第五章 纯金属的凝固
纯金属与合金凝固的异同点
纯金属与合金凝固的异同点嘿,小伙伴们!今天我要和你们聊一个超级有趣的话题,那就是纯金属与合金凝固的异同点。
这可是个很神奇的知识哦,就像打开了一个神秘的宝藏盒子,里面藏着好多有趣的秘密呢!先来说说纯金属凝固吧。
有一次,我在科学课上看到老师做了一个实验。
老师把一小块纯铜放在一个加热的容器里,慢慢地,铜块开始变软,就像巧克力在太阳下融化一样。
然后,老师关掉了加热装置,哇,神奇的事情发生了!铜块开始慢慢变硬,从液体变成了固体。
这就是纯金属的凝固过程哦。
我当时眼睛都不眨地看着,心里觉得好惊讶呀!就好像看到了一个小魔法在我眼前发生。
纯金属凝固的时候,就像是一个整齐的小士兵在排队,它们会按照一定的规则,非常有序地排列起来,形成一个有规律的结构。
再说说合金凝固。
我家有一个很漂亮的不锈钢勺子,我就很好奇它是怎么制作出来的。
后来我才知道,不锈钢其实就是一种合金。
合金凝固和纯金属凝固有点不一样哦。
比如说,我们把一些铁和碳放在一起加热,它们会融合在一起变成液体。
当这个液体开始凝固的时候,就不像纯金属那么整齐啦。
里面的各种元素就像一群调皮的小伙伴,它们会互相拉扯、互相影响,最后形成一个有点复杂的结构。
但是呢,也正是因为这样,合金往往会有一些特别的性能,比如不锈钢就很坚硬,还不容易生锈。
那纯金属和合金凝固有什么相同的地方呢?我发现呀,它们都要经历从液体变成固体的过程,就像我们从水变成冰一样。
在这个过程中,都需要一定的温度条件。
而且,它们凝固的时候都会放出一些热量哦,就好像在告诉我们它们在努力地变成新的样子呢!我还和我的好朋友小明讨论过这个问题,我问他:“你觉得纯金属和合金凝固像什么呢?”小明说:“纯金属凝固就像一个人在安静地走路,一步一步很有规律;合金凝固就像一群人在跳舞,虽然有点乱,但是很有活力。
”哈哈,我觉得他说得好有意思呀!不过,它们也有一些不同的地方哦。
纯金属凝固后的结构比较简单、整齐,而合金凝固后的结构就比较复杂啦。
5.凝固1
力学条件。
图 不同结晶温度下r和Δ G的关系
思考题
试述结晶相变的热力学条件、动力学条件、能量及结构条 件。 分析结晶相变时系统自由能的变化可知,结晶的热力学条 件为ΔG<0。只有过冷,才能使ΔG<0。 动力学条件为液相的过冷度必须大于形核所需的临界过冷 度。 由临界晶核形成功可知,当形成临界晶核时,还有1/3的 表面能必须内液体中的能量起伏来提供。 液体中存在的结构起伏,是结晶时产生晶核的基础,因 此,结构起伏是结晶过程必须具备的结构条件。
现代液体金属结构理论认为:
液体中原子堆积是密集的,但排列不那么规则。
大范围看,原子排列是不规则的,但从局部微小
区域来看,原子可以偶然地在某一瞬间内出现规
则的排列,然后又散开。(结构起伏)→一定条
件下,可以长大成晶核。
§5.1.2 纯金属的结晶过程
当液态金属冷却到熔点 Tm 以下的某一温度开始结晶时,
图 均匀形核
图 非均匀形核
§5.3.1 均匀形核
1.均匀形核的能量条件
在液态金属中,时聚时散的近程有序的原子集团是形成晶
核的胚芽,叫晶胚。
在过冷条件下,晶胚形成时,系统自由能变化包括体积自
由能的下降和表面能的增加。
G GV V A
4 3 2 G r GV 4r 3
3
图 不同润湿角的晶核形貌
当θ=0时,则⊿G*非=0,说明固体杂质或型壁可作为现
成晶核,这是无核长大的情况,如图a所示。 当θ=π时,则⊿G*非=⊿G*均。 当 0<θ<π时,G*非<⊿G*均,这便是非均匀形核的条件, 如图b所示。
2 L rc GV
图非均匀形核功与均匀形核功对比的示意图
H P H L H S Lm , Lm 0为熔化潜热, Lm S m S S S L , S m为熔化熵 Tm
纯金属凝固部分课后习题
习题6-1 计算当压力增加到500×105Pa时锡的熔点变化,已知在105Pa下,锡的熔点为505K,熔化热为7196J/mol,摩尔质量为118.8×10-3kg/mol,固体锡的密度为7.30×103kg/m3,熔化时的体积变化为+2.7%。
6-2 根据下列条件建立单元系相图:①组元A在固态有两种结构A1和A2,且密度A2>A1>液体;②A1转变到A2的温度随压力增加而降低;③A1相在低温是稳定相;④固体在其本身的蒸气压1333Pa(10mmHg)下的熔点是8.2℃;⑤在1.013×105Pa(1个大气压)下沸点是90℃;⑥A1,A2和液体在1.013×106Pa(10个大气压)下及40℃时三相共存(假设升温相变△H<0)。
6-3 考虑在1个大气压下液态铝的凝固,对于不同程度的过冷度,即△T=1,10,100和200℃,计算:①临界晶核尺寸;②半径为r*的晶核个数;③从液态转变到固态时,单位体积的自由能变化△GV;④从液态转变到固态时,临界尺寸r*处的自由能的变化△Gr*(形核功)。
铝的熔点Tm =993K,单位体积熔化热Lm=1.836×109J/m3,固液界面比表面能δ=93×10-3J/m2,原子体积V0=1.66×10-29m3。
6-4 ①已知液态纯镍在1.013×105Pa(1个大气压),过冷度为319℃时发生均匀形核。
设临界晶核半径为1nm,纯镍的熔点为1726K,熔化热Lm=18075J/mol,摩尔体积V=6.6cm3/mol,计算纯镍的液一固界面能和临界形核功。
②若要在2045K发生均匀形核,须将大气压增加到多少?已知凝固时体积变化△V=-0.26cm3/mol(1J=9.87×106cm3·Pa)。
6-5 纯金属的均匀形核率可用下式表示:式中,A≈1035;;△G*为临界形核功;k为玻尔兹曼常数,其值为1.38×10-23J/K。
第五章 纯金属的凝固
多数金属制品的生产都需要经历熔炼和铸造两 个工艺过程。熔炼是为了获得符合要求的液态 金属。铸造是将液态金属注入铸模中使之凝固 成一定形状,尺寸的固态金属件或金属锭。 结晶:液态金属转变为固态金属晶体的过程。 结晶是铸锭,铸件,金属焊接生产的主要过程。 是材料制备的最主要工艺。 广义结晶定义:聚集态,晶态,非晶态—晶体 的过程。
dn / dt B2 exp(GA / KT ) I B exp[(G * GA ) / KT ]
下式中的ΔG*和ΔGA与扩散有关,但两项变化 趋势不同:ΔT↓时,ΔG*↑,而 ΔGA↓.
原子可动性 相变驱动力 e-ΔG*/KT
e-ΔGA/KT
I
温度T→Tm 温度 温度 I-t 曲线示意图
Tm Ts
无限缓慢
时间
过冷:金属开始凝固温度Ts,低于其熔点Tm的现 象. ΔT(过冷度)=Tm-Ts,Tm为熔点。 不同金属以及不同冷却条件,其凝固的过冷度 是不同的。 金属中纯度越高,无杂质,ΔT越大。冷却速 度越大,过冷度也越大。采取特殊手段,可使 金属的最大过冷度增加。象使液态金属细化成 液滴可使过冷度增加。如下表:
一,均匀形核
由均匀母相中形成新相结晶核心的过程,是一 种无择优位置的形核。 1,均匀形核的热力学分析 晶胚出现增添了一项表面自由能,系统自由 焓总变化为ΔG=-V·ΔGV+Aγ ,设晶胚的形状 为圆球,半径为γ0,ΔG=-4πr3ΔGV/3+ 4πr2γ(σ),该式给出给定温度下,晶胚半径与ΔG 之间的关系。(下图也能说明另一些问题)
d (G ) 4 r 2 Gv 8 r 0 dr 2 16 r 3 r* G* 2 Gv 3(Gv)
纯金属的凝固习题与答案
纯金属的凝固习题与答案1 说明下列基本概念凝固、结晶、过冷、过冷度、结构起伏、能量起伏、均匀形核、非均匀形核、临界晶核半径、临界晶核形核功、形核率、生长线速度、光滑界面、粗糙界面、动态过冷度、柱状晶、等轴晶、树枝状晶、单晶、非晶态、微晶、液晶。
2 当球状晶核在液相中形成时,系统自由能的变化为σππ23344r G r G V +∆=∆,(1)求临界晶核半径c r ;(2)证明V V c c G A G c ∆-==∆231σ(c V 为临界晶核体积);(3)说明上式的物理意义。
3 试比较均匀形核与非均匀形核的异同点,说明为什么非均匀形核往往比均匀形核更容易进行。
4 何谓动态过冷度?说明动态过冷度与晶体生长的关系。
在单晶制备时控制动态过冷度的意义?5 分析在负温度梯度下,液态金属结晶出树枝晶的过程。
6 在同样的负温度梯下,为什么Pb 结晶出树枝状晶而Si 的结晶界面却是平整的?7 实际生产中怎样控制铸件的晶粒大小?试举例说明。
8 何谓非晶态金属?简述几种制备非晶态金属的方法。
非晶态金属与晶态金属的结构和性能有什么不同。
9 何谓急冷凝固技术?在急冷条件下会得到哪些不同于一般晶体的组织、结构?能获得何种新材料?. 计算当压力增加到500×105Pa 时锡的熔点的变化,已知在105Pa 下,锡的熔点为505K ,熔化热7196J/mol ,摩尔质量为×10-3kg/mol ,固体锡的体积质量×103kg/m 3,熔化时的体积变化为+%。
2. 考虑在一个大气压下液态铝的凝固,对于不同程度的过冷度,即:ΔT=1,10,100和200℃,计算: (a)临界晶核尺寸;(b)半径为r*的团簇个数;(c)从液态转变到固态时,单位体积的自由能变化ΔGv ; (d)从液态转变到固态时,临界尺寸r*处的自由能的变化 ΔGv 。
铝的熔点T m =993K ,单位体积熔化热ΔH f =×109J/m 3,固液界面自由能γsc =93J/m 2,原子体积V 0=×10-29m 3。
纯金属的凝固(结晶)
纯金属的凝固(结晶)
2非均匀形核 浸润角对形核影响
G非*
G均* ( 2
3cos
4
cos3
)
纯金属的凝固(结晶)
2非均匀形核 浸润角对形核影响
0o
G非*
G均* ( 2
3cos
4
cos3
)
G非 * 0 晶核在固相质点上直接长大。
180o G非 * G均 * 固相质点不起作用。
越小,G非 * 越小,临界晶核体积越小,N越高。
特点: ①所需过冷度低。 ②在ΔT相同时,形核率高,结晶后晶粒细小。
纯金属的凝固(结晶)
2非均匀形核 1.临界晶核半径与形核功。
ΔG=V•ΔGV +A•σ
假设在平面基底(W)上形成球冠晶核α,晶核 形成时,增加的表面能为:
GS =AL L +AW W AW LW L、W、 LW:分别为晶核与液相、晶核与
纯金属的凝固(结晶) 结晶概念:金属由液态转变为固态的过程。 金属原子由短程有序变为长程有序的过程。 为何研究结晶:
结晶时,希望获得均匀细小的晶粒→ 强度、硬度高,塑性、韧性好。
纯金属的凝固(结晶) 结晶概念:金属由液态转变为固态的过程。 为何研究结晶:
a.金属生产: 熔炼—浇注—结晶—其它加工。
S Lm Tm
在T≠Tm 时
GV =
-Lm
TS
=
-L m
+
T
Lm Tm
=-L m
Tm Tm
T
=
-Lm
T Tm
GV
LmT Tm
纯金属的凝固(结晶)
2金属结晶的热力学条件
GV
LmT Tm
当ΔT=0时,ΔGV=0 即不结晶也不熔化
金属凝固原理
作业:8, 12.
习题
第二章 液态金属的充型能力
2-1 液态金属充型能力的基本概念
1. 概念
充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清 晰的铸件的能力。
2.充型能力的决定因素
(1)金属本身的流动性 液态金属的流动能力,金属的铸造性能之一,与金属的
成分、温度、杂质含量、及其物理性能有关。 流动性的作用:排出气体、杂质;补缩、防裂,获得优质
二、金属的加热膨胀
膨胀原因:
(1)原子间距增大: 势能曲线不对称性,图1-2
(2)空穴产生: 能量起伏
三、金属的熔化
1. 熔点附近:离位原子多 熔化始于晶界,晶界原子排列相对不规则,势能 高,离位原子多,空穴数目可达到原子总数10%。
2. 熔点:固态——液态状态突变 (1)外界能量足够大时——熔化潜热,原子间距 离大于R1,原子结合键破坏,固态——液态 (2)性质突变:体积突变;电阻、粘性突变。 3. 熔化实质:规则的原子排列突变为紊乱的非晶 质结构的过程。
第一章 液态金属的结构和性质
§1-1 金属的膨胀及熔化
一、晶体中的原子结合 1. 在一定条件下,金属中的原子具有一定排列, Why? (1)引力:异性电荷间的库仑引力; (2)斥力:同性电荷间的库仑斥力与泡利原理引 起的斥力之和。 2. 图1-1 3. 公式推导证明 特殊点:平衡点(合力为零,势能最小)、引 力最大点。
凝固学 研究从液态 ——固态转变过程的基本理论一门学科 (1)定性/定量揭示液—固转变规律、内在联系; (2)影响因素(金属性能、质量)
液态成形与凝固关系 液态成形过程就是凝固过程
凝固过程的研究对象
液-固相变过程 宏观:液态——固态转变的相变过程; 微观:激烈运动的液相原子——规则排列固相
第五章 纯金属的凝固
非均匀形核的形核功:
* G非 2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
* G非
2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
讨论: ① θ=0°, f(θ)=0,ΔG*非=0,基底和晶核结构相同,直接 长大,称外延生长;杂质本身即为晶核;
(1)非均匀形核时的能量变化及形核功
设一曲率半径为r的球冠的晶胚依附于型壁W上形成。
接触角为θ (又称浸润角)。
G GVV A
GVV AL L AM ( M L M )
LM L cos M
AL 2r (1 cos )
第五章 纯金属的凝固
物质从液态到固态的转变过程。若凝固后的物 (solidification) 质为晶体,则称该过程为结晶(cystallization) 。 凝固: 铸造:将金属熔炼成符合要求的液体并浇进铸型,冷却凝固、 得到有预定形状、尺寸和性能的铸件的工艺过程。 ① 最早的成型手段; ② 生产的第一个环节;
Tk Tm Tk 0.15 ~ 0.25 Tm Tm
ΔTk称有效形核过冷度 ΔTk≈0.2Tm(Tm用绝对温度表示) 。 ② 对于高粘滞液体,均匀形核速率很 小,基本不存在有效形核温度。
图5-6 金属的形核率N与过冷度ΔT的关系
实验测得的成核温度
汞 锡 铅 铝 银 金 Tm/K 234.3 505.7 600.7 931.7 1233.7 1336 Tk/K 176.3 400.7 520.7 801.7 1006.7 1106
△Tk/Tm
0.247 0.208 0.133 0.140 0.184 0.172
铜 铁 铂 NaF NaCl
纯金属与固溶体合金平衡凝固的异同
纯金属与固溶体合金平衡凝固的异同纯金属和固溶体合金是凝固过程中常见的两种材料。
虽然它们都是由金属元素组成,但在凝固过程中存在一些异同。
本文将从凝固行为、晶体结构、性质等方面对纯金属和固溶体合金进行比较,以探讨它们的异同之处。
一、凝固行为纯金属在凝固过程中呈现出明显的凝固点,即在一定温度下由液态转变为固态。
凝固点是纯金属的特征性参数,可以通过实验测定得到。
而固溶体合金的凝固行为相对复杂,通常不存在明确的凝固点。
这是由于固溶体合金是由两种或多种金属元素组成的混合物,其成分和比例会影响凝固过程的温度范围和行为。
二、晶体结构纯金属的凝固过程中会形成紧密堆积的晶体结构,晶体中的金属原子排列有序,具有规则的晶胞结构。
这种晶体结构使得纯金属具有良好的塑性和导电性。
而固溶体合金的晶体结构则取决于其成分和比例。
不同的成分和比例会导致不同的晶体结构,如面心立方、体心立方等。
这种晶体结构的变化会直接影响固溶体合金的力学性能和化学性质。
三、性质纯金属具有良好的导电性、热传导性和塑性,而固溶体合金的性质则受到成分和比例的影响。
固溶体合金的导电性和热传导性可能会受到成分的改变而发生变化,而塑性则受到晶体结构和成分的共同影响。
此外,固溶体合金还可能具有一些特殊的性质,如形状记忆效应、超弹性等,这些性质的实现往往依赖于特定的成分和比例。
四、应用领域纯金属由于其良好的导电性和塑性,在电子、航空、汽车等领域有广泛应用。
而固溶体合金由于其丰富的性质和调控能力,在材料科学、能源领域等有重要的应用价值。
例如,镍基高温合金在航空发动机中具有优异的耐热性能;钛合金由于其良好的比强度和耐腐蚀性能,广泛应用于航空航天领域。
纯金属和固溶体合金在凝固行为、晶体结构、性质和应用领域等方面存在一些异同。
纯金属具有明确的凝固点和规则的晶体结构,其性质受固有的金属元素决定。
而固溶体合金则受到成分和比例的影响,其凝固行为相对复杂,晶体结构和性质的变化较为多样。
金属凝固原理第5单相合金的凝固
TM
T0
二、平衡凝固时的溶质再分配
④ 凝固终了 T T1 时:CS C0 (单向凝固锭中无偏析)
TM
T0
三、近(准)平衡凝固时的溶质再分配
1. 固相无扩散,液相均匀混合时的溶质再分配
假设合金单向凝固,界面前沿存在正温度梯度,K0 1为例
(1)凝固过程 ① 凝固开始
时:CS K0C0 C0 ,CL C0
在凝固温度区间任一温度T时:析出固相成分Cs<Co 析出液相成分CL>Co
发现在整个凝固过程中,固-液界面处固相的成分始 终低于固-液界面处液相的成分(对K0<1合金),多 余的溶质原子被排挤到界面上的液体中,使溶质原 子在界面富集,并逐渐向液体中扩散均匀化。
溶质的再分配—合金在凝固过程中,已析出固相排
⑤ 凝固终了T T1' 时:CS CSM ,铸锭中成分不均匀,
存在微观偏析.
TM
T0
(2)微观偏析的定量描述
设凝固过程中某一时刻,形成
的固相分数为fs(液相分数为1-fs)。
当固相增加dfs时,则排出的溶
质量为(CL-CS)dfs,使剩下的液
体[1-(fs+dfs)]的浓度升高dCL,
CL 则有(CL-CS)dfs=[1-(fs+dfs)]dCL
固相成分
C
S
或液相成分
C
L
。
(3)应用
Scheil公式可应用于以下三个方面:
· 单向(定向)凝固过程铸锭中成分的变化
· 分析微观偏析(晶粒内偏析)过程成分变化
· 利用此式提纯合金
(4)适用范围
· 此定理在液相充分搅拌情况下较准确。否则有误差
· 在凝固末端,即剩下最后一滴液体时,此定理不成立
材料热力学第五章
第五章 马氏体转变热力学
γ奥式体 α马氏体
第五章
转变温度
从合金热力学可知,成
分相同的奥氏体与马氏
体的自由焓G均随温度 的升高而下降。但下降 的速率不同,两曲线必 相交于一个特征温度T0
马氏体和奥氏体的自由焓与温度的关系
第五章
与其他转变一样,马氏体的形成将导致界面能和弹性能 的产生。为此马氏体转变,或马氏体逆转变并非在T0开 始,分别需要过冷和过热。只有自由焓差足够大,直至 Ms(马氏体转变起始温度)或As(马氏体逆转变起始温度),
第五章 马氏体相变基本特征
马氏体转变时,只需点阵改组而无需成分的变化(溶质原
子无需扩散),转变速度非常快。实验证明Fe-C和Fe-Ni
合金在-20~-196℃温度之间成核并生长成一片完整的 马氏体仅需0.5~0.05μs,接近绝对零度时,形成速度仍 然很高。在这样低的温度下,原子扩散速度极慢,依靠扩 散实现快速转变是根本不可能的,是无扩散型相变。
第五章
第五章 相变热力学
综述 1、相变的分类:依机理、热力学、质点是否参与扩散 2、相变过程的不平衡状态及亚稳区 3、相变过程的温度条件、浓度条件 4、纯金属凝固转变热力学
第五章
1、相变的分类:依机理、热力学、质点是否参与扩散 按相变发生的机理分类
1、成核-生长机理(nucleation-growth transition)
形核长大
固溶体脱溶有两种不同方式
调幅分解
究竟采用哪种方式,决定于合金的成分 和体系的温度,即决定于在特定温度下 的自由能-组成曲线的形状 固溶体自由能 曲线分析 调 幅 分 解
一、固溶体自由能曲线分析
固溶体的性质与摩尔自由能曲线性质的关系
第五章
金属凝固理论 第5章 单相合金的凝固
2020/10/15
13/34
二、“成分过冷”的过冷度
Tc=TL(x’) -T(x’) 将固液界面前方的平衡液相温度(理论凝固温度)分
布曲线TL(x’)的表达式、固液界面前方的实际温度分 布直线T(x’) 的表达式代入上式,可以导出“成分过 冷”的过冷度表达式。
2020/10/15
14/34
成分过冷的过冷度:
S
L (b) 最终稳定界面
20/34
二、窄“成分过冷”区的胞状生长
当单相合金生长条件符合:
GL mLC0 (1 k0 )
v
DL k0
( G2 ) 时 , 界 面 前 方 产 生 一个窄成分过冷区。界面开 始不稳定。
2020/10/15
21/34
(1)界面突起伸入过 冷区内,但过冷区较 窄,因而突出的距离 小,且不会产生侧向 分枝;
GL mLC0 (1 k0 )
v
DL k0
由判据 上式可知,下列条件有助于形成“成分过冷”:
液相中温度梯度小(G L小); 晶体生长速度快,v 大;
m L大,即陡的液相线斜率;
原始成分浓度高,C 0大;
液相中溶质扩散系数 D L低; K 0<1 时,K 0 小;K 0>1 时,K 0 大
工艺因素
材料因素
(1)固液界面溶质再分配 引起成分富集;
(2)固液界面前方液相的 实际温度梯度必须达到一 定的值。即:
GL
dTL (x' ) dx'
x' 0
(从固液界面点做理论凝
固温度曲线的切线,与实
际温度梯度比较。)
2020/10/15
9/34
理论凝固温度的确定
合金原始成分C0,平衡结晶温度T0,液相线斜率m,理 论凝固温度Tx:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r*
体积自由能
r
2 16 2Tm A* 4 (r*)2 2 Lm T 2
1 G * A * 3
2 16 3Tm 1 G* A 2 3( Lm T ) 3
说明:
① 形核功△G*与(△T )2成反比,△T↑,△G*↓; ② 形成临界晶核时自由能仍是增高的(△G*>0),其增 值相当于其表面能的1/3,即L→S体积自由能差值只补 偿形成临界晶核表面所需的能量的2/3,而不足的1/3则 另需他法;
(1)非均匀形核时的能量变化及形核功
设一曲率半径为r的球冠的晶胚依附于型壁W上形成。
接触角为θ (又称浸润角)。
G GVV A
GVV AL L AM ( M L M )
LM L cos M
AL 2r (1 cos )
非均匀形核的形核功:
* G非 2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
* G非
2 16 3Tm * f ( ) =f ( )G均 3( Lm T ) 2
讨论: ① θ=0°, f(θ)=0,ΔG*非=0,基底和晶核结构相同,直接 长大,称外延生长;杂质本身即为晶核;
undulation
液态的结构特征:原子排列长程无序,动态短程有序。
5.1.2 纯金属结晶的过冷现象
过冷:
(Supercooling或 Undercooling )
液态材料在理论结晶温度以下仍保持液 态的现象。
理论凝固温度Tm与实际开始凝固温度Tn 之差,即ΔT= Tm - Tn 。
过冷度 ΔT:
5.3.1 均匀形核(homogeneous nucleation)
均匀形核:在过冷液体中,以液态金属本身具有的,能够稳定 存在的晶胚(embryo)为结晶核心直接成核的过程。
新相晶核在母相整个体积内无规则的、均匀的、自 发的形成。
(1)均匀形核时的能量变化
原子从液态转变为固态,体系内的自由能(固、液 间体积自由能差)降低; 晶胚构成新的界面、引起表面吉布斯自由能(单位 面积表面能γ)增加。
金属
Al
原子间距/nm
0.296
配位数
10-11
原子间距/nm
0.286
配位数
12
Zn
Cd Au Bi
0.294
0.306 0.286 0.322
11
8 11 7- 8
0.265, 0.294
0.297, 0.330 0.288 0.309, 0.346
6+6
6+6 12 3+3
结构起伏: 大小不一的近程有序排列的此起彼伏构成的液 Structural 体金属的动态图像。
因此形核率为 :
G * Q N K exp exp kT kT G * Q K exp kT
Tm T
① 对于易流动液体,形核率随温度下 降至某值Tk突然显著增大。 Tk称均匀形核的有效形核温度。
大多数液均匀形核在相对过冷度
③ 最经济的生产方法;
④ 直接影响材料的工艺性能和使用性能(组织基本 参数与性能有明确关系)。
铸造方法
熔模铸造
焊接:利用局部加热的方法将被联接件联接成一种不可拆的 整体工艺过程。 焊接方法
5.1 金属结晶的现象
5.1.1 液态金属的结构
用衍射法测得的金属液态和固态的结构数据比较 液态 固态
2Tm r* Lm T
2 177103 1356 1.294109 m 1267106 236
晶胞体积: Vc a3 4.7241029 m3
假设临界晶核为球形,则其体积为:
4 3 27 3 V * r * 8.157 10 m 3
临界晶核中的晶胞数目为: n
例:计算铜在非均匀形核时临界晶核中的原子数。
解:球冠体积为
* Vcap
h 2
3
(3r h)
假设:球冠高h = 0.2r ;
球冠曲率半径 r 取铜均匀形核临界半 r*。
* Vcap 2.2841028 m3
n
* Vcap
Vc
5
每个临界晶核约有20个原子。
(2)非均匀形核形核率
第五章 纯金属的凝固
物质从液态到固态的转变过程。若凝固后的物 (solidification) 质为晶体,则称该过程为结晶(cystallization) 。 凝固: 铸造:将金属熔炼成符合要求的液体并浇进铸型,冷却凝固、 得到有预定形状、尺寸和性能的铸件的工艺过程。 ① 最早的成型手段; ② 生产的第一个环节;
G
表面自由能
能量变化
体积自由能—动力
表面自由能—阻力
G GV V A
r
体积自由能
设形成半径 r 的球形晶核,
4 3 G r GV 4r 2 3
(2)临界晶核(critical nucleus)
d (G ) 4r 2 GV 8r 0 dr
r* 2 GV
Tk Tm Tk 0.15 ~ 0.25 Tm Tm
ΔTk称有效形核过冷度 ΔTk≈0.2Tm(Tm用绝对温度表示) 。 ② 对于高粘滞液体,均匀形核速率很 小,基本不存在有效形核温度。
图5-6 金属的形核率N与过冷度ΔT的关系
实验测得的成核温度
汞 锡 铅 铝 银 金 Tm/K 234.3 505.7 600.7 931.7 1233.7 1336 Tk/K 176.3 400.7 520.7 801.7 1006.7 1106
Lm T Gv Tm
推论:
① ΔT>0, ΔGV<0,即过冷是结晶的必要条件之一。
② ΔT↑, ΔGV ↓,即过冷度越大, 越有利于结晶。
③ ΔGV的绝对值为凝固过程的驱动力, ΔGV↑,驱动力↑, 凝固过程加快。
5.3 形核
形核: 在母相中形成等于或超过一定临界大小的新相晶核 (nucleation) 的过程。 两种形核方式:均匀形核(自发形核) 非均匀形核(非自发形核)
非均匀形核比均匀形核容易。 凝固开始的临界过冷度降低;
在同样过冷度的条件下,因形核功小 形核率提高。
其中:Lm为结晶潜热,
(1)
∵ T=Tm时,ΔGv=0
Lm Ss SL Tm
(2)
将(2)代入(1),
Lm Gv Lm T Tm
Lm (Tm T ) Tm
Lm T Gv Tm
晶体凝固的热力学条件表明:
实际凝固温度应低于熔点Tm ΔGV与ΔT呈线性关系
Lm T GV Tm
G
表面自由能
r*
体积自由能
r
2Tm r* Lm T
只有晶胚半径达到r*时才能使晶胚成为稳定晶核: ① r<r* 晶胚长大,△G升高,晶胚不能长大,形成后立即 消失。 ② r>r* 晶胚长大,△G下降,晶胚可能成为稳定晶核。 称r*为临界晶核半径。
2 3 cos cos3 4
2 3 cos cos3 令f ( ) 4
G非 G均 f ( )
2 临界半径: r* GV
非均匀形核时,临界球冠的曲率半径与均匀形核时球形晶 核的半径是相等的。
热分析法:在一定的冷却条件下,通过测冷却曲线作为 分析金属结晶过程的方法。
5.1.3 形核与长大过程现象
实验证明,结晶过程是形核与长大的过程。 结晶时,首先在液体中形成具有某一临界尺寸的晶核 (nucleus of crystallization),然后这些晶核再不断地凝聚液体中 的原子继续长大。 结晶过程是由形核和长大这两个过程交替重叠进行。 对一个晶粒来说,可严格区分其形核和长大两个阶段; 就整个金属来说,形核和长大是互相交替重叠进行的。
③ 需能量起伏(energy undulation)来补充。
系统中微小区域的能量偏离平均能 量水平而高低不一的现象。
过冷度
结晶的必要条件 结构起伏 能量起伏 均匀形核的临界过冷度
2Tm r* Lm T
r
rmax
r*
△T *
Tm T
(4)形核率
形核率: 在单位时间、单位体积母相中形成的晶核数目。 当温度低于Tm时,形核率受两个因素的控制 :
(super cooling degree)
纯金属的冷却曲线
结晶的必要条件:过冷
过冷度与金属的本质、纯度、冷却速度的差异可 以在很大的范围内变化。
实际结晶温度总是低于理论结晶温度。
① 在极其缓慢的冷却速度条件下,两者相差甚微(约 0.02℃左右);
② 金属种类不同,过冷度的大小也不同; ③ 金属的纯度越高,则过冷度越大; ④ 冷却速度越快,则过冷度越大,实际结晶温度越低。
② 0°<θ<180°, 0< f(θ)<1,ΔG*非<ΔG*均,杂质促 进形核。
③ θ=180°, f(θ)=1, ΔG*非=ΔG*均,基底和晶核完全不润 湿,相当于均匀形核;杂质不起作用。
均匀形核与非均匀形核比较: ① 二者临界半径相等。 ② 非均匀形核所需的形核功小于均匀形核功。 非均匀形核更容易,所需过冷度更小。 因为 f(θ)<1,故θ越小,越易形核 。 在杂质和型壁上形核可减少单位体积的表面能,使 临界晶核的原子数较均匀形核少。
G * 形核功因子 : exp kT
N N1 N2
G * exp kT
G * Q exp kT
Q exp kT
Q exp 原子扩散的几率因子 : kT
V* 173 Vc
铜是FCC结构,每个晶胞有4个原子,因此,一个临界 晶核应包含692个原子。