关于不等式恒成立问题的几种求解方法

合集下载

高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!

高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!

开篇语:不等式恒成立问题在高中数学是一类重点题型,高考也是必考内容。

由于不等式问题题型众多,题目也比较灵活。

所以在学习过程中,同学们要学会总结各种解题方法!方法一:分离参数法解析:分离参数法适用的题型特征:当不等式的参数能够与其他变量完全分离出来,并且分离后不等式其中一边的函数的最值或范围可求时,则将参数式放在不等式的一边,分离后的变量式放在另一边,将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min方法二:变换主元法(也可称一次函数型)解析:学生通常习惯把x当成主元(未知数),把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,则可简便解题。

适用于变换主元法的题型特征是:题目有两个变量,且已知取值范围的变量只有一次项,这时就可以将不等式转化为一次函数求解。

方法三:二次函数法解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析 1,判断二次函数的开口方向2,二次函数的判别式是大于0还是小于03,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性 方法四:判别式法解析:不等式一边是分式,且分式的分子和分母的最高次项都是二次项时,利用判别式法可以快速的解题,分离参数将会使解题变得复杂。

方法五:最值法解析:不等式两边是两个函数,且含有参数时,我们可以分出出参数,构造新函数,求函数的导数来求得新函数的最值。

总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。

平时练习过程中,应注意观察,总结!。

高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法文章标题:探讨高一不等式恒成立问题的三种基本方法在高中数学学习中,不等式恒成立问题是一个很常见的题型。

学生们通常需要掌握多种方法来解决这类问题,而这些方法通常可以分为三种基本类型。

本文将会详细介绍这三种基本方法,帮助读者全面理解这一数学概念。

1. 方法一:代数法我们来介绍代数法。

这种方法是在不等式两边进行代数变换,使得不等式变成一个容易解决的形式。

代数法通常包括加减变形、乘除变形以及平方去根等技巧。

以不等式ax+b>0为例,我们可以通过移项得到ax>-b,然后再除以a的正负来确定不等式的方向,从而得到不等式的解集。

代数法在解决不等式恒成立问题中应用广泛,能够快速简便地找到解的范围和规律。

2. 方法二:图像法我们介绍图像法。

图像法是通过绘制不等式所代表函数的图像,来直观地找出不等式恒成立的区间。

对于一元一次不等式ax+b>0,我们可以画出函数y=ax+b的图像,从而通过观察图像的上升或下降趋势来确定不等式的解集。

图像法能够帮助我们更直观地理解不等式的性质和范围,提高我们的思维逻辑和空间想象能力。

3. 方法三:参数法我们介绍参数法。

参数法是通过引入一个或多个参数,将不等式转化为一个有参数的等式问题,进而进行求解。

参数法的典型应用包括辅助角法、二次函数法等。

以不等式ax²+bx+c>0为例,我们可以引入Δ=b²-4ac,然后根据Δ的正负来确定不等式的解集。

参数法在解决不等式问题中能够简化问题的复杂度,将不等式的求解转化为参数的求解,从而提高解题的效率和准确度。

总结回顾通过对以上三种基本方法的介绍,我们可以发现它们各有特点,应用范围和解题思路有所不同。

代数法能够利用代数变形快速求解不等式问题,图像法能够帮助我们直观地理解不等式的性质,而参数法则能够将问题转化为参数的求解,提高解题的效率。

个人观点和理解在实际解题中,我们应该根据具体情况灵活选用这三种方法,结合题目的特点和自身的掌握程度来选择合适的解题方法。

不等式恒成立问题的大全

不等式恒成立问题的大全

不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。

另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。

本文就结合实例谈谈这类问题的一般求解策略。

一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。

一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a ;2)0)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a例1.已知函数])1(lg[22a x a x y +-+=的定义域为R ,数a 的取值围。

解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。

所以实数a 的取值围为),31()1,(+∞--∞ 。

若二次不等式中x 的取值围有限制,则可利用根的分布解决问题。

例2.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,数m 的取值围。

解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立;当0≥∆时,如图,0)(≥x F 恒成立的充要条件为:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。

综上可得实数m 的取值围为)1,3[-。

二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)a x f >)(恒成立min )(x f a <⇔ 2)a x f <)(恒成立max )(x f a >⇔1.已知两个函数2()816f x x x k =+-,32()254g x x x x =++,其中k 为实数.(1)若对任意的[]33,-∈x ,都有)()(x g x f ≤成立,求k 的取值围; (2)若对任意的[]3321,、-∈x x ,都有)()(21x g x f ≤,求k 的取值围. (3)若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,求k 的取值围.【分析及解】 (1) 令k x x x x f x g x F +--=-=1232)()()(23, 问题转化为0)(≥x F 在 []3,3-∈x 上恒成立,即0)(min ≥x F 即可 ∵)2(61266)(22'--=--=x x x x x F , 由0)('=x F , 得2=x 或 1-=x .∵(3)45(3)9(1)7(2)20F k F k F k F k -=-=--=+=-,,,, ∴45)(min -=k x F , 由045≥-k , 解得 45≥k .(2)由题意可知当[]33,-∈x 时,都有min max )()(x g x f ≤. 由01616)('=+=x x f 得1-=x .∵k f k f --=--=-8)1(24)3(,, k f -=120)3(, ∴120)(max +-=k x f . 由04106)(2'=++=x x x g 得321-=-=x x 或, ∵21)3(-=-g , 111)3(=g , 1)1(-=-g , 2728)32(-=-g ,∴21)(min -=x g .则21120-≤-k , 解得141≥k .(3) 若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,等价于()f x 的值域是()g x 的值域的子集,由(2)可知, 2()816f x x x k =+-在[]3,3-的值域为[]8,120k k ---+,32()254g x x x x =++在[]3,3-的值域为[]21,111-,于是,[][]8,12021,111k k ---+⊆-,即满足 821,120111.k k --≥-⎧⎨-+≤⎩解得913k ≤≤2.已知x x x x g a x x x f 4042)(,287)(232-+=--=,当]3,3[-∈x 时,)()(x g x f ≤恒成立,数a 的取值围。

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。

不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。

解决这种问题需要灵活运用数学知识和技巧。

本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。

一、置换法。

这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。

如果成立,则不等式恒成立。

对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。

由于平方数是非负数,所以不等式始终成立。

二、加法法则。

这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。

由于x的取值范围不限制,所以不等式恒成立。

三、减法法则。

与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。

由于x的取值范围不限制,所以不等式恒成立。

四、乘法法则。

这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。

由于x的取值范围不限制,所以不等式恒成立。

五、除法法则。

与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。

对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。

由于x的取值范围不限制,所以不等式恒成立。

六、平方法则。

这种方法是通过平方运算来改变不等式的符号。

对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。

不等式恒成立问题3种基本方法

不等式恒成立问题3种基本方法

不等式恒成立问题3种基本方法
一、回溯法
回溯法是一种通过搜索所有可能的结果来求解问题的方法,它通过不断地枚举搜索所有可能的结果,并在搜索过程中剪枝来减少搜索空间,直到找到问题的答案为止。

二、动态规划
动态规划是一种在求解复杂问题时,将原问题分解为若干个规模较小的子问题,逐个求解子问题,从而求解原问题的一种方法。

三、贪心算法
贪心算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。

它对每一步都采取局部最优解,希望最后能够得到全局最优解。

高三专题复习不等式恒成立问题

高三专题复习不等式恒成立问题

高三数学 第一讲 不等式恒成立问题在近些年的数学高考题及高考模拟题中经常出现不等式恒成立问题,此类问题一般综合性强,既含参数又含变量,往往与函数、数列、方程、几何等有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点.高考往往通过此类问题考查学生分析问题、解决问题、综合驾驭知识的能力。

此类问题常见解法:一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.例2:在R 上定义运算⊗:x ⊗y =x(1-y) 若不等式(x -a)⊗(x +a)<1对任意实数x 成立,则 ( )(A)-1<a<1 (B)0<a<2 (C) 2321<<-a (D) 3122a -<< 例3:若不等式x 2-2mx+2m+1>0对满足0≤x ≤1的所有实数x 都成立,求m 的取值范围。

二、分离参数法在题目中分离出参数,化成a>f(x) (a<f(x))型恒成立问题,再利用a>f max (x) (a<f min (x))求出参数范围。

例4.(2012•杭州一模)不等式x 2﹣3>ax ﹣a 对一切3≤x ≤4恒成立,则实数a 的取值范围是 .例5:设a 0为常数,数列{a n }的通项公式为a n =51[3n +(-1)n-1·2n ]+(-1)n ·2n ·a 0(n ∈N * )若对任意n ≥1,n ∈N *,不等式a n >a n-1恒成立,求a 0的取值范围。

例6.(2012•安徽模拟)若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围是 . 例7.(2011•深圳二模)如果对于任意的正实数x ,不等式恒成立,则a 的取值范围是 .例8.(2013•闵行区一模)已知不等式|x ﹣a|>x ﹣1对任意x ∈[0,2]恒成立,则实数a 的取值范围是 .三、数型结合法例9:如果对任意实数x ,不等式kx 1x ≥+恒成立,则实数k 的取值范围是例10:已知a>0且a ≠1,当x ∈(-1,1)时,不等式x 2-a x <21恒成立,则a 的取值范围 例11、 已知函数若不等式恒成立,则实数的取值范围是 .例12、(2009•上海)当时,不等式sin πx ≥kx 恒成立.则实数k 的取值范围是 .例13、若不等式log a x >sin2x (a >0,a ≠1)对任意都成立,则a 的取值范 B C D 四、利用函数的最值(或值域)求解(1)m x f ≥)(对任意x 都成立m x f ≥⇔min )(;(2)m x f ≤)(对任意x 都成立max )(x f m ≥⇔。

破解含参不等式恒成立的5种常用方法

破解含参不等式恒成立的5种常用方法

破解含参不等式恒成立的5种常用方法含参数不等式恒成立问题越来越受高考命题者的青睐,且由于对导数应用的加强,这些不等式恒成立问题往往与导数问题交织在一起,在近年的高考试题中不难看出这个基本的命题趋势。

对含有参数的不等式 恒成立问题,破解的方法有:分离参数法、数形结合法、单调性分析法、最值定位法、构造函数法等。

一 分离参数法分离参数法是解决含问题的基本思想之一。

对于含参不等式的问题,在能够判断出参数的系数正负的情况下,可以根据不等 式的性质将参数分离出来 ,得到一个一端是参数、另一端是变量表达式的不等式,只要研究变量表达式的性式就可以解决问题。

例1 已知函数a x f x x 421)(++=在(-∞,1]上有意义,试求的取值范围。

分析 :函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,这里参数的系数04>x ,故可以分离参数。

解析:函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,即⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-≥x x a 2141,∈x (-∞,1]恒成立,记)(x g a ≥,∈x (-∞,1],因此问题又等价于)(x g a ≥在)(x g a ≥上恒成立,)(x g 在(-∞,1]上是增函数,因此)(x g 的最大值为)1(g 。

)(x g a ≥在(-∞,1]上恒成等价于43)1()(max -==≥g x g a 。

于是工的取值范围为43-≥a 。

【点评】)(x f a ≥恒成立等价于max )(x f a ≥;)(x f a ≤恒成立等价于min )(x f a ≤。

如果函数)(x f 不存在最值,上面的最大值就替换为函数值域的右端点,最小值就替换为函数值域的左端点。

解这类问题时一定要注意区间的端点值。

二 数形结合法数形到结合法是一种重要的数学思想方法,其要点是“见数想形,以形助数”,从而达到解决问题的目的,数形结合法是破解含参数不等式恒成立问题的又一个主要方案。

求解不等式恒成立问题的三种途径

求解不等式恒成立问题的三种途径

考点透视不等式恒成立问题的常见命题形式有:(1)证明某个不等式恒成立;(2)根据恒成立的不等式求参数的取值范围.求解不等式恒成立问题的常用思路有:构造函数、分离参数、数形结合等.对于不同的不等式,往往需采用不同的途径进行求解.下面结合实例来进行探究.一、构造函数在求解不等式恒成立问题时,我们可先将不等式左右两边的式子移项、变形;然后将不等式构造成函数式,将问题转化为函数最值问题,通过研究函数的单调性,求得函数的最值,来证明不等式恒成立.在求函数的最值时,可根据函数单调性的定义,或导函数与函数单调性之间的关系来判断函数的单调性;也可以利用简单基本函数的单调性来求得函数的最大、最小值,建立使不等式恒成立的式子,即可解题.例1.求证:当x >-1时,1-1x +1≤ln ()x +1≤x 恒成立.证明:设f ()x =ln ()x +1-x ,求导可得f ′()x =1x +1-1=-x x +1,因为当-1<x <0时,f ′()x >0,当x >0时,f ′()x <0,所以函数f ()x 在()-1,0上单调递增,在()0,+∞上单调递减,即f ()x ≤f ()0=0,故f ()x =ln ()x +1-x ≤0,即ln ()x +1≤x .令g ()x =ln ()x +1+1x +1-1,则g ′()x =1x +1-1()x +12=x ()x +12,因为当-1<x <0时,g ′()x <0,当x >0时,g ′()x >0,所以函数g ()x 在()-1,0上单调递减,在()0,+∞上单调递增,可知g ()x ≥g ()0=0,故ln ()x +1+1x +1-1≥0,ln ()x +1≥1-1x +1,综上可知,当x >-1时,不等式1-1x +1≤ln ()x +1≤x 恒成立.要证明目标不等式恒成立,需分两步进行,先证明ln ()x +1≤x ,再证明ln ()x +1≥1-1x +1.在证明这两个不等式时,都需要先将不等式左右两边的式子作差、移项,构造出新函数f ()x =ln ()x +1-x 、g ()x =ln ()x +1+1x +1-1;然后对函数求导,分析导函数与0之间的大小关系,判断出函数的单调性,进而求得函数的极值,从而得出f ()x min =0、g ()x max =0,即可证明f ()x ≤0、g ()x ≥0.例2.设函数f ()x =e x ln x +2e x -1x,曲线y =f ()x 在点()1,f ()1处的切线方程为y =e ()x -1+2,证明:不等式f ()x >1恒成立.证明:由f ()x >1可得x ln x >xe -x -2e,令g ()x =x ln x ,可得g ′()x =ln x +1,∵当x ∈æèöø0,1e 时,g ′()x <0;当x ∈æèöø1e ,+∞时,g ′()x >0,∴函数g ()x 在æèöø0,1e 上单调递减,在æèöø1e ,+∞上单调递增,∴g ()x ≥g æèöø1e =-1e ,令h ()x =xe -x -2e,则h ′()x =e -x ()1-x ,∵当x ∈()0,1时,h ′()x >0;当x ∈()1,+∞时,h ′()x <0,∴函数h ()x 在()0,1上单调递增,在()1,+∞上单调递减,∴h ()x ≤h ()1=-1e,∴当x >0时,g ()x >h ()x ,即不等式f ()x >1成立.由于不等式x ln x >xe -x -2e左右两侧的式子分别含有对数式、指数式,于是分别令g ()x =x ln x 、h ()x =xe -x -2e,那么只要证明g ()x min >h ()x max ,即可证明不等式恒成立.利用导数法求出函数g ()x 、h ()x 在定义域内的最值,即可证明不等式成立.在构造函数时,要注意观察不等式的结构特点,将其进行合理的变形,以便构造出合适的函数模型,从而顺利证明不等式.二、分离参数对于含参不等式恒成立问题,我们通常要采用分离参数法,将不等式中的参数、变量分离,即使不等式一侧的式子中含有参数、另一侧的式子中含有变量,得到形如a ≥f ()x 、a ≤f ()x 的不等式.探讨函数f ()x 在定义域内的最值与参数a 的大小关系,即可求得问赵瑛琦37考点透视题的答案.例3.已知函数f ()x =ln 2()1+x -x 21+x.(1)求函数f ()x 的单调区间;(2)若对于任意n ∈N ∗,不等式æèöø1+1n n +a≤e 恒成立,求参数a 的最大值.解:(1)函数f ()x 的单调递增区间为()-1,0,单调递减区间为()0,+∞;(过程略)(2)不等式æèöø1+1n n +a≤e 等价于()n +a ln æèöø1+1n ≤1,因为1+1n ≥1,所以a ≤1ln æèöø1+1n -n,设g ()x =1ln ()1+x -1x ,x ∈(]0,1,则g ′()x =-1()1+x ln 2()1+x +1x 2=()1+x ln 2()1+x -x 2x 2()1+x ln 2()1+x ,由(1)可得ln 2()1+x -x 21+x≤0,即()1+x ln 2()1+x -x 2≤0,故当x ∈(]0,1时,g ′()x ≤0,函数g ()x 单调递减,即g ()x 在(]0,1上的最小值为g ()1=1ln 2-1,故a 的最大值为1ln 2-1.由于参数a 为指数,所以考虑对不等式左右两边的式子取对数,以将参数分离,得到a ≤1ln æèöø1+1n -n .只要求得1ln æèöø1+1n -n的最小值,即可求得a 的最大值.于是构造函数g ()x =1ln ()1+x -1x ,利用导数法求得函数的最小值,即可解题.在分离参数时,可通过移项、取对数、取倒数等方式,使参数与变量分离.例4.已知函数f ()x =-x ln x +a ()x +1,若f ()x ≤2a 在[)2,+∞上恒成立,求实数a 的取值范围.解:当x ≥2时,由f ()x ≤2a 可得a ≤x ln xx -1,令g ()x =x ln x x -1,x ≥2,∴g ′()x =ln x -x +1()x -12,令h ()x =ln x -x +1,x ≥2,∴h ′()x =1x-1,∵当x ≥2时,h ′()x <0,函数h ()x 单调递减,∴h ()x ≤h ()2=ln 2+1>0,∴g ′()x >0,函数g ()x 在[)2,+∞上单调递增,∴g ()x ≥g ()2=2ln 2,∴a ≤g ()x min =g ()2=2ln 2,∴实数a 的取值范围为(]-∞,2ln 2.先将不等式变形,使参数a 单独在不等式的左边,得到不等式a ≤x ln xx -1;然后在定义域[)2,+∞内求不含参函数式的最小值,即可求得参数a 的取值范围.三、数形结合有时不等式中的代数式可用几何图形表示出来,如y =kx 表示的是一条直线;y =a x 、y =x a 表示的是两条曲线;x 2+y 2=1表示的是一个圆,此时就可以采用数形结合法,根据代数式的几何意义画出图形,通过分析图形中曲线、直线之间的位置关系,研究图形的性质,来证明不等式成立.例5.若不等式e x ≥kx 对任意x 恒成立,则实数k 的取值范围为_____.解:设过原点的直线与y =e x相切于点()x 0,ex 0,∵y ′=e x,∴由几何导数的意义可知切线的斜率为k =e x,∴切线的方程为y -e x 0=e x 0()x -x 0,∵切线经过点()0,0,可得x 0=1,∴切线的斜率k =e .由图可知,要使等式e x ≥kx 恒成立,需使y =e x的图象始终在直线y =kx 的上方,∴0≤k ≤e .根据不等式两侧式子的几何意义画出图形,即可将不等式问题看作函数y =e x 和直线y =kx 的位置关系问题.结合图形讨论函数y =e x 和直线y =kx 的位置关系,并根据导函数的几何意义求得切线的方程,即可得到关于参数的新不等式.运用数形结合法解题,需密切关注直线、曲线之间的临界情形,如相切、相交的情形,从而确定参数的临界值.可见,解答不等式恒成立问题,需注意以下几点:(1)仔细观察不等式的结构特点,并将其进行合理的变形,如作差、移项、分离参数;(2)合理构造函数模型,将问题转化为函数最值问题,以便利用导数法、函数的单调性求得最值;(3)灵活运用数形结合思想,以直观、便捷的方式来解题.(作者单位:江苏省泗洪姜堰高级中学)38。

解决不等式恒成立问题的几种方法

解决不等式恒成立问题的几种方法

解决不等式恒成立问题的几种方法不等式的恒成立问题在近几年的高考数学试题中常常出现。

由于这类问题综合性强,难度大,能力要求高,很多同学望而生畏,无从下笔。

下面就恒成立问题的基本类型总结如下,仅供参考。

一、用一次函数的性质对于一次函数f(x)=kx+b,x∈[m,n]有:f(x)>0恒成立?圳f(m)>0f(n)>0,f(x)<0恒成立?圳f(m)<0f(n)<0例1.对于满足p≤2的所有实数p,求使不等式x2+px+1>2p+x恒成立的x的取值范围。

分析:在不等式中出现了两个字母:x及p,关键在于该把哪个字母看成是一个变量,另一个作为常数。

显然可将p视作自变量,则上述问题即可转化为在[-2,2]内关于p的一次函数大于0恒成立的问题。

略解:不等式即(x-1)p+x2-2x+1>0,设f(p)=(x-1)p+x2-2x+1,则f(p)在[-2,2]上恒大于0,故有:f(-2)>0f(2)>0即x2-4x+3>0x2-1>0解得x>3或x<1x>1或x<-1即解得:x3.二、利用一元二次函数的判别式对于一元二次函数f(x)=ax2+bx+c>0(a≠0,x∈r)有:(1)f(x)>0在x∈r上恒成立?圳a>0且δ<0;(2)f(x)<0在x∈r上恒成立?圳a<0且δ<0.例2.若函数y=在r上恒成立,求m的取值范围。

分析:该题就转化为被开方数mx2+6mx+m+8≥0在r上恒成立问题,并且注意对二次项系数的讨论。

略解:要使y=在r上恒成立,即mx2+6mx+m+8≥0在r上恒成立。

m=0时,8≥0 ∴m=0成立①m≠0时,m>0δ=36m2-4m(m+8)=32m(m-1)≤0②∴0<m≤1由①②可知,0≤m≤1.三、变量分离1.f(x)≥m对任意x都成立?圳f(x)min≥m;2.f(x)≤m对任意x都成立?圳m≥f(x)max。

本类问题实质上是一类求函数的最值问题。

例3.已知函数f(x)=lnx,g(x)=ax2+bx,a≠0.若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围.解:b=2时,h(x)=lnx-ax2-2x,则h′(x)=-ax-2=-.因为函数h(x)存在单调递减区间,所以h′(x)<0有解.由题设可知,h(x)的定义域是(0,+∞),而h′(x)<0在(0,+∞)上有解,就等价于h′(x)<0在区间(0,+∞)能成立,即a>-,x∈(0,+∞)成立,进而等价于a>umin(x)成立,其中u(x)=-.由u(x)=-=-12-1得,umin(x)=-1.于是,a>-1.由题设a≠0,所以a的取值范围是(-1,0)∪(0,+∞)例4.已知向量=(x2,x+1),=(1-x,t)若函数f(x)=·在区间(-1,1)上是增函数,求t的取值范围.解:依定义f(x)=x2(1-x)+t(x+1)=-x3+x2+tx+t.则f′(x)=-3x2+2x+tf(x)在区间(-1,1)上是增函数等价于f′(x)≥0在区间(-1,1)上恒成立;而f′(x)≥0在区间(-1,1)上恒成立又等价于t≥3x2-2x 在区间(-1,1)上恒成立;设g(x)=3x2-2x,x∈(-1,1)进而t>g(x)在区间(-1,1)上恒成立等价于t≥gmax(x),x∈(-1,1)考虑到g(x)=3x2-2x,x∈(-1,1)在-1,上是减函数,在,1上是增函数,则gmax(x)=g(-1)=5.于是,t的取值范围是t≥5.四、数形结合法对一些不能把参数放在一侧的,可以利用对应函数的图像法求解。

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法

不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。

在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。

1. 直接法直接法是解决不等式的恒成立问题最直接的方法。

通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。

这种方法通常适用于简单的不等式,能够快速得到结果。

2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。

当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。

这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。

3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。

通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。

这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。

4. 代入法代入法是一种通过代入特定的数值进行验证的方法。

通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。

这种方法通常适用于验证不等式的特定性质或条件。

5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。

通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。

这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。

6. 几何法几何法是一种通过几何形象进行分析的方法。

通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。

这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。

7. 递推法递推法是一种通过递归关系进行推导的方法。

通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。

这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。

8. 极限法极限法是一种通过极限的性质进行分析的方法。

八种解法解决不等式恒成立问题

八种解法解决不等式恒成立问题

八种解法解决不等式恒成立问题1最值法例1.已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中c b a ,,为常数.(I )试确定b a ,的值;(II )讨论函数)(x f 的单调区间;(III )若对于任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围.分析:不等式22)(c x f -≥恒成立,可以转化为2min 2)(c x f -≥解:(I )(过程略)3,12-==b a .(II )(过程略)函数)(x f 的单调减区间为)1,0(,函数)(x f 的单调增区间为),1(+∞. (III )由(II )可知,函数)(x f 在1=x 处取得极小值c f --=3)1(,此极小值也是最小值.要使22)(c x f -≥(0>x )恒成立,只需223c c -≥--,解得23≥c 或1-≤c . 所以c 的取值范围为),23[]1,(+∞⋃--∞.评注:最值法是我们这里最常用的方法.a x f ≥)(恒成立a x f ≥⇔)(min ;a x f ≤)(恒成立a x f ≤⇔)(max .2分离参数法例2.已知函数x x x x f +-+=1)1(ln )(22(I )求函数)(x f 的单调区间;(II )若不等式e n a n ≤++)11(对于任意*∈N n 都成立(其中e 是自然对数的底数),求a 的最大值.分析:对于(II )不等式e na n ≤++)11(中只有指数含有a ,故可以将函数进行分离考虑. 解:(I )(过程略)函数)(x f 的单调增区间为)0,1(-,)(x f 的单调减区间为),0(+∞(II )不等式e n a n ≤++)11(等价于不等式1)11ln()(≤++n a n ,由于111>+n ,知1)11ln()(≤++na n n n a -+≤⇔)11ln(1;设x x x g 1)1ln(1)(-+= ]1,0(∈x ,则221)1(ln )1(1)(x x x x g +++-=')1(ln )1()1(ln )1(2222x x x x x x ++-++=. 由(I )知,01)1(ln 22≤+-+x x x ,即0)1(ln )1(22≤-++x x x ;于是,0)(<'x g ]1,0(∈x ,即)(x g 在区间]1,0(上为减函数.故)(x g 在]1,0(上的最小值为12ln 1)1(-=g . 所以a 的最大值为12ln 1-. 评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当]2,1(∈x 时,不等式x x a log )1(2≤-恒成立,则实数a 的取值范围是___.直角坐标系内作出函数2)1()(-=x x f x x g a log )(=在]2,1(∈x 观、简捷求解.解:在同一平面直角坐标系内作出函数2)1()(-=x x f 与函数x x g a log )(=在(∈x 图象(如右),从图象中容易知道:当0<a )(x g 上方,不合题意;当1>a 且]2,1(∈x 或部分点重合,就必须满足12log ≥a ,即21≤<a .故所求的a 的取值范围为]2,1(.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法. 4 变更主元法例4.对于满足不等式11≤≤-a 的一切实数a ,函数)24()4(2a x a x y -+-+=的值恒大于0,则实数x 的取值范围是___.分析:若审题不清,按习惯以x 为主元,则求解将非常烦琐.应该注意到:函数值大于0对一定取值范围的谁恒成立,则谁就是主元.解:设)44()2()(2+-+-=x x a x a f ,]1,1[+-∈a ,则原问题转化为0)(>a f 恒成立的问题. 故应该有⎩⎨⎧>>-0)1(0)1(f f ,解得1<x 或3>x . 所以实数x 的取值范围是),3()1,(+∞⋃-∞.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设0a 是常数,且1123---=n n n a a (*∈N n ).(I )证明:对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,求0a 的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意1≥n 有1->n n a a 求出0a 的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I )递推式可以化归为31)3(32311+-=--n n nn a a ,]51)3[(3251311--=---n n n n a a ,所以数列}513{-n n a 是等比数列,可以求得对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,取2,1=n 就有⎩⎨⎧>=->-=-0603101201a a a a a a 解得3100<<a ; 下面只要证明当3100<<a 时,就有对任意*∈N n 有01>--n n a a 由通项公式得011111215)1(2)1(332)(5a a a n n n n n n n ⋅⋅⋅-+⋅-⋅+⋅=------当12-=k n (*∈N k )时,02523322152332)(511101111=⋅-⋅+⋅>⋅⋅-⋅+⋅=--------n n n n n n n n a a a当k n 2=(*∈N k )时,023*********)(51101111=⋅-⋅>⋅⋅+⋅-⋅=-------n n n n n n n a a a ,可见总有1->n n a a . 故0a 的取值范围是)31,0(评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法. 6分段讨论法例6.已知2)(--=a x x x f ,若当[]0,1x ∈时,恒有()f x <0,求实数a 的取值范围. 解:(i )当0x =时,显然()f x <0成立,此时,a R ∈(ii )当(]0,1x ∈时,由()f x <0,可得2x x -<a <2+x x , 令 (](]22(),(0,1);()(0,1)g x x x h x x x x x=-∈=+∈ 则221)(xx g +='>0,∴()g x 是单调递增,可知[]max ()(1)1g x g ==- 221)(xx h -='<0,∴()h x 是单调递减,可知[]min ()(1)3h x h == 此时a 的范围是(—1,3)综合i 、ii 得:a 的范围是(—1,3) .例7.若不等式032>+-ax x 对于]21,21[-∈x 恒成立,求a 的取值范围. 解:(只考虑与本案有关的一种方法)解:对x 进行分段讨论,当0=x 时,不等式恒成立,所以,此时R a ∈; 当]21,0(∈x 时,不等式就化为x x a 3+<,此时x x 3+的最小值为213,所以213<a ; 当)0,21[-∈x 时,不等式就化为x x a 3+>,此时x x 3+的最大值为213-,所以213->a ; 由于对上面x 的三个范围要求同时满足,则所求的a 的范围应该是上三个a 的范围的交集即区间)213,213(- 说明:这里对变量x 进行分段来处理,那么所求的a 对三段的x 要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在),0(+∞的函数)(x f 满足)()()(xy f y f x f =+,且1>x 时不等式0)(<x f 成立,若不等式)()()(22a f xy f y x f +≤+对于任意),0(,+∞∈y x 恒成立,则实数a 的取值范围是___.解:设210x x <<,则112>x x ,有0)(12<x x f .这样,0)()()()()()()()(121112111212<=-+=-⋅=-x x f x f x f x x f x f x x x f x f x f ,则)()(12x f x f <,函数)(x f 在),0(+∞为减函数. 因此)()()(22a f xy f y x f +≤+⇔)()(22xy a f y x f ≤+⇔xy a y x ≥+22xy y x a 22+≤⇔;而2222=≥+xy xyxy y x (当且仅当y x =时取等号),又0>a ,所以a 的取值范围是]2,0(.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式012>++ax ax 对于任意R x ∈恒成立.则实数a 的取值范围是___. 分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意R x ∈恒成立,可以选择判别式法.解:当0=a 时,不等式化为01>,显然对一切实数恒成立; 当0≠a 时,要使不等式012>++ax ax 一切实数恒成立,须有⎩⎨⎧<-=∆>0402a a a ,解得40<<a .综上可知,所求的实数a 的取值范围是)4,0[.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于x 的不等式ax xx x ≥-++232525在]12,1[∈x 上恒成立,求 实数a 的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵]12,1[∈x ,∴不等式可以化为a x x x x ≥-++5252;下面只要求x x xx x f 525)(2-++=在]12,1[∈x 时的最小值即可,分段处理如下.当]5,1[∈x 时,x x x x f 256)(2++-=,223225622562)(x x x x x x f -+-=-+-=',再令2562)(231-+-=x x x f ,0126)(21=+-='x x x f ,它的根为2,0;所以在区间)2,1[上有0)(1>'x f ,)(x f 递增,在区间]5,2(上有0)(1<'x f ,)(x f 递减,则就有2562)(231-+-=x x x f 在]5,1[∈x 的最大值是017)2(1<-=f ,这样就有0)(<'x f ,即)(x f 在区间]5,1[是递减.同理可以证明)(x f 在区间]12,5[是递增;所以,x x xx x f 525)(2-++=在]12,1[∈x 时的最小值为10)5(=f ,即10≤a . 技巧解:由于]12,1[∈x ,所以,25225≥+xx ,052≥-x x 两个等号成立都是在5=x 时;从而有10525)(2≥-++=x x x x x f (5=x 时取等号),即10≤a . 评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。

“恒成立”的几种常用的解法

“恒成立”的几种常用的解法

“恒成立”的几种常用的解法已知不等式恒成立,求参数范围的问题,涉及函数、方程、不等式,综合性强,在高考中常常涉及,许多学生对此类问题不知从何着手,本文结合实例,谈谈这类问题常见的几种方法。

一.判别式法此方法适用于二次函数的情况,利用)0(02>>++a c bx ax的解集是R 0<∆⇔;)0(02<<++a c bx ax的解集是R 0<∆⇔,这类问题的特点是二次函数在R 上恒成立。

例1.已知函数3)(2++=ax x x f ,当时,a x f ≥)(恒成立,求a 的取值范围。

解:要使03x)(2≥-++≥a ax a x f 恒成立,即恒成立,必须且只需26,0124a 0)3(4a 22≤≤-∴≤-+≤--∆a a a 即=二.图象法此方法主要用于二次函数,指数对数函数,三角函数等,由其函数图象确定值域,进而解之。

类型1:作一个函数的图像:例2.已知函数3)(2++=ax x x f ,若]2,2[-∈x 时,a x f ≥)(恒成立,求a 的取值范围。

解:43)2(3)(222aa x ax x x f -++=++=(1) 当7,-2a f(-2)f(x)4a ,22min+==>-<-时,即a由Φ∈∴≤≥+a ,37a a 72a 得-(2) 当,4a-3f(x )4a 4,2222min=≤-≤≤-≤-时,即a由24,2a 6a 4a-32≤≤-∴≤-≤≥a 得(3) 当7,2a f(2)f(x)4a ,22min+==-<>-时,即a由47,7a a 72a -<≤-∴-≥≥+a 得 综上得]2,7[-∈a类型2:作两个函数的图像: 1.当时10≤≤x ,不等式kx x≥2sin π恒成立,则实数k 的取值范围是_______________.【答案】k ≤1【解析】作出2sin 1xy π=与kx y =2的图象,要使不等式kx x≥2sinπ成立,由图可知须k≤1。

专题二 不等式恒成立、能成立问题(解析版)

专题二 不等式恒成立、能成立问题(解析版)

强化专题2 不等式恒成立、能成立问题在解决不等式恒成立、能成立的问题时,常常使用不等式解集法、分离参数法、主参换位法和数形结合法解决,方法灵活,能提升学生的逻辑推理,数学运算等素养.【技巧目录】一、“Δ”法解决恒成立问题二、数形结合法解决恒成立问题三、分离参数法解决恒成立问题四、主参换位法解决恒成立问题五、利用图象解决能成立问题六、转化为函数的最值解决能成立问题【例题详解】一、“Δ”法解决恒成立问题例1 若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( )A .[]2,0-B .(]2,0-C .()2,0-D .()(),20,-∞-⋃+∞ 【答案】B【分析】讨论0a =和0a <两种情况,即可求解.【详解】当0a =时,不等式成立;当0a ≠时,不等式2220ax ax --<恒成立,等价于()()20,2420,a a a <⎧⎪⎨∆=--⨯-<⎪⎩20a ∴-<<. 综上,实数a 的取值范围为(]2,0-.故选:B .【小结】(1)如图①一元二次不等式ax 2+bx +c >0(a ≠0)在R 上恒成立⇔一元二次不等式ax 2+bx +c >0(a ≠0)的解集为R ⇔二次函数y =ax 2+bx +c (a ≠0)的图象恒在x 轴上方⇔y min >0⇔⎩⎪⎨⎪⎧a >0,Δ<0.(2)如图②一元二次不等式ax 2+bx +c <0(a ≠0)在R 上恒成立⇔一元二次不等式ax 2+bx +c <0(a ≠0)的解集为R ⇔二次函数y =ax 2+bx +c (a ≠0)的图象恒在x 轴下方⇔y max <0⇔⎩⎪⎨⎪⎧a <0,Δ<0.二、数形结合法解决恒成立问题例2 当1≤x ≤2时,不等式x 2+mx +4<0恒成立,求m 的取值范围.【详解】令y =x 2+mx +4.∵y <0在[1,2]上恒成立.∴x 2+mx +4=0的根一个小于1上,另一个大于2.如图,得⎩⎪⎨⎪⎧ 1+m +4<0,4+2m +4<0, ∴⎩⎪⎨⎪⎧m +5<0,2m +8<0. ∴m 的取值范围是{m |m <-5}.【小结】结合函数的图象将问题转化为函数图象的对称轴,区间端点的函数值或函数图象的位置(相对于x 轴)关系求解.可结合相应一元二次方程根的分布解决问题.三、分离参数法解决恒成立问题例3 若不等式x 2+ax +1≥0在x ∈[-2,0)时恒成立,则实数a 的最大值为( )A .0B .2C .52D .3 【答案】B【分析】用分离参数法分离参数,然后用基本不等式求最值后可得结论.【详解】不等式x 2+ax +1≥0在[2,0)x ∈-时恒成立,即不等式x x x x a 112--=+-≤在[2,0)x ∈-时恒成立.()()()2121-=-⋅-≥-+x x x x ,当且仅当1x x -=-,即x =-1时,等号成立,所以a ≤2,所以实数a 的最大值为2. 故选:B .【小结】通过分离参数将不等式恒成立问题转化为求函数最值问题.四、主参换位法解决恒成立问题例4 已知[]1,1a ∈-,不等式()24420x a x a +-+->恒成立,则x 的取值范围为___________. 【答案】(,1)(3,)-∞+∞【分析】设()()2244f a x a x x =-+-+,即当[]1,1a ∈-时,()0f a >,则满足()()1010f f ⎧->⎪⎨>⎪⎩解不等式组可得x 的取值范围.【详解】[]1,1a ∈-,不等式()24420x a x a +-+->恒成立即[]1,1a ∈-,不等式()22440x a x x -+-+>恒成立设()()2244f a x a x x =-+-+,即当[]1,1a ∈-时,()0f a >所以()()1010f f ⎧->⎪⎨>⎪⎩,即22320560x x x x ⎧-+>⎨-+>⎩,解得3x >或1x < 故答案为:(,1)(3,)-∞+∞【小结】转换思维角度,即把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围求解.五、利用图象解决能成立问题例5 当1<x <2时,关于x 的不等式x 2+mx +4>0有解,则实数m 的取值范围为________.【答案】{m |m >-5}【详解】记y =x 2+mx +4,则由二次函数的图象知,不等式x 2+mx +4>0(1<x <2)一定有解,即m +5>0或2m +8>0,解得m >-5.【小结】结合二次函数的图象,将问题转化为端点值的问题解决.六、转化为函数的最值解决能成立问题例6 若存在x ∈R ,使得4x +m x 2-2x +3≥2成立,求实数m 的取值范围. 【详解】∵x 2-2x +3=(x -1)2+2>0,∴4x +m ≥2(x 2-2x +3)能成立,∴m ≥2x 2-8x +6能成立,令y =2x 2-8x +6=2(x -2)2-2≥-2,∴m ≥-2,∴m 的取值范围为{m |m ≥-2}.【小结】能成立问题可以转化为m >y min 或m <y max 的形式,从而求y 的最大值与最小值,从而求得参数的取值范围.【过关训练】1.若关于x 的不等式220mx x m ++>的解集是R ,则m 的取值范围是( )A .(1,+∞)B .(0,1)C .(-1,1)D .[1,+∞) 【答案】A【分析】分0m =和0m ≠两种情况求解【详解】当0m =时,20x >,得0x >,不合题意,当0m ≠时,因为关于x 的不等式220mx x m ++>的解集是R , 所以20Δ440m m >⎧⎨=-<⎩,解得1m , 综上,m 的取值范围是(1,+∞),故选:A2.若集合2{|10}A x ax ax =-+≤=∅,则实数a 的取值集合为( )A .{|04}a a <<B .{|04}a a ≤<C .{|04}a a <≤D .{|04}a a ≤≤【答案】B【分析】分00a a =≠,,两种情况求解即可【详解】当0a =时,不等式等价于10<,此时不等式无解; 当0a ≠时,要使原不等式无解,应满足20Δ40a a a >⎧⎨=-<⎩,解得04a <<; 综上,a 的取值范围是[)0,4.故选:B .3.若R x ∈,210ax ax ,则实数a 的取值范围是( )A .()4,0-B .(]4,0-C .[)4,0-D .[]4,0-【答案】B【分析】分两种情况讨论:0a =和0Δ0a <⎧⎨<⎩,解出实数a 的取值范围,即得. 【详解】对R x ∈,210ax ax ,当0a =时,则有10-<恒成立;当0a <时,则20Δ40a a a <⎧⎨=+<⎩,解得40a . 综上所述,实数a 的取值范围是(]4,0-.故选:B.4.“x ∀∈R ,2230x ax a -+>”的充要条件是( )A .12a -<<B .0<<3aC .13a <<D .35a << 【答案】B【分析】“x ∀∈R ,2230x ax a -+>”等价于24120a a ∆=-<,解不等式求得答案.【详解】“x ∀∈R ,2230x ax a -+>”等价于24120a a ∆=-< ,即0<<3a ,故“x ∀∈R ,2230x ax a -+>”的充要条件是0<<3a ,故选:B5.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( )A .[]0,1B .(]0,1C .()(),01,-∞⋃+∞D .(][),01,-∞+∞ 【答案】A【分析】当0k =时,该不等式成立,当0k ≠时,根据二次函数开口方向及判别式列不等式解决二次不等式恒成立问题.【详解】当0k =时,该不等式为80≥,成立;当0k ≠时,要满足关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,只需()2036480k k k k >⎧⎨-+≤⎩,解得01k <≤,综上所述,k 的取值范围是[]0,1,故选:A.6.已知关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,则有( )A .4m ≤-B .3m ≥-C .30m -≤<D .40m -≤< 【答案】A【分析】由题意可得2min (4)m x x ≤-,由二次函数的性质求出24y x x =-在(]0,3上的最小值即可 【详解】因为关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立, 所以2min (4)m x x ≤-,令224(2)4y x x x =-=--,(]0,3x ∈,所以当2x =时,24y x x =-取得最小值4-,所以4m ≤-故选:A7.若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( )A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞ 【答案】A【分析】由题知对任意的2[1,0],242x m x x ≥-∈--恒成立,进而求[1,0]x ∈-,()2214y x =--最值即可得答案.【详解】解:因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-, 即m 的取值范围是[4,)+∞故选:A8.若两个正实数,x y 满足12+1=x y ,且不等式2+32+<y x m m 有解,则实数m 的取值范围是( ) A .(4,1)- B .(1,4)-C .()(),41,-∞-+∞ D .()(),14,-∞-⋃+∞ )()1,+∞.9.已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是( )A .4a <B .4aC .4a >D .4a >-【答案】A【分析】依据题意可将题目转换为非p 命题为真的补集,即“15x ∀≤≤,250x ax --≤恒成立”对应a 取值集合的补集,进一步只需限制端点小于等于0即可求解【详解】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足, 25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .10.若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( )A .(,2)-∞B .(,2)-∞-C .(6,)-+∞D .(,6)-∞-【答案】B【分析】构造函数2()42f x x x a =---,若不等式2420x x a --->在区间(1,4)内有解,可得函数2()42f x x x a =---在区间(1,4)内的最大值大于0即可,根据二次函数的图象和性质可得答案.【详解】令2()42f x x x a =---,则函数的图象为开口朝上且以直线2x =为对称轴的抛物线,故在区间(1,4)上,()f x f <(4)2a =--,若不等式2420x x a --->在区间(1,4)内有解,则20a -->,解得2a <-,即实数a 的取值范围是(,2)-∞-.故选:B .11.已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞12.设函数2()2f x ax ax =--,若对任意的[1,3]x ∈,()22f x x a >--恒成立,则实数a 的取值范围为_____________.13.已知关于x 的不等式244x mx x m +>+-.(1)若对任意实数x ,不等式恒成立,求实数m 的取值范围;(2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.【详解】(1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<,即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4).(2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤, 所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.14.设2(1)2y ax a x a =+-+-, 若不等式2y ≥-对一切实数x 恒成立,求实数a 的取值范围;19.设函数()21f x mx mx =--.(1)若对于2,2x ,()5f x m <-+恒成立,求m 的取值范围;(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围. 2,2x,f 2,2x 恒成立,对于2,2x 恒成立.261324x ⎫-+⎪⎭2,2x ,则1,2.20.已知函数y =mx 2-mx -6+m ,若对于1≤m ≤3,y <0恒成立,求实数x 的取值范围.【详解】y <0⇔mx 2-mx -6+m <0⇔(x 2-x +1)m -6<0.∵1≤m ≤3,∴x 2-x +1<6m恒成立, ∴x 2-x +1<63⇔x 2-x -1<0⇔1-52<x <1+52. ∴x 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-52<x <1+52.。

不等式“恒成立”问题的解法

不等式“恒成立”问题的解法

不等式“恒成立”问题的解法对于不等式问题,“恒成立”是一个重要的概念。

如果一个不等式对于所有的变量的取值都成立,那么我们就说这个不等式“恒成立”。

在本文中,我们将介绍几种方法,解决不等式“恒成立”问题。

寻找不等式“恒成立”的方法1. 数学归纳法数学归纳法是一种证明方法,它可以证明一个结论对于所有自然数都成立。

我们可以借助数学归纳法来证明一个不等式对于所有变量取值都成立。

首先,我们要确定一个起点。

假设我们要证明不等式P(n)对于所有 $n \\in \\mathbb{N}$ 都成立,我们需要找到一个n0,使得不等式P(n0)是成立的。

通常情况下,我们选择n0=1。

接下来,我们需要证明不等式P(n)成立时,不等式P(n+1)也成立。

也就是说,我们需要证明P(n+1)与P(n)之间的关系。

如果我们能证明 $P(n)\\Rightarrow P(n+1)$,那么就可以使用数学归纳法证明不等式P(n)对于所有 $n \\geq n_0$ 都是成立的。

2. 分析不等式的性质在一些特定的不等式中,我们可以利用它们的性质来证明恒成立的情况。

例如,对于任何一组实数a1,a2,...,a n,我们都有:$$ (a_1 - a_2)^2 + (a_2 - a_3)^2 + ... + (a_{n-1} - a_n)^2 \\geq 0 $$不等式左侧是一组非负实数的和,因此它一定大于等于零。

所以,上面的不等式对于所有实数a1,a2,...,a n都是恒成立的。

3. 利用代数等式有时,我们可以通过将一个不等式转化为代数等式来解决恒成立的问题。

例如,假设我们要证明不等式 $x^2 + y^2 \\geq 2xy$ 对于所有实数x和y都成立。

我们可以将这个不等式变成以下代数等式:$$ (x - y)^2 \\geq 0 $$根据平方数的非负性,不等式左侧一定大于等于零,所以原来的不等式对于所有实数x和y都是成立的。

实例分析接下来,我们将通过几个实例来演示如何使用上述方法解决不等式“恒成立”的问题。

不等式恒成立问题的十种解法

不等式恒成立问题的十种解法
髫=cosO,Y=1+sinO,d≥一(1+cosO+sinO)=
设不等式专黯<1,对于一
切实数戈都恒成立,求实数m的取值范围.
解:因为4x2+6x+3=4(x+÷)2+-2J->o,
所以原不等式可变为:2菇2+2mx+玑<4x2+6名 +3,整理得:氖2+(6—2m)戈+3一m>0,因为 该不等式对一切实数戈都成立,必有△=(6— 2m)2—4×2(3一m)<O, 整理得m2—4m+3<0,解得:l<m<3. 说明:若所给的区间并非一切实数时,切记
I+f并一4
不等式戈2—4x≥m对任 意茗∈[0,1]恒成立,则 m的取值范围是
( ) (A)m≤一3 (B)m≥一3 (C)一3≤m≤O (D)m≥一4

U 一1

I≥a恒成
立,求实数d的取值范围.
2 j

i4。x
, |
解:设d=I戈一1
I+I戈一4
I,由绝对值的几
l+
—2 —3
—4 /
何意义可知,d表示数轴上的点到实数1、4所 对应两点距离的和,所以d≥3,要使I算一1
Hale Waihona Puke 丽<半+半+...+掣:五1>西m对于任意大于等于2的自然数n都成
立,求自然数m的最大值.
证明:当凡=2时:左式=了1+百1=砭7=西14
>西m戚业,所以m的最大值为13,假设当n=k
再葡-÷而>砑13,即n:七+1时也成立. 夏百万可汀丽>西’即n
万方数据
(.|}≥2)时成立,即:丽1 +丽1+丽1+..・+ 磊1>西13,则当n=蠡+1时,南+j丽1+…+甄l +芝丽+2—k—+2 2(ij了+丽+丽+…+ 去)+‘万1玎+甄1西一丽1)>雨13+

不等式“恒成立”问题的解法

不等式“恒成立”问题的解法

不等式“恒成立”问题的解法在微积分学中,不等式“恒成立”问题是一个解决方法的重要组成部分。

这个问题的主要目的是研究在某一条件下,某个变量的取值范围如何受到不等式的限制。

解决“恒成立”问题,主要分为以下几步:1.首先,确定不等式恒成立的变量,并对变量进行分类。

2.其次,通过数学归纳法,确定不等式恒成立时变量的取值范围。

3.接着,把不等式恒成立的变量分别带入不同的条件,根据不同的条件,分别研究变量取值范围如何受到不等式的限制。

4.最后,总结所有的条件下变量的取值范围,得出不等式恒成立的结果。

上述就是不等式“恒成立”问题的常规解法,但也有一些特殊情况,则需要用到更多的数学工具,如变量变换、隐函数等,来解决不等式“恒成立”问题。

例如,假设有不等式$x^2+2x-3>0$,并且$x \in \mathbb{R}$,要求求解不等式恒成立的解。

这时,先将不等式左边进行变换,即$x^2+2x-3=(x+3)(x-1)>0$,然后分别把变量$x+3$、$x-1$的正负性考虑进去。

由此得出,不等式恒成立的解为 $x>1$ 或 $x<-3$ 。

以上就是不等式“恒成立”问题解决的具体步骤,由此可见,要解决不等式“恒成立”问题,需要通过多种数学工具来求解,能够用文字清晰表达出来,从而解决这类问题。

另外,在解决不等式“恒成立”问题时,还可以使用一些特殊的数学工具,从而达到更好的解决效果。

例如,在解决不等式 $x^2+2x-3>0$,并且$x \in\mathbb{R}$ 的问题时,可以使用隐函数的方法处理。

即,通过将该不等式变换为$y=x^2+2x-3$,将该不等式变换为一个隐函数,然后由该隐函数求解其在实数范围内的正负性变化,最后得到不等式恒成立的解。

同样,对于更加复杂的不等式,也可以采用类似的思路,将不等式变换为若干个隐函数,然后逐个求解,从而得到不等式恒成立的解。

总而言之,解决不等式“恒成立”问题,既可以采取常规解法,也可以使用特殊的数学工具,如变量变换、隐函数,从而精准求解出不等式恒成立的解,从而达到有效解决不等式“恒成立”问题的目的。

高一不等式恒成立问题3种基本方法

高一不等式恒成立问题3种基本方法

高一阶段,不等式恒成立问题是学习数学的重要内容之一。

在解决这类问题时,通常有三种基本方法:直接法、间接法和综合法。

接下来,我将分别介绍这三种方法,并从中深入探讨不等式恒成立问题。

**直接法**直接法是指通过直接计算和推导,证明不等式在一定条件下成立。

这种方法通常需要运用不等式的性质和基本运算法则。

举个简单的例子来说,要证明不等式a^2 ≥ 0在所有实数a成立,可以通过直接计算a^2的值来证明。

**间接法**间接法是指通过反证法或者假设法,证明不等式在一定条件下不成立,从而得出不等式在其他条件下成立的结论。

这种方法通常需要运用逻辑推理和证伪的思维方式。

举个例子来说,要证明对于任意实数a,不等式a^2 + 2a + 1 > 0成立,可以采用间接法,假设a^2 + 2a + 1 ≤ 0,然后通过推导得出矛盾,从而证明原不等式成立。

**综合法**综合法是指通过结合多种方法和技巧,来解决不等式恒成立问题。

这种方法通常需要灵活运用数学知识,并且具有一定的创造性和灵感。

综合法可以综合考虑不等式的多个方面,从而得出更加全面的结论。

举个例子来说,要解决不等式a^2 - b^2 ≥ 0,可以结合直接法和间接法,分别讨论a和b的正负情况,从而得出不等式成立的条件。

综合以上三种方法,我们可以更深入地理解不等式恒成立问题。

在解决这类问题时,需要运用数学知识和思维方式,从多个角度和方法综合考虑,最终得出准确的结论。

对于高一阶段的学生来说,通过掌握这三种基本方法,可以更好地理解和应用不等式的性质,为今后的学习打下良好的基础。

在我个人看来,不等式恒成立问题是数学中具有一定难度和挑战性的内容。

通过学习解决这类问题的基本方法,可以培养逻辑思维和数学推理能力,对于学生的数学素养有着重要的促进作用。

我相信通过不断练习和探索,一定能够更加深入地理解和应用不等式恒成立问题。

希望以上内容对您有所帮助,如果有任何问题,欢迎您随时向我提问。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于不等式恒成立问题的几种求解方法
不等式恒成立问题,在高中数学中较为常见。

这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。

下面我们一起来探讨其中一些典型的问题
一、一次函数型——利用单调性求解
例1、若不等式对满足的所有实数m都成立,求x的取值范围。

若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。

这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。

能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。

分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。

显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。

解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立,
设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有:
此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。

给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于
ⅰ),或ⅱ)
可合并成
同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;
若改为:
,构造函数,画出图象,得a<3
利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围。

不等式恒成立的题型和解法还有很多,只要充分利用所给定的函数的特点和性质,具体问题具体分析,选用恰当的方法,对问题进行等价转化,就能使问题获得顺利解决。

只有这样,才能真正提高分析问题和解决问题的能力。

注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

”。

相关文档
最新文档