高中数学用样本估计总体 同步练习(三)北师大版必修三

合集下载

数学必修三《用样本估计总体》

数学必修三《用样本估计总体》
3、平均数可以反映出更多的关于样本数据全体 的信息,但平均数受数据中的极端值的影响较大, 使平均数在估计时可靠性降低。
极差、方差、标准差
极差:是指一组数据中最大数据与最小数据的差. 方差:是各个数据与平均数之差的平方的平均数,即
s2 1 n
2
x1 x Leabharlann x2 x 2 xn x 2 ,
组距
0.5 0.4
0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
三种数字特征的优缺点
1、众数体现了样本数据的最大集中点,但它 对其它数据信息的忽视使得无法客观地反映 总体特征.
2、中位数是样本数据所占频率的等分线,它不 受少数几个极端值的影响,这在某些情况下是优 点,但它对极端值的不敏感有时也会成为缺点。
成绩(单 位: 米)
人数
1.50 1.60 1.65
2
3
2
1.70 3
1.75 4
1.80 1
1.85 1
1.90 1
众数、中位数、平均数与频率分布直方图的关系
1、众数在样本数据的频率分布直方图中,就是最高矩形的中点 的横坐标。 2、在频率分布直方图中,中位数左边和右边的直方图的面积应 该相等,由此可以估计中位数的值。下图中蓝色实线代表居民月 均用水量的中位数的估计值,此数据值为2.03t. 3、平均数是频率分布直方图的“重心”.是直方图的平衡点.如 黄色实线频率
【思考】为了直观反映样本数据在各组中的分布情况,我 们将上述频率分布表中的有关信息用下面的图形表示:
频率 组距
0.5 0.4 0.3 0.2 0.1
O0.5 1 1.5 2 2.5 3 3.5 4 4.5

北师大版数学高一必修3优化练习1.5用样本估计总体

北师大版数学高一必修3优化练习1.5用样本估计总体

§5 用样本估计总体5.1 估计总体的分布5分钟训练 (预习类训练,可用于课前)1.在用样本频率估计总体分布的过程中,下列说法正确的是( )A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确答案:C2.已知样本:10,8,6,10,13,8,10,12,11,7,8,9,11,9,12,9,10,11,12,11.那么频率为0.2的范围为( )A.5.5—7.5B.7.5—9.5C.9.5—11.5D.11.5—13.5答案:D解析:只要列出频率分布表,依次对照就可以找到答案,频率分布表如下:分组 频数 频率5.5—7.5 2 0.17.5—9.5 6 0.39.5—11.5 8 0.411.5—13.5 4 0.2合计 20 1.0从表中可以看出频率为0.2的范围是11.5—13.5.3.(2007山东潍坊一模,理15)某地教育部门为了了解学生在数学答卷中的有关信息,从上次考试的10 000名考生的数学试卷中,用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如下图).则这10 000人中数学成绩在[140,150]段的约是___________人.答案:800解析:频率=0.008×10=0.08,∴约有10 000×0.08=800人.10分钟训练 (强化类训练,可用于课中)1.从某批零件中抽出若干个,然后再从中抽出40个进行合格检查,发现合格产品有36个,则该批产品的合格率为( )A.36%B.72%C.90%D.25%答案:C解析:用样本估计总体时,用样本的合格率代替总体的合格率.而样本合格率为4036×100%=90%. 2.观察新生婴儿的体重,其频率分布直方图如下图所示,则新生婴儿体重在(2 700,3 000)的频率为( )A.0.001B.0.1C.0.2D.0.3答案:D解析:由图可知组距频率=0.001,∴频率=0.001×300=0.3. 3.一个容量为20的样本数据,分组后组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50], 5;(50,60],4;(60,70],2.则样本在区间(-∞,50]上的频率是( )A.5%B.25%C.50%D.70%答案:D解析:样本在(-100,50]上的频数为2+3+4+5=14,故在(-100,50]上的频率为14÷20=70%.4.(2007天津高考,文11)从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下:分组 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 频数1 2 3 10 3 1 则这堆苹果中,质量不小于120克的苹果数约占苹果总数的___________%.答案:70解析:本题主要考查统计知识,质量不小于120克的频数为14,所以频率为2014=70%. 5.一个容量为100的样本,数据的分组和各组的一些相关信息如下:分组 频数频率 [12,15) 6[15,18)0.08 [18,21)[21,24) 21[24,27)0.18 [27,30) 16[30,33)0.10 [33,36) 5合计 1001.00 (1)完成上表中每一行的空格;(2)画出频率分布直方图;(3)根据频率分布直方图,总体中小于21的样本数据大约占多大的百分比?解:(1)补全后的表格为:分组 频数频率 [12,15) 60.06[15,18) 8 0.08[18,21) 16 0.16[21,24) 21 0.21[24,27) 18 0.18[27,30) 16 0.16[30,33) 10 0.10[33,36) 5 0.05合计100 1.00(2)频率分布直方图为:(3)由频率分布直方图中可以看出,总体中小于21的样本数据大约占30%.30分钟训练(巩固类训练,可用于课后)1.在频率分布直方图中,各个小长方形的面积表示()A.落在相应各组的数据的频数B.相应各组的频率C.该样本所分成的组数D.该样本的样本容量答案:B解析:由直方图的概念知:频率分布直方图的纵轴(矩形的高)表示频率与组距的比值,其相应组距上的频率等于该组距上的矩形的面积.2.一个容量为35的样本数据,分组后,组距与频数如下:[5,10)5个;[10,15)12个;[15,20)7个;[20,25)5个;[25,30)4个;[30,35)2个.则样本在区间[20,+∞)上的频率为()A.20%B.69%C.31%D.27%答案:C解析:35245++=0.3143,∴选C.3.一个容量为32的样本,已知某组样本的频率为0.125,则该样本的频数为()A.2B.4C.6D.8答案:B4.(2007山东高考,8)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.下图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y 分别为()A.0.9,35B.0.9,45C.0.1,35D.0.1,45答案:A解析:由直方图知x=0.34+0.36+0.18+0.02=0.9,即x=0.9.50y =0.36+0.34=0.7,∴y=35.故选A. 5.有一个容量为50的样本数据分组,各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),3.根据频率分布,估计小于30的数据的频率可能是( )A.80%B.95%C.97%D.90%答案:D解析:根据所给数据可知小于30的数据个数为3+8+9+11+10=41,而在[27.5,30.5)之间的为6个,如果[27.5,30.5)之内没有小于30的,则小于30的频率为5041=82%,如果[27.5,30.5)之内的数据全部小于30,则小于30的数据个数为47,频率为5047=94%,所以,估计小于30的数据频率应在82%到94%之间,可以判断可能的频率结果应该为D 项.6.容量为100的样本数据,按从小到大的顺序分为8组,但是记录时不小心把第3组数据和第8组数据的部分信息丢失,记录如下:组号 1 2 3 4 5 6 7 8 频数 10 13 14 15 13 12 频率 0.10 0.13 0.14 0.15 0.13 0.12 0.09 则根据上表可知,第3组的频率是____________,第8组的频数是____________.答案:0.14 9解析:根据第8组的频数0.09可计算出第8组的频数是9,根据总的频率之和为1,可以得出第3组的频率是1-0.10-0.13-0.14-0.15-0.13-0.12-0.09=0.14.7.(2006全国高考卷Ⅱ,16)一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出____________人.答案:25解析:在[2 500,3 000)月收入段应抽出=0005.020004.00003.00002.00001.00005.0⨯++++ ×100=25(人).8.有一容量为200的样本,数据的分组以及各组的频数如下:[-20,-15)7,[-15,-10)11,[-10,-5)15,[-5,0)40,[0,5)49,[5,10)41,[10,15)20,[15,20)17.(1)列出样本的频率分布表;(2)画出频率分布直方图和折线图;(3)求样本数据不足0的频率.解:(1)频率分布表如下:分组 频数 频率[-20,-15) 7 0.035[-15,-10) 11 0.055[-10,-5) 15 0.075[-5,0) 40 0.200[0,5) 49 0.245[5,10) 41 0.205[10,15) 20 0.100[15,20) 17 0.085合计 200 1.000(2)频率分布直方图和折线图如下:(3)样本数据不足0的频率为:0.035+0.055+0.075+0.200=0.365.5.2 估计总体的数字特征5分钟训练 (预习类训练,可用于课前)1.在统计中,样本的标准差可以近似地反映( )A.平均状态B.波动大小C.分布规律D.最大值和最小值答案:B解析:由定义知,数据的标准差反映数据的波动大小.2.下列数字特征一定是数据组中数据的是( )A.众数B.中位数C.标准差D.平均数答案:A解析:根据各数字特征的意义可知唯有众数一定是原数据中的数.3.下列叙述不正确的是( ) A.样本均值可以近似地描述总体的平均水平B.极差描述了一个样本数据变化的幅度C.样本标准差描述了一组样本数据围绕样本均值波动的大小D.一个班级的数学成绩的方差越大说明成绩越稳定答案:D解析:方差越大,说明成绩越不稳定,所以D 项错.4.(2006湖南高考,文12)某高校有甲、乙两个数学建模兴趣班,其中甲班40人,乙班50人,现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是___________分.答案:85解析:由题意知,所求平均成绩为:504081509040+⨯+⨯=85分. 10分钟训练 (强化类训练,可用于课中)1.与总体单位不一致的是( )A.s 2B.sC.xD.三个都不一致 答案:A解析:方差的单位是原始数据单位的平方,所以与总体单位不一致.2.有一个数据为50的样本,数据分组以及各组的频数如下,[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5),4.估计小于30的数据大约占( )A.10%B.92%C.5%D.30%答案:B解析:样本容量为50,小于30的约有:3+8+9+11+10+5=46,所以,频率≈5046=0.92=92%. 3.一组观察值为4、3、5、6出现的次数分别为3、2、4、2,则样本均值为( )A.4.55B.4.5C.12.5D.1.64答案:A解析:1150242326452334=+++⨯+⨯+⨯+⨯=x ≈4.55. 4.设有n 个样本数据x 1、x 2、…、x n ,其标准差为s x ,另有n 个样本数据y 1、y 2、…、y n ,且y k =3x k +5(k=1,2,…,n),其中标准差为s y ,则下列关系正确的是( )A.s y =3s x +5B.s y =3s xC.s y =x s 3D.s y =x s 3+5答案:B解析:设x 1、x 2、…、x n 的平均数为x ,y 1、y 2、y 3、…、y n 的平均数为y ,则y =nn x x x n x x x n y y y n n n 5)(3535353212121++++=++++++=+++ =3x +5∴s y 2=[(3x 1+5-3x -5)2+(3x 2+5-3x -5)2+…+(3x n +5-3x -5)2]÷n =nx x x x x x n ])()()[(922221-++-+- =9s x 2∴s y =3s x .5.在一次数据测量中,计算出18个数据的样本均值为50,但是后来发现其中一个数据是86被误记为68,那么这18个数据的正确的样本均值应该是____________.答案:51解析:根据条件易知,实际18个数据的总和应该是:50×18+(86-68)=918,根据平均数的计算方法可得这组数据实际的均值应该是18918=51. 6.在某次考试中,要对甲、乙两同学的学习成绩进行比较,甲同学的平均分甲x =76,方差2甲s =4,乙同学的平均分乙x =77,方差2乙s =10,则___________同学平均成绩好,___________同学各科发展均衡.答案:乙 甲解析:∵甲乙x x >,s 2甲<s 2乙, ∴乙甲s s <.∴乙同学平均成绩好,甲同学各科发展均衡.7.从一批棉花中抽取9根棉花的纤维,长度如下:(单位:mm)82,202,352,321,25,293,86,206,115.求样本均值、样本方差和样本标准差.解:样本均值91=x (82+202+352+321+25+293+86+206+115)=186.9(mm) 样本方差s 2≈91[(82-186.9)2+(202-186.9)2+…+(115-186.9)2]≈12 184.1. 样本标准差s=2s =110.430分钟训练 (巩固类训练,可用于课后)1.已知样本12、7、11、12、11、12、10、10、9、8、13、12、10、9、6、11、8、9、8、10,那么频率为0.25的样本的范围是( )A.[5.5,7.5)B.[7.5,9.5)C.[9.5,11.5)D.[11.5,13.5)答案:D解析:样本容量为20,发生在[11.5,13.5)的频数为5,∴频率为205=0.25. 2.为了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高1.60 m;从南方抽取了200个男孩,平均身高1.50 m,由此可推断我国13岁男孩的平均身高为( )A.1.54 mB.1.55 mC.1.56 mD.1.57 m答案:C解析:2003005.12006.1300+⨯+⨯=x =1.56. 3.甲、乙两人在相同条件下,各射击10次,命中环数如下:甲:8 6 9 5 10 7 4 8 9 5乙:7 6 7 8 6 9 6 8 7 7根据上述数据估计两人的技术稳定性,结论是( )A.甲优于乙B.乙优于甲C.两人相同D.无法比较答案:B解析:1059847105968+++++++++=甲x =7.1. 107786968767+++++++++=乙x =7.1.又∵s 2乙<s 2甲,乙甲x x =,∴乙优于甲.4.从总体中抽取的样本数据有m 个a ,n 个b ,p 个c ,则总体的平均数μ的估计值为( )A.3c b a ++B.3p n m ++C.3pc nb ma ++ D.p n m pc nb ma ++++ 答案:D解析:样本均值pn m pc nb ma x ++++=,把它作为总体均值的估计. 5.(2006重庆高考,6)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁—18岁的男生体重(kg),得到频率分布直方图如下图:根据图可得这100名学生中体重在[56.5,64.5)的学生人数是( )A.20B.30C.40D.50答案:C解析:由组距频率×组距=频率,即(0.03+0.05+0.05+0.07)×2=0.4为体重在[56.5,64.5)的频率.又频率=样本容量频数,∴人数为100×0.4=40. 6.两个样本,甲:5,4,3,2,1;乙:4,0,2,1,-2.那么样本甲和样本乙的波动大小情况是( )A.甲、乙的波动大小一样B.甲的波动比乙的波动大C.乙的波动比甲的波动大D.甲、乙的波动大小无法比较答案:C解析:平均数:51=甲x (5+4+3+2+1)=3,51=乙x (4+0+2+1-2)=1, 方差为s 2甲=51[(5-3)2+(4-3)2+…+(1-3)2]=2, s 2乙=51[(4-1)2+(0-1)2+…+(-2-1)2]=4, ∴s 2甲<s 2乙.7.一个样本方差是S 2=101[(x 1-15)2+(x 2-15)2+…+(x 10-15)2],则这个样本均值x =___________,样本容量是___________.答案:15 108.若a 1,a 2,…,a 20这20个数据的平均数为x ,方差为0.20,则a 1,a 2,…,a 20,x 这21个数据的方差约为___________.答案:0.19解析:由题意得:201[(a 1-x )2+(a 2-x )2+…+(a 20-x )2]=0.20, ∴(a 1-x )2+(a 2-x )2+…+(a 20-x )2=4,且a 1+a 2+…+a 20=20x , ∴x x x x a a a =+=++++2120212021 ,即a 1,a 2,…,a 20,x 这21个数据的平均数也是x . ∴这21个数据的方差是s 2=214])(4[2112=-+x x ≈0.19. 9.甲、乙两台机床同时加工直径100毫米的零件,为了检验产品质量,从产品中各随机抽出6件进行测量,测得数据如下(单位:毫米):甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算上述两组数据的平均数和方差;(2)根据(1)的计算结果,说明哪一台机床加工的这种零件更符合要求.解:(1)61100+=甲x (-1+0-2+0+0+3)=100;61100+=乙x (-1+0+2-1+0+0)=100. s 2甲=61[(-1)2+02+(-2)2+02+02+32]=37,s 2乙=61[(-1)2+02+22+(-1)2+02+02]=1. (2)由(1)知,x 甲=x 乙,s 2甲>s 2乙,∴乙机床加工的这种零件更符合要求.10.假定下述数据是甲、乙两个供货商的交货天数.甲:10,9,10,10,11,11,9,11,10,10;乙:8,10,14,7,10,11,10,8,15,12.估计两个供货商的交货情况,并问哪个供货商交货时间短一些,哪个供货商交货时间较具一致性与可靠性. 解:甲x =101(10+9+…+10)=10.1,乙x =101(8+10+…+12)=10.5, s 2甲=101[(10-10.1)2+(9-10.1)2+…+(10-10.1)2]=0.49, s 2乙=101[(8-10.5)2+(10-10.5)2+…+(12-10.5)2]=6.05. 从交货天数的平均值来看,甲供货商的供货天数短一些;从方差来看,甲供货商的交货天数较稳定,因此甲是较具一致性与可靠性的厂商.。

数学北师大必修三同步训练:估计总体的分布附答案 含解析

数学北师大必修三同步训练:估计总体的分布附答案 含解析

§5 用样本估计总体5.1 估计总体的分布1.在频率分布直方图中,小长方形的面积是( )A.频率样本容量B .组距×频率C .频率D .样本数据2.对于用样本频率估计总体分布的过程,下列说法中正确的是( ) A .总体容量越大,估计越精确 B .总体容量越小,估计越精确 C .样本容量越大,估计越精确 D .样本容量越小,估计越精确3.容量为100的样本数据,按从小到大的顺序分为8组,但是记录时不小心把第3组组号 1 2 3 4 5 6 7 8 频数 10 13 14 15 13 12 频率 0.10 0.13 0.14 0.15 0.13 0.12 0.09 4.某地教育部门为了了解学生在数学答卷中的有关信息,从上次考试的10 000名考生的数学试卷中,用分层抽样的方法抽取500人,并根据这500人的数学成绩画出样本的频率分布直方图(如下图),则这10 000人中数学成绩在[140,150]段的约有人.答案:1.C 2.C3.0.14 9 根据第8组的频率0.09可计算出第8组的频数是9,根据总的频率之和为1,可以得出第3组的频率是1-0.10-0.13-0.14-0.15-0.13-0.12-0.09=0.14.4.800 频率=0.008×10=0.08, ∴约有10 000×0.08=800(人).1.下列关于频率分布直方图的说法,正确的是( ) A .直方图的高表示取某数的频率B .直方图的高表示该组上的个体在样本中出现频数与组距的比值C .直方图的高表示该组上的个体在样本中出现的频率D .直方图的高表示该组上的个体在样本中出现的频率与组距的比值2.一个容量为20的样本数据,分组后组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70],2.则样本在区间(-∞,50]上的频率是( )A .5%B .25%C .50%D .70%3.已知样本容量为30,在样本频率分布直方图中,各小长方形的高的比从左到右依次为2∶4∶3∶1,则第2组的频率和频数分别为( )A .0.4,12B .0.6,16C .0.4,16D .0.6,124.一个容量为n 的样本分成若干组,已知某组的频数和频率分别为30和0.25,则n =______.5.国际奥委会2003年6月29日决定,2008年北京奥运会的举办日期由7月25日至8月10日推迟到8月8日至8月24日举行,原因是7月末8月初北京地区的平均气温高于8月中下旬.为了解这段时间北京地区的气温分布状况,相关部门对往年7月25日至8月24日这段时间的日最高气温进行抽样,得到如下样本数据:(单位:℃)(2)若日最高气温为33 ℃或33 ℃以上为高温天气,据以上数据预测北京奥运会期间出现高温天气的概率为多少,比原定时间段出现高温天气的概率降低多少个百分点?(精确到1%)答案:1.D 由频率分布直方图的定义知,D 正确.2.D 样本在(-∞,50]上的频数为2+3+4+5=14,故在(-∞,50]上的频率为14÷20=70%.3.A ∵频率分布直方图中组距相同,∴各小长方形的高的比即为频率比或频数比.设从左到右的频数依次为2x,4x,3x ,x ,则2x +4x +3x +x =30,∴x =3.∴第2组的频数为4x=12,频率为1230=0.4.故选A.4.120 ∵频数样本容量=频率,∴样本容量n =频数频率=300.25=120.5.解:(1)①计算极差:表(二)中数据最大值为33.2,最小值为24.7,∴极差为33.2-24.7=8.5.②决定组距与组数:若选定组距为2,则8.52=4.25,可分5组.③决定分点:由表中数据特点,第一组的起点可取24.5,终点可取26.5,这样便得分组是[24.5,26.5),[26.5,28.5),[28.5,30.5),[30.5,32.5),[32.5,34.5).④列频率分布表⑤绘制频率分布直方图.(2)由题意知,北京奥运会期间出现高温天气的概率约是217≈0.12=12%,比原定时间出现高温天气的概率降低1117-217=917≈0.53=53%,即53个百分点.1.观察新生婴儿的体重,其频率分布直方图如下图所示,则新生婴儿体重在(2 700,3 000)的频率为( )A .0.001B .0.1C .0.2D .0.3答案:D 由图可知频率组距=0.001,∴频率=0.001×300=0.3.2.一个容量为32的样本,已知某组样本的频率为0.125,则该样本的频数为( ) A .2 B .4 C .6 D .8答案:B 频数=样本容量n ×频率=32×0.125=4,故选B.3.在抽查产品的尺寸过程中,将尺寸分成若干组,[a ,b)是其中的一组,抽查出的个体在该组上的频率为m ,该组上的直方图的高为h ,则|a -b|等于( )A .hm B.m h C.hmD .h +m答案:B 在频率分布直方图中,频率/组距=h ,∴组距=|a -b|=频率h =mh.4.有一个容量为50的样本数据分组,各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),3.根据频率分布,估计小于30的数据的频率可能是( )A .80%B .95%C .97%D .90% 答案:D 根据所给数据可知小于30的数据个数为3+8+9+11+10=41,而在[27.5,30.5)之间的有6个,如果[27.5,30.5)之内没有小于30的,则小于30的频率为4150=82%;如果[27.5,30.5)之内的数据全部小于30,则小于30的数据个数为47,频率为4750=94%,所以,估计小于30的数据频率应在82%到94%之间,可以判断可能的频率结果应该为D 项. 5.(易错题)某中学举行电脑知识竞赛,满分100分,80分以上为优良,现将高一两个班参加比赛的学生成绩进行整理后分成五组,绘制如下的频率分布直方图(如下图).已知图中从左到右的第1,3,4,5小组的频率分别是0.30,0.15,0.10,0.05,第2小组的频数是40,则参赛人数和成绩优良的概率分别是… ( )A .100,0.15B .100,0.3C .80,0.15D .80,0.3 答案:A ∵第2组的频率为1-0.30-0.15-0.10-0.05=0.40,∴参赛人数=400.40=100.∵成绩优良的频率为0.10+0.05=0.15,∴可认为概率为0.15.故选A.点评:本题考查对频率分布直方图的读图、识图能力以及频率、频数、概率之间的关系.先由频率和为1,求出第2小组的频率;再由频率=频数总容量,求出参赛人数;最后由频率与概率的关系,确定出成绩优良的概率.搞不清概念含义及相互关系是错解的主要原因. 6.(2009湖北高考,理12文15)样本容量为200的频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为______,数据落在[2,10)内的概率约为______.答案:64 0.4 由题中频率分布直方图知,样本数据落在[6,10)内的频率为:0.08×4=0.32,∴频数=0.32×200=64.数据落在[2,6)内的频率为0.02×4=0.08,频数=0.08×200=16,∴数据落在[2,10)内的频数为16+64=80,∴数据落在[2,10)内的概率约为80200=0.4.7.(易错题)(1)对一批数据进行整理,得到频率分布直方图后,已知某个小长方形的面积与其他各个小长方形的面积之和相等,那么相应于这个小长方形的小组的频率是______.(2)如下图所示,在考察某个总体时作出了如下直方图,请在此图的基础上作出折线图.答案:(1)0.5因为相应于某个小长方形的小组的频率等于该长方形的面积,而所有的小长方形的面积之和为1,所以所求的小长方形的面积为0.5.(2)点评:(1)频率分布直方图中,小矩形的面积=组距×(频率/组距)=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积形式反映了数据落在各个小组内的频率大小.注意在频率分布直方图中,各小矩形的面积之和为1,本题就是以此结论为依据求出所求频率的.不能正确地将面积转化为相应频率是错解的原因.(2)频率分布折线图依赖于直方图,它们从不同的方面反映了数据的分布情况.对同一组数据,若采取不同的分析方案,其结果会有不同.。

最新北师大版高中数学必修三第一章统计 估计总体的分布

最新北师大版高中数学必修三第一章统计 估计总体的分布

§5 用样本估计总体 5.1 估计总体的分布学习 目标1.理解什么是频率分布表、频率分布直方图、频率折线图.(数学抽象)2.会列频率分布表,会画频率分布直方图和频率折线图,能根据频率分布直方图解决问题.(数据分析、直观想象)3.了解用样本估计总体的意义.(数学抽象)导思 1.频率分布直方图纵轴的含义是什么?2.频率分布直方图的制作步骤是什么?3.如何画频率折线图?1.频率分布表和频率分布直方图 (1)频率分布表编制的方法步骤:(2)频率分布表与频率分布直方图有什么不同?提示:频率分布表能使我们清楚地知道数据分布在各个小组的个数,而频率分布直方图则是从各个小组数据在样本容量中所占比例大小的角度来表示数据分布的规律.2.频率折线图(1)在频率分布直方图中,按照分组原则,在左边和右边各加一个区间,从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.(2)当样本容量不断增大时,样本中落在每个区间内的样本数的频率会越来越稳定于总体在相应区间内取值的概率.也就是说,一般地,样本容量越大,用样本的频率分布去估计总体的分布就越精确.(3)随着样本量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来越接近于一条光滑曲线.频率分布表、频率分布直方图与频率折线图各有什么优缺点?提示:①频率分布表:优点:频率分布表在数量表示上比较确切;缺点:不够直观、形象,分析数据分布的总体趋势不太方便;②频率分布直方图:优点:频率分布直方图能非常直观地表明数据分布的形状,使我们能够看到在分布表中看不清楚的数据模式;缺点:从直方图本身得不出原始的数据内容,也就是说,把数据表示成直方图后,原有的具体数据信息就被抹掉了;③频率折线图:优点是它反映了数据的变化趋势.缺点:由图本身得不到原始的数据信息.1.辨析记忆(对的打“√”,错的打“×”)(1)频率分布直方图中的纵坐标指的是频率的值.()(2)频率分布直方图的宽度没有实际意义.()(3)频率分布直方图中各小矩形的面积之和可以不为1.()(4)在画频率折线图时,可以画成与横轴相连.()提示:(1)×.纵坐标指的是频率与组距的比值.(2) ×.频率分布直方图的宽度表示组距.(3)×.各小矩形的面积之和一定为1.(4) √.为了方便看图,一般习惯把频率折线图画成与横轴相连,所以横轴上左右两端点没有实际的意义.2.已知一个容量为40的样本,把它分成6组,第一组到第四组的频数分别为5,6,7,10,第五组的频率是0.2,那么第六组的频数是________,频率是________. 【解析】第五组的频数为0.2×40=8.所以第六组的频数为40-5-6-7-10-8=4.频率为440=0.1.答案:40.13.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在[50,60)内的汽车有________.【解析】因为小长方形的面积即为对应的频率,时速在[50,60)内的频率为0.3,所以有200×0.3=60(辆).答案:60辆4.(教材例题改编)一个容量为n的样本,分成若干组,已知某组的频数和频率分别为50和0.25,则n=________.【解析】由题意得50n=0.25,所以n=200.答案:200类型一频率分布直方图的绘制(数据分析、直观想象)【典例】1.频率分布直方图中,小矩形的面积等于()A.组距B.频率C.组数D.频数2.调查某校高一年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm)如下:171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 168 160 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161(1)作出频率分布表;(2)画出频率分布直方图.【思路导引】1.根据频率直方图中小矩形的几何意义,即可求解. 2.极差=180-151=29,组距为3,可分为10组.【解析】1.选B.根据小矩形的宽及高的意义,可知小矩形的面积为一组样本数据的频率.2.(1)①求极差:从数据中可看出,最大值是180,最小值是151,故极差为180-151=29.②确定组距与组数:取3为组距,则极差组距 =293 =923 ,故可将样本数据分成10组.③第一组起点定为150.5,组距为3,这样分出10组:[150.5,153.5),[153.5,156.5),[156.5,159.5),[159.5,162.5),[162.5,165.5),[165.5,168.5),[168.5,171.5),[171.5,174.5),[174.5,177.5),[177.5,180.5]. ④列频率分布表174.5~177.510.025177.5~180.510.025(2)画频率分布直方图如图所示:绘制频率分布直方图的注意事项(1)计算极差,需要找出这组数的最大值和最小值,当数据很多时,可选一个数当参照.(2)将一批数据分组,目的是要描述数据分布规律,要根据数据多少来确定分组数目,一般来说,数据越多,分组越多.(3)将数据分组,决定分点时,一般使分点比数据多一位小数,并且把第一组的起点稍微减小一点.(4)列频率分布表时,可通过逐一判断各个数据落在哪个小组内,以“正”字确定各个小组内数据的个数.(5)画频率分布直方图时,纵坐标表示频率与组距的比值,一定不能标成频率.1.有一个容量为45的样本数据,分组后各组的频数如下:(12.5,15.5],3;(15.5,18.5],8;(18.5,21.5],9;(21.5,24.5],11;(24.5,27.5],10;(27.5,30.5],4.由此估计,不大于27.5的数据约为总体的()A.91% B.92% C.95% D.30%【解析】选A.不大于27.5的样本数为:3+8+9+11+10=41,所以约占总体百分比为4145×100%≈91%.2.某中学同年级40名男生的体重数据如下(单位:千克):616059595958585757575756 565656565656555555555454 54545353525252525251515150504948列出样本的频率分布表,画出频率分布直方图. 【解析】①计算极差:61-48=13(千克); ②决定组距与组数,取组距为2,因为132 =612 ,所以共分7组;③决定分点,使分点比数据多一位小数.并把第1小组的分点减小0.5,即分成如下7组:47.5~49.5,49.5~51.5,51.5~53.5,53.5~55.5,55.5~57.5,57.5~59.5,59.5~61.5.④列出频率分布表如下:分组(Δx i ) 频数(n i ) 频率(f i ) 47.5~49.5 2 0.05 49.5~51.5 5 0.125 51.5~53.5 7 0.175 53.5~55.5 8 0.20 55.5~57.5 11 0.275 57.5~59.5 5 0.125 59.5~61.5 2 0.05 合计401.00⑤作出频率分布直方图如下:3.某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:107~109,3株;109~111,9株;111~113,13株;113~115,16株;115~117,26株;117~119,20株;119~121,7株;121~123,4株;123~125,2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在109~121范围内的可能性是百分之几.【解析】(1)频率分布表如下:分组频数频率累积频率107~10930.030.03109~11190.090.12111~113130.130.25113~115160.160.41115~117260.260.67117~119200.200.87119~12170.070.94121~12340.040.98123~12520.02 1.00合计100 1.00(2)频率分布直方图如下:(3)由上述图表可知数据落在109~121范围内的频率为:0.94-0.03=0.91,即数据落在109~121范围内的可能性是91%.类型二频率折线图的画法及应用【典例】从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):40~50,2;50~60,3;60~70,10;70~80,15;80~90,12;90~100,8.(1)列出样本的频率分布表;(2)画出频率分布直方图及频率折线图; (3)估计成绩在60~90分的学生比例.【思路导引】画频率分布直方图和折线图⇒制作好频率分布表⇒纵坐标表示频率与组距的比值.【解析】(1)样本的频率分布表如下:成绩分组(Δx i ) 频数(n i ) 频率(f i ) f i Δx i 40~50 2 0.04 0.004 50~60 3 0.06 0.006 60~70 10 0.2 0.02 70~80 15 0.3 0.03 80~90 12 0.24 0.024 90~10080.160.016(2)频率分布直方图及频率折线图如图所示:(3)成绩在60~90的频率为1-0.04-0.06-0.16=0.74, 所以可估计成绩在60~90分的学生比例为74%.本例条件不变,估计成绩在50~80分的学生的比例.【解析】成绩在50~60分的学生的频数为3,在60~70的学生的频数为10,在70~80分的学生的频数为15,所以成绩在50~80分的学生的频数为28,占总体的2850 =1425 .频率折线图的作法及应用(1)作法:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)应用:频率折线图也是用一个单位长度表示一定的数量,但是,它是根据数量的多少在图中描出各个点,然后把各个点用线段顺次连接成的折线,因此,它不但可以表现出数量的多少,而且能够以折线的起伏,清楚而直观地表示出数量的增减变化的情况.提醒:画图时,横轴和纵轴的单位可不一致.有一个容量为100的某校毕业生起始月薪的样本,数据的分组及各组的频数如下:起始月薪(百元)[13,14)[14,15)[15,16)[16,17) 频数7112623起始月薪(百元)[17,18)[18,19)[19,20)[20,21]频数1584 6(1)列出样本的频率分布表;(2)画出频率分布直方图和频率折线图;(3)根据频率分布估计该校毕业生起始月薪低于2 000元的频率.【解析】(1)样本的频率分布表为起始月薪(百元)频数频率[13,14)70.07[14,15)110.11[15,16)260.26[16,17)230.23[17,18)150.15[18,19)80.08[19,20)40.04[20,21]60.06总计100 1.00(2)频率分布直方图和频率折线图如图.(3)起始月薪低于2 000元的频率为0.07+0.11+…+0.04=0.94,故起始月薪低于2 000元的频率的估计值是0.94.【补偿训练】某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80), [80,100].(1)求直方图中x的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1 000名新生中有多少名学生可以申请住宿.【解析】(1)由(x+0.012 5+0.006 5+0.003×2)×20=1,解得x=0.025.(2)上学所需时间不少于40分钟的学生的频率为:(0.006 5+0.003×2)×20=0.25,估计学校1 000名新生中有1 000×0.25=250名学生可以申请住宿.答:估计学校1 000名新生中有250名学生可以申请住宿.类型三用样本分布估计总体分布【典例】1.(2021·全国甲卷)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间2.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少;(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.【思路导引】1.利用频率分布直方图,计算出低于60分的人数的频率p,利用频数除以相应的频率p 得总人数.2.利用110次以上(含110次)的矩形面积除以所有的矩形面积之和,即可估计高一学生的达标率.【解析】1.选C. 低于4.5万元的比率估计为0.02×1+0.04×1=0.06=6%,故A 正确;不低于10.5万元的比率估计为(0.04+0.02×3)×1=0.1=10%,故B 正确;平均值为:(3×0.02+4×0.04+5×0.1+6×0.14+7×0.2+8×0.2+9×0.1+10×0.1+11×0.04+12×0.02+13×0.02+14×0.02)×1=7.68万元,故C 不正确;4.5万元到8.5万元的比率为:0.1×1+0.14×1+0.2×1+0.2×1=0.64=64%,故D 正确.2.(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此,第二小组的频率为:42+4+17+15+9+3=0.08. 又因为第二小组频率=第二小组频数样本容量, 所以样本容量=第二小组频数第二小组频率=120.08 =150. (2)由图可估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%. (3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.用样本估计总体的常用方法(1)用频率分布表估计总体分布.根据样本数据可以制作频率分布表,利用频率分布表中的数据,如各小组的频数、频率,可以对总体中的有关量进行估计.(2)用频率分布直方图估计总体分布.根据样本数据绘制出的频率分布直方图具有直观的特点,可以直接判断出样本中数据的分布特点和变化趋势与规律,并由此对总体进行估计.(3)用频率折线图估计总体分布.由样本频率分布直方图可以绘制出频率折线图,且样本容量越大,分组的组距不断缩小,那么折线图就越接近于总体分布,从而由频率折线图对总体估计就越精确.某幼儿园根据部分同年龄段女童的身高数据绘制了频率分布直方图,其中身高的变化范围是[96,106](单位:厘米),样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].(1)求出x 的值;(2)已知样本中身高小于100厘米的人数是36,求出样本容量N 的数值;(3)根据频率分布直方图提供的数据,求出样本中身高大于或等于98厘米并且小于104厘米的学生数.【解析】(1)由题意可知:(0.050+0.100+0.150+0.125+x )×2=1,解得:x =0.075.(2)设样本中身高小于100厘米的频率为p 1,所以,p 1=(0.050+0.100)×2=0.30,而p 1=36N ,所以N =36p 1=360.30 =120. (3)样本中身高大于或等于98厘米并且小于104厘米的频率为p 2=(0.100+0.150+0.125)×2=0.75,所以身高大于或等于98厘米并且小于104厘米的学生数n =p 2N =120×0.75=90.。

高中数学 1.56 用样本估计总体课时作业 北师大版必修3

高中数学 1.56 用样本估计总体课时作业 北师大版必修3

高中数学 1.56 用样本估计总体课时作业北师大版必修3课时目标1.通过实例体会分布的意义和作用,会作频率分布直方图和频率折线图,会用样本的频率分布估计总体的分布.2.会用样本的数字特征估计总体的数字特征.3.体会样本估计总体的思想、初步了解频率分布的随机性.1.频率分布直方图中,数据落在各个区间内频率的大小,是该区间所对应的_______.2.当样本量较大时,样本中落在每个区间内样本数的频率会稳定于______________.3.我们可以用样本平均数和样本标准差,来分别估计______________________.一、选择题1.下列说法不正确的是( )A.频率分布直方图中每个小矩形的高就是该组的频率B.频率分布直方图中各个小矩形的面积之和等于1C.频率分布直方图中各个小矩形的宽一样大D.频率分布折线图是从所加的左边区间的中点开始,用线段依次连接频率分布直方图的每个小矩形上端中点,直至右边所加区间的中点得到的2.一个容量为20的样本数据,分组后组距与频数如下表:组距[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)频数23454 2 则样本在[10,50)上的频率为( )A.0.5 B.0.24 C.0.6 D.0.73.100辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,则时速在[60,70)的汽车大约有( )A.30辆 B.40辆C.60辆 D.80辆4.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31.如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量约为( )A.900个 B.1 080个C.1 260个 D.1 800个5.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90 B.75C.60 D.45题号1234 5答案二、填空题6.在样本的频率分布直方图中,共有5个小长方形,已知中间一个小长方形面积是其余4个小长方形面积之和的13,且中间一组的频数为10,则这个样本容量是________.7.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分).现将高一两个班参赛学生的成绩进行整理后分成5组,绘制成频率分布直方图如下图所示.已知图中从左到右的第一、三、四、五小组的频率分别为0.30、0.15、0.10、0.05,而第二小组的频数是40,则参赛的人数是________,成绩优秀的频率是________.8.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是____________.9.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在各组上的频率为m,该组上直方图的高为h,则|a-b|=________.三、解答题10.美国历届总统中,就任时年纪最小的是罗斯福,他于1901年就任,当时年仅42岁;就任时年纪最大的是里根,他于1981年就任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥巴马,共44任)给出了历届美国总统就任时的年龄:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54, 42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.(2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.11.抽查100袋洗衣粉,测得它们的重量如下(单位:g):494 498 493 505 496 492 485 483 508 511495 494 483 485 511 493 505 488 501 491493 509 509 512 484 509 510 495 497 498504 498 483 510 503 497 502 511 497 500493 509 510 493 491 497 515 503 515 518510 514 509 499 493 499 509 492 505 489494 501 509 498 502 500 508 491 509 509499 495 493 509 496 509 505 499 486 491492 496 499 508 485 498 496 495 496 505499 505 496 501 510 496 487 511 501 496(1)列出样本的频率分布表:(2)画出频率分布直方图,频率分布折线图;(3)估计重量在[494.5,506.5]g的频率以及重量不足500 g的频率.能力提升12.在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?13.某市2010年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表.(2)作出频率分布直方图.(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.绘制频率分布直方图的具体步骤:①求极差:找出一组数据中的最大值和最小值,最大值与最小值的差是极差(正值).②确定组距与组数:组数与样本容量有关,当样本容量不超过100时,按照数据的多少,常分成5~12组;组距的选择力求“取整”,组数=极差组距.③将数据分组:将数据分成互不相交的组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间.④列频率分布表:一般分“分组”、“频数累计”、“频数”、“频率”四列,最后一行是合计.注意频数的合计是样本容量,频率的合计是1.⑤绘制频率分布直方图:根据频率分布表绘制频率分布直方图,其中纵轴表示频率与组距的比值,其相应组距上的频率等于该组距上的矩形的面积,即每个矩形的面积=组距×频率组距=频率.这样频率分布直方图就以面积的形式反映了数据落在各个小组的频率的大小,各小矩形的面积的总和等于1.答案 知识梳理1.频率直方图的面积 2.总体在相应区间内取值的概率 3.总体的平均数和标准差 作业设计 1.A 2.D3.B [时速在[60,70)的汽车的频率为:0.04×(70-60)=0.4,又因汽车的总辆数为100,所以时速在[60,70)的汽车大约有0.4×100=40(辆).]4.C [样本的平均数为28,估计总共:45×28=1 260个.]5.A [∵样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36,∴样本总数为360.3=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.] 6.40解析 可知中间长方形的面积是所有长方形面积的14,即频率为14,∴样本容量为1014=40.7.100 0.15 8.45,46解析 由茎叶图及中位数的概念可知 x 甲中=45,x 乙中=46. 9.m h 解析频率组距=h ,故|a -b|=组距=频率h =mh. 10.解 (1)以4为组距,列表如下:分组 频数累计 频数频率 [41.5,45.5)2 0.045 5 [45.5,49.5)正 7 0.159 1 [49.5,53.5)正 8 0.181 8 [53.5,57.5)正正正 160.363 6 [57.5,61.5)正 5 0.113 6 [61.5,65.5)40.090 9[65.5,69.5]2 0.045 5合计441.00(2)从频率分布表中可以看出,将近60%的美国总统就任时的年龄在50岁至60岁之间,45岁以下以及65岁以上就任的总统所占的比例相对较小.11.解 (1)在样本数据中,最大值是518,最小值是483,它们相差35,若取组距为4,由于354=834,要分9组,组数合适,于是决定取组距为4 g ,分9组,使分点比数据多一位小数,且把第一组起点稍微减小一点,得分组如下:[482.5,486.5),[486.5,490.5),…,[514.5,518.5). 列出频率分布表:分组 个数累计频数频率累积频率[482.5,486.5) 正 8 0.080.08 [486.5,490.5) 3 0.030.11 [490.5,494.5) 正正正170.170.28 [494.5,498.5) 正正正正-21.210.49 [498.5,502.5) 正正 14.140.63 [502.5,506.5) 正 9 0.090.72 [506.5,510.5) 正正正190.190.91 [510.5,514.5) 正- 6 0.060.97 [514.5,518.5]3 0.031.00 合计1001.00(2)频率分布直方图与频率分布折线图如图.(3)重量在[494.5,506.5]g 的频率为:0.21+0.14+0.09=0.44. 设重量不足500 g 的频率为b ,根据频率分布表,b -0.49500-498.5≈0.63-0.48502.5-498.5,故b ≈0.55.因此重量不足500 g 的频率约为0.55.12.解 (1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.13.解 (1)频率分布表:(2)频率分布直方图如图所示. (3)答对下述两条中的一条即可:①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%;说明该市空气质量有待进一步改善.。

北师大版高中数学必修三用样本估计总体同步练习(二).docx

北师大版高中数学必修三用样本估计总体同步练习(二).docx

用样本估计总体同步练习(二)◆知识检测1.从某批零件中抽取若干个,然后再从中抽取40个进行合格检查,发现合格产品有36个,则该批产品的合格率为()A、36%B、72%C、90%D、25%2.从一个养鱼池中捕得m条鱼,做上记号后再放入池中,数日后又捕得n条鱼,其中k条有记号,估计池中有多少条鱼。

3.已知样本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么频率为0.2的范围是()A、5.5-7.5B、7.5-9.5C、9.5-11.5D、11.5-13.54.一个容量为20的样本数据,分组后组距为10,区间与频率分布如下:◆ 能力提高1. 已知样本:10,8,6,10,13,8,10,12,11,7,8,9,12,9,10,11,12,12.那么频率为0.3的范围是( )A .5.5~7.5 B. 7.5~9.5 C.9.5~11.5 D.11.5~13.5 2. 观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿的体重在[2700,3000]的频率为( )A .0.001B .0.01C .0.003D .0.33. 在抽查某产品尺寸的过程中,将尺寸分为若干组,[)b a ,是其中一组,抽查出的个体数在该组上的频率为m ,该组上的直方图的高为h ,则b a -为( )A .hmB .m h C .hmD .与h m ,无关 4. 如右图是高一某班60名学生参加某次数学考试所得的成绩(成绩均为整数)整理后画出的频率分布直方图,则此班成绩的众数为_______,中位数约为_______,优良(120分以上为优良)率为________.5. 灯泡厂从某日生产的一批灯泡中抽取10个进行寿命测试,得灯泡寿命数据(天)如下:30 35 25 25 30 34 26 25 29 21则这批灯泡的平均寿命估计x =______,估计标准差S =________. 6. 某渔场对鱼的重量抽样统计如下表:(1)填写表中的频率.(2)画出频率分布直方图和频率分布折线图.(3)估计鱼的平均体重.(4)若该渔场共打上来6000条鱼,试估计有多少条鱼重量在2.0~3.5斤之间?◆技能培养对50台某种电子设备的寿命逐台进行测试,得到下列数据(单位:h):910,1220,1280,20,2330,900,860,1450,1220,550,160,2020,2590,1730,490, 1620,560,530,500,240,1280,60,190,290,740,1160,220,910,40,1410,3650, 3410,70,510,1270,610,310,220,370,60,1750,890,790,1280,570,760,50,15 30,1860,1280(1)列出样本的频率分布表.(2)画出频率分布直方图和频率分布折线图.(3)估计这批电子设备的平均寿命和寿命小于2000小时的百分比.◆拓展空间在估计总体分布时,我们常常画出样本的频率分布直方图或频率折线图,如果样本容量无限增大,,分组的组距无限减小,那么频率折线图就会无限接近于总体密度曲线,请查阅有关资料,了解总体密度曲线的意义和作用.。

最新北师大版高中数学必修三测试题全套及答案

最新北师大版高中数学必修三测试题全套及答案

最新北师大版高中数学必修三测试题全套及答案章末综合测评(一)统计(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民,这个问题中“2 500名城镇居民的寿命的全体”是()A.总体B.个体C.样本D.样本容量【解析】每个人的寿命是个体,抽出的2 500名城镇居民的寿命的全体是从总体中抽取的一个样本.【答案】 C2.为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()A.40B.30C.20D.12【解析】系统抽样也叫间隔抽样,抽多少就分成多少组,总数除以组数=间隔数,即k=1 20040=30.【答案】 B3.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为()A.10组B.9组C.8组D.7组【解析】根据频率分布表的步骤,极差组距=140-5110=8.9,所以分成9组.【答案】 B4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12C.13 D.14【解析】依据系统抽样的特点分42组,每组20人,区间[481,720]包含25组到36组,每组抽一个,则抽到的人数为12.【答案】 B5.甲、乙两名篮球运动员在某几场比赛中得分的茎叶图如图1所示,则甲、乙两人在这几场比赛中得分的中位数之和是()图1A.63 B.64C.65 D.66【解析】由茎叶图知甲比赛得分的中位数为36,乙比赛得分的中位数为27,故甲、乙两人得分的中位数之和为27+36=63.【答案】 A6.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球数的标准差为0.3.下列说法中,正确的个数为()①甲队的进球技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1 B.2C.3 D.4【解析】因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确,故选D.【答案】 D7.某学校为调查学生的学习情况,对学生的课堂笔记进行了抽样调查,已知某班级一共有56名学生,根据学号(001~056),用系统抽样的方法抽取一个容量为4的样本,已知007号、021号、049号在样本中,那么样本中还有一个学生的学号为()A.014 B.028C.035 D.042【解析】由系统抽样的原理知,抽样的间隔为564=14,故第一组的学号为001~014,所以007为第一组内抽取的学号,所以第二组抽取的学号为021;第三组抽取的学号为035;第四组抽取的学号为049.故选C.【答案】 C8.从800件产品中抽取60件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数8开始往右读数(随机数表第7行至第9行的数如下),则抽取的第4件产品的编号是()844217533157245506887704744767217633502583921206766301637859169556671998105071751286735807443952387933211234297864560782524207443815510013429966027954A.169 B.556C.671 D.105【解析】找到第8行第8列的数8,并开始向右读,每次读取三位,凡不在001~800中的数跳过去不读,前面已经读过的也跳过去不读,从而最先抽取的4件产品的编号依次是169,556,671,105.故抽取的第4件产品的编号是105.【答案】 D9.对具有线性相关关系的变量x,Y有一组观测数据(x i,y i)(i=1,2,…,8),其回归直线方程是:y=16x+a,且x1+x2+x3+…+x8=3,y1+y2+y3+…+y8=6,则a=()A.116 B.18C.14D.1116【解析】 因为x 1+x 2+x 3+…+x 8=3,y 1+y 2+y 3+…+y 8=6, 所以x =38,y =34,所以样本中心点的坐标为⎝ ⎛⎭⎪⎫38,34,代入回归直线方程得34=16×38+a ,所以a =1116. 【答案】 D10.(2015·安徽高考)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .32【解析】 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16,故选C.【答案】 C11.(2015·福建高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元【解析】 由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元). 【答案】 B12.(2016·日照高一检测)样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =ax +(1-a )y ,其中0<a <12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定【解析】 由题意知,样本(x 1,…,x n ,y 1,…,y m )的平均数为z =nx +my m +n=nn +m x +m n +m y ,且z =ax +(1-a )y ,所以a =n n +m ,1-a =m n +m .又因为0<a <12,所以0<n n +m<12,解得n <m . 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.(2015·江苏高考)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为______. 【解析】 x -=4+6+5+8+7+66=6.【答案】 614.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):【解析】 由题意,需比较s 2甲与s 2乙的大小.由于x 甲=x 乙=10,s 2甲=0.02,s 2乙=0.244,则s 2甲<s 2乙,因此甲产量比较稳定. 【答案】 甲15.(2015·湖北高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图2所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.图2【解析】(1)由0.1×1.5+0.1×2.5+0.1a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a=3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.【答案】(1)3(2)6 00016.(2016·潍坊高一检测)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17].将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,图3是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.图3【解析】因为第一组与第二组共有20人,并且根据图像知第一组与第二组的频率之比=12.又因为第一组与第三组的频率之比是是0.24∶0.16=3∶2,所以第一组的人数为20×350.24∶0.36=2∶3,所以第三组有12÷23=18人.因为第三组中没有疗效的人数为6,所以第三组中有疗效的人数是18-6=12.【答案】 12三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某校高中三年级有503名学生,为了了解他们的身体状况,准备按1∶10的比例抽取一个样本,试用系统抽样方法进行抽取,并写出抽样过程.【解】 (1)用简单随机抽样法从503名学生中剔除3名学生. (2)采用随机的方式将500名学生编号为1,2,3,…,500. (3)确定分段间隔,样本容量为500×110=50, 分段间隔k =50050=10,即将500名学生分成50部分,其中每一部分包括10名学生,即把1,2,3,…,500均分成50段.(4)在第一段用简单随机抽样法确定起始的个体编号l ,例如,l =8.(5)按照事先确定的规则抽取样本:从8号起,每隔10个抽取1个号码,这样得到一个容量为50的样本:8,18,28,38,…,488,498.编号为8,18,28,…,488,498的学生便作为抽取的一个样本参与试验.18.(本小题满分12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2; 乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小? (2)哪台机床的生产状况比较稳定? 【解】 (1)x甲=(1+0+2+0+2+3+0+4+1+2)×110=1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x甲>x乙,∴乙车床次品数的平均数较小.(2)s2甲=110[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙车床的生产状况比较稳定.19.(本小题满分12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图4).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.图4(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.【解】(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2.(2)设参加这次测试的学生有x人,则0.1x=5,∴x=50.即参加这次测试的学生有50人.(3)达标率为0.3+0.4+0.2=0.9,∴估计该年级学生跳绳测试的达标率为90%.20.(本小题满分12分)为了了解中学生的身体发育情况,对某一中学同年龄的50名男生的身高进行了测量,结果如下:[157,161)3人;[161,165)4人;[165,169)12人;[169,173)13人;[173,177)12人;[177,181]6人.(1)列出频率分布表;(2)画出频率分布直方图;(3)估计总体在[165,177)间的比例.【解】(1)列出频率分布表:分组频数频率频率组距[157,161)30.060.015[161,165)40.080.02[165,169)120.240.06[169,173)130.260.065[173,177)120.240.06[177,181]60.120.03合计50 1.00(2)画出频率分布直方图如图:(3)因0.24+0.26+0.24=0.74,所以估计总体在[165,177)间的比例为74%.21.(本小题满分12分)(2014·全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门3 5 9440 4 4 89 75 1 2 2 4 5 6 6 7 7 7 8 99 7 6 6 5 3 3 2 1 1 060 1 1 2 3 4 6 8 89 8 8 7 7 7 6 6 5 5 5 5 5 4 4 4 3 3 3 2 1 0 070 0 1 1 3 4 4 96 6 5 5 2 0 0 8 1 2 3 3 4 56 3 2 2 2 090 1 1 4 5 6100 0 0(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【解】(1)由所给茎叶图知,将50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本的中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.22.(本小题满分12分)(2015·广东高考)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图6.图6(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【解】(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1得x=0.007 5,∴直方图中x的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,解得a=224,即中位数为224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300]的用户分别有15户、10户、5户,故抽取比例为1125+15+10+5=1 5,∴从月平均用电量在[220,240)的用户中应抽取25×15=5(户).章末综合测评(二)算法初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的叙述中,不是解决问题的算法的是()A.从北京到海南岛旅游,先坐火车,再坐飞机抵达B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C.方程x2-4=0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15【解析】算法是解决某类问题的一系列步骤或程序,C只是描述了事实,没有解决问题的步骤.【答案】 C2.用二分法求方程x2-10=0的近似根的算法中要用哪种算法结构()A.顺序结构B.选择结构C.循环结构D.以上都用【解析】由求方程x2-10=0的近似根的算法设计知以上三种结构都用到.【答案】 D3.下列程序中的For语句终止循环时,S等于()S=0For M=1To10S=S+MNext输出S.A.1B.5C.10D.55【解析】S=0+1+2+3+…+10=55.【答案】 D4.下列给出的赋值语句中正确的是()A.0=M B.x=-xC.B=A=-3 D.x+y=0【解析】赋值语句不能计算,不能出现两个或两个以上的“=”且变量在“=”左边.【答案】 B5.当A=1时,下列程序输入A;A=A*2A=A*3A=A*4A=A*5输出A.输出的结果A是()A.5 B.6C.15 D.120【解析】运行A=A*2得A=1×2=2.运行A=A*3得A=2×3=6.运行A=A*4得A=6×4=24.运行A=A*5得A=24×5=120.即A=120.故选D.【答案】 D6.(2014·福建高考)阅读如图1所示的程序框图,运行相应的程序,输出的n的值为()图1A.1 B.2C.3 D.4【解析】当n=1时,21>12成立,执行循环,n=2;当n=2时,22>22不成立,结束循环,输出n=2,故选B.【答案】 B7.(2016·菏泽高一检测)执行如图2所示的算法框图,输出的S值为()图2A.2 B.4C.8 D.16【解析】运行如下:①k=0,S=1;②S=1×20=1,k=1;③S=1×21=2,k=2;④S =2×22=8,k =3.此时输出S .【答案】 C8.(2015·福建高考)阅读如图3所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y 的值为( )图3A .2B .7C .8D .128【解析】 由程序框图知,y =⎩⎪⎨⎪⎧2x ,x ≥2,9-x ,x <2.∵输入x 的值为1,比2小,∴执行的程序要实现的功能为9-1=8,故输出y 的值为8. 【答案】 C9.(2016·北京高考)执行如图4所示的程序框图,若输入的a 值为1,则输出的k 值为( )图4A .1B .2C .3D .4【解析】 开始a =1,b =1,k =0;第一次循环a=-1,k=1;2第二次循环a=-2,k=2;第三次循环a=1,条件判断为“是”,跳出循环,此时k=2.【答案】 B10.阅读如图5所示的算法框图,若输出s的值为-7,则判断框内可填写()图5A.i≥3 B.i≥4C.i≥5 D.i≥6【解析】此算法框图运行如下:①i=1,s=2;②s=1,i=3;③s=-2,i=5;④s =-7,i=7此时应结束循环.所以i=5时不满足循环条件,i=7时满足循环条件.【答案】 D11.当a=16时,下面的算法输出的结果是()If a<10 Theny=2*aElsey=a *aEnd If输出y.A.9B.32 C .10D .256【解析】 该程序是求分段函数y =⎩⎪⎨⎪⎧2a (a <10),a 2(a ≥10)的函数值,所以当a =16时y =162=256.【答案】 D12.阅读如图6所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =( )图6A .2B .3C .4D .5【解析】 m =2,A =1,B =1,i =0. 第一次:i =0+1=1,A =1×2=2, B =1×1=1,A >B ;第二次:i =1+1=2,A =2×2=4, B =1×2=2,A >B ;第三次:i =2+1=3,A =4×2=8, B =2×3=6,A >B ;第四次:i =3+1=4,A =8×2=16, B =6×4=24,A <B . 终止循环,输出i =4.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.如图7是求12+22+32+…+1002的值的算法框图,则正整数n=________.图7【解析】由题意知s=12+22+32+…+1002,先计算s=s+i2,i再加1,故n=100.【答案】10014.下面的程序运行后输出的结果是________.x=1i=1Dox=x+1i=i+1Loop While i<=5输出x.【解析】每循环一次时,x与i均增加1直到i>5时为止,所以输出的结果为6.【答案】 615.如图8给出一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值的集合为________.图8【解析】这个程序框图对应的函数为y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5.当x ≤2时,由x 2=x ,得x =0或1; 当2<x ≤5时,由2x -3=x ,得x =3;当x >5时,由1x =x ,得x =±1(舍),故x =0或1或3.【答案】 {0,1,3} 16.已知程序:【解析】 由程序知,当x >0时, 3x2+3=6.解得x =2; 当x <0时,-3x 2+5=6,解得x =-23, 显然x =0不成立. 【答案】 2或-23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)下面给出了一个问题的算法: 1.输入x .2.若x ≥4,则y =2x -1;否则,y =x 2-2x +3.3.输出y .问题:(1)这个算法解决的问题是什么? (2)当输入的x 值为多少时,输出的y 值最小?【解】 (1)这个算法解决的问题是求分段函数y =⎩⎪⎨⎪⎧2x -1,x ≥4,x 2-2x +3,x <4的函数值.(2)当x ≥4时,y =2x -1≥7;当x <4时,y =x 2-2x +3=(x -1)2+2≥2,所以y min =2,此时x =1.即当输入的x 值为1时,输出的y 值最小.18.(本小题满分12分)将某科成绩分为3个等级:85分~100分为“A”;60分~84分为“B”;60分以下为“C”.试用条件语句表示某个成绩等级的程序(分数为整数).【解】 程序:19.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧2x +1,x <0,1,x =0,x 2+1,x >0.画出算法框图并编写算法语句,输入自变量x 的值,输出相应的函数值. 【解】 算法框图如图所示:算法语句如下:输入x;If x<0 Theny=2*x+1ElseIf x=0 Theny=1Elsey=x2+1End IfEnd If输出y.20.(本小题满分12分)给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了解决该问题的算法框图(如图9所示),图9(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法.【解】 (1)因为是求30个数的和.故循环体应执行30次,其中i 是计数变量,因此判断框内的条件就是限制计数变量i 的,故应为i >30.算法中的变量p 实质是表示参与求和的各个数,由于它也是变化的,且满足第i 个数比其前一个数大i -1,第i +1个数比其前一个数大i ,故应有p =p +i .故①处应填p =p +i ;②处应填i >30.(2)根据框图.写出算法如下: i =1 p =1 S =0 Do S =S +p p =p +i i =i +1Loop While i <=30 输出S .21.(本小题满分12分)如图10所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数关系式.并写出算法,画出算法框图,写出程序.图10【解】 函数关系如下 y =⎩⎪⎨⎪⎧2x (0≤x ≤4),8(4<x ≤8),2(12-x )(8<x ≤12).算法如下: 1.输入x .2.如果0≤x ≤4,则使y =2x ;否则执行3. 3.如果4<x ≤8,则使y =8;否则执行4.4.如果8<x≤12,则使y=2(12-x);否则结束.5.输出y.算法框图如图所示:算法语句:输入x;If x>=0And x<=4Theny=2*xElseIf x<=8Theny=8ElseIf x<=12Theny=2*(12-x)End IfEnd IfEnd If输出y.22.(本小题满分12分)设计一个算法,求满足1×2+2×3+…+n×(n+1)<1 000的最大整数n,画出框图,并用循环语句描述.【解】算法框图如下所示:用语句描述为:n=0S=0Don=n+1S=S+n*(n+1)Loop While S<1 000输出n-1.章末综合测评(三)概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a,b是实数,那么b+a=a+b;②某地1月1日刮西北风;③当x是实数时,x2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有() A.1个B.2个C.3个D.4个【解析】由题意可知①③是必然事件,②④是随机事件.【答案】 B2.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n 个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mn D.2mn【解析】分别确定n个数对(x1,y1),(x2,y2),…,(x n,y n)和m 个两数的平方和小于1的数对所在的平面区域,再用随机模拟的方法和几何概型求出圆周率π的近似值.因为x1,x2,…,x n,y1,y2,…,y n都在区间[0,1]内随机抽取,所以构成的n个数对(x1,y1),(x2,y2),…,(x n,y n)都在正方形OABC内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得S扇形S正方形=mn,即π4=mn,所以π=4mn.【答案】 C3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是()A.310 B.112C.4564 D.38【解析】所有子集共8个,其中含有2个元素的为{a,b},{a,c},{b,c},所以概率为38.【答案】 D4.(2016·山东青岛一模)如图1所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角θ=π6.现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()图1A.2-32B.2+32 C.1+32D.1-32【解析】 易知小正方形的边长为3-1,故小正方形的面积为S 1=(3-1)2=4-23,大正方形的面积为S =2×2=4,故飞镖落在小正方形内的概率P =S 1S =4-234=2-32.【答案】 A5.4张卡片上分别写有数字1,2,3,4.从这4张卡片中随机抽取2张,则抽取的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34【解析】 基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中两数字之和为奇数的有(1,2),(2,3),(1,4),(3,4),所以概率为23.【答案】 C6.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S3的概率是( ) A.23 B.13 C.34D.14【解析】 如图,设点M 为AB 的三等分点,要使△PBC 的面积不小于S3,则点P 只能在AM 上选取,由几何概型的概率公式得所求概率|AM ||AB |=23|AB ||AB |=23.【答案】 A7.(2016·东北八校二模)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19 B.29 C.718D.49【解析】 任意找两人玩这个游戏,共有6×6=36种猜数字结果,其中满足|a -b |≤1的有如下情形:①a =1,b =1,2;②a =2,b =1,2,3;③a =3,b =2,3,4;④a =4,b =3,4,5;⑤a =5,b =4,5,6;⑥a =6,b =5,6,总共16种,故他们“心有灵犀”的概率为P =1636=49.【答案】 D8.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8D .1-π8【解析】 长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2,取到的点到O 的距离大于1的概率为2-π22=1-π4.【答案】 B9.设a 是甲抛掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实数根的概率为( )A.23B.13C.12D.512【解析】 若方程有实根,则a 2-8>0.a 的所有取值情况共6种,满足a 2-8>0的有4种情况,故P =46=23.【答案】 A10.(2016·石家庄高一检测)有分别写着数字1到120的120张卡片,从中取出1张,这张卡片上的数字是2的倍数或是3的倍数的概率是( )A.12B.34C.47D.23【解析】 是2的倍数的数有60个,是3的倍数的数有40个,是6的倍数的数有20个,∴P =60+40-20120=23.【答案】 D11.(2015·湖北高考)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12 B .p 2<12<p 1 C.12<p 2<p 1D .p 1<12<p 2【解析】 如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.【答案】 D12.如图2所示,在矩形ABCD 中,AB =5,AD =7.现在向该矩形内随机投一点P ,则∠APB >90°的概率为( )图2A.536B.556πC.18πD.18【解析】 由于是向该矩形内随机投一点P ,点P 落在矩形内的机会是均等的,故可以认为矩形ABCD 为区域Ω.要使得∠APB >90°,需满足点P 落在以线段AB 为直径的半圆内,以线段AB 为直径的半圆可看作区域A .记“点P 落在以线段AB 为直径的半圆内”为事件A ,于是求∠APB >90°的概率转化为求以线段AB 为直径的半圆的面积与矩形ABCD 的面积的比,依题意,得μA =12π×⎝ ⎛⎭⎪⎫522=25π8,矩形ABCD 的面积μΩ=35,故所求的概率为P (A )=25π835=5π56.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.某产品分一、二、三级,其中一、二级是正品,若生产中出现正品的概率是0.98,二级品的概率是0.21,则出现一级品与三级品的概率分别是________,________.【解析】 由题意知出现一级品的概率是0.98-0.21=0.77,又由对立事件的概率公式可得出现三级品的概率是1-0.98=0.02.【答案】 0.77 0.0214.如图3的矩形,长为5 m ,宽为2 m ,在矩形内随机地撒300粒黄豆,数得落在阴影部分的黄豆数为138粒,则我们可以估计出阴影部分的面积为________m 2.图3【解析】 由题意得138300=S 阴5×2,S 阴=235.【答案】 23515.在箱子中装有十张卡片,分别写有1到10的十个整数;从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x +y 是10的倍数的概率为________.【解析】 先后两次取卡片,形成的有序数对有(1,1),(1,2),(1,3),…,(1,10),…,(10,10),共计100个.因为x +y 是10的倍数,这些数对应该是(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10)共10个,故x +y 是10的倍数的概率为P =10100=110.【答案】 11016.(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.【解析】 ∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+(5-2)5-0=23.【答案】23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料,若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.【解】 将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5种饮料中选出3杯的所有可能情况为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共有10种,令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110.(2)P (E )=35,P (F )=P (D )+P (E )=710.18.(本小题满分12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“x +y ≤3”的概率; (2)求事件“|x -y |=2”的概率.【解】 设(x ,y )表示一个基本事件,则掷两次骰子包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,5),(6,6),共36个基本事件.(1)用A 表示事件“x +y ≤3”,则A 的结果有(1,1),(1,2),(2,1),共3个基本事件. ∴P (A )=336=112.即事件“x +y ≤3”的概率为112. (2)用B 表示事件“|x -y |=2”,则B 的结果有(1,3),(2,4),(3,5),(4,6),(6,4),(5,3),(4,2),(3,1)共8个基本事件. ∴P (B )=836=29.即事件“|x -y |=2”的概率为29.19.(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和与标号之积都不小于5的概率.【解】 设从甲、乙两个盒子中各取出1个球,编号分别为x ,y ,用(x ,y )表示抽取的结果,结果有以下25种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5).(1)取出的两个球上标号为相邻整数的结果有以下8种:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),故所求概率为P =825,即取出的两个球上标号为相邻整数的概率为825.(2)标号之和与标号之积都不小于5的结果有以下17种:(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),故所求概率为P =1725,故取出的两个球上标号之和与标号之积都不小于5的概率是1725.20. (本小题满分12分)把一颗骰子抛掷两次,第一次出现的点数记为a ,第二次出现的点数记为b .试就方程组⎩⎨⎧ ax +by =3,x +2y =2解答下列各题: (1)求方程组只有一组解的概率;(2)求方程组只有正数解(x 与y 都为正)的概率.【解】 (1)当且仅当a b ≠12时,方程组只有一组解;a b =12的情况有三种:⎩⎪⎨⎪⎧ a =1,b =2或⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧a =3,b =6.而抛掷两次的所有情况有6×6=36(种),所以方程组只有一组解的概率为P =1-336=1112.(2)因为方程组只有正数解,所以两直线的交点一定在第一象限,解方程组得 ⎩⎪⎨⎪⎧ x =6-2b 2a -b ,y =2a -32a -b .当⎩⎪⎨⎪⎧ 2a -b >0,6-2b >0,2a -3>0,或⎩⎪⎨⎪⎧ 2a -b <0,6-2b <0,2a -3<0,且a >0,b >0,。

北师大版高中数学必修三第一章同步练习九估计总体的分布

北师大版高中数学必修三第一章同步练习九估计总体的分布

高一数学第一章同步练习(第九次)用样本估计总体姓名: 班级: 学号: 得分:一、选择题(每题5分,共7题35分)1.下列叙述正确的是 ( )A.从频率分布表可以看出样本数据对于平均数的波动大小B.频数是指落在各个小组内的数据C.每个小组的频数与样本容量之比是这个小组的频率D.组数是样本平均数除以组距2.已知样本10,8,10,8,6,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么频率为0.2的范围是 ( ) A.5.5~7.5 B.7.5~9.5 C.9.5~11.5 D.11.5~13.53.(2018山东泰安高一检测)在样本的频率分布直方图中,某个小长方形的面积是其他小长方形面积之和的,已知样本容量是80,则该组的频数为 ( ) A.20 B.16 C.30 D.354.为了解某校男生体重情况,将样本数据整理后,画出其频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第3小组的频数为12,则样本容量是 ( ) A.32 B.160 C.45 D.485.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 ( ) A.56 B.60 C.120 D.1406某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:g)数据绘制的频率分布直方图,其中产品净重的范围是96~106,样本数据分组为96~98,98~100,100~102,102~104,104~106,已知样本中产品净重小于100 g 的个数是36,则样本中净重大于或等于98 g 并且小于104 g 的产品的个数是 ( ) A.90 B.75 C.60 D.457.为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a 的值为 ( ) A.64 B.54 C.48 D.278.若样本数据a ,0,1,2,3的平均数是1,则样本方差为 ( ) A .56 B .C .2D .29.在抽查某批产品尺寸的过程中,样本尺寸数据的频率分布表如下,则b等于( )A.0.1B.0.2C.0.25D.0.310.一次选拔运动员的测试中,测得7名选手中的身高(单位:cm)分布的茎叶图如图所示.记录的平均身高为177 cm,有一名候选人的身高记录不清楚,其末位数记为x,则x等于()A.5B.6C.7D.811.若样本的频率分布直方图如图所示,则样本数据的中位数等于()A.30B.40C.36.5D.3512.某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下,根据下图,对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员得分的平均值大于乙运动员得分的平均值D.甲运动员的成绩比乙运动员的成绩稳定13.李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期,收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:据调查,市场上今年樱桃的批发价格为每千克15元,用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为()A.200 kg,3 000元B.1 900 kg,28 500元C.2 000 kg,30 000元D.1 850 kg,27 750元14.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差15.如图样本容量为100的质量的频率分布直方图,则由图可估计样本的平均质量为()A.10B.11C.12D.13二、填空(每题5分,共4题20分)16.容量为n的样本中的数据分成6组,绘制成频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n等于.17.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则:(1)平均命中环数为;(2)命中环数的标准差为.18.从甲、乙两人手工制作的圆形产品中,各自随机抽取6件,测得其直径如下(单位:cm): 甲:9.00,9.20,9.00,8.50,9.10,9.20;乙:8.90,9.60,9.50,8.54,8.60,8.90.据以上数据估计两人的技术稳定性,结论是.19.已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a,b的取值分别是.三、解答题(共2题24分)20.某校高一学生共有500人,为了了解学生的历史学习情况,随机抽取了50名学生,对他们一年来4次考试的历史平均成绩进行统计,得到频率分布直方图如图所示,后三组频数满足倒数第二组频数的平方等于最后一组与倒数第三组频数的乘积.(1)求第五、六组的频数,补全频率分布直方图;(2)若每组数据用该组区间中点值(例如区间[70,80)的中点值是75)作为代表,试估计该校高一学生历史成绩的平均分;(3)估计该校高一学生历史成绩在70~100分范围内的人数.(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据; (2)计算(1)中样本的均值x 和方差2s ;(3)36名工人中年龄在s x -与s x +之间的有多少人?所占的百分比是多少(精确到0.01%)?22.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:(2)请从下列四个不同的角度对这次测试结果进行分析: ①从平均数和方差相结合看(分析谁的成绩更稳定); ②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些); ④从折线图上两人射击命中环数的走势看(分析谁更有潜力).。

北师大版高中数学必修三用样本估计总体同步练习(3).docx

北师大版高中数学必修三用样本估计总体同步练习(3).docx

用样本估计总体同步练习1.为了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高1.60m;从南方抽取了200个男孩,平均身高为1.50m,由此可推断我国13岁男孩的平均身高为()A、1.54mB、1.55mC、1.56mD、1.57m2.下列说法正确的是()A、样本中所有个体的总和是总体B、方差的平方根叫做标准美C、样本平均数与总体平均数相等D、在一组数据中,出现次数最多的数据叫做这组数据的众数3.下列说法正确的是()A、在两组数据中,平均值较大的一组方差较大B、平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C、方差的求法是求出各个数据与平均值的差的平方后再求和D、在记录两个人射击环数的两组数据中,方差大的表示射击水平高4.样本101,98,102,100,99的标准差为()A、2B、0C、1D、210.为了了解中学生的身高情况,对育才中学同龄的50名男学生的身高进行了测量,结果如下:(单位:cm):175 168 180 176 167 181 162 173 171 177171 171 174 173 174 175 177 166 163 160166 166 163 169 174 165 175 165 170 158174 172 166 172 167 172 175 161 173 167170 172 165 157 172 173 166 177 169 181列出样本的频率分布表,画出频率分布直方图。

11.已知50个数据的分组以及各组的频数如下:153.5-155.5 2 161.5-163.5 10155.5-157.5 7 163.5-165.5 6157.5-159.5 9 165.5-167.5 4159.5-161.5 11 167.5-169.5 1 (1)列出频率分布表;(2)列出累积频率分布表;(3)画出频率分布直方图和频率分布折线图;(4)画出累积频率分布图。

高中数学 基础知识篇 1.6 用样本估计总体训练(含解析)北师大版必修3

高中数学 基础知识篇 1.6 用样本估计总体训练(含解析)北师大版必修3

高中数学基础知识篇 1.6 用样本估计总体训练(含解析)北师大版必修35 用样本估计总体(必修3北师版)建议用时实际用时满分实际得分45分钟100分一、选择题(每小题6分,共24分)1.在用样本频率估计总体分布的过程中,下列说法中正确的是()A.总体容量越大,估计越精确B.总体容量越小,估计越精确C.样本容量越大,估计越精确D.样本容量越小,估计越精确2.一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为()A.2B.4C.6D.83. 为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如下,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a, b的值分别为()A.0.27,78B.0.27,83C.2.7,78D.2.7,834.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.16二、填空题(每小题6分,共12分)5.一个容量为n的样本,分成若干组,已知某组的频数和频率分别为50和0.25,则n=.6.若128,,,k k k的方差为3,则12(3),k-282(3),,2(3)k k--的方差为.三、解答题(共64分)7.(20分)下表给出了某学校120名12岁男生的区间[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)[146,150)[150,154)[154,158) 人数5 8 10 22 33 20 116 5(2)画出频率分布直方图;(3)根据累积频率分布,估计小于134的数据约占多少百分比.8.(22分)为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:甲12 13 14 15 10 16 13 11 15 11 乙11 16 17 14 13 19 6 8 10 16 哪种小麦长得比较整齐?9. (22分)从A、B两种棉花中各抽10株,测得它们的株高如下:(cm)A: 25 41 40 37 22 14 19 39 21 42B: 27 16 44 27 44 16 40 16 40 40(1) 哪种棉花的苗长得高?(2) 哪种棉花的苗长得整齐?5 用样本估计总体(必修3北师版)答题纸得分:一、选择题题号 1 2 3 4答案二、填空题5. 6.三、解答题7.8.9.5 用样本估计总体(必修3北师版)答案一、选择题1.C 解析:∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的越精确.2.D 解析:该组样本的频数为32×0.25=8.3.A 解析:由频率分布直方图知组矩为0.1,4.3~4.4间的频数为100×0.1×0.1=1.4.4~4.5间的频数为100×0.1×0.3=3.又前4组的频数成等比数列,∴公比为3.根据后6组频数成等差数列,且共有100-13=87(人).从而4.6~4.7间的频数最大,且为1×33=27,∴a=0.27.设公差为d ,则6×27+d=87,∴d=-5,从而b =4×27+×=78.4.D 解析:去掉一个最高分和一个最低分后,所剩数据为9.4,9.4,9.6,9.4,9.7, 其平均值为(9.4+9.4+9.6+9.4+9.7)=9.5,方差为⎡⎤⎣⎦222221(9.4-9.5)+(9.4-9.5)+(9.6-9.5)+(9.4-9.5)+(9.7-9.5)=0.0165. 二、填空题5.200 解析:∵频数和频率分别为50和0.25,∴n==200.6.12 解析:∵k 1,k 2,…,k 8的方差为3,∴2k 1,2k 2,…,2k 8的方差是22×3=12,∴2k 1-6,2k 2-6,…,2k 8-6的方差是12. 三、解答题 7.解:(1)样本的频率分布表与累积频率表如下: (3)根据累积频率分布,小于134的数据约占×100%≈19.2%. 8. 甲种小麦长得比较整齐. 9.(1)乙种棉花的苗长得高;(2)甲种棉花的苗长得整齐.区间 [122,126) [126,130) [130,134) [134,138) [138,142) [142,146) [146,150) [150,154) [154,158)人数 5 8 10 22 33 20 11 6 5 频率241151 121 60114011 61 12011 201 241累积频率241120131202320136049120109 24231。

北师大版高中数学必修三《用样本估计总体》同步测试题

北师大版高中数学必修三《用样本估计总体》同步测试题

高中数学学习材料(灿若寒星精心整理制作)《用样本估计总体》同步测试题1.在某项体育比赛中,七位裁判为一选手打出的分数如下:90, 89, 90, 95, 93, 94, 93,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A. 92,2B. 92,2.8 C , 93,2 D. 93,2.82. 一个容量为20的样本,分组后,组距与频数如下:[10,20] , 2; (20,30] , 3; (30,40],4; (40,50] , 5; (50,60] , 4; (60,70] , 2.则样本在[10,50]上的频率为3.观察新生婴儿的体重,其频率分布直方图如下图所示,则新生婴儿的体重在[2 700,3 000]g间的频率为()搦率纲即A. 0.14 和0.37B.1和工 C . 0.03 和0.06 D.;3和三14 37 14 37 5.已知样本:10,8,6,10,8,13,11,10,12,7,8,9,11,9,11,12,9,10,11,12. 那么频率为0.2的范围是()在该组上的频率为 m 直方图上该组的高为 h,则| a — b | =(7. 一个容量为20的样本,数据的分组及各组的频数如下表:分组 [10,20) [20,30) [30,40) [40,50)[50,60)[60,70) 频数2x3y24则样本在区间[10,50)上的频率为(其中x, yCN )()8.对某种电子元件使用寿命跟踪调查得如下图所示的样本频率分布直方图,由图可知一批电子元件中寿命在 100〜300小时的电子元件的数量与寿命在 300〜600小时的电子元件的数量比是()组到第7组的频率之和是 0.32 ,那么第8组的频率是 ^10 .将一个容量为 m 的样本分成3组,已知第一组的频数为 8,第二、三组的频率为0.15和0.45 ,则 m=11 .作为首批“中国最佳旅游城市”的成都,市民们喜欢节假日到近郊休闲和旅游.去年, 相关部门对城东“五朵金花”之一的某景区在“五一”黄金周中每天的游客人数作了统计, 其频率分布如下表所示:A. 5.5 〜7.5B. 7.5 〜9.5 C , 9.5 〜11.5 D. 11.5 〜13.56.在抽查产品的尺寸过程中,将其尺寸分成若干组, [a, b )是其中的一组,抽查出的个体A. hmm B.hC.D. h + mA. 0.5B. 0.7 C . 0.25 D. 0.051 A. 一2 1B.一9.把容量是100的样本分成8组,C.1 D._ 6从第1组到第4组的频数分别是 15, 17, 11, 13,第 5已知5月日这天该景区的营业额约为 万元,假定这七天每天游客人均消费相同,则这个黄金周该景区游客人数最多的那一天的营业额约为 万元.12 . 一个社区调查机构就某地居民的月收入调查了 10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)( 元)月收入段应抽出 人.13 .某棉纺厂为了解一批棉花的质量, 从中随机抽测了 100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间[5,40]中,其频率分布直方图如下图所示, 则在抽测的100根中,有 根棉花纤维的长度小于20 mm.14 .有一个容量为50的样本,其数据的茎叶图表示如下:1 3456667888899920000112222233334455566667778889, 3 0 112 3将其分成7个组并要求:(1)列出样本的频率分布表;(2)画出频率分布直方图与频率 分布折线图隹度但皿)15 .在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据(1)请作出频率分布表,并画出频率分布直方图; (2)估计纤度落在[1.38,1.50)中的频率及纤度小于率是多少?16 .为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据0.3 , 0.4 ,第一小组的频数为 5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少? (3)在这次测试中,学生跳绳次数的中位数落在第几小组内?分组频数[1.30,1.34) 4 [1.34,1.38) 25 [1.38,1.42) 30 [1.42,1.46) 29 [1.46,1.50) 10 [1.50,1.54)2 合计100整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是1.40的频分组如下表:17.某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:组数分蛆低碳联的人数占本组的频率第一蛆潞斯1200 6第二蛆冲5)195F第三蛆国则1000.5第喃画45)a0.4第五组绮。

2019-2020学年高一数学北师大版必修3同步单元卷:(5)用样本估计总体

2019-2020学年高一数学北师大版必修3同步单元卷:(5)用样本估计总体

同步单元卷(5)用样本估计总体1、一个样本,3,5,7的平均数是,且是方程的两根,则这个样本的方差是( )a b ,a b 2540x x -+=A.3 B.4 C.5 D.62、有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A.18B.36C.54D.723、已知甲、乙两组数据如图茎叶图所示,若它们的中位数相同,平均数也相同,则图中的,的比值( ) m n =n m A. B. 3813C. D. 2914、下列说法不正确的是( )A.方差是标准差的平方B.标准差的大小不会超过极差C.若一组数据的值大小相等,没有波动变化,则标准差为0D.标准差越大,表明各个样本数据在样本平均数周围越集中;标准差越小,表明各个样本数据在样本平均数周围越分散5、一次数学考试后,某老师从自己所带的两个班级中各抽取5人,记录他们的考试成绩,得到如图所示的茎叶图.已知甲班5名同学成绩的平均数为81,乙班5名同学成绩的中位数为73,则x-y 的值为( )A.2B.-2C.3D.-36、某品牌空调在元旦期间举行促销活动,所示的茎叶图表示某专卖店记录的每天销售量情况(单位:台),则销售量的中位数是( )A.13B.14C.15D.167、样本中共有五个个体,其值分别为0,1,2,3,m.若该样本的平均值为1,则其方差为( )A.B. C.2D. 28、某校甲、乙两个班级各有名编号为的学生进行投篮练习,每人投次,投中51,2,3,4,510的次数如表:则以上两组数据的方差中较小的一个为,则等于( )2s 2s A.25B. 725C. 35D. 29、在频率分布直方图中,各个小长方形的面积表示( )A.落在相应各组的数据的频数B.相应各组的频率C.该样本所分成的组数D.该样本的容量10、给出下列数据:3,9,8,3,4,3,5,则众数与极差分别是( )A.3,9B.3,6C.5,1D.9,911、是的平均数, 是的平均数, 是的平均x 12100,,,x x x ⋯a 1240,,,x x x ⋯b 4142100,,,x x x ⋯数,则下列各式正确的是( )A. 4060100a bx +=B. =6040100a b x +=D. 2a bx +=12、若一组样本数据2,3,7,8,a 的平均数为5,则该组数据的方差__________。

高中数学必修三同步练习题库:用样本估计总体(填空题:较易)

高中数学必修三同步练习题库:用样本估计总体(填空题:较易)

用样本估计总体(填空题:较易)1、在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,即9,10,11,1,那么这组数据的方差可能的最大值是__________.2、从某高校的高一学生中采用系统抽样法选出30人测量其身高,数据的茎叶图如图所示(单位:cm),若高一年级共有600人,估算身高在1.70m以上的有_______人.3、如图是甲,乙两名同学次综合测评成绩的茎叶图,则乙的成绩的中位数是,甲乙两人中成绩较为稳定的是 .4、为了普及环保知识,增强环保意识,某高中随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则这三个数的大小关系为_______________.5、甲,乙两人在相同条件下练习射击,每人打发子弹,命中环数如下则两人射击成绩的稳定程度是6、下图是甲、乙两市领导干部年龄的茎叶图,对于这两市领导干部的平均年龄给出的以下说法正确的是________.①甲市领导干部的年龄的分布主要集中在40~60之间;②乙市领导干部的年龄分布大致对称;③甲市领导干部的平均年龄比乙市领导干部的平均年龄大;④平均年龄都是50.7、从某高校的高一学生中采用系统抽样法选出30人测量其身高,数据的茎叶图如图所示(单位:cm),若高一年级共有600人,估算身高在1.70m以上的有_______人.8、某市为了了解居民家庭网购消费情况,调查了10000户家庭的月消费金额(单位:元),所有数据均有区间上,其频率分布直方图如图所示,则被调查的10000户家庭中,月消费金额在1000元以下的有__________户.9、一所中学共有4 000名学生,为了引导学生树立正确的消费观,需抽样调查学生每天使用零花钱的数量(取整数元)情况,分层抽取容量为300的样本,作出频率分布直方图如图所示,请估计在全校所有学生中,一天使用零花钱在6元~14元的学生大约有________人.10、某人连续五周内收到的包裹数分别为3,2,5,1,4,则这5个数据的标准差为________.11、下列四个命题①样本方差反映的是所有样本数据与样本平均值的偏离程度;②从含有2008个个体的总体中抽取一个容量为100的样本,现采用系统抽样方法应先剔除8人,则每个个体被抽到的概率均为;③从总体中抽取的样本数据共有m个a,n个b,p个c,则总体的平均数的估计值为;④某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组00l~016中随机抽到的学生编号是007.其中真命题的个数是_____个12、某校在市统测后,从高三年级的1000名学生中随机抽出100名学生的数学成绩作为样本进行分析,得到样本频率分布直方图,如图所示,则估计该校高三学生中数学成绩在之间的人数为__________.13、某植树小组测量了一批新采购的树苗的高度,所得数据如茎叶图所示(单位:),则这批树苗高度的中位数为__________.14、某人5次上班途中所花的时间(单位:分钟)分别为.已知这组数据的平均数为10,方差为2,则的值为___.15、若1,2,3,4,这五个数的平均数为3,则这五个数的方差为__________.16、某学院的三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的专业有380名学生,专业有420名学生,则在该学院的专业应抽取____________名学生.17、在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示,则该35名运动员成绩的中位数为__________.18、为了解学生答卷情况,某市教育部门在高三某次测试后抽取了名同学的试卷进行调查,并根据所得数据画出了样本的频率分布直方图(如图),该样本的中位数是__________.19、已知一组数据,,,,,则该组数据的方差是____.20、气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22℃.”现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数,单位:℃):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.2.则肯定进入夏季的地区有____个.21、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为,其中甲社区有驾驶员人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为,,,,则这四个社区驾驶员的总人数为.22、已知一组数据的方差是S,那么另一组数据的方差是。

高中数学北师大版必修三估计总体的分布课后巩固·提能Word版含答案

高中数学北师大版必修三估计总体的分布课后巩固·提能Word版含答案

课后巩固·提能一、选择题1.(2012·惠州高一检测)一个容量为100的样本,其数据的分组与各组的频数如下:则样本数据落在10~40上的频率为( )(A)0.13 (B)0.39 (C)0.52 (D)0.642.一个容量为32的样本,已知某组样本的频率为0.375,则该组样本的频数为( )(A)4 (B)8 (C)12 (D)163.(2012·昆明高一检测)为了了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间对某地居民调查了10 000人,并根据所得的数据画出样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从10 000人中再用分层抽样方法抽出100人做进一步调查,则在2.5~3小时时间段内应抽出的人数是( )(A)25 (B)30 (C)50 (D)754.为了调查某厂工人生产某种产品的能力,对一天生产45件以上产品的人数进行统计,其频率分布直方图如图所示,若生产数量在85~95件的人数是90,则生产数量在55~65件的人数是( )(A)360 (B)720 (C)220 (D)2405.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5~18岁的男生体重(kg),得到频率分布直方图如图,据图可得这100名学生中体重在56.5~64.5 kg范围内的学生人数是( )(A)20 (B)30 (C)40 (D)50二、填空题6.将一批数据分成5组,列出频率分布表,其中第1组的频率是0.1,第4组与第5组的频率之和是0.3,那么第2组与第3组的频率之和是_________________.7.(2012·漳州高一检测)下面是某中学2012年期末各分数段的考生人数分布表:表则分数在700~800的人数为________________人.三、解答题8.下表是100名学生身高的频率分布表,根据数据画出:(1)频率分布直方图;(2)频率分布折线图.9.(2012·杭州高一检测)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110次以上(含110次)为达标,试估计该校全体高一学生的达标率是多少?答案解析1.【解析】选C.先算出在10~40上的频数为13+24+15=52,则频率是0.52.2.【解析】选C.∵频率=频数容量,∴频数=频率×容量=0.375×32=12.3.【解题指南】先计算频率,再得到频数.【解析】选A.调查的100人中平均每天看电视的时间在2.5~3小时时间段内的频率是0.5×0.5=0.25,所以这10 000人中平均每天看电视时间在2.5~3小时时间段内的人数为10 000×0.25=2 500,又抽样比为100110 000100,故在2.5~3小时时间段内应抽出的人数为2 500×1100=25.4.【解析】选B.由图可知,生产数量在85~95件的频率为0.05,而频率=频数样本容量,所以一天生产45件以上产品的人数为1 800.生产数量在55~65件的频率为0.4,则生产数量在55~65件的人数为0.4×1 800=720.5.【解题指南】计算在56.5~64.5 kg范围内的矩形的面积即该范围对应的频率,根据频率的定义计算该范围内的人数.【解析】选C.在频率分布直方图中,矩形的面积就是数据落在这一范围的频率,在56.5~64.5 kg范围内的矩形的面积是(0.03+0.05+0.05+0.07)×2=0.4,则数据落在这一范围的频率是0.4.所以这100名学生中体重在56.5~64.5 kg范围内的学生人数是100×0.4=40.【举一反三】若把所求的结论改为“100名学生中体重不在56.5~64.5 kg范围内的频率是多少?”【解析】体重在56.5~64.5这一范围内的频率是(0.03+0.05+0.05+0.07)×2=0.4,故体重不在56.5~64.5 kg范围内的频率是1-0.4=0.6.6.【解析】第2组与第3组频率之和为1-0.1-0.3=0.6.答案:0.67.【解析】由于在分数段400~500内的频数是90,频率是0.075,则该中学共有=1 200,则在分数段600~700内的频数是1 200×0.425=510,则分数考生900.075在700~800内的频数,即人数为1 200-(5+90+499+510+8)=88.答案:88【举一反三】若本题已知不变,按要求把表补充完整.【解析】由上题可知,总数为1 200,则完整的表如下:8.【解析】(1)画频率分布直方图①根据频率分布表,作直角坐标系,以横轴表示身高,纵轴表示频率/组距.②在横轴上标上表示的点.③在上面各点中,分别以连接相邻两点的线段为底作矩形,高等于该组的频率/组距(如图).(2)画频率分布折线图如图所示9.【解析】(1)由于频率分布直方图以面积的形式反映了数据落在各个小组内的频率大小,因此第二小组的频率为424171593+++++=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.故第二小组的频率是0.08,样本容量是150. (2)由图可估计该校高一学生的达标率为17159324171593++++++++×100%=88%.故该校全体高一学生的达标率约是88%.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用样本估计总体同步练习(三)
1.关于频率分布直方图,下列说法正确的是()
A.直方图的高表示取某数的频率
B.直方图的高表示该组上的个体在样本中出现的频率
C.直方图的高表示该组上的样本中出现的频率与组距的比值
D.直方图的高表示该组上的个体在样本中出现的频数与组距的比值2.一个容量为20的样本数据,分组后组距与频数如下:(]20,10,2;(]30,20,3;(]40,30,4;(]50,40,5;(]60,50,4;(]70,60,2,则样本在区间(]50,50
-上的频率为()
A.5% B.25% C.50% D.70%
3.描述总体离散程度或稳定性的特征是总体方差2
σ,以下统计量能估计总体稳定性的是()
A.样本平均值x B.样本方差2S C.样本最大值D.样本最小值
4.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量,分别记录抽查数据如下:
甲:120 101 99 98 103 98 99
乙:110 115 90 85 75 115 110
(1)这种抽样方法是哪一种?
(2)画出这两组数据的茎叶图,根据茎叶图说明这两个车间的生产情况.(3)估计甲、乙两车间的平均值与标准差,并说明哪个车间的产品比较稳定.
5.某学习小组在一次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有4人,80分和75分的各有1人,则该小组成绩的平均数、众数、中位数分别是()
A、85、85、85
B、87、85、86
C、87、85、85
D、87、85、90
6.若a
1,a
2
,…,a
20
这20个数据的平均数为x,方差为0.20,则数据a
1
,a
2
,…,
a
20
,x这21个数据的方差约为。

7.用样本的数据特征去估计总体是一种推断性的统计方法,样本平均数能估计,样本方差能估计,样本的频率分布能估
计 。

8.在某次考试中,要对甲、乙两同学的学习成绩进行检查,甲同学的平均得分76=甲x ,方差42=甲s ,乙同学的平均得分77=乙x ,方差102=乙s ,则 同学平均成绩好, 同学各科发展均衡。

9.一中学生在30天中记忆英语单词的日记量,有2天是51个,3天是52个,6天是53个,8天是54个,7天是55个,3天是56个,1天是57个。

计算这个中学生30天中的平均日记忆量。

10.从一批棉花中抽取9根棉花的纤维,长度如下(单位:mm ):
82,202,352,321,25,293,86,206,115。

求样本平均数、样本方差和样本标准差。

11.有甲、乙两个球队,甲队有6名队员,乙队有20名队员,他们的身高数据如下(单位:mm ):
甲队:187,181,175,185,173,179;
乙队:180,179,182,184,183,183,183,176,176,181,177,177,178,180,177,184,177,182,177,183。

(1)求两队队员的平均身高;
(2)比较甲、乙两队,哪一队的身高整齐些?
统计学是一门与数据打交道的学科,研究如何搜集、整理、计算和分析数据,然后从中找出一些规律,用样本的数字特征去估计总体的一些情况。

请根据以上知识解决以下12-13题。

12.甲、乙两台机床在相同技术条件下同时生产一种尺寸为10mm的零件,现在从中各抽测10个,它们的尺寸分别如下(单位:mm):
甲 10,2,10,1,10,9,8,9,9,10,3,9,7,10,9,9,10,1;
乙 10,3,10,4,9,6,9,9,10,0,10,9,8,9,7,10,2,10。

求上面两个样本的平均数与方差,并估计哪台机床生产的零件质量好些?
13.某鱼塘放养鱼苗10万条,根据这几年的经验知道,鱼苗成活率为95%,一段时间后准备打捞出售,第一网捞出40条,称得平均每条2.5kg。

第二网捞出25条,称得平均每条鱼2.2kg,第三网捞出35条,称得平均每条鱼2.8kg,试估计这时鱼塘中鱼的总重量(保留两个有效数字)。

14.一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是()
A、81.2,4.4
B、78.8,4.4
C、81.2,84.4
D、78.8,75.6 15.某校为了了解学生的课处阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用图6-3所示的条形图表示。

根据条形图可
得这50名学生这一天平均每人的课外阅读时间为()
A、0.6h
B、0.9h
C、1.0h
D、1.5h
答案:。

相关文档
最新文档