72米,OB=52米,A 、B 间的距离可能是( )A 20米B 124米C 51米D 10米8.如图,E ,,21交于点、BD AC D C ∠=∠∠=∠下列不正确的是( ) 是等腰三角形不全等于EAB D CBE DEA C DE CE BCBE DAE A ∆∆∆=∠=∠ 9.如图,在Rt △ABC 中,。
90=∠C ,斜边AB 的垂直平分线交AB 于点D ,交BC 于点E ,AE 平分B AC ∠,那么下列关系式中不成立的是( )A CAEB ∠=∠ B CEA DEA ∠=∠C B A E B ∠=∠D 2EC =AC10.如图,长方形ABCD 中,AB=1,AD=2,M 是CD 的中点,点P 在长方形的边上沿A →B →C →M 运动,则APM ∆的面积y 与点P 经过的路程x 之间的函数关系用图像表示大致是下图中的( )二、填空题(每小题5分,共20分)11.将x y 2-=直线沿y 轴向上平移6个单位,所得到的直线是12.如图所示,在△ABC 中,点D 是BC 上一点,=∠===∠C DC AD AB 70,则,。
(2019秋)合肥市庐江县八年级上数学期末模拟试卷(有答案)-精品试卷.doc
期末模拟测试题姓名:得分:一.选择题每小题3分,共30分.1.下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是()A.B.C.D.2.下列分式中,无论x取何值,分式总有意义的是()A.B.C.D.3.点M(﹣2,1)关于y轴的对称点N的坐标是()A.(2,1)B.(1,﹣2)C.(﹣2,﹣1)D.(2,﹣1)4.下列运算中正确的是()A.b3•b3=2b3B.x2•x3=x6C.(a5)2=a7D.a2÷a5=a﹣35.下列多项式中,能分解因式的是()A.a2+b2B.﹣a2﹣b2C.a2﹣4a+4 D.a2+ab+b26.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.127.若关于x的方程无解,则m的值是()A.﹣2 B.2 C.﹣3 D.38.如图,AC与BD相交于点O,∠D=∠C,添加下列哪个条件后,仍不能使△ADO≌△BCO的是()A.AD=BC B.AC=BD C.OD=OC D.∠ABD=∠BAC9.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12 B.10 C.8 D.610.如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交ABAB的长为()于E,交BC于F,若S四边形面积=9,则A.3 B.6 C.9 D.18(9)(10)二、填空题:每小题3分,共24分.11.若分式的值为零,则x的值等于.12.计算:(a+2b)(2a﹣4b)=.13.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是.14.三角形的三边长分别为5,1+2x,8,则x的取值范围是.15.为了创建园林城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运10趟可完成.已知甲、乙两车单独运完此堆垃圾,乙车所运的趟数时甲车的2倍,则甲车单独运完此堆垃圾需要运的趟数为.16.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.17.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若AB=8,则DE=.18.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN的周长最小时,∠AMN+∠ANM的度数是.(17) (18)三、解答题:共66分. 19.分解因式:(1)5x 2+10x+5 (2)(a+4)(a ﹣4)+3(a+2)20.先化简,再求值:( +)÷,其中x=1010.21.解方程:(1)﹣=1 (2)+=.22.如图,已知点B、F、C、E在一条直线上,BF=EC,AB∥ED,AB=DE.求证:∠A=∠D.23.某超市用4000元购进某种服装销售,由于销售状况良好,超市又调拨9000元资金购进该种服装,但这次的进价比第一次的进价降低了10%,购进的数量是第一次的2倍还多25件,问这种服装的第一次进价是每件多少元?24.如图,在△ABC中,D为AB的中点,DE∥BC,交AC于点E,DE∥AC,交BC于点F.(1)求证:DE=BF;(2)连接EF,请你猜想线段EF和AB有何关系?并对你的猜想加以证明.25.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.26.如图,在平面直角坐标系中,已知两点A(m,0),B(0,n)(n>m>0),点C在第一象限,AB⊥BC,BC=BA,点P在线段OB上,OP=OA,AP的延长线与CB的延长线交于点M,AB与CP交于点N.(1)点C的坐标为:(用含m,n的式子表示);(2)求证:BM=BN;(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D,G关于x 轴对称.参考答案与试题解析一.选择题每小题3分,共30分.1.下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列分式中,无论x取何值,分式总有意义的是()A.B.C.D.【考点】分式有意义的条件.【分析】根据分母不为零分式有意义,可得答案.【解答】解:A、x=0时分式无意义,故A错误;B、无论x取何值,分式总有意义,故B正确;C、当x=﹣1时,分式无意义,故C错误;D、当x=0时,分式无意义,故D错误;故选:B.【点评】本题考查了分式有意义的条件,分母不为零分式有意义.3.点M(﹣2,1)关于y轴的对称点N的坐标是()A.(2,1)B.(1,﹣2)C.(﹣2,﹣1)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点M(﹣2,1)关于y轴的对称点N的坐标是(2,1).故选A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.下列运算中正确的是()A.b3•b3=2b3B.x2•x3=x6C.(a5)2=a7D.a2÷a5=a﹣3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】结合选项分别进行同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法等运算,然后选择正确答案.【解答】解:A、b3•b3=b6,原式计算错误,故本选项错误;B、x2•x3=x5,原式计算错误,故本选项错误;C、(a5)2=a10,原式计算错误,故本选项错误;D、a2÷a5=a﹣3,计算正确,故本选项正确.故选D.【点评】本题考查了同底数幂的乘法、幂的乘方和积的乘方、同底数幂的除法等知识,掌握运算法则是解答本题的关键.5.下列多项式中,能分解因式的是()A.a2+b2B.﹣a2﹣b2C.a2﹣4a+4 D.a2+ab+b2【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、平方和不能分解,故A错误;B、平方的符号相同,不能因式分解,故B错误;C、平方和减积的2倍等于差的平方,故C正确;D、平方和加积的1倍,不能因式分解,故D错误;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.6.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.12【考点】多边形内角与外角.【分析】设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.【解答】解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.【点评】此题主要考查了多边形的内角与外角,关键是掌握多边形的相邻的内角与外角互补.7.若关于x的方程无解,则m的值是()A.﹣2 B.2 C.﹣3 D.3【考点】分式方程的增根.【专题】计算题.【分析】方程无解,说明方程有增根,只要把增根代入方程然后解出m的值.【解答】解:∵方程无解,∴x=4是方程的增根,∴m+1﹣x=0,∴m=3.故选D.【点评】本题主要考查方程的增根问题,计算时要小心,是一道基础题.8.如图,AC与BD相交于点O,∠D=∠C,添加下列哪个条件后,仍不能使△ADO≌△BCO的是()A.AD=BC B.AC=BD C.OD=OC D.∠ABD=∠BAC【考点】全等三角形的判定.【分析】本题已知条件是一对对顶角和一对对应角,所填条件必须是边,根据ASA、AAS,可证明△ADO≌△BCO.【解答】解:添加AD=CB,根据AAS,可证明△ADO≌△BCO;添加OD=OC,根据ASA,可证明△ADO≌△BCO;添加∠ABD=∠BAC,得OA=OB,根据AAS,可证明△ADO≌△BCO;添加AC=BD,不能证明△ADO≌△BCO;故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30°,则DE的长是()A.12 B.10 C.8 D.6【考点】翻折变换(折叠问题).【分析】由轴对称的性质可以得出DE=DC,∠AED=∠C=90°,就可以得出∠BED=90°,根据直角三角形的性质就可以求出BD=2DE,然后建立方程求出其解即可.【解答】解:∵△ADE与△ADC关于AD对称,∴△ADE≌△ADC,∴DE=DC,∠AED=∠C=90°,∴∠BED=90°.∵∠B=30°,∴BD=2DE.∵BC=BD+CD=24,∴24=2DE+DE,∴DE=8.故选:C.【点评】本题考查了轴对称的性质的运用,直角三角形的性质的运用,一元一次方程的运用,解答时根据轴对称的性质求解是关键.10.如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交ABAB的长为()于E,交BC于F,若S四边形面积=9,则A.3 B.6 C.9 D.18【考点】等腰直角三角形;全等三角形的判定与性质.【分析】首先连接BD,由已知等腰直角三角形ABC,可推出BD⊥AC且BD=CD=AD,∠ABD=45°再由DE丄DF,可推出∠FDC=∠EDB,又等腰直角三角形ABC可得∠C=45°,所以△EDB≌△FDC,所以四边形的面积是三角形ABC的一半,利用三角形的面积公式即可求出AB的长.【解答】解:连接BD,∵等腰直角三角形ABC中,D为AC边上中点,∴BD⊥AC(三线合一),BD=CD=AD,∠ABD=45°,∴∠C=45°,∴∠ABD=∠C,又∵DE丄DF,∴∠FDC+∠BDF=∠EDB+∠BDF,∴∠FDC=∠EDB,在△EDB与△FDC中,∵,∴△EDB≌△FDC(ASA),∴S=S△ABC=9,四边形面积=S△BDC∴AB2=18,∴AB=6,故选B.【点评】此题考查的知识点是勾股定理及全等三角形的判定,关键是由已知先证三角形全等,证明四边形的面积是大三角形的面积一半.二、填空题:每小题3分,共24分.11.若分式的值为零,则x的值等于2.【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:根据题意得:x﹣2=0,解得:x=2.此时2x+1=5,符合题意,故答案是:2.【点评】本题主要考查了分式值是0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.计算:(a+2b)(2a﹣4b)=2a2﹣8b2.【考点】多项式乘多项式.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:(a+2b)(2a﹣4b)=2a2﹣4ab+4ab﹣8b2=2a2﹣8b2.故答案为:2a2﹣8b2.【点评】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.13.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是85°.【考点】三角形内角和定理.【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【解答】解:∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为:85°.【点评】本题考查了角平分线的定义,三角形内角和定理等知识,解答本题的关键是根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°.14.三角形的三边长分别为5,1+2x,8,则x的取值范围是1<x<6.【考点】三角形三边关系.【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【解答】解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.【点评】考查了三角形的三边关系,还要熟练解不等式.15.为了创建园林城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运10趟可完成.已知甲、乙两车单独运完此堆垃圾,乙车所运的趟数时甲车的2倍,则甲车单独运完此堆垃圾需要运的趟数为15.【考点】分式方程的应用.【分析】假设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需运2x 趟,根据总工作效率得出等式方程求出即可.【解答】解:设甲车单独运完这堆垃圾需运x 趟,则乙车单独运完这堆垃圾需运2x 趟,由题意得,+=解得,x=15,经检验,x=15是所列方程的解,且符合题意,答:甲车单独运完这堆垃圾需运15趟.故答案为:15.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,利用工作总量、工作效率、工作时间三者之间的关系列出方程解决问题.16.如图,已知△ABC ≌△A′BC′,AA′∥BC ,∠ABC=70°,则∠CBC′= 40° .【考点】全等三角形的性质.【分析】根据平行线的性质得到∠A′AB=∠ABC=70°,根据全等三角形的性质得到BA=BA′,∠A′BC=∠ABC=70°,计算即可.【解答】解:∵AA′∥BC ,∴∠A′AB=∠ABC=70°,∵△ABC ≌△A′BC′,∴BA=BA′,∠A′BC=∠ABC=70°,∴∠A′AB=∠AA′B=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故答案为:40°.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.17.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若AB=8,则DE=4.【考点】等腰三角形的判定与性质.【分析】根据角平分线的定义可得∠CAD=∠BAD,再根据两直线平行,内错角相等可得∠CAD=∠ADE,然后求出∠ADE=∠BAD,根据等角对等边可得AE=DE,然后根据等角的余角相等求出∠ABD=∠BDE,根据等角对等边可得DE=BE,从而得到DE=AB.【解答】解:∵AD是∠BAC的平分线,∴∠CAD=∠BAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠ADE=∠BAD,∴AE=DE,∵BD⊥AD,∴∠ADE+∠BDE=∠BAD+∠ABD=90°,∴∠ABD=∠BDE,∴DE=BE,∴DE=AB,∵AB=8,∴DE=×8=4.故答案为:4.【点评】本题考查了角平分线的定义,平行线的性质,等腰三角形的判定与性质,以及等角的余角相等的性质,熟记性质并准确识图,准确找出图中相等的角是解题的关键.18.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN的周长最小时,∠AMN+∠ANM的度数是160°.【考点】轴对称-最短路线问题.【分析】根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠AA″A′=80°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA′M+∠A″=80°.由轴对称图形的性质可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°.故答案为:160°.【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.三、解答题:共66分.19.分解因式:(1)5x2+10x+5(2)(a+4)(a﹣4)+3(a+2)【考点】提公因式法与公式法的综合运用;因式分解-十字相乘法等.【专题】计算题;因式分解.【分析】(1)原式提取5,再利用完全平方公式分解即可;(2)原式整理后,利用十字相乘法分解即可.【解答】解:(1)原式=5(x2+2x+1)=5(x+1)2;(2)原式=a2﹣16+3a+6=a2+3a﹣10=(a﹣2)(a+5).【点评】此题考查了提公因式法与公式法的综合运用,以及因式分解﹣十字相乘法,熟练掌握因式分解的方法是解本题的关键.20.先化简,再求值:(+)÷,其中x=1010.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=,将x=1010代入,得原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.解方程:(1)﹣=1(2)+=.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边同乘以(x﹣1),得2﹣(x+2)=x﹣1,解得:x=,经检验x=是分式方程的解;(2)去分母得:x+3x﹣9=x+3,移项合并得:3x=12,解得:x=4,经检验x=4是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.如图,已知点B、F、C、E在一条直线上,BF=EC,AB∥ED,AB=DE.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由BF=EC,可得BC=EF,由已知AB∥ED,可得∠B=∠E,易证△ABC≌△DEF,即可得出∠A=∠D.【解答】证明:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,∵AB∥ED,∴∠B=∠E,∵AB=DE,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.【点评】本题主要考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△DEF.23.某超市用4000元购进某种服装销售,由于销售状况良好,超市又调拨9000元资金购进该种服装,但这次的进价比第一次的进价降低了10%,购进的数量是第一次的2倍还多25件,问这种服装的第一次进价是每件多少元?【考点】分式方程的应用.【分析】首先设这种服装第一次进价是每件x元,则第一次进价是每件(1﹣10%)x元,根据题意得等量关系:第二次购进的数量=第一次购进数量×2+25,根据等量关系列出方程,再解即可.【解答】解:设这种服装第一次进价是每件x元,根据题意,得:=+25,解得:x=80,经检验x=80是原分式方程的解,答:这种服装第一次进价是每件80元.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程,注意不要忘记检验.24.如图,在△ABC中,D为AB的中点,DE∥BC,交AC于点E,DE∥AC,交BC于点F.(1)求证:DE=BF;(2)连接EF,请你猜想线段EF和AB有何关系?并对你的猜想加以证明.【考点】全等三角形的判定与性质.【分析】(1)利用平行线的性质得到相等的角,证明△ADE≌△DBF,即可得到DE=BF.(2)EF∥AB且EF=AB,证明△DBF≌△FED,得到EF=BD=AB,∠BDF=∠DFE,所以EF∥AB.【解答】(1)∵D为AB的中点,∴AD=DB,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C∵DF∥AC,∴∠DFB=∠C,∴∠AED=∠DFB,在△ADE和△DBF中,∴△ADE≌△DBF,∴DE=BF.(2)EF∥AB且EF=AB,如图,∵DE∥BC,∴∠EDF=∠DFB,在△DBF和△FED中,∴△DBF≌△FED∴EF=BD=AB,∠BDF=∠DFE,∴EF∥AB.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是利用平行线的性质得到相等的角证明三角形全等.25.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.【考点】等腰三角形的判定与性质;平行线的性质.【分析】(1)①根据平行线的性质得到∠ADB=∠DBC,由角平分线的定义得到∠ABD=∠DBC,等量代换得到∠ABD=∠ADB,根据等腰三角形的判定即可得到AB=AD;②根据平行线的性质得到∠ADC=∠DCE,由①知AB=AD,等量代换得到AC=AD,根据等腰三角形的性质得到∠ACD=∠ADC,求得∠ACD=∠DCE,即可得到结论;(2)根据角平分线的定义得到∠DBC=∠ABC,∠DCE=∠ACE,由于∠BDC+∠DBC=∠DCE于是得到∠BDC+∠ABC=∠ACE,由∠BAC+∠ABC=∠ACE,于是得到∠DC+∠ABC=∠ABC+∠BAC,即可得到结论.【解答】解:(1)①∵AD∥BE,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD∥BE,∴∠ADC=∠DCE,由①知AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE;(2)∠BDC=∠BAC,∵BD、CD分别平分∠ABE,∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠BDC+∠DBC=∠DCE,∴∠BDC+∠ABC=∠ACE,∵∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠ABC+∠BAC,∴∠BDC=∠BAC.【点评】本题考查了等腰三角形的判定和性质,角平分线的定义,平行线的性质,熟练掌握等腰三角形的判定和性质是解题的关键.26.如图,在平面直角坐标系中,已知两点A(m,0),B(0,n)(n>m>0),点C在第一象限,AB⊥BC,BC=BA,点P在线段OB上,OP=OA,AP的延长线与CB的延长线交于点M,AB与CP交于点N.(1)点C的坐标为:(n,m+n)(用含m,n的式子表示);(2)求证:BM=BN;(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D,G关于x 轴对称.【考点】几何变换综合题.【分析】(1)过C点作CE⊥y轴于点E,根据AAS证明△AOB≌△BEC,根据全等三角形的性质即可得到点C的坐标;(2)根据全等三角形的性质的性质和等量代换可得∠1=∠2,根据ASA证明△ABM≌△CBN,根据全等三角形的性质即可得到BM=BN;(3)根据SAS证明△DAH≌△GAH,根据全等三角形的性质即可求解.【解答】(1)解:过C点作CE⊥y轴于点E,∵CE⊥y轴,∴∠BEC=90°,∴∠BEC=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠ABO+∠BAO=90°,∴∠CBE=∠BAO,在△AOB与△BEC中,,∴△AOB≌△BEC(AAS),∴CE=OB=n,BE=OA=m,∴OE=OB+BE=m+n,∴点C的坐标为(n,m+n).故答案为:(n,m+n);(2)证明:∵△AOB≌△BEC,∴BE=OA=OP,CE=BO,∴PE=OB=CE,∴∠EPC=45°,∠APC=90°,∴∠1=∠2,在△ABM与△CBN中,,∴△ABM≌△CBN(ASA),∴BM=BN;(3)证明:∵点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,∴AD=AC,AG=AC,∴AD=AG,∵∠1=∠5,∠1=∠6,∴∠5=∠6,在△DAH与△GAH中,,∴△DAH≌△GAH(SAS),∴D,G关于x轴对称.【点评】考查了几何变换综合题,涉及的知识点有:全等三角形的判定和性质,关于直线对称的性质.关键是AAS证明△AOB≌△BEC,ASA证明△ABM≌△CBN,SAS证明△DAH≌△GAH.。
安徽省合肥市庐江县2018-2019学年八年级上学期期末数学试题-
过点P作PE⊥AB,PD⊥BC,PF⊥AC,
∴PE=PF,PF=PD,
∴PE=PF=PD,
∴点P到△ABC的三边的距离相等,
∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;
综上,到三条公路的距离相等的点有4处,
∴可供选择的地址有4处.
由题可得,AP平分∠BAC,
∴∠CAD=∠EAD,
又∵CD⊥AP,
∴∠ADC=∠ADE=90°,
又∵AD=AD,
∴△ACD≌△AED(ASA),
∴CD=ED,
∴S△BCD=S△BED,S△ACD=S△AED,
∴S△ABD=S△AED+S△BED= S△ABC= ×12=6(cm2),
故答案为:6.
【点睛】
3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是( )
A.BC是△ABC的高B.AC是△ABE的高
C.DE是△ABE的高D.AD是△ACD的高
4.下列等式变形是因式分解的是( )
A.﹣a(a+b﹣3)=a2+ab﹣3a
B.a2﹣a﹣2=a(a﹣1)﹣2
C.﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)
= .
故答案为: .
【点睛】
此题主要考查了单项式的除法以及负整数指数幂,题目比较基础,关键是掌握计算顺序.
12.3xy(x﹣1)2.
【解析】
【分析】
直接提取公因式3xy,再利用公式法分解因式得出答案.
【详解】
解:原式=3xy(x2﹣2x+1)
=3xy(x﹣1)2.
故答案为:3xy(x﹣1)2.
2018~2019(上)初二数学期末考试试题解析
(1) 求证:CD⊥AB; (2) 求 AC 的长. 【考点】勾股定理及其逆定理
【难度星级】★★
【答案】(1)证明:在 BCD 中, BD 1, CD 2 , BC 5 ,
∴ BD2 +CD2 12 22 5 , BC 2 5 ∴ BD2 +CD2 BC2 ∴ BCD 是直角三角形,且 CDB 90 ∴CD⊥AB. (2)解:由(1)知 CD⊥AB,∴ ADC 90 ∵ AB 4 , BD 1,∴ AD AB DB 3 在 RtACD 中, CD 2 , AD 3
【考点】函数与方程 【难度星级】★ 【答案】B 【解析】 2x 3y 6,整理可得y 2 x 2 ,图象过一、三、四象限.
3
-1-
-1--1-
4.如图,将含 30°角的直角三角板 ABC 的直角顶点 C 放在直尺的一边上,已知 A 30,1 40 ,则 2 的度数为( )
A.55°
B.60°
一个角的两边,那么这两个角相等.其中是真命题的有( )
A.0 个
B.1 个
C.2 个
D.3 个
【考点】真命题与假命题的判定 【难度星级】★ 【答案】C 【解析】③如果一个角的两边分别平行于另一个角的两边,那么这两个角可能相等也可能互补.真命题个 数有 2 个.
-3-
-3--3-
9. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出 八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出 8 钱, 还多 3 钱;每人出 7 钱,则差 4 钱.求物品的价格和共同购买该物品的人数.设该物品的价格是 x 钱,共同 购买该物品的有 y 人,则根据题意,列出的方程组是()
2018-2019学年度安徽省合肥市八年级数学第一学期期末检测试卷及答案含有详细解析
2018~2019学年度安徽省合肥市八年级数学第一学期期试卷一、选择题1、如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .2(第1题图) (第3题图) (第5题图) 2、平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( )A .5B .6C .7D .83、小明不小心把一块三角形形状的玻璃打碎成了三块, 如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )去。
A .① B .② C .③ D .①和②4、某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是()A .B .C .D .5、如图所示,在△ABC 中,∠BAC=90°,AB ⊥AC ,AB=3,BC=5,EF 垂直平分BC ,点P 为直线EF 上的任一点,则AP+BP 的最小值是 . A .4 B .5 C .6 D .16、下列等式从左到右的变形,属于因式分解的是( ) A .a (x -y )=ax -ay B .x 2+2x+1=x (x+2)+1 C .(x+1)(x+3)=x 2+4x+3 D .x 3-x =x (x+1)(x -1)7、在边长为的正方形中挖去一个边长为的小正方形()(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .B .C .D .(第7题图) (第9题图) (第10题图) 8、如图:把一个正方形三次对折后沿虚线剪下,则所得图形大致是( )9、如图,若∠A =27°,∠B =45°,∠C =38°,则∠DFE 等于( ) A .120° B .115° C .110° D .105° 10、如图所示,△ABC 是等边三角形,且BD =CE ,∠1=15°,则∠2的度数为( ) A .15° B .30° C .45° D .60°二、填空题11、将一副直角三角板,按右图所示叠放在一起,则图中∠α的度数是 。
安徽省合肥市庐江县志成学校2018-2019学年八上数学期末调研试卷
安徽省合肥市庐江县志成学校2018-2019学年八上数学期末调研试卷一、选择题1.在一次学习小组习题检测的活动中,小刚的作答如下: ①a c ac b d bd ÷=; ②1b a a b b a+=--; ③222224a a a b a b ⎛⎫= ⎪--⎝⎭; ④4453·m n m n m n =. 请问小刚做对了( )A.1道B.2道C.3道D.4道 2.若分式23x x +-的值为零,则( ) A .x=3 B .x=-2 C .x=2 D .x=-33.把分式x yy x +中的x ,y 的值都扩大为原来的5倍,则分式的值( ) A .缩小为原来的15 B .不变C .扩大为原来的10倍D .扩大为原来的5倍4.下列因式分解正确的是( ) A .()2226xy 93x y x y ++=+B .()22224xy 923x y x y -+=-C .()()2228244x y x y x y -=+-D .()()()()x x y y y x x y x y -+-=-+5.下列运算正确的是( ) A.x 3+x 2=x 5 B.x 3-x 2=x C.x 3x 2=x 6D.x 3÷x 2= x 6.下列分解因式错误..的是( ) A .2221(1)x x x -+=-B .()224x 2x-2x -=+()C .2-2(21)x x x x +=--D .243(2)(2)3x x x x x -+=+-+ 7.下列交通标志中,是轴对称图形的是( )A .B .C .D .8.如图,直线12l l ,AB=BC ,CD ⊥AB 于点D ,若∠DCA=20°,则∠1的度数为( )A .80°B .70°C .60°D .50°9.如图,△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线与 BC 交于点D ,交 AB 于 E ,DB =10,则 AC 的长为( )A.2.5B.5C.10D.2010.如图,将一个等腰直角三角形按图示方式依次翻折,则下列说法正确的个数有( )①DF 平分∠BDE ;②△BFD 是等腰三角形;;③△CED 的周长等于BC 的长.A .0个;B .1个;C .2个;D .3个. 11.若△ABC ≌△DEF ,∠A=60°,∠B=50°,那么∠F 的度数是( ) A.120B.80C.70D.6012.如图,已知△ABC 中,∠C=90°,AD 平分∠BAC ,且CD :BD=3:4.若BC=21,则点D 到AB 边的距离为( )A .7B .9C .11D .1413.如图所示,已知直线AB ,CD 被直线AC 所截,AB CD ∥,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设BAE α∠=,DCE β∠=.下列各式:①αβ+;②αβ-;③βα-;④180αβ--o ;⑤360αβ--o ,AEC ∠的度数可能是( )A .①②③④B .①②④⑤C .①②③⑤D .①②③④⑤14.长度分别如下的四组线段中,可以构成直角三角形的是( )A.1.5,2,2.5B.4,5,6C.1,3D.2,3,4 15.若一个五边形有三个内角都是直角,另两个内角的度数都等于α,则α等于( ) A.30B.120C.135D.108二、填空题161)0+(﹣12)﹣2=_____. 17.分解因式:2a 2﹣18=________.18.如图,点E 、F 在BC 上,AB=DC ,∠B=∠C ,请补充一个条件:______,使△ABF ≌△DCE .19.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .∠BOF=30°,则∠AOC=_____°.20.等腰三角形的两边长分别为613cm cm ,,其周长为_______cm .三、解答题21.先化简,再求值:22444()2x x x x x x-+÷--,其中x <<,且x 是整数. 22.先化简,再求值:()()222224ab ab a b ab ⎡⎤+--+÷⎣⎦.其中10a =,125b =-. 23.如图,在平面直角坐标系中,请用尺规求作一点C ,使得CA =CB ,且CA ∥OB .(保留作图痕迹,不写作法)24.如图,∠AOB=90°,OE 、OF 分别平分∠BOC 、∠AOB ,如果∠EOF=60°,求∠AOC 的度数.25.如图,O 是直线AB 上一点,∠COD =90°,OE 、OF 分别是∠COB 、∠AOD 的平分线,且∠COB :∠AOD =4:9.(1)写出图中∠BOD 的余角和补角;(2)求∠AOC 的度数【参考答案】***一、选择题16.517.2(a+3)(a﹣3)18.BE=CF或BF=EC或∠A=∠D或∠AFB=∠DEC 19.20.32三、解答题21.12x+,当1x=时,原式=13, 当1x=-时,原式=122.2 523.详见解析【解析】【分析】作直线AC⊥y轴,与线段AB的垂直平分线交直线AC于点C,则点C即为所求点;【详解】解:如图所示:【点睛】此题主要考查了复杂作图,关键是正确画出图形,确定出C点位置.24.120°【解析】【分析】先由角平分线定义求出∠BOF的大小,再求出∠BOE=15°,由OE平分∠BOC,求出∠BOC=30°,即可得出∠AOC的度数.【详解】解:∵∠AOB=90°OF平分∠AOB∴∠BOF=12∠AOB=45°又∵∠EOF=60°∴∠BOE=60°-45°=15°.∵OE平分∠BOC∴∠BOC=2∠BOE=30°.∴∠AOC=∠AOB+∠BOC=120°【点睛】本题主要考查了角平分线的定义、角的和差以及运算,熟练掌握角平分线定义,弄清各个角之间的关系是解决问题的关键.25.(1)∠BOD的余角为∠BOC,∠BOD的补角为∠AOD;(2)∠AOC=108°.。
2018-2019学年安徽省合肥市庐江县八年级(上)期末数学试卷(解析版)
2018-2019学年安徽省合肥市庐江县八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.下列四个互联网公司log o中,是轴对称图形的是()A.B.C.D.2.要使分式有意义,x的取值范围满足()A.x≠2B.x≠1C.x≠1且x≠2D.x≠1或x≠2 3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.BC是△ABC的高B.AC是△ABE的高C.DE是△ABE的高D.AD是△ACD的高4.下列等式变形是因式分解的是()A.﹣a(a+b﹣3)=a2+ab﹣3aB.a2﹣a﹣2=a(a﹣1)﹣2C.﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)D.2x+1=x(2+)5.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处6.下列计算正确的是()A.a2•a3=a5B.(a3)2=a5C.(3a)2=6a2D.7.若四边形ABCD中,∠A:∠B:∠C:∠D=1:4:2:5,则∠C+∠D等于()A.90°B.180°C.210°D.270°8.已知4条线段的长度分别为2,4,6,8,若三条线段可以组成一个三角形,则这四条线段可以组成三角形的个数是()A.1个B.2个C.3个D.4个9.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶50km,提速后比提速前多行驶skm.设提速前列车的平均速度为xkm/h,则列方程是()A.B.C.D.10.如图,△ABC中,AC=BC,AC的垂直平分线分别交AC,BC于点E,F.点D为AB 边的中点,点M为EF上一动点,若AB=4,△ABC的面积是16,则△ADM周长的最小值为()A.20B.16C.12D.10二、填空题(本题共4小题,每小题5分,共20分)11.计算:(3×10﹣5)2÷(3×10﹣1)2=.12.分解因式:3x3y﹣6x2y+3xy=.13.如图,△ABC的面积为12cm2,以顶点A为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP,过点C作CD⊥AP于点D,连接DB,则△DAB的面积是cm2.14.如图,△ABC是等边三角形,D,E是BC上的两点,且BD=CE,连接AD、AE,将△AEC沿AC翻折,得到△AMC,连接EM交AC于点N,连接DM.以下判断:①AD =AE,②△ABD≌△DCM,③△ADM是等边三角形,④CN=EC中,正确的是.三、(本大题共2小题,每小题8分,满分16分)15.计算:(x﹣2)2﹣(x﹣3)(x+3)16.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.四、(本题共2小题,每小题8分,共16分)日A△(1)17.先化简,再求值:,请在2,﹣2,0,3当中选一个合适的数作为m的值,代入求值.18.将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE 的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.五、(本大题共2小题,每小题10分,满分20分)19.观察下列等式:①1﹣1﹣=﹣;②﹣﹣=﹣;③﹣﹣=﹣;④﹣﹣=﹣;…根据上述规律解决下列问题:(1)完成第⑤个等式;(2)写出你猜想的第n个等式(用含n的式子表示)并证明其正确性.20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)若△A1B1C1与△ABC关于y轴成轴对称,写出△A1B1C1三个顶点坐标:A1=;B1=;C1=;(2)画出△A1B1C1,并求△A1B1C1面积.六、(本题满分12分)21.如图,等腰三角形ABC中,AB=AC=4,∠BAC=100°,点D是底边BC的动点(点D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于点E.(1)当DC等于多少时,△ABD与△DCE全等?请说明理由;(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求出∠BDA 的度数;若不可以,请说明理由.七、(本题满分12分)22.合肥市拟将徽州大道南延至庐江县庐城镇,庐江段的一段土方工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该土方工程分成两部分,甲队做完其中一部分工程用了x天,乙队做完另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,请用含x的式子表示y,并求出两队实际各做了多少天?八、(本题满分14分)23.已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC 于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE 于点M,若AC=3MC,请直接写出的值.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.下列四个互联网公司log o中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.要使分式有意义,x的取值范围满足()A.x≠2B.x≠1C.x≠1且x≠2D.x≠1或x≠2【解答】解:由题意得:x﹣1≠0,解得:x≠1,故选:B.3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.BC是△ABC的高B.AC是△ABE的高C.DE是△ABE的高D.AD是△ACD的高【解答】解:观察图象可知:BC是△ABC的高,AC是△ABE的高,AD是△ACD的高,DE是△BCD、△BDE、△CDE的高故A,B,D正确,C错误,故选:C.4.下列等式变形是因式分解的是()A.﹣a(a+b﹣3)=a2+ab﹣3aB.a2﹣a﹣2=a(a﹣1)﹣2C.﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)D.2x+1=x(2+)【解答】解:A、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;B、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、符合因式分解的定义,是因式分解,故本选项符合题意;D、右边不是几个整式的积的形式(含有分式),不是因式分解,故本选项不符合题意;故选:C.5.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.故选:A.6.下列计算正确的是()A.a2•a3=a5B.(a3)2=a5C.(3a)2=6a2D.【解答】解:A、a2•a3=a5,故原题计算正确;B、(a3)2=a6,故原题计算错误;C、(3a)2=9a2,故原题计算错误;D、a2÷a8=故原题计算错误;故选:A.7.若四边形ABCD中,∠A:∠B:∠C:∠D=1:4:2:5,则∠C+∠D等于()A.90°B.180°C.210°D.270°【解答】解:∵∠A:∠B:∠C:∠D=1:4:2:5,∴∠C+∠D=360°×=210°,故选:C.8.已知4条线段的长度分别为2,4,6,8,若三条线段可以组成一个三角形,则这四条线段可以组成三角形的个数是()A.1个B.2个C.3个D.4个【解答】解:首先任意的三个数组合可以是2,4,6或2,4,8或2,6,8或4,6,8.根据三角形的三边关系:其中4+6>8,能组成三角形.∴只能组成1个.故选:A.9.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶50km,提速后比提速前多行驶skm.设提速前列车的平均速度为xkm/h,则列方程是()A.B.C.D.【解答】解:设提速前列车的平均速度为xkm/h,则提速后速度为(x+v)km/h,由题意得:=,故选:C.10.如图,△ABC中,AC=BC,AC的垂直平分线分别交AC,BC于点E,F.点D为AB 边的中点,点M为EF上一动点,若AB=4,△ABC的面积是16,则△ADM周长的最小值为()A.20B.16C.12D.10【解答】解:连接CD,CM.∵△ABC是等腰三角形,点D是BA边的中点,∴CD⊥BA,=BA•CD=×4×CD=16,解得CD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,∴MA=MC,∵CD≤CM+MD,∴CD的长为AM+MD的最小值,∴△ADM的周长最短=(AM+MD)+AD=CD+BA=8+×4=8+2=10.故选:D.二、填空题(本题共4小题,每小题5分,共20分)11.计算:(3×10﹣5)2÷(3×10﹣1)2=.【解答】解:原式=(9×10﹣10)÷(9×10﹣2)=(9÷9)×(10﹣10÷10﹣2)=10﹣8=.故答案为:.12.分解因式:3x3y﹣6x2y+3xy=3xy(x﹣1)2.【解答】解:原式=3xy (x 2﹣2x +1) =3xy (x ﹣1)2. 故答案为:3xy (x ﹣1)2.13.如图,△ABC 的面积为12cm 2,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP ,过点C 作CD ⊥AP 于点D ,连接DB ,则△DAB 的面积是 6 cm 2.【解答】解:如图所示,延长CD 交AB 于E ,由题可得,AP 平分∠BAC , ∴∠CAD =∠EAD , 又∵CD ⊥AP ,∴∠ADC =∠ADE =90°, 又∵AD =AD ,∴△ACD ≌△AED (ASA ), ∴CD =ED ,∴S △BCD =S △BED ,S △ACD =S △AED ,∴S △ABD =S △AED +S △BED =S △ABC =×12=6(cm 2), 故答案为:6.14.如图,△ABC 是等边三角形,D ,E 是BC 上的两点,且BD =CE ,连接AD 、AE ,将△AEC 沿AC 翻折,得到△AMC ,连接EM 交AC 于点N ,连接DM .以下判断:①AD =AE ,②△ABD ≌△DCM ,③△ADM 是等边三角形,④CN =EC 中,正确的是①③④ .【解答】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠BAD=∠CAE,AD=AE,故①正确;由折叠的性质得:CE=CM=BD,AE=AM=AD,∠CAE=∠CAM=∠BAD,∴∠DAM=∠BAC=60°,∴△ADM是等边三角形,∴DM=AD,∵AB>AD,∴AB>DM,∵∠ACD>∠DAC,∴AD>DC,∴△ABD与△DCM不全等,故③正确、②错误;由折叠的性质得:AE=AM,CE=CM,∴AC垂直平分EM,∴∠ENC=90°,∵∠ACE=60°,∴∠CEN=30°,∴CN=EC,故④正确,故答案为:①③④.三、(本大题共2小题,每小题8分,满分16分)15.计算:(x﹣2)2﹣(x﹣3)(x+3)【解答】解:(x﹣2)2﹣(x﹣3)(x+3)=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9=﹣4x+13.16.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.【解答】证明:∵AB⊥CF,DE⊥CF,∴∠ABC=∠DEF=90°.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).∴BC=EF.∴BC﹣BE=EF﹣BE.即:CE=BF.四、(本题共2小题,每小题8分,共16分)日A△(1)17.先化简,再求值:,请在2,﹣2,0,3当中选一个合适的数作为m的值,代入求值.【解答】解:原式=•=•=,∵m=2或﹣2或3时,原式没有意义,∴m只能取0,当m=0时,原式==0.18.将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE 的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.【解答】证明:∵在△BDC中,BC=DB,∴∠BDC=∠BCD.∵∠DBE=30°,∴∠BDC=∠BCD=75°,∵∠ACB=45°,∴∠DOC=30°+45°=75°.∴∠DOC=∠BDC,∴△CDO是等腰三角形.五、(本大题共2小题,每小题10分,满分20分)19.观察下列等式:①1﹣1﹣=﹣;②﹣﹣=﹣;③﹣﹣=﹣;④﹣﹣=﹣;…根据上述规律解决下列问题:(1)完成第⑤个等式;(2)写出你猜想的第n个等式(用含n的式子表示)并证明其正确性.【解答】解:(1)∵左边的第2项和第3项的分母分别是连续的奇数和偶数,右边的分母为是左边第2项和第3项的分母之积,∴第5个等式为:﹣﹣=﹣;(2)第n个等式为:﹣﹣=﹣,证明:左边==﹣,右边=﹣,∴左边=右边,∴原式成立.20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)若△A1B1C1与△ABC关于y轴成轴对称,写出△A1B1C1三个顶点坐标:A1=(﹣1,1);B1=(﹣4,2);C1=(﹣3,4);(2)画出△A1B1C1,并求△A1B1C1面积.【解答】解:(1)A1(﹣1,1);B1(﹣4,2);C1(﹣3,4);(2)如图所示:△A1B1C1,即为所求,△A1B1C1面积为:9﹣×2×3﹣×3×1﹣×1×2=.六、(本题满分12分)21.如图,等腰三角形ABC中,AB=AC=4,∠BAC=100°,点D是底边BC的动点(点D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于点E.(1)当DC等于多少时,△ABD与△DCE全等?请说明理由;(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求出∠BDA 的度数;若不可以,请说明理由.【解答】解:(1)当DC=4时,△ABD≌△DCE,理由:∵AB=AC=4,∠BAC=100°,∴∠B=∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,当DA=DE时,∠DAE=∠DEA=70°,∴∠BDA=∠DAE+∠C=70°+40°=110°;当AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不合题意;当EA=ED时,∠EAD=∠ADE=40°,∴∠AED=100°,∴EDC=∠AED﹣∠C=60°,∴∠BDA=180°﹣40°﹣60°=80°综上所述,当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.七、(本题满分12分)22.合肥市拟将徽州大道南延至庐江县庐城镇,庐江段的一段土方工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该土方工程分成两部分,甲队做完其中一部分工程用了x天,乙队做完另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,请用含x的式子表示y,并求出两队实际各做了多少天?【解答】解:(1)设乙队单独做需要x天完成任务.根据题意得.解得x=100.经检验x=100是原方程的解.答:乙队单独做需要100天完成任务.(2)根据题意得.整理得y=100﹣x.∵y<70,∴100﹣x<70.解得x>12.又∵x<15且为整数,∴x=13或14.当x=13时,y不是整数,所以x=13不符合题意,舍去.当x=14时,y=100﹣35=65.答:甲队实际做了14天,乙队实际做了65天.八、(本题满分14分)23.已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE 于点M,若AC=3MC,请直接写出的值.【解答】(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.。
安徽省合肥2018-2019学年八年级上册期末模拟检测卷(有答案)-(数学)
2018-2019学年八年级上沪科版数学期末测试卷一、选择题(每题满分: 150 分4 分,共 40 分)姓名:得分:1.在下边四个图案中,假如不考虑字母和文字,那么不是轴对称图形的是()A B C D2.在平面直角坐标系中,若点P( x-3,x)在第二象限,则x 的取值范围为()A0 x 3B C x 0D x 33.有以下命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等。
正确的命题的个数是()A2B3 C 4 D 5y 2x 的图像订交于点4.如图,过点 A 的一次函数的图像与正比率函数B,能表示这个一次函数图像的方程是()A 2x y 3 0B x y 3 0C 2y x 3 0D x y 3 05.以下图,在△ ABC 中, c 90。
, EF // AB, B 39。
, 则1的度数为()A 39。
B 51。
C 38。
D 52。
6.如图,已知 AC 均分∠ PAQ,点B,B分别在边 AP、 AQ 上,假如增添一个条件,即可推出AB AB,那么该条件不能够的是()A BB AC B BC BCC ACB ACBD ABC AB C7.以下图,为预计池塘岸边AB 两点的距离,小方在池塘的一侧选用一点O,测得 OA=72 米, OB=52 米,A、 B 间的距离可能是()A20米B124米C51米D10米8.如图,1A DAE2,CCBED , AC、 BD 交于点E 以下不正确的选项是(B CE DE)C DEA 不全等于CBED EAB 是等腰三角形9.如图,在 Rt△ ABC中,C90。
,斜边那么以下关系式中不建立的是()AB 的垂直均分线交AB 于点D,交BC 于点E, AE 均分BAC ,A B CAE B DEA CEAC B BAED AC = 2EC10.如图,长方形ABCD中,AB=1,AD=2,M是 CD 的中点,点 P 在长方形的边上沿A→B→C→ M运动,则APM的面积 y 与点 P 经过的行程x 之间的函数关系用图像表示大概是以下图中的()二、填空题(每题 5 分,共 20 分)11.将y2x 直线沿y轴向上平移6个单位,所获得的直线是12.以下图,在△ABC中,点 D 是 BC上一点,。
安徽省合肥庐江县联考2019年数学八上期末学业水平测试试题
安徽省合肥庐江县联考2019年数学八上期末学业水平测试试题一、选择题1.下列各分式中,最简分式是( ) A.23x x x- B.2222x y x y xy ++ C.22y x x y -+ D.222()x y x y -+2.若关于的方程的解为正数,则的取值范围是( )A.且B.且C. 且D.3.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A .20.210-⨯克B .2210-⨯克C .3210-⨯ 克D .4210-⨯克 4.已知ab =2,a ﹣2b =3,则4ab 2﹣2a 2b 的值是( )A .6B .﹣6C .12D .﹣12 5.下列从左到右的变形中,变形依据与其他三项不同的是( )A .11111212122323⎛⎫⨯-=⨯-⨯ ⎪⎝⎭B .45x x x +=C .2(1)22x x -=-D .100.33x x = 6.下列运算正确的是( )A .236a a a =⋅ B .235?)(a a = C .623a a a ÷=D .22(2)(2)4a b a b a b +-=- 7.如图,在△ABC 中,BD 、CE 是角平分线,AM ⊥BD 于点M ,AN ⊥CE 于点N .△ABC 的周长为30,BC =12.则MN 的长是( )A .15B .9C .6D .38.如图,在四边形ABCD 中,∠BAD =130°,∠B =∠D =90°,点E ,F 分别是线段BC ,DC 上的动点.当△AEF 的周长最小时,则∠EAF 的度数为( )A .90°B .80°C .70°D .60° 9.如图,中,,,平分交于,若,则的面积为( )A. B. C. D.10.小明在研究矩形的时候,利用直尺和圆规作出了如图的图形,依据尺规作图的痕迹,可知α∠的度数为( )A .56B .68C .28oD .34 11.如图,点D 为AOB ∠的平分线OC 上的一点,DE AO ⊥于点E .若4DE =,则D 到OB 的距离为( )A .5B .4C .3.5D .312.如图1,已知AB=AC ,D 为∠BAC 的角平分线上面一点,连接BD ,CD ;如图2,已知AB=AC ,D 、E 为∠BAC 的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AB=AC ,D 、E 、F 为∠BAC 的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依次规律,第12个图形中有全等三角形的对数是( )A .80对B .78对C .76对D .以上都不对13.如图,四边形ABCD 的两个外角∠CBE ,∠CDF 的平分线交于点G ,若∠A=52°,∠DGB=28°,则∠DCB 的度数是( )A .152°B .128°C .108°D .80°14.如图,将一个直角三角形纸片 ABC(∠ACB =90°),沿线段 CD 折叠,使点 B 落在 B′处,若∠ACB′=70°, 则∠ACD 的度数为( ).A .30°B .20°C .15°D .10°15.如果某多边形的每个内角的大小都是其相邻外角的3倍,那么这个多边形是( )A .六边形B .八边形C .正六边形D .正八边形二、填空题16.分式22m m n -和33n m n+的最简公分母为______. 17.计算:59.8×60.2=_________.18.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=_________°19.如图,BE 是△ABC 的角平分线,AD 是△ABC 的高,∠ABC=60°,则∠AOE=_____.20.如图,△ABC 为等边三角形,AB ⊥DB ,DB =BC ,则∠BDC =____度.三、解答题21.解方程:12111x x+=-+. 22.计算:()()2243235x y x y x y --. 23.如图,在正方形网格上有一个△ABC ,三个顶点都在格点上,网格上的最小正方形的边长为1.(1)作△ABC 关于直线MN 的对称图形△A′B′C′(不写作法):(2)求△ABC 的面积。
(汇总3份试卷)2018年合肥市八年级上学期期末达标测试数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列图形中是轴对称图形的有( )A .B .C .D .【答案】B【解析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A.是中心对称图形,不是轴对称图形,不符合题意,B.是轴对称图形,符合题意,C.是中心对称图形,不是轴对称图形,不符合题意,D.既不是中心对称图形,也不是轴对称图形,不符合题意,故选B .【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.2.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .【答案】A【分析】根据0ab <且a b >,得到a,b 的取值,再根据一次函数的图像即可求解.【详解】解:∵0ab <,且a b >,∴a >0,b <0.∴函数y ax b =+的图象经过第一、三、四象限.故选A .【点睛】此题主要考查一次函数的图像,解题的关键是熟知不等式的性质及一次函数的图像.3.已知23x y =⎧⎨=-⎩是二元一次方程26x ay -=的一组解,则a 的值为( ).A .5-B .23C .5D .32- 【答案】B 【分析】将23x y =⎧⎨=-⎩代入26x ay -=计算即可. 【详解】解:将23x y =⎧⎨=-⎩代入26x ay -= 得()2236a ⨯--=,解得23a = 故选:B .【点睛】本题考查了已知二元一次方程的解求参数问题,正确将方程的解代入方程计算是解题的关键. 4.如图,在ABC ∆中,AB 边的中垂线PQ 与ABC ∆的外角平分线交于点P ,过点P 作PD BC ⊥于点D ,PE AC ⊥于点E .若6BC =,4AC =.则CE 的长度是( )A .1B .2C .3D .4【答案】A 【分析】连接AP 、BP ,如图,根据线段垂直平分线的性质可得AP=BP ,根据角平分线的性质可得PE=PD ,进一步即可根据HL 证明Rt △AEP ≌Rt △BDP ,从而可得AE=BD ,而易得CD=CE ,进一步即可求得CE 的长.【详解】解:连接AP 、BP ,如图,∵PQ 是AB 的垂直平分线,∴AP=BP ,∵CP 平分∠BCE ,PD BC ⊥,PE AC ⊥,∴PE=PD ,∴Rt △AEP ≌Rt △BDP (HL ),∴AE=BD ,∵CD=22PC PD -,CE=22PC PE -,PE=PD ,∴CD=CE ,设CE=CD=x ,∵6BC =,4AC =,∴46x x +=-,解得:x=1,即CE=1.故选:A .【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、直角三角形全等的判定和勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.5.在下列各式中,计算正确的是( )A .3412a a a ⋅=B .()437a a =C .()3263a b a b =D .623a a a ÷= 【答案】C【分析】根据同底数幂的乘法和除法以及幂的乘方、积的乘方判断即可.【详解】A. 347a a a ⋅=,该选项错误;B. ()1432a a =,该选项错误;C. ()3263a b a b =,该选项正确;D. 624a a a ÷=,该选项错误.故选:C .【点睛】此题考查同底数幂的乘法、除法以及幂的乘方、积的乘方,熟练掌握运算法则是解答本题的关键. 6.如图,ABC EBD ∆≅∆,点B 在线段AD 上,点E 在线段CB 上,10AD cm =,6CB cm =,则AB 的长度为( )A .6cmB .10cmC .4cmD .无法确定【答案】C 【解析】根据题意利用全等三角形的性质进行分析,求出AB 的长度即可.【详解】解:∵ABC EBD ∆≅∆,∴CB BD =∵10AD cm =,6CB cm =,∴1064AB AD BD AD BC cm =-=-=-=.故选:C.【点睛】本题考查全等三角形的性质,熟练掌握并利用全等三角形的性质进行等量代换是解题的关键.7.不等式x ﹣3≤3x+1的解集在数轴上表示如下,其中正确的是( )A .B .C .D .【答案】B【详解】x ﹣3≤3x+1,移项,得x-3x ≤1+3, 合并同类项,得-2x ≤4,系数化为1,得x≥﹣2,其数轴上表示为:.故选B.8.有下列实数:4,﹣0.101001,713,π,其中无理数有( ) A .1 个B .2 个C .3 个D .4 个【答案】A【解析】根据无理数、有理数的定义,即可得到答案.【详解】4=2是整数,属于有理数,﹣0.101001是有限小数,属于有理数, 713是分数,属于有理数, π是无理数,故选:A .【点睛】本题主要考查无理数、有理数的定义,掌握它们的定义是解题的关键.9.如图,在ABD ∆中,AB 的垂直平分线DE 交BC 于点D ,连接AD ,若AD AC =,25B ∠=︒,则BAC ∠的度数为( )A .90°B .95°C .105°D .115°【答案】C 【分析】根据垂直平分线的性质可得DA=DB ,根据等边对等角可得∠DAB=∠B=25°,然后根据三角形外角的性质即可求出∠ADC,再根据等边对等角可得∠ADC=∠C=50°,利用三角形的内角和定理即可求出∠.BAC【详解】解:∵DE垂直平分AB∴DA=DB∴∠DAB=∠B=25°∴∠ADC=∠DAB+∠B=50°=∵AD AC∴∠ADC=∠C=50°∴∠BAC=180°-∠B-∠C=105°故选C.【点睛】此题考查的是垂直平分线的性质、等腰三角形的性质、三角形外角的性质和三角形内角和定理,掌握垂直平分线的性质、等边对等角、三角形外角的性质和三角形内角和定理是解决此题的关键.10.下列从左边到右边的变形,是因式分解的是()A.y2﹣2y+4=(y﹣2)2B.10x2﹣5x=5x(2x﹣1)C.a(x+y)=ax+ayD.t2﹣16+3t=(t+4)(t﹣4)+3t【答案】B【解析】根据因式分解的意义,可得答案.【详解】A.分解不正确,故A不符合题意;B.把一个多项式转化成几个整式积的形式,故B符合题意;C.是整式的乘法,故C不符合题意;D.没把一个多项式转化成几个整式积的形式,故D不符合题意.故选B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.二、填空题AB=,G是BC的中点,将ABG沿AG翻折至AFG,延长GF 11.如图,正方形纸片ABCD中,6交DC于点E,则DE的长等于__________.【答案】1【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【详解】如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵AE AE AF AD ⎧⎨⎩==,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6-x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6-x)1+9=(x+3)1,解得x=1.则DE=1.故答案为:1.【点睛】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.12124183= .6.【解析】化简第一个二次根式,计算后边的两个二次根式的积,然后合并同类二次根式即可求解:12418=266=63-⨯-. 13.分解因式:322a a - =_____;【答案】2a(a+1)(a-1)【分析】先提取公因式2a ,再对余下的多项式利用平方差公式继续分解.【详解】解:2a 3-2a=2a (a 2-1)=2a (a+1)(a-1).故答案为2a (a+1)(a-1).【点睛】本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.分解因式:m 2+4m =_____.【答案】m(m+4)【解析】直接提取公式因进行因式分解即可【详解】m 2+4m =m(m+4).故答案为:m(m+4).【点睛】本题考查提取公因式方法进行因式分解,找到公因式是解题关键15.如图,已知在△ABC 中,∠B 与∠C 的平分线交于点P .当∠A = 70°时,则∠BPC 的度数为________.【答案】125°【详解】∵△ABC 中,∠A=70°,∴∠ABC+∠ACB=180°−∠A=180°−70°=110°∴BP ,CP 分别为∠ABC 与∠ACP 的平分线,∴∠2+∠4=12 (∠ABC+∠ACB)=12×110°=55° ∴∠P=180°−(∠2+∠4)=180°−55°=125°故答案为125°.16.如图,点M 在等边ABC 的边BC 上,8BM =,射线CD BC ⊥,垂足为点C ,点P 是射线CD 上一动点,点N 是线段AB 上一动点,当MP NP +的值最小时,9BN =,则AC 的长为___________________.【答案】1【分析】作出点M 关于CD 的对称点M 1,然后过点M 1作M 1N ⊥AB 于N ,交CD 于点P ,连接MP ,根据对称性可得MP= M 1P ,MC= M 1C ,然后根据垂线段最短即可证出此时MP NP +最小,然后根据等边三角形的性质可得AC=BC ,∠B =60°,利用30°所对的直角边是斜边的一半即可求出BM 1,然后求出BC 即可求出AC .【详解】解:作出点M 关于CD 的对称点M 1,然后过点M 1作M 1N ⊥AB 于N ,交CD 于点P ,连接MP ,如下图所示根据对称性质可知:MP= M 1P ,MC= M 1C此时MP NP +=M 1P +NP=M 1N ,根据垂线段最短可得此时MP NP +最小,且最小值为M 1N 的长 ∵△ABC 为等边三角形∴AC=BC ,∠B =60°∴∠M 1=90°-∠B=30°∵8BM =,当MP NP +的值最小时,9BN =,∴在Rt △BM 1N 中,BM 1=2BN=18∴MM 1= BM 1-BM=10∴MC= M 1C=12MM 1=5 ∴BC=BM +MC=1故答案为:1.【点睛】此题考查的是垂线段最短的应用、等边三角形的性质和直角三角形的性质,掌握垂线段最短、等边三角形的性质和30°所对的直角边是斜边的一半是解决此题的关键.17.如图,将长方形ABCD的边AD沿折痕AE折叠,使点D落在BC上的F处,若AB=5,AD=13,则EF =_____.【答案】13 5【分析】由翻折的性质得到AF=AD=13,在Rt△ABF中利用勾股定理求出BF的长,进而求出CF的长,再根据勾股定理可求EC的长.【详解】解:∵四边形ABCD是长方形,∴∠B=90°,∵△AEF是由△ADE翻折,∴AD=AF=13,DE=EF,在Rt△ABF中,AF=13,AB=5,∴BF=22AF AB-=16925-=12,∴CF=BC﹣BF=13﹣12=1.∵EF2=EC2+CF2,∴EF2=(5﹣EF)2+1,∴EF=135,故答案为:135.【点睛】本题考查勾股定理的综合应用、图形的翻折,解题的关键是熟练掌握勾股定理和翻折的性质.三、解答题18.为缓解用电紧张,龙泉县电力公司特制定了新的用电收费标准:每月用电量x(千瓦时)与应付电费y(元)的关系如图所示.(1)根据图象求出y与x之间的函数关系式;(2)当用电量超过50千瓦时时,收费标准是怎样的?【答案】(1)y=()()0.50500.92050x xx x⎧≤≤⎪⎨-⎪⎩>;(2)0.9元/度【分析】(1)利用待定系数法可以求得y与x之间的函数关系式;(2)根据用电量为50度时付费25元,用电量100度时付费70元进行计算.【详解】解:(1)当0≤x≤50时,设y与x的函数关系式为y=kx,代入(50,25)得:50k=25,解得k=0.5,即当0≤x≤50时,y与x的函数关系式为y=0.5x;当x>50时,设y与x的函数关系式为y=ax+b,代入(50,25),(100,70)得:5025 10070a ba b+=⎧⎨+=⎩,解得:0.920 ab=⎧⎨=-⎩,即当x>50时,y与x的函数关系式为y=0.9x﹣20;由上可得,y与x的函数关系式为y=()() 0.5050 0.92050x xx x⎧≤≤⎪⎨-⎪⎩>;(2)当用电量超过50度时,收费标准是:702510050--=0.9元/度,答:当用电量超过50度时,收费标准是0.9元/度.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.19.老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下:(1)求所捂部分化简后的结果:(2)原代数式的值能等于-1吗?为什么?【答案】(1)211xx+-;(2)不能,理由见解析.【分析】(1)设所捂部分为A,根据题意得出A的表达式,再根据分式混合运算的法则进行计算即可;(2)令原代数式的值为-1,求出x的值,代入代数式中的式子进行验证即可.【详解】解:(1)设所捂部分为A,则2211 ()2111x x xAx x x x-+ -÷=-++-则2211·+1121 x x xAx x x x+-=-+-+=2(1)(1)+1(1)x x x x x +--- =1+11x x x x +-- =211x x +- (2)若原代数式的值为-1,则1=11x x +-- 即x+1=-x+1,解得x=0,当x=0时,除式01x x =+ ∴故原代数式的值不能等于-1.【点睛】本题考查的是分式的化简求值,在解答此类提问题时要注意x 的取值要保证每一个分式有意义. 20.先化简:2222421121m m m m m m m ---÷+--+,其中m 从0,1,2中选一个恰当的数求值. 【答案】21m +,2 【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把0m =代入计算即可求出值. 【详解】解:2222421121m m m m m m m ---÷+--+ 222(2)(1)1(1)(1)2m m m m m m m --=-⋅++-- 21m =+ 因为m+10≠ ,m-10≠,m-20≠所以m 1≠- ,m 1≠,m 2≠当0m =时,原式2=.【点睛】此题考查了解分式方程,以及分式的化简求值,熟练掌握运算法则是解本题的关键.21.在等边△ABC 中,点E 在AB 上,点D 在CB 延长线上,且ED=EC .(1)当点E 为AB 中点时,如图①,AE DB (填“﹥”“﹤”或“=”),并说明理由;(2)当点E 为AB 上任意一点时,如图②,AE DB (填“﹥”“﹤”或“=”),并说明理由;(提示:过点E 作EF ∥BC ,交AC 于点F )(3)在等边△ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED=EC .若△ABC 的边长为1,AE=2,请你画出图形,并直接写出相应的CD 的长.【答案】(1)=,理由见解析;(2)=,理由见解析;(3)见解析【分析】(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE 即可;(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF即可;(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,D在BC的延长线上时,求出CD=1.【详解】解:(1)=,理由如下:∵ED=EC∴∠D=∠ECD∵△ABC是等边三角形∴∠ACB=∠ABC=60°∵点E为AB中点∴∠BCE=∠ACE=30°,AE=BE∴∠D=30°∴∠DEB=∠ABC-∠D= 30°∴∠DEB=∠D∴BD=BE∴BD=AE(2) 过点E作EF∥BC,交AC于点F∵△ABC是等边三角形∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,∠FEC=∠ECB∴∠EFC=∠EBD=120°∵ED=EC∴∠D=∠ECD∴∠D=∠FEC在△EFC和△DBE中D FEC EFC EBD ED EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EFC ≌△DBE∴EF=DB∵∠AEF=∠AFE=60°∴△AEF 为等边三角形∴ AE=EF∴DB =AE(3)解:CD=1或3,理由是:分为两种情况:①如图3,过A 作AM ⊥BC 于M ,过E 作EN ⊥BC 于N ,则AM ∥EN ,∵△ABC 是等边三角形,∴AB=BC=AC=1,∵AM ⊥BC ,∴BM=CM=12BC=12, ∵DE=CE ,EN ⊥BC ,∴CD=2CN ,∵AM ∥EN ,∴△AMB ∽△ENB , ∴AB BM BE BN=, ∴11212=-, ∴BN=12, ∴CN=1+12=32, ∴CD=2CN=3;②如图4,作AM ⊥BC 于M ,过E 作EN ⊥BC 于N ,则AM ∥EN ,∵△ABC 是等边三角形,∴AB=BC=AC=1,∵AM ⊥BC ,∴BM=CM=12BC=12, ∵DE=CE ,EN ⊥BC ,∴CD=2CN ,∵AM ∥EN , ∴AB BM AE MN=, ∴12=12MN , ∴MN=1,∴CN=1-12=12, ∴CD=2CN=1,即CD=3或1.【点睛】本题综合考查了等边三角形的性质和判定,等腰三角形的性质,全等三角形的性质和判定,三角形的外角性质等知识点的应用,熟练掌握等边三角形性质和判定是解题的关键.22.已知一次函数y kx b =+与2y kx (k≠0)的图象相交于点P(1,-6).(1)求一次函数y kx b =+的解析式;(2)若点Q(m ,n)在函数y kx b =+的图象上,求2n -6m +9的值.【答案】(1)y=3x -9;(2)-9【分析】(1)利用待定系数法即可解决问题;(2)Q 点(m ,n )代入y=2x-6可得n=2m-6,推出2n-4m=-12,利用整体代入的思想即可解决问题;【详解】解:(1)由题意得,把P (1,-6)代入2y kx ,解得,k=3,把P(1,-6)代入y kx b=+得,k+b=-6由k=3,解得b=-9,∴一次函数的解析式为y=3x-9;(2)∵点Q(m,n)在函数y kx b=+的图象上,y=3x-9,∴n=3m-9,即n-3m=-9,∴2n-6m+9=2(n-3m)+9=2×(-9)+9=-9,即2n-6m+9的值为-9.【点睛】本题考查了两直线相交的问题,(1)把交点坐标代入两个函数解析式计算即可,比较简单,(2)把点的坐标代入直线解析式正好得到n-3m的形式是解题的关键.23.如图所示,有一个狡猾的地主,把一块边长为a米的正方形土地租给马老汉栽种.过了一年,他对马老汉说:“我把你这块地的一边减少5米,另一边增加5米,继续租给你,你也没吃亏,你看如何?”马老汉一听,觉得好像没吃亏,就答应了.同学们,你们觉得马老汉有没有吃亏?请说明理由.【答案】马老汉吃亏了,理由见解析.【解析】根据马老汉土地划分前后土地的长宽,分别表示面积,再作差.解:马老汉吃亏了.∵a2﹣(a+5)(a﹣5)=a2﹣(a2﹣25)=25,∴与原来相比,马老汉的土地面积减少了25平方米,即马老汉吃亏了.点睛:本题考查了平方差公式.将实际问题转化为数学问题是解题的关键.24.新华中学暑假要进行全面维修,有甲、乙两个工程队共同完成,甲队单独完成这项工程所需天数是乙队单独完成所需天数的23,若由甲队先做10天,剩下的工程再由甲、乙两队合作,再做30天可以完成.(1)求甲、乙两队单独完成这项工程各需多少秀?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,若由甲、乙两队合作,则工程预算的施工费用50万元是否够用?若不够用,需追加多少万元?【答案】(1)甲乙两队单独完成这项工程雷要60天和90天;(2)工程預算费用不够,需追要0.4万元.【分析】(1)由题意设乙队单独完成这项工程需要x 天,则甲队单独完戒这项工程需要23x 天,根据题意列出方程求解即可; (2)由题意设甲乙两队合作完成这项工程需要y 天,并根据题意解出y 的值,进而进行分析即可.【详解】解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完戒这项工程需要23x 天,依题意则有111103012233x x x ⎛⎫ ⎪++⨯⨯= ⎪ ⎪⎝⎭解得90x =经检验,90x =是原分式方程的解,且符合题意22=90=6033x ⨯(天) 故甲乙两队单独完成这项工程雷要60天和90天.(2)设甲乙两队合作完成这项工程需要y 天, 则1116090y ⎛⎫+= ⎪⎝⎭解得y=36所需费用36(0.840.56)50.4⨯+=(万元)50.450∴>,∴工程預算费用不够,需追要0.4万元.【点睛】本题考查分式方程的应用,根据题意找到合适的等量关系列出方程是解决问题的关键.25.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (0,-3),B (3,-2),C (2,-4). (1)在图中作出△ABC 关于x 轴对称的△A 1B 1C 1.(2)点C 1的坐标为: .(3)△ABC 的周长为 .+【答案】(1)答案见解析;(2)C1(2,4);(3)2510【分析】(1)根据题意利用纵坐标变为相反数,图像沿x轴向上翻折在图中作出△ABC关于x轴对称的△A1B1C1即可;(2)由题意可知纵坐标变为相反数,结合图像可得点C1的坐标为;(3)由题意利用勾股定理分别求出三边长,然后相加即可.【详解】解:(1)在图中作出△ABC关于x轴对称的△A1B1C1如下:(2)因为C(2,-4),所以关于x轴对称的纵坐标变为相反数,点C1的坐标为(2,4);(3)利用勾股定理分别求出:22125,BC=+=AC=+22125,1310,AB+=22所以△ABC55102510.【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质以及结合勾股定理进行分析是解答此题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列四个图形中,是轴对称图形的有( )A .4个B .3个C .2个D .1个【答案】B 【分析】根据轴对称图形的定义依次进行判断即可.【详解】把某个图形沿某条直线折叠,如果图形的两部分能完全重合,那么这个是轴对称图形,因此第1,2,3是轴对称图形,第4不是轴对称图形.【点睛】本题考查轴对称图形,掌握轴对称图形的定义为解题关键.2.如图,边长分别为a 和b 的两个正方形拼接在一起,则图中阴影部分的面积为( )A .22bB .()2b a -C .212bD .22b a -【答案】C 【分析】根据三角形和矩形的面积公式,利用割补法,即可求解.【详解】由题意得:11()22BCD S CD BC a b a =⋅⋅=⋅+⋅,21122DEF S DF EF b =⋅⋅=,11()22ABE SAB AE b a a =⋅⋅=-⋅,()ACDF S CD DF a b b =⋅=+⋅四边形, ∴S 阴影=BCD DEF ABE ACDF S S S S ---四边形=2111()()()222a b b a b a b b a a +⋅-⋅+⋅---⋅=212b . 故选C .【点睛】本题主要考查求阴影部分图形的面积,掌握割补法求面积,是解题的关键.3.下列运算正确的是( )A .()2236=⨯=B .25=-C =D =【答案】D【解析】解:A .()2=12,故A 错误;B 25,故B 错误;C ==5,故C 错误;D D 正确. 故选D .4.下列四组数据中,不能作为直角三角形的三边长的是( )A .7,24,25B .6,8,10C .9,12,15D .3,4,6 【答案】D【分析】根据勾股定理的逆定理:若三边满足222+=a b c ,则三角形是直角三角形逐一进行判断即可得出答案.【详解】A, 22272425+=,能组成直角三角形,不符合题意;B ,2226810+=,能组成直角三角形,不符合题意;C ,22291215+=,能组成直角三角形,不符合题意;D ,222346+≠,不能组成直角三角形,符合题意;故选:D .【点睛】本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.5.一次函数21y x =-+的图象与y 轴的交点坐标是( )A .(-2,0)B .(12,0)C .(0,2)D .(0,1) 【答案】D【分析】令x=0,代入函数解析式,求得y 的值,即可得到答案.【详解】令x=0,代入21y x =-+得:2011y =-⨯+=,∴一次函数21y x =-+的图象与y 轴的交点坐标是:(0,1).故选D .【点睛】本题主要考查一次函数图象与y 轴的交点坐标,掌握直线与y 轴的交点坐标的特征,是解题的关键. 6.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .10【答案】C 【分析】作DF ⊥AC 于F ,根据角平分线的性质求出DF ,根据三角形的面积公式计算即可.【详解】解:作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE=4, ∴112228AB DE AC DF 即112246428AB解得,AB=8,故选:C .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 7.一次函数23y x =- 的图象不经过的象限是( )A .一B .二C .三D .四【答案】B【分析】根据一次函数中k 与b 的符合判断即可得到答案.【详解】∵k=2>0,b=-3<0,∴一次函数23y x =- 的图象经过第一、三、四象限,故选:B.【点睛】此题考查一次函数的性质,熟记性质定理即可正确解题.8.某地连续10天高温,其中日最高气温与天数之间的关系如图所示,则这10天日最高气温的平均值是( )A .34CB .34.3C C .35CD .32C【答案】B 【分析】先分别求出32℃、33℃、34℃、36℃和35℃的天数,然后根据平均数的公式计算即可.【详解】解:∵10×10%=1(天),10×20%=2(天),10×30%=3(天),∴最高气温是32℃的天数有1天,最高气温是33℃、34℃和36℃的天数各有2天,最高气温是35℃的天数有3天,∴这10天日最高气温的平均值是(32×1+33×2+34×2+36×2+35×3)÷10=34.3C故选B .【点睛】此题考查的是求平均数,掌握平均数的公式是解决此题的关键.9.若把分式3x y xy+中的x 与y 都扩大3倍,则所得分式的值( ) A .缩小为原来的13 B .缩小为原来的19 C .扩大为原来的3倍D .不变 【答案】A【分析】根据分式的基本性质即可求出答案. 【详解】解:原式=33333x y x y +⨯⋅=33x y xy+⨯, 故选:A .【点睛】本题考查分式的基本性质,关键在于熟记基本性质.10.8的立方根为()A.4 B.﹣4 C.2 D.﹣2【答案】C【分析】根据立方根的定义求解即可.【详解】解:∵13=8,∴8的立方根为:1.故选:C.【点睛】本题考查立方根:若一个数的立方等于a,那么这个数叫a的立方根.二、填空题11.比较大小:4______15(用“>”、“<”或“=”填空).【答案】>【分析】先把4写成16,再进行比较.=【详解】416,>1615,∴>415故填:>.【点睛】本题考查实数比较大小,属于基础题型.12.将长为20cm、宽为8cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm,设x张白纸粘合后的总长度为ycm,y与x之间的关系式为_______.【答案】y=17x+1【分析】由图可知,将x张这样的白纸粘合后的总长度=x张白纸的总长-(x-1)个粘合部分的宽,把相关数据代入化简即可得到所求关系式.【详解】解:由题意可得:y=20x-1(x-1)=17x+1,即:y与x间的函数关系式为:y=17x+1.故答案为:y=17x+1.【点睛】观察图形,结合题意得到:“白纸粘合后的总长度=x 张白纸的总长-(x-1)个粘合部分的宽”是解答本题的关键.13.若,则的值为____. 【答案】-5 【解析】利用多项式乘以多项式的运算法则计算,即可求得a 、b 的值,由此即可求得a+b 的值. 【详解】∵=,∴a=1,b=-6,∴a+b=1+(-6)=-5.故答案为:-5.【点睛】 本题考查了多项式乘以多项式的运算法则,熟练运用多项式乘以多项式的运算法则计算出是解决问题的关键.14.若多项式()219x m x --+是一个完全平方式,则m 的值为_________.【答案】-5或1【解析】试题解析:∵x 2- (m-1)x+9=x 2-(m-1)x+32,∴(m-1)x=±2×3×x ,解得m=-5或1.15.已知一次函数2y x b =+的图像经过点()12,A y 和()21,B y -,则1y _____2y (填“>”、“<”或“=”).【答案】>【分析】根据一次函数图象的增减性,结合函数图象上的两点横坐标的大小,即可得到答案.【详解】∵一次函数的解析式为:2y x b =+,∴y 随着x 的增大而增大,∵该函数图象上的两点()12,A y 和()21,B y -,∵-1<2,∴y 1>y 2,故答案为:>.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.16.计算:2(23)-=___________. 【答案】7-43.【分析】依据完全平方公式222()2a b a ab b -=-+进行计算.【详解】2443(372433)=-+=--【点睛】此题考查完全平方公式以及二次根式的混合运算,熟记公式即可正确解答.17.(2016湖南省株洲市)已知A 、B 、C 、D 是平面坐标系中坐标轴上的点,且△AOB ≌△COD .设直线AB 的表达式为y 1=k 1x+b 1,直线CD 的表达式为y 2=k 2x+b 2,则k 1k 2=______.【答案】1.【详解】试题解析:设点A (0,a )、B (b ,0),∴OA=a ,OB=-b ,∵△AOB ≌△COD ,∴OC=a ,OD=-b ,∴C (a ,0),D (0,b ),∴k 1==OA a OB b -,k 2=OD b OC a-=, ∴k 1•k 2=1,【点睛】本题考查了两直线相交于平行,全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.三、解答题18.已知:如图,AE =CF ,AD ∥BC ,AD =CB .求证:∠B =∠D .【答案】见解析【分析】根据两直线平行内错角相等即可得出∠A =∠C ,再结合题意,根据全等三角形的判定(SAS )即可判断出△ADF ≌△CBE ,根据全等三角形的的性质得出结论.【详解】证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE,在△ADF和△CBE中,∵AD CBA C AF CF=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点睛】本题考查平行线的性质、全等三角形的判定(SAS)和性质,解题的关键是掌握平行线的性质、全等三角形的判定(SAS)和性质.19.为响应稳书记“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购实甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种是球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?【答案】(1)甲种足球需50元,乙种足球需70元;(2)20个班级;(3)甲种足球40个,乙种足球60个.【分析】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意列出分式方程即可求出结论;(2)根据题意,求出该校购买甲种足球和乙种足球的数量即可得出结论;(3)设这学校购买甲种足球2x个,乙种足球3x个,根据题意列出一元一次方程即可求出结论.【详解】解:(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,可得:20001400220 x x=⨯+解得:x=50经检验x=50是原方程的解且符合题意答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球2000x=200050=40个,购买乙种足球20个,∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x 个,乙种足球3x 个,根据题意得:2x×50+3x×70=3100解得:x=20∴2x=40,3x=60答:这学校购买甲种足球40个,乙种足球60个.【点睛】此题考查的是分式方程的应用和一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键. 20.如图的图形取材于我国古代数学家赵爽的《勾股圆方图》也称(《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是100,小正方形的面积是4,直角三角形较短的直角边为a ,较长的直角边为b ,试求()2a b +的值.【答案】196【分析】先用大正方形的面积得到三角形的斜边的平方为100,则22100+=a b ,利用大正方形面积减去小正方形面积等于四个直角三角形的面积之和可得到296ab =,由完全平方公式即可求得结果.【详解】解:∵大正方形的面积是100,∴直角三角形的斜边的平方100,∵直角三角形较短的直角边为a ,较长的直角边为b ,∴22100+=a b ,∵大正方形面积减去小正方形面积等于四个直角三角形的面积之和,小正方形的面积是4, ∴1410042⨯=-ab ,即296ab =, ∴()2a b +=22100296196==+++a ab b .【点睛】本题考查了勾股定理和完全平方公式,正确表示出直角三角形的面积是解题的关键.21.如图,在Rt △ABC 中,∠B=90°.()1作出,∠BAC 的平分线AM ;(要求:尺规作图,保留作图痕迹,不写作法) ()2若∠BAC 的平分线AM 与BC 交于点D,且B D=3,AC=10,则DAC 的面积为______.【答案】(1)作图见解析;(2)1.【分析】(1)利用基本作图,作∠BAC的平分线即可;(2)作DF⊥AC于F.利用角平分线的性质定理证明DF=DE=3,即可解决问题. 【详解】(1)∠BAC的平分线AM如图所示;(2)作DF⊥AC于F.∵DA平分∠BAC,DB⊥BA,DF⊥AC,∴DB=DF=3,∴S△DAC=12•AC•DF=12×10×3=1,故答案为1.【点睛】本题考查作图-基本作图,角平分线的性质定理等知识,解题的关键是熟练掌握五种基本作图,学会添加常用辅助线.22.四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.求证:(1)△CBE≌△CDF;(2)AB+DF=AF.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,从而利用AAS即可判定△CBE≌△CDF.。
庐江县八年级期末试卷数学
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 2.5B. -3C. √2D. 02. 若a、b是实数,且a + b = 0,则下列结论正确的是()A. a > 0,b < 0B. a < 0,b > 0C. a = 0,b = 0D. 无法确定3. 已知等腰三角形ABC中,AB = AC,下列结论正确的是()A. ∠BAC = ∠ABCB. ∠BAC = ∠ACBC. ∠ABC = ∠ACBD. 无法确定4. 若x² - 5x + 6 = 0,则x的值为()A. 2 或 3B. 1 或 4C. 1 或 2D. 2 或 45. 在平面直角坐标系中,点P(-3,2)关于原点的对称点是()A.(3,-2)B.(-3,-2)C.(-3,2)D.(3,2)6. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x² - 1D. y = √x7. 若a、b是方程x² - 4x + 3 = 0的两根,则a + b的值为()A. 2B. 4C. 3D. 18. 下列各数中,绝对值最大的是()A. -3B. 2C. 0D. -29. 已知一次函数y = kx + b(k ≠ 0)的图象经过点A(1,2),下列结论正确的是()A. k > 0,b > 0B. k < 0,b < 0C. k > 0,b < 0D. k < 0,b > 010. 在等边三角形ABC中,若AB = AC = BC = 6,则三角形ABC的周长为()A. 12B. 18C. 24D. 30二、填空题(每题3分,共30分)11. 若a、b是方程x² - 3x + 2 = 0的两根,则a² + b²的值为______。
12. 若x = -1是方程2x² - 5x + 3 = 0的解,则该方程的另一个解为______。
2018-2019学年安徽省合肥市庐阳区八年级(上)期末数学试卷-解析版
2018-2019学年安徽省合肥市庐阳区八年级(上)期末数学试卷-解析版2018-2019学年安徽省合肥市庐阳区八年级(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.点A(-3,4)所在象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.一次函数y=-3x-2的图象和性质,述正确的是()A. y随x的增大而增大B. 在y轴上的截距为2C. 与x轴交于点D. 函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4.下列命是真命题的是()A. 是单项式B. 三角形的一个外角大于任何一个内角C. 两点之间,直线最短D. 同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A. B. C. D.6.已知点A(m,-3)和点B(n,3)都在直线y=-2x+b上,则m与n的大小关系为()A. B. C. D. 大小关系无法确定7.把函数y=3x-3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A. B. C. D.8.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A. 每分钟进水5升B. 每分钟放水升C. 若12分钟后只放水,不进水,还要8分钟可以把水放完D. 若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.B.C.D.10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD 是轴对称图形,其中正确的个数为()A. 1个B. 2个C. 3个D.4个二、填空题(本大题共5小题,共30.0分)11.函数y=中,自变量x的取值范围是______.12.若点(a,3)在函数y=2x-3的图象上,a的值是______.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为______.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过______秒时,△DEB与△BCA全等.15.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是______米.(2)小明在书店停留了______分钟.(3)本次上学途中,小明一共行驶了______米.一共用了______分钟.(4)在整个上学的途中______(哪个时间段)小明骑车速度最快,最快的速度是______ 米/分.三、计算题(本大题共1小题,共12.0分)16.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B 种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B 种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.四、解答题(本大题共7小题,共68.0分)17.已知一次函数的图象经过A(-1,4),B(1,-2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.18.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(-2,b),求a+b的值.19.如图,一次函数图象经过点A(0,2),且与正比例函数y=-x的图象交于点B,B点的横坐标是-1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.20.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.21.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是______.(2)根据你添加的条件,再写出图中的一对全等三角形______.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)22.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,-3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.答案和解析1.【答案】B【解析】解:因为点A(-3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【解析】解:A.一次函数y=-3x-2的图象y随着x的增大而减小,即A 项错误,B.把x=0代入y=-3x-2得:y=-2,即在y轴的截距为-2,即B 项错误,C.把y=0代入y=-3x-2的:-3x-2=0,解得:x=-,即与x轴交于点(-,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【答案】A【解析】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.【解析】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.根据单项式、三角形外角性质、线段公理、平行线性质解答即可.本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【答案】B【解析】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【答案】A【解析】解:∵一次函数y=-2x+b图象上的点y随着x的增大而减小,又∵点A(m,-3)和点B(n,3)都在直线y=-2x+b上,且-3<3,∴m>n,故选:A.根据一次函数y=-2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【答案】A【解析】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x-2)-3=3x-9.故选:A.根据平移性质可由已知的解析式写出新的解析式即可.此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【答案】B【解析】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12-30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C 正确;30÷(5-3.75)=24分钟,故D正确,故选:B.根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【答案】C【解析】解:△ABC中,∠B+∠C=180°-∠A=110°;△BED中,BE=BD,∴∠BDE=(180°-∠B);同理,得:∠CDF=(180°-∠C);∴∠BDE+∠CDF=180°-(∠B+∠C)=180°-∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【答案】D【解析】解:根据题意,∠BPC=360°-60°×2-90°=150°∵BP=PC,∴∠PBC=(180°-150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.(1)先求出∠BPC的度数是360°-60°×2-90°=150°,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.11.【答案】x≤2且x≠-2【解析】解:根据题意,得:,解得:x≤2且x≠-2,故答案为:x≤2且x≠-2.由二次根式中被开方数为非负数且分母不等于零求解可得.本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【答案】3【解析】解:把点(a,3)代入y=2x-3得:2a-3=3,解得:a=3,故答案为:3.把点(a,3)代入y=2x-3得到关于a的一元一次方程,解之即可.本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【答案】40°或140°【解析】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°-40°=140°,故答案为40°或140°.由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【答案】0,4,12,16【解析】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24-3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB或AE=0时的情况,求出t的值即可.本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.15.【答案】1500 4 2700 14 12分钟至14分钟450【解析】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200-600)÷2=300(米/分),从书店到学校的速度=(1500-600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.本题考查了函数的图象及其应用,解题的关键是理解函数图象中x 轴、y轴表示的量及图象上点的坐标的意义.16.【答案】解(1)设A奖品的单价是x元,B奖品的单价是y 元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100-m)=-5m+1500∴ ,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=-5m+1500,∴k=-5<0,∴W随m的增大而减小,∴m=75时,W最小=1125.∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【解析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.17.【答案】解:(1)∵图象经过点(-1,4),(1,-2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=-3x+1;(2)在y=-3x+1中,令y=0,可得-3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【解析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.18.【答案】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(-2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=-1,b=0.∴a+b=-1+0=-1.【解析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.19.【答案】解:(1)∵点B在函数y=-x上,点B的横坐标为-1,∴当x=-1时,y=-(-1)=1,∴点B的坐标为(-1,1),∵点A(0,2),点B(-1,1)在一次函数y=kx+b的图象上,∴ ,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=-2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【解析】(1)根据点B在函数y=-x上,点B的横坐标为-1,可以求得点B的坐标,再根据一次函数过点A 和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【解析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.21.【答案】∠AEB=∠CDB△ADF≌△CEF或△AEC≌△CDA【解析】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.【答案】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【解析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.23.【答案】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,-3)∴ 解得:∴直线AB:y=-x+7当-x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,-2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P、A'、B在同一直线上(如图2)设直线A'B的解析式为:y=k'x+b'解得:∴直线A'B:y=-x-1当-x-1=0时,得:x=-2∴点P坐标为(-2,0)②存在满足条件的点Q法一:设直线AA'交x轴于点C,过B作BD⊥直线AA'于点D (如图3)∴PC=4,BD=2∴S△PAB=S△PAA'+S△BAA'=设BQ与直线AA'(即直线x=2)的交点为E(如图4)∵S△QAB=S△PAB则S△QAB==2AE=12∴AE=6∴E的坐标为(2,8)或(2,-4)设直线BQ解析式为:y=ax+q或解得:或∴直线BQ:y=或y=∴Q点坐标为(0,19)或(0,-5)法二:∵S△QAB=S△PAB∴△QAB与△PAB以AB为底时,高相等即点Q到直线AB的距离=点P到直线AB的距离i)若点Q在直线AB下方,则PQ∥AB设直线PQ:y=x+c,把点P(-2,0)代入解得c=-5,y=-x-5即Q(0,-5)ii)若点Q在直线AB上方,∵直线y=-x-5向上平移12个单位得直线AB:y=-x+7∴把直线AB:y=-x+7再向上平移12个单位得直线AB:y=-x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,-5)或(0,19)【解析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB 的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,-4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB 与△PAB同以AB为底时,高应相等,所以点Q 在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB 上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
安徽省合肥庐江县联考2018-2019学年八上数学期末检测试题
安徽省合肥庐江县联考2018-2019学年八上数学期末检测试题一、选择题1.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是( ) A.41.610-⨯ B.40.1610-⨯C.51.610-⨯D.50.1610-⨯2.若分式有意义,则实数x 的取值范围是( )A.一切实数B.C.D.且3.分式242x x -+的值为零,则x 的值为( )A .2B .0C .2-D .2±4.下列各式中计算正确的是( )A .t 10÷t 9=t B .(xy 2)3=xy 6C .(a 3)2=a 5D .x 3x 3=2x 65.如图 ,能根据图形中的面积说明的乘法公式是( )A .(a + b)(a - b) = a 2 - b 2B .(a + b)2 = a 2 + 2ab + b 2C .(a - b)2= a 2- 2ab + b 2D . ( x + p )(x + q) = x 2+ ( p + q)x + pq6.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x y -,-a b ,2,22x y -,a ,x y +,分别对应下列六个字:海、爱、我、美、游、北,现将()()222222a x y b x y ---因式分解,结果呈现的密码信息可能是( ) A.我爱游B.北海游C.我爱北海D.美我北海7.如图,矩形ABCD 中,AB=4,BC=8,P ,Q 分别是直线BC ,AB 上的两个动点,AE=2,△AEQ 沿EQ 翻折形成△FEQ ,连接PF ,PD ,则PF+PD 的最小值是().A .2B .8C .10D .28.下列说法中正确的是( ) A .全等三角形的周长相等B .从直线外一点到这条直线的垂线段,叫做这点到直线的距离C .两条直线被第三条直线所截,同位角相等D .等腰三角形的对称轴是其底边上的高9.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB 的依据是( )A.SSS B.SAS C.AAS D.ASA10.平面直角坐标系内的点A(1,﹣2)与点B(1,2)关于()A.x轴对称 B.y轴对称C.原点对称 D.直线y=x对称11.如图,在△ABC中,∠C=90°,AC=BC,AB=4cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,则以下结论:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④△BDE周长是4cm.其中正确的有()A.4个B.3个C.2个D.1个12.如图,在△PAB中,PA=PB,M、N、K分别是PA、PB、AB上的点,且△AMK≌△BKN,若∠MKN=52°,则∠P的度数为()A.38°B.76°C.96°D.136°13.如图,△ABC的中线BD、CE相交于点O,OF⊥BC,垂足为F,且AB=6,BC=5,AC=3,OF=2,则四边形ADOE的面积是()A.9B.6C.5D.314.在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是()A.电动伸缩门B.升降台C .栅栏D .窗户15.若等腰三角形的两边长分别是3和6,则这个三角形的周长是( ) A .12 B .15 C .12或15 D .9 二、填空题 16.分式22m m n -和33nm n+的最简公分母为______. 17.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了()na b +(n 为非负整数)展开式的项数及各项系数的有关规律.例如,在三角形中第三行的三个数1,2,1,恰好对应着()2222a b a ab b +=++展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数,等等.请观察图中数字排列的规律,求出代数式x y z ++的值为______.【答案】41. 18.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l 和直线l 外一点P.用直尺和圆规作直线PQ ,使PQ ⊥l 于点Q .”小艾的作法如下:(1)在直线l 上任取点A ,以A 为圆心,AP 长为半径画弧. (2)在直线l 上任取点B ,以B 为圆心,BP 长为半径画弧. (3)两弧分别交于点P 和点M(4)连接PM ,与直线l 交于点Q ,直线PQ 即为所求. 老师表扬了小艾的作法是对的. 请回答:小艾这样作图的依据是_____.19.如图,在△ABC 中,AB =BC ,在BC 上分别取点M 、N ,使MN=NA ,若∠BAM=∠NAC ,则∠MAC=_________°.20.如果等腰三角形的一个外角是80°,那么它的底角的度数为__________. 三、解答题2111001++(311001++22.阅读材料:某些代数恒等式可用一些卡片拼成的图形的面积来解释.例如,图①可以解释2222()a ab b a b ++=+,因此,我们可以利用这种方法对某些多项式进行因式分解.根据阅读材料回答下列问题:(1)如图②所表示的因式分解的恒等式是________________________.(2)现有足够多的正方形和长方形卡片(如图③),试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形(每两张卡片之间既不重叠,也无空隙),使该长方形的面积为2232a ab b ++,并利用你画的长方形的面积对2232a ab b ++进行因式分解.23.如图,等腰Rt △ABC 中,∠ACB =90°,AC =BC ,点D 、E 分别在边AB 、CB 上,CD =DE ,∠CDB =∠DEC ,过点C 作CF ⊥DE 于点F ,交AB 于点G , (1)求证:△ACD ≌△BDE ; (2)求证:△CDG 为等腰三角形.24.如图,ABC △为等边三角形,点D 、E 分别在BC ,AC 上,AE=CD ,AD 交BE 于点P ,BQ AD ⊥于Q ,120APB ︒∠=.(1)求证:AD BE =;(2)若3PQ =,1PE =,求AD 的长.25.若一个三角形的三边长分别是a ,b ,c ,其中a 和b 满足方程421804380a b b a +-=⎧⎨-+=⎩,若这个三角形的周长为整数,求这个三角形的周长. 【参考答案】*** 一、选择题16.()()3m n m n +- 17.无18.到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss 或全等三角形对应角相等或等腰三角形的三线合一 19.60 20.40° 三、解答题 21.(1)12;13;4134-;(2)111n n n +-+;(3)10011001100222.(1)2222()a ab a a b +=+;(2)2232()(2)a ab b a b a b ++=++ 23.(1)见解析;(2)见解析. 【解析】 【分析】(1)根据题意和图形,利用全等三角形的判定可以证明结论成立;(2)根据题意和(1)中的结论,利用全等三角形的性质和等腰三角形的判定可以证明结论成立. 【详解】解:(1)∵∠CDB =∠DEC , ∴∠ADC =∠BED , ∵AC =BC , ∴∠A =∠B , 在△ACD 与△BDE 中,A B ADC BED CD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BDE (AAS ); (2)由(1)知,△ACD ≌△BDE , ∴∠ACD =∠BDE ,∵在Rt △ACB 中,AC =BC , ∴∠A =∠B =45°,∴∠CDG =45°+∠ACD ,∠DGC =45°+∠BCG , ∴∠CDF =45°, ∵CF ⊥DE 交BD 于点G , ∴∠DFC =90°, ∴∠DCF =45°, ∵DC =DE , ∴∠DCE =∠DEC ,∵∠DCE =∠DCF+∠BCG =45°+∠BCG ,∠DEC =∠B+∠BDE =45°+∠BDE , ∴∠BCG =∠BDE , ∴∠ACD =∠BCG , ∴∠CDG =∠CGD , ∴CD =CG ,∴△CDG 是等腰三角形. 【点睛】本题考查全等三角形的判定与性质、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 24.(1)见解析;(2)7 【解析】 【分析】(1)根据等边三角形的性质,通过全等三角形的判定定理SAS 证得结论;(2)利用(1)中的全等三角形的对应角相等和三角形外角的性质求得∠BPQ=60°;求得∠PBQ=30°,所以由“30度角所对的直角边是斜边的一半”得到2PQ=BP=6,则易求BE=BP+PE=7. 【详解】(1)证明:∵△ABC 为等边三角形, ∴AB=CA,∠BAE=∠C=60°, 在△AEB 与△CDA 中, AB CA BAE C AE CD ⎧=∠=∠=⎪⎨⎪⎩;, ∴△AEB ≌△CDA(SAS), ∴BE=AD;(2)由(1)知,△AEB≌△CDA,则∠ABE=∠CAD,∴∠BAD+∠ABE=∠BAD+∠CAD=∠BAC=60°,∴∠BPQ=∠BAD+∠ABD=60°;∴∠BPQ=60°.∵BQ⊥AD,∴∠PBQ=30°,∴PQ=12BP=3,∴BP=6∴AD=BE =BP+PE=7,即AD=7.【点睛】此题考查全等三角形的判定与性质,等边三角形的性质,解题关键在于掌握判定定理. 25.9。
2018-2019学年上期八年级数学期末试卷(解析版)
2018-2019学年上期八年级数学期末试卷一、填空题(本大题共12小题,共24.0分)1.9的平方根等于______.2.比较大小:-1______(填“>”、“=”或“<”).3.若式子有意义,则x的取值范围是______.4.△ABC中,AB=AC,且∠A=80°,则∠B=______°.5.在平面直角坐标系中,点A(2,-3)关于y轴对称的点的坐标为______.6.Rt△ABC中,两条直角边长分别为5和12,则斜边上的中线长等于______.7.正比例函数y=(m-1)x图象经过二、四象限,则m的值可以是______(写一个即可).8.如图,△ABC≌△DBE,A、D、C在一条直线上,且∠A=60°,∠C=35°,则∠DBC=______°.9.如图,△ABC中,AB=AC,BE⊥AC,D为AB中点,若DE=5,BE=8.则EC=______.10.如图,根据函数图象回答问题:方程组的解为______.11.如图,点P是∠AOB的角平分线上一点,PD⊥OA于点D,CE垂直平分OP,若∠AOB=30°,OE=4,则PD=______.12.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的若干信息.请你根据表格中的相关数据计算:.二、选择题(本大题共6小题,共18.0分)13.下面四个图形分别是低碳、节水、回收和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.14.数3.14、、π、、、中,无理数的个数为()A. 2个B. 3个C. 4个D. 5个15.关于一次函数y=1-2x,下列说法正确的是()A. 它的图象过点B. 它的图象与直线平行C. y随x的增大而增大D. 当时,总有16.如图,点A、B、C都在方格纸的“格点”上,请找出“格点”D,使点A、B、C、D组成一个轴对称图形,这样的点D共有()个.A. 1B. 2C. 3D. 417.某超市以每千克0.8元的价格从批发市场购进若干千克西瓜,在销售了部分西瓜之后,余下的每千克降价0.3元,直至全部售完.销售金额y与售出西瓜的千克数x 之间的关系如图所示,那么超市销售这批西瓜一共赚了()A. 20元B. 32元C. 35元D. 36元18.如图△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB中点,将△CAE沿着直线CE翻折,得到△CDE,连接AD,则线段AD的长等于()A. 8B.C.D. 10三、解答题(本大题共8小题,共78.0分)19.(1)求x的值:4x2-9=0;(2)计算:-+.20.已知直线y=kx+b与直线y=2x平行,且经过点A(4,4).(1)求k和b的值;(2)若直线y=kx+b与y轴相交于点B,求△AOB的面积.21.已知点A(1,3)、B(3,-1),利用图中的“格点”完成下列作图或解答:(1)在第三象限内找“格点”C,使得CA=CB;(2)在(1)的基础上,标出“格点”D,使得△DCB≌△ABC;(3)点M是x轴上一点,且MA-MB的值最大,则点M的坐标______.22.如图,四边形ABCD中,AD∥BC,∠A=90°,CE⊥BD,垂足为E,BE=DA.(1)求证:△ABD≌△ECB;(2)若∠DBC=45°,BE=1,求DE的长(结果精确到0.01,参考数值:≈1.414,≈1.732)23.快递员张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,到达小区后将快递投放到快递专柜,然后原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,张师傅距离快递公司的路程y(千米)与从公司出发所用时间t(小时)的函数图象如图所示,根据图象回答问题:(1)合理解释线段AB表示的实际意义______;(2)图中a=______,直线BC的函数表达式为______.(3)出发t小时,快递员距离快递公司10千米,求t的值.24.如图,正比例函数y=x的图象与一次函数y=kx+b的图象交于点A(m,3),一次函数y=kx+b图象与x轴负半轴交于点B.(1)根据图象回答问题:不等式kx+b>x的解为______;(2)若AB=5,求一次函数的表达式;(3)在第(2)问的条件下,若点P是直线AB上的一个动点,则线段OP长的最小值为______.25.在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为______;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用(3)若边长AB=4,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L的变化范围是______.26.如图,在平面直角坐标系中,点B的坐标是(0,2),动点A从原点O出发,沿着x轴正方向移动,△ABP是以AB为斜边的等腰直角三角形(点A、B、P顺时针方向排列),当点A与原点O重合时,得到等腰直角△OBC(此时点P与点C重合).(1)BC=______;当OA=2时,点P的坐标是______;(2)设动点A的坐标为(t,0)(t≥0).①求证:点A在移动过程中,△ABP的顶点P一定在射线OC上;②用含t的代数式表示点P的坐标为:(______,______);(3)过点P做y轴的垂线PQ,Q为垂足,当t=______时,△PQB与△PCB全等.答案和解析1.【答案】±3【解析】解:∵(±3)2=9,∴9的平方根是±3.故答案为:±3.直接根据平方根的定义进行解答即可.本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.2.【答案】<【解析】解:-1=2-1=1,∵1<,∴-1<.故答案为:<.首先求出-1的值是多少;然后根据实数大小比较的方法判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.【答案】x≥-2【解析】解:根据题意得:x+2≥0,解得:x≥-2.故答案是:x≥-2.根据二次根式的性质和,被开方数大于或等于0,可以求出x的范围.本题考查的知识点为:二次根式的被开方数是非负数.4.【答案】50【解析】解:∵△ABC中,∠A=80°,AB=AC,∴∠B=∠C=(180°-∠A)÷2=(180°-80°)÷2=50°.故答案为:50.根据等腰三角形的性质:∠B=∠C,再根据三角形的内角和定理即可解答.本题考查了等腰三角形两底角相等的性质,是基础题.5.【答案】(-2,-3)【解析】解:点A(2,-3)关于y轴对称的点的坐标为(-2,-3),故答案为:(-2,-3).根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴对称的点的坐标,关键是掌握点的坐标的变化规律.6.【答案】6.5【解析】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线的长==6.5.故答案为:6.5.根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.7.【答案】0(答案不唯一)【解析】解:∵正比例函数y=(m-1)x,它的图象经过二、四象限,∴m-1<0,解得m<1.∴m的值可以是0.故答案为:0(答案不唯一).先根据正比例函数y=(m-1)x,它的图象经过二、四象限得出关于m的不等式,求出m的取值范围即可.本题考查的是正比例函数的性质,熟知正比例函数的增减性是解答此题的关键.8.【答案】25【解析】解:∵△ABC≌△DBE,∴AB=BD,∴∠A=∠BDA=60°,∵∠BDA=∠C+∠DBC,∠C=35°,∴∠DBC=60°-35°=25°,故答案为25.由△ABC≌△DBE,推出AB=BD,推出∠A=∠BDA=60°,再根据∠BDA=∠C+∠DBC,求出∠DBC即可.本题考查全等三角形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】4【解析】解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=AC=2DE=2×5=10,∵BE=8,∴AE==6,∴EC=AC-AE=4,故答案为:4.由BE⊥AC,D为AB中点,DE=5,根据直角三角形斜边的中线等于斜边的一半,即可求得AB的长,然后由勾股定理求得AE的长.此题考查了直角三角形斜边上的中线的性质以及勾股定理.注意掌握直角三角形斜边的中线等于斜边的一半定理的应用是解此题的关键.10.【答案】【解析】解:根据图象知:y=kx+3经过点(-3,0),所以-3k+3=0,解得:k=1,所以解析式为y=x+3,当x=-1时,y=2,所以两个函数图象均经过(-1,2)所以方程组的解为,故答案为:.首先观察函数的图象y=kx+3经过点(-3,0),然后求得k值确定函数的解析式,最后求得两图象的交点求方程组的解即可;此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.11.【答案】2【解析】解:如图,过点P作PF⊥OB于点F,∵点P是∠AOB的角平分线上一点,PD⊥OA于点D,∴PD=PF,∠AOP=∠BOP=∠AOB=15°.∵CE垂直平分OP,∴OE=OP.∴∠POE=∠EPO=15°.∴∠PEF=2∠POE=30°.∴PF=PE=OE=2.则PD=PF=2.故答案是:2.过点P作PF⊥OB于点F,由角平分线的性质知:PD=PF,所以在直角△PEF中求得PF的长度即可.考查了角平分线的性质,线段垂直平分线的性质,由已知能够注意到PD=PF 是解决的关键.12.【答案】6【解析】解:设一次函数解析式为:y=kx+b,…则可得:-k+b=m①;k+b=2②;2k+b=n③;m+2n=①+2③=3k+3b=3×2=6.故答案为:6.设y=kx+b,将(-1,m)、(1,2)、(2,n)代入即可得出答案.本题考查待定系数法求函数解析式的知识,比较简单,注意掌握待定系数法的运用.13.【答案】D【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.14.【答案】A【解析】解:在所列实数中,无理数有、π这2个,故选:A.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.【答案】D【解析】解:A、当x=1时,y=-1.所以图象不过(1,-2),故错误;B、因为一次函数y=1-2x与直线y=2x的k不相等,所以它的图象与直线y=2x 平行,故错误;C、因为k=-2,所以y随x的增大而减小,故错误;D、因为y随x的增大而减小,当x=0时,y=1,所以当x>0时,y<1,故正确.故选:D.根据一次函数y=kx+b(k≠0)的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降进行分析即可.此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b(k≠0)的性质.16.【答案】D【解析】解:如图所示:点A、B、C、D组成一个轴对称图形,这样的点D共有4个.故选:D.直接利用轴对称图形的性质得出符合题意的答案.此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.17.【答案】B【解析】解:由图可求:60÷40=1.5元,由于后来每千克降价0.3元,可以求后来的出售的西瓜重量:(72-60)÷(1.5-0.3)=10 (千克)所有进货的总重量:10+40=50 (千克);所以进货总进价:50×0.8=40 (元)赚了:出售总价格-进货总价格=72-40=32 (元)故选:B.通过审题,发现题目中不知道购进的西瓜重量,而问题一共赚了多少元,由出售的总价格-进货的总价格=赚了多少和右图所示出售的总价格是72元,那么可以用一次函数求出购进的西瓜重重,就可以求出进货的总价格;考查一次函数的应用,经济问题相关公式,看图分析问题能力;要理解题目意思和看懂图中的信息,易错点是:看懂图中的信息,把两次不同价格出售的西瓜重量加起来.18.【答案】C【解析】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠ACB=90°,CE为中线,∴CE=AE=BE,∴∠ACF=∠BAC,又∵∠AFC=∠BCA=90°,∴△ABC∽△CAF,∴=,即=,∴CF=6.4,∴EF=CF-CE=1.4,由折叠可得,AC=DC,AE=DE,∴CE垂直平分AD,又∵E为AB的中点,∴EF为△ABD的中位线,∴BD=2EF=2.8,∵AE=BE=DE,∴∠DAE=∠ADE,∠BDE=∠DBE,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt△ABD中,AD===,故选:C.延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题.19.【答案】解:(1)4x2-9=0,4x2=9,x2=x=±;(2)原式=6-3+2=5.【解析】(1)首先把-9移到等号右边,再两边同时除以4,然后再求的平方根即可;(2)首先化简二次根式和立方根,再计算有理数的加减即可.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.【答案】解:(1)∵直线y=kx+b与直线y=2x平行,∴k=2,∴y=2x+b,把点A(4,4)代入y=2x+b得8+b=4,解得b=-4;∴k和b的值分别为2、-4;(2)由(1)得,一次函数解析式为:y=2x-4,令x=0,可得y=-4,∴B点坐标为(0,-4),∴△AOB的面积为:•|OB|•x A=×4×4=8.答:△AOB的面积为8.【解析】(1)由一次函数y=kx+b的图象与正比例函数y=2x的图象平行得到k=2,然后把点A(4,4)代入一次函数解析式可求出b的值;(2)由(1)的结果可得一次函数解析式,令x=0,可得B点坐标,利用三角形的面积公式可得结果.本题是一次函数综合题,主要考查了两条直线相交或平行问题,待定系数法,三角形的面积公式等知识.解答此类题关键是掌握若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.21.【答案】(4,0)【解析】解:(1)格点C如图所示.(2)格点D如图所示.(3)作点B关于x轴的对称点B′,连接AB′,延长AB′交x轴于点M,点M即为所求,M(4,0).(1)点C想线段AB的垂直平分线上.(2)根据全等三角形的性质即可解决问题.(3)作点B关于x轴的对称点B′,连接AB′,延长AB′交x轴于点M,点M即为所求,M(4,0).本题考查作图-应用与设计,全等三角形的判定和性质,轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【答案】证明:(1)∵∠A=90°,CE⊥BD∴∠A=∠BEC=90°∵AD∥BC∴∠ADB=∠DBC,且∠A=∠BEC,BE=DA,∴△ABD≌△ECB(AAS)(2)∵∠DBC=45°,∠A=90°,BE=AD=1∴∠ADB=∠ABD=45°∴AD=AB=1∴BD==∴DE=BD-BE≈1.414-1≈0.41【解析】.(1)由“AAS”可证△ABD≌△ECB;(2)由等腰三角形的性质可得AD=AB=1,由勾股定理可求BD的长,即可求DE的长.本题考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,熟练运用全等三角形的判定是本题的关键.23.【答案】张师傅到达小区后将快递投放到快递专柜 3 y=-30x+90.【解析】解:(1)AB段张师傅未有路程行驶,表示张师傅在原地未动,根据题意,AB段表示张师傅到达小区后将快递投放到快递专柜;故答案为:张师傅到达小区后将快递投放到快递专柜(2)根据题意,OA表示张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,其速度为:30÷1.5=20(km/h),BC段表示原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,故其速度为:20×1.5=30(km/h),故时间为:30÷30=1h,故a=2+1=3h;直线BC的函数函数图象为直线,设y=kx+b,把B(2,30),C(3,0)代入y=kx+b,得,解得,∴直线BC的函数表达式为:y=-30x+90.故答案为:3,y=-30x+90.(3)分为两种情况:当出发至离公司10千米时,t=10÷20=0.5h,当回公司至离公司10千米时,10=-30x+90,解得x=.(1)AB段张师傅未有路程行驶,表示张师傅在原地未动,根据题意,AB段表示张师傅到达小区后将快递投放到快递专柜;(2)OA表示张师傅并快递公司出发骑电动车匀速前往幸福家园小区投送快递,BC段表示原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,即可求出直线BC;(3)分为两种情况:当出发至离公司10千米时,当回公司至离公司10千米时,本题主要考查一次函数的图象和解析式,图象和函数函数结合的题目,看清图象是解题的关键.24.【答案】x<2【解析】解:(1)∵点A(m,3)在正比例函数y=x上,∴3=m,∴m=2,∴A(2,3),∴不等式kx+b>x的解为x<2,故答案为:x<2;(2)由(1)知,A(2,3),∵点B在x轴负半轴上,∴设B(n,0)(n<0),∵AB=5,∴(n-2)2+9=25,∴n=6(舍)或n=-2,∴B(-2,0),将点A(2,3),B(-2,0)代入y=kx+b中得,,∴,∴一次函数的表达式为y=x+;(3)如图,由(2)知,直线AB的解析式为y=x+,∴当OP⊥AB时,OP最小,由(1)知,A(2,3),由(2)知,B(-2,0),AB=5,∴S△AOC=OB•|y C|=AB•OP,最小∴×2×3=×5OP,最小∴OP=,最小故答案为.(1)将点A坐标代入正比例函数解析式中,求出m,即可得出结论;(2)设出点B坐标,利用AB=5,求出点B坐标,最后将点A,B坐标代入一次函数表达式中,即可求出k,b,即可得出结论;(3)点判断出OP⊥AB时,OP最小,利用三角形的面积建立方程求解即可得出结论.此题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,两点间距离公式,求出直线AB的解析式是解本题的关键.25.【答案】2≤L≤10【解析】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC,∵点D是BC的中点,∴BD=CD=BC=AB,∵∠DEB=90°,∴∠BDE=90°-∠B=30°,在Rt△BDE中,BE=BD,∵∠EDF=120°,∠BDE=30°,∴∠CDF=180°-∠BDE-∠EDF=30°,∵∠C=60°,∴∠DFC=90°,在Rt△CFD中,CF=CD,∴BE+CF=BD+=BC=AB,∵BE+CF=nAB,∴n=,故答案为;(2)如图2,①过点D作DG⊥AB于G,DH⊥AC于H,∴∠DGB=∠AGD=∠CFD=∠AHF=90°,∵△ABC是等边三角形,∴∠A=60°,∴∠GDH=360°-∠AGD-∠AHD-∠A=120°,∵∠EDF=120°,∴∠EDG=∠FDH,∵△ABC是等边三角形,且D是BC的中点,∴∠BAD=∠CAD,∵DG⊥AB,DH⊥AC,∴DG=DH,在△EDG和△FDH中,,∴△EDG≌△FDH(ASA),∴DE=DF,即:DE始终等于DF;②同(1)的方法得,BG+CH=AB,由①知,△EDG≌△FDH(ASA),∴EG=FH,∴BE+CF=BG-EG+CH+FH=BG+CH=AB,∴BE与CF的和始终不变'(3)由(2)知,DE=DF,BE+CF=AB,∵AB=4,∴BE+CF=2,∴四边形DEAF的周长为L=DE+EA+AF+FD =DE+AB-BE+AC-CF+DF=DE+AB-BE+AB+DE=2DE+2AB-(BE+CF)=2DE+2×4-2=2DE+6,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,由(1)知,BG=BD=1,∴DE=BG=,最小∴L=2+6,最小当点F和点C重合时,DE最大,此时,∠BDE=180°-∠EDF=120°=60°,∵∠B=60°,∴∠B=∠BDE=∠BED=60°,∴△BDE是等边三角形,∴DE=BD=AB=2,即:L最大=2×2+6=10,∴周长L的变化范围是2≤L≤10,故答案为2≤L≤10.(1)先利用等边三角形判断出BD=CD=AB,进而判断出BE=BD,再判断出∠DFC=90°,得出CF=CD,即可得出结论;(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;②由(1)知,BG+CH=AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;(3)由(1)(2)判断出L=2DE+6,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.此题是四边形综合题,主要考查了等边三角形的性质,含30度角的直角三角形的性质,角平分线定理,全等三角形的判定和性质,旋转的性质,构造出全等三角形是解本题的关键.26.【答案】(2,2)2+2【解析】解:(1)作PM⊥y轴于M,PN⊥OA于N.∵△OBC是等腰直角三角形,OB=2,∴BC=OB•cos45°=,∵∠PMN=∠PNA=∠PNO=∠MON=90°,∴∠MPN=∠BPA=90°,四边形PMON是矩形,∴∠MPB=∠NPA,∵PB=PA,∴△PMB≌△PNA(AAS),∴PM=PN,BM=AN,∴OB+OA=OM-BM+ON+AN=2OM=4,∴OM=ON=2,∴四边形PMON是正方形,∴P(2,2).故答案为:,(2,2).(2)①由(1)可知:PM=PN,∵PM⊥OB,PN⊥OA,∴OP平分∠AOB,∵∠BOC=45°,∴OC平分∠AOB,∴点P在射线OC上.②由(1)可知:2OM=OB+OA=2+t,∴OM=ON=,∴P(,).故答案为,.(3)如图,作PN⊥OA于N.第21页,共21页由(1)可知:△PQC ≌△PNA .△PQC ≌△PBC ,∴QC=BC=AN=, ∵四边形PNOQ 是正方形,∴ON=OQ=PN=PQ=2+, ∴OA=2++=2+2,∴t=2+2, 故答案为2+2. (1)作PM ⊥y 轴于M ,PN ⊥OA 于N .证明△PMB ≌△PNA 即可解决问题. (2)①利用角平分线的判定定理证明OP 平分∠AOB 即可.②利用全等三角形的性质即可解决问题.(3)如图,作PN ⊥OA 于N .利用全等三角形的判定和性质即可解决问题. 本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,正方形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。
安徽省庐江县精选度八年级数学上册期末考试模拟试题(含详细答案)
庐江县2018-2019学年度第一学期期末模拟考试八年级数学试题考生注意:本卷共6页,满分100分.一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()2.函数=y 1-x 的自变量x 的取值范围是()A .0≥xB .0>xC .1≥xD .1>x 3.将一副三角板按图中方式叠放,则∠α等于() A .75° B .60° C .45° D .30°4.工人师傅常用角尺平分一个任意角.作法如图:∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M 、N 重合.由此可得△MOC ≌△NOC .过角尺顶点C 的射线OC 便是∠AOB 的平分线,在这种作法中,判断△MOC ≌△NOC 的依据是() A .AAS B .SAS C .ASA D .SSS 5.已知一次函数b kx y +=,当2<x 时,0>y ,则下列判断正确的是()第4题图A .图象经过第一、二、四象限B .图象经过第一、二、三象限C .图象经过第一、三、四象限D .图象经过第二、三、四象限6.若点P (a ,a -2)在第四象限,则a 的取值范围是() A .-2<a <0 B .0<a <2C .a >2D .a <07.各边长均为整数、周长为10的三角形有() A .1个B .2个 C .3个D .4个8.在平面直角坐标系中,把直线x y =向左平移一个单位长度后,其解析式为() A .1+=x y B .x y = C .1-=x y D .2-=x y9.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有() A .1 个 B .2 个 C .3 个 D .4个10.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1) →(1,1) →(1,0)→(2,0)→(2,1)→…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是() A .(4,0)B . (5,5)C .(0,5)D .(5,0)二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.)11.点P 关于x 轴对称的点是(2,-1),则P 点的坐标是 .12.命题“如果0>ab ,那么a 、b 都是正数”是 .(填“真命题”或“假命题”) 13.如图所示,请用不等号“<”或“>”表示∠1、∠2、∠3的大小关系: .12 314.如图,△ABC 的周长为30cm ,DE 垂直平分边AC ,交BC 于点D ,交AC 于点E ,连接AD ,若AE=4cm ,则△ABD 的周长是= .15.某机械油箱中装有油60升,工作时平均每小时耗油5升,则工作时,油箱中剩余油量Q (升)与工作时间t (时)之间的函数关系式是 .16.若△ABC 的一个外角等于140°,且∠B=∠C ,则∠A= .17.如图,一次函数y kx b =+的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程0kx b +=的解为2x =;④0<+b kx 的解集是2<x .其中说法正确的有 .(把你认为说法正确的序号都填上).18.如图,在平面直角坐标系中,已知A (3,4)、B (0,2),在x 轴上有一动点C ,当△ABC 的周长最小时,C 点的坐标为 .三、解答题(本大题共6小题,共46分.)19.(本题满分6分)如图,点A 、C 、B 、D 在同一条直线上,BE ∥DF ,∠A=∠F ,AB=FD .求证:AE=FC . 【证明】xy O 2 yE DF C20.(本题满分8分)正比例函数x y 2=的图象与一次函数k x y +-=3的图象交于点P (1,m ). (1)求k 的值;(2)求两直线与y 轴围成的三角形面积. 【解】21.(本题满分8分)如图,已知CD AB ⊥于点D ,BE ⊥AC 于点E ,BE ,CD 交于点O ,且OB =OC .求证:AO 平分∠BAC . 【证明】22.(本题满分8分)如图,一艘船从A 处出发,以每小时10海里的速度向正北航行,从A 处测得礁石C 在北偏西30°方向上,如果这艘船上午8:00从A 处出发,10:00到达B 处,从B 处测得礁石C 在北偏西60°方向上,问:(1)12:00时这艘船距离礁石多远? (2)这艘船在什么时刻距离礁石最近? 【解】23.(本题满分8分)如图,在△ABC 中,AB=AC ,N 是AB 上任一点(不与A 、B 重合),过N 作NM ⊥AB 交BC 所在直线于M ,(1)若∠A=30°.求∠NMB 的度数;(2)如果将(1)中∠A 的度数改为68°,其余条件不变,求∠NMB 的度数; (3)综合(1)(2),你发现有什么样的规律性,试证明之;(4)若将(1)中的∠A 改为直角或钝角,你发现的规律是否仍然成立? 【解】DM24.(本题满分8分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大? 【解】庐江县第一学期期末考试 八年级数学试题参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1.D 2.C 3.A 4.D 5.A 6.B 7.B 8.A 9.C 10.D二、填空题(本大题共8小题,每小题3分,共24分.)11.(2,1); 12.假命题; 13.∠3<∠2<∠1;14.22cm ; 15.t Q 560-=;16.40°或100°;17.①②③;18.(1,0); 三、解答题(本大题共6小题,共46分) 19.证明:∵BE ∥DF ,∴∠ABE =∠D , ……………2分 在△ABC 和△FDC 中, ∠ABE =∠D ,AB =FD ,∠A=∠F∴△A BE ≌△FDC (ASA ), ……………5分 ∴AE =FC . ……………6分20.解:(1)当1=x 时,2=m ,所以P (1,2), ……………2分 将2,1==y x 代入k x y +-=3,得k +-=32,得:k =5, ……………4分(2)该一次函数解析式为53+-=x y ,与y 轴交点坐标为(0,5) 所以两直线与y 轴围成的三角形面积是5.25121=⨯⨯ ……………8分21.(8分)证明:∵OD ⊥AB ,OE ⊥AC ,∴∠ODB =∠OEC=90°,在△BDO 和△CEO 中∵∠DOB =∠EOC , OB =OC ,∴△BDO ≌△CEO (AAS ).…………4分 ∴OD=OE ,∴AO 平分∠BAC .(在一个角的内部,到角的两边距离相等的点在这个角的平分线上)…………8分 22.解:(1) 根据题意,得:∠CAD=30°,∠CBD=60°,∴∠C=∠CBD -∠CAD=30° ∴∠C=∠CAD ,∴BC=AB=10×2=20(海里)设12:00时这艘船所在位置为F ,连接FC , 则BF=10×(12-10)=20(海里) ∴BF=BC∴△CBF 是等边三角形(有一个角是60°的等腰三角形是等边三角形) ∴FC=BF=20 …………4分 (2) 作CG ⊥AB 于G ,则这艘船行至G 处距离礁石最近,∵△BCF 为等边三角形,∴G 为BF 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年安徽省合肥市庐江县八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.下列四个互联网公司log o中,是轴对称图形的是()A.B.C.D.2.要使分式有意义,x的取值范围满足()A.x≠2B.x≠1C.x≠1且x≠2D.x≠1或x≠2 3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.BC是△ABC的高B.AC是△ABE的高C.DE是△ABE的高D.AD是△ACD的高4.下列等式变形是因式分解的是()A.﹣a(a+b﹣3)=a2+ab﹣3aB.a2﹣a﹣2=a(a﹣1)﹣2C.﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)D.2x+1=x(2+)5.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处6.下列计算正确的是()A.a2•a3=a5B.(a3)2=a5C.(3a)2=6a2D.7.若四边形ABCD中,∠A:∠B:∠C:∠D=1:4:2:5,则∠C+∠D等于()A.90°B.180°C.210°D.270°8.已知4条线段的长度分别为2,4,6,8,若三条线段可以组成一个三角形,则这四条线段可以组成三角形的个数是()A.1个B.2个C.3个D.4个9.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶50km,提速后比提速前多行驶skm.设提速前列车的平均速度为xkm/h,则列方程是()A.B.C.D.10.如图,△ABC中,AC=BC,AC的垂直平分线分别交AC,BC于点E,F.点D为AB 边的中点,点M为EF上一动点,若AB=4,△ABC的面积是16,则△ADM周长的最小值为()A.20B.16C.12D.10二、填空题(本题共4小题,每小题5分,共20分)11.计算:(3×10﹣5)2÷(3×10﹣1)2=.12.分解因式:3x3y﹣6x2y+3xy=.13.如图,△ABC的面积为12cm2,以顶点A为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP,过点C作CD⊥AP于点D,连接DB,则△DAB的面积是cm2.14.如图,△ABC是等边三角形,D,E是BC上的两点,且BD=CE,连接AD、AE,将△AEC沿AC翻折,得到△AMC,连接EM交AC于点N,连接DM.以下判断:①AD =AE,②△ABD≌△DCM,③△ADM是等边三角形,④CN=EC中,正确的是.三、(本大题共2小题,每小题8分,满分16分)15.计算:(x﹣2)2﹣(x﹣3)(x+3)16.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.四、(本题共2小题,每小题8分,共16分)日A△(1)17.先化简,再求值:,请在2,﹣2,0,3当中选一个合适的数作为m的值,代入求值.18.将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE 的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.五、(本大题共2小题,每小题10分,满分20分)19.观察下列等式:①1﹣1﹣=﹣;②﹣﹣=﹣;③﹣﹣=﹣;④﹣﹣=﹣;…根据上述规律解决下列问题:(1)完成第⑤个等式;(2)写出你猜想的第n个等式(用含n的式子表示)并证明其正确性.20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)若△A1B1C1与△ABC关于y轴成轴对称,写出△A1B1C1三个顶点坐标:A1=;B1=;C1=;(2)画出△A1B1C1,并求△A1B1C1面积.六、(本题满分12分)21.如图,等腰三角形ABC中,AB=AC=4,∠BAC=100°,点D是底边BC的动点(点D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于点E.(1)当DC等于多少时,△ABD与△DCE全等?请说明理由;(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求出∠BDA 的度数;若不可以,请说明理由.七、(本题满分12分)22.合肥市拟将徽州大道南延至庐江县庐城镇,庐江段的一段土方工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该土方工程分成两部分,甲队做完其中一部分工程用了x天,乙队做完另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,请用含x的式子表示y,并求出两队实际各做了多少天?八、(本题满分14分)23.已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC 于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE 于点M,若AC=3MC,请直接写出的值.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.下列四个互联网公司log o中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.要使分式有意义,x的取值范围满足()A.x≠2B.x≠1C.x≠1且x≠2D.x≠1或x≠2【解答】解:由题意得:x﹣1≠0,解得:x≠1,故选:B.3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.BC是△ABC的高B.AC是△ABE的高C.DE是△ABE的高D.AD是△ACD的高【解答】解:观察图象可知:BC是△ABC的高,AC是△ABE的高,AD是△ACD的高,DE是△BCD、△BDE、△CDE的高故A,B,D正确,C错误,故选:C.4.下列等式变形是因式分解的是()A.﹣a(a+b﹣3)=a2+ab﹣3aB.a2﹣a﹣2=a(a﹣1)﹣2C.﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)D.2x+1=x(2+)【解答】解:A、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;B、右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、符合因式分解的定义,是因式分解,故本选项符合题意;D、右边不是几个整式的积的形式(含有分式),不是因式分解,故本选项不符合题意;故选:C.5.如图,直线l1,l2,l3表示三条相交叉的公路.现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地点有()A.四处B.三处C.两处D.一处【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三角形外角平分线的交点,共三处.故选:A.6.下列计算正确的是()A.a2•a3=a5B.(a3)2=a5C.(3a)2=6a2D.【解答】解:A、a2•a3=a5,故原题计算正确;B、(a3)2=a6,故原题计算错误;C、(3a)2=9a2,故原题计算错误;D、a2÷a8=故原题计算错误;故选:A.7.若四边形ABCD中,∠A:∠B:∠C:∠D=1:4:2:5,则∠C+∠D等于()A.90°B.180°C.210°D.270°【解答】解:∵∠A:∠B:∠C:∠D=1:4:2:5,∴∠C+∠D=360°×=210°,故选:C.8.已知4条线段的长度分别为2,4,6,8,若三条线段可以组成一个三角形,则这四条线段可以组成三角形的个数是()A.1个B.2个C.3个D.4个【解答】解:首先任意的三个数组合可以是2,4,6或2,4,8或2,6,8或4,6,8.根据三角形的三边关系:其中4+6>8,能组成三角形.∴只能组成1个.故选:A.9.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶50km,提速后比提速前多行驶skm.设提速前列车的平均速度为xkm/h,则列方程是()A.B.C.D.【解答】解:设提速前列车的平均速度为xkm/h,则提速后速度为(x+v)km/h,由题意得:=,故选:C.10.如图,△ABC中,AC=BC,AC的垂直平分线分别交AC,BC于点E,F.点D为AB 边的中点,点M为EF上一动点,若AB=4,△ABC的面积是16,则△ADM周长的最小值为()A.20B.16C.12D.10【解答】解:连接CD,CM.∵△ABC是等腰三角形,点D是BA边的中点,∴CD⊥BA,=BA•CD=×4×CD=16,解得CD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,∴MA=MC,∵CD≤CM+MD,∴CD的长为AM+MD的最小值,∴△ADM的周长最短=(AM+MD)+AD=CD+BA=8+×4=8+2=10.故选:D.二、填空题(本题共4小题,每小题5分,共20分)11.计算:(3×10﹣5)2÷(3×10﹣1)2=.【解答】解:原式=(9×10﹣10)÷(9×10﹣2)=(9÷9)×(10﹣10÷10﹣2)=10﹣8=.故答案为:.12.分解因式:3x3y﹣6x2y+3xy=3xy(x﹣1)2.【解答】解:原式=3xy (x 2﹣2x +1) =3xy (x ﹣1)2. 故答案为:3xy (x ﹣1)2.13.如图,△ABC 的面积为12cm 2,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP ,过点C 作CD ⊥AP 于点D ,连接DB ,则△DAB 的面积是 6 cm 2.【解答】解:如图所示,延长CD 交AB 于E ,由题可得,AP 平分∠BAC , ∴∠CAD =∠EAD , 又∵CD ⊥AP ,∴∠ADC =∠ADE =90°, 又∵AD =AD ,∴△ACD ≌△AED (ASA ), ∴CD =ED ,∴S △BCD =S △BED ,S △ACD =S △AED ,∴S △ABD =S △AED +S △BED =S △ABC =×12=6(cm 2), 故答案为:6.14.如图,△ABC 是等边三角形,D ,E 是BC 上的两点,且BD =CE ,连接AD 、AE ,将△AEC 沿AC 翻折,得到△AMC ,连接EM 交AC 于点N ,连接DM .以下判断:①AD =AE ,②△ABD ≌△DCM ,③△ADM 是等边三角形,④CN =EC 中,正确的是①③④ .【解答】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠BAD=∠CAE,AD=AE,故①正确;由折叠的性质得:CE=CM=BD,AE=AM=AD,∠CAE=∠CAM=∠BAD,∴∠DAM=∠BAC=60°,∴△ADM是等边三角形,∴DM=AD,∵AB>AD,∴AB>DM,∵∠ACD>∠DAC,∴AD>DC,∴△ABD与△DCM不全等,故③正确、②错误;由折叠的性质得:AE=AM,CE=CM,∴AC垂直平分EM,∴∠ENC=90°,∵∠ACE=60°,∴∠CEN=30°,∴CN=EC,故④正确,故答案为:①③④.三、(本大题共2小题,每小题8分,满分16分)15.计算:(x﹣2)2﹣(x﹣3)(x+3)【解答】解:(x﹣2)2﹣(x﹣3)(x+3)=x2﹣4x+4﹣(x2﹣9)=x2﹣4x+4﹣x2+9=﹣4x+13.16.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.【解答】证明:∵AB⊥CF,DE⊥CF,∴∠ABC=∠DEF=90°.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).∴BC=EF.∴BC﹣BE=EF﹣BE.即:CE=BF.四、(本题共2小题,每小题8分,共16分)日A△(1)17.先化简,再求值:,请在2,﹣2,0,3当中选一个合适的数作为m的值,代入求值.【解答】解:原式=•=•=,∵m=2或﹣2或3时,原式没有意义,∴m只能取0,当m=0时,原式==0.18.将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE 的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.【解答】证明:∵在△BDC中,BC=DB,∴∠BDC=∠BCD.∵∠DBE=30°,∴∠BDC=∠BCD=75°,∵∠ACB=45°,∴∠DOC=30°+45°=75°.∴∠DOC=∠BDC,∴△CDO是等腰三角形.五、(本大题共2小题,每小题10分,满分20分)19.观察下列等式:①1﹣1﹣=﹣;②﹣﹣=﹣;③﹣﹣=﹣;④﹣﹣=﹣;…根据上述规律解决下列问题:(1)完成第⑤个等式;(2)写出你猜想的第n个等式(用含n的式子表示)并证明其正确性.【解答】解:(1)∵左边的第2项和第3项的分母分别是连续的奇数和偶数,右边的分母为是左边第2项和第3项的分母之积,∴第5个等式为:﹣﹣=﹣;(2)第n个等式为:﹣﹣=﹣,证明:左边==﹣,右边=﹣,∴左边=右边,∴原式成立.20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)若△A1B1C1与△ABC关于y轴成轴对称,写出△A1B1C1三个顶点坐标:A1=(﹣1,1);B1=(﹣4,2);C1=(﹣3,4);(2)画出△A1B1C1,并求△A1B1C1面积.【解答】解:(1)A1(﹣1,1);B1(﹣4,2);C1(﹣3,4);(2)如图所示:△A1B1C1,即为所求,△A1B1C1面积为:9﹣×2×3﹣×3×1﹣×1×2=.六、(本题满分12分)21.如图,等腰三角形ABC中,AB=AC=4,∠BAC=100°,点D是底边BC的动点(点D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于点E.(1)当DC等于多少时,△ABD与△DCE全等?请说明理由;(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求出∠BDA 的度数;若不可以,请说明理由.【解答】解:(1)当DC=4时,△ABD≌△DCE,理由:∵AB=AC=4,∠BAC=100°,∴∠B=∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,当DA=DE时,∠DAE=∠DEA=70°,∴∠BDA=∠DAE+∠C=70°+40°=110°;当AD=AE时,∠AED=∠ADE=40°,∴∠DAE=100°,此时,点D与点B重合,不合题意;当EA=ED时,∠EAD=∠ADE=40°,∴∠AED=100°,∴EDC=∠AED﹣∠C=60°,∴∠BDA=180°﹣40°﹣60°=80°综上所述,当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.七、(本题满分12分)22.合肥市拟将徽州大道南延至庐江县庐城镇,庐江段的一段土方工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该土方工程分成两部分,甲队做完其中一部分工程用了x天,乙队做完另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,请用含x的式子表示y,并求出两队实际各做了多少天?【解答】解:(1)设乙队单独做需要x天完成任务.根据题意得.解得x=100.经检验x=100是原方程的解.答:乙队单独做需要100天完成任务.(2)根据题意得.整理得y=100﹣x.∵y<70,∴100﹣x<70.解得x>12.又∵x<15且为整数,∴x=13或14.当x=13时,y不是整数,所以x=13不符合题意,舍去.当x=14时,y=100﹣35=65.答:甲队实际做了14天,乙队实际做了65天.八、(本题满分14分)23.已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE 于点M,若AC=3MC,请直接写出的值.【解答】(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.。