【备战高考·数学】湖南省XX中学高考数学一模试卷(文科)(解析版)
2020年湖南省长沙市高考数学一模试卷(文科)含答案解析
2020年湖南省长沙市高考数学一模试卷(文科)一、选择题1.设i为虚数单位,则复数3﹣i的虚部是()A.3 B.﹣i C.1 D.﹣12.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=()A.(﹣2,+∞)B.[﹣1,1] C.[﹣1,1]∪[2,+∞)D.(﹣2,1]3.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A.圆柱 B.圆锥 C.棱锥 D.棱柱4.已知向量=(cosα,sinβ),=(sinα,cosβ),若∥,则α,β的值可以是()A.α=,β=﹣B.α=,β=C.α=,β=﹣D.α=,β=﹣5.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是()A.a n=(﹣1)n﹣1+1 B.a n=C.a n=2sin D.a n=cos(n﹣1)π+16.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),且f(x)=,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)7.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表使用智能手机不使用智能手机合计学习成绩优秀 4 8 12学习成绩不优秀16 2 18合计20 10 30附表:p(K2≥k0)0.15 0.10 0.05 0.025 0.010 0.005 0.001k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828经计算K2=10,则下列选项正确的是:()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响8.函数的单调递增区间是()A.B. C.D.9.平面直径坐标系xOy中,动点P到圆(x﹣2)2+y2=1上的点的最小距离与其到直线x=﹣1的距离相等,则P点的轨迹方程是()A.y2=8x B.x2=8y C.y2=4x D.x2=4y10.非负实数x、y满足ln(x+y﹣1)≤0,则关于x﹣y的最大值和最小值分别为()A.2和1 B.2和﹣1 C.1和﹣1 D.2和﹣211.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7 B.0.75 C.0.8 D.0.912.已知函数f(x)=e x,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是()A.∀x∈R,f(x)>g(x)B.∃x1,x2∈R,f(x1)<g(x2)C.∃x0∈R,f(x0)=g(x0)D.∃x0∈R,使得∀x∈R,f(x0)﹣g(x0)≤f(x)﹣g(x)二、填空题13.在空间直角坐标系中,已知点A(1,0,1),B(﹣1,1,2),则线段AB的长度为_______.14.记等差数列{a n}的前n项和为S n,若S3=2a3,S5=15,则a2020=_______.15.△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于_______.16.M,N分别为双曲线﹣=1左、右支上的点,设是平行于x轴的单位向量,则|•|的最小值为_______.三、解答题17.如图,OPQ是半径为2,圆心角为的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.(1)找出S与θ的函数关系;(2)试探求当θ取何值时,S最大,并求出这个最大值.18.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了去年某地某月10天的AQI的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)(2)若从样本的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.19.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.(1)求三棱锥A﹣FGC的体积.(2)求证:面GEF⊥面AEF.20.已知椭圆C1: +=1(a>b>0)的顶点到直线l1:y=x的距离分别为,.(1)求C1的标准方程;(2)设平行于l1的直线l交C1与A、B两点,若以AB为直径的圆恰好过坐标原点,求直线l的方程.21.已知函数f(x)=x2+(a为实常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断是否存在直线l与f(x)的图象有两个不同的切点,并证明你的结论.[选修4-1:几何证明选讲]22.如图,C,D是以AB为直径的半圆上两点,且=.(1)若CD∥AB,证明:直线AC平分∠DAB;(2)作DE⊥AB交AC于E,证明:CD2=AE•AC.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2﹣4ρcosθ+3=0,θ∈[0,2π].(1)求C1的直角坐标方程;(2)曲线C2的参数方程为(t为参数),求C1与C2的公共点的极坐标.[选修4-5:不等式选讲]24.设α、β、γ均为实数.(1)证明:|cos(α+β)|≤|cosα|+|sinβ|;|sin(α+β)|≤|cosα|+|cosβ|.(2)若α+β+γ=0.证明:|cosα|+|cosβ|+|cosγ|≥1.2020年湖南省长沙市高考数学一模试卷(文科)参考答案与试题解析一、选择题1.设i为虚数单位,则复数3﹣i的虚部是()A.3 B.﹣i C.1 D.﹣1【考点】复数的基本概念.【分析】直接由复数的基本概念得答案.【解答】解:∵复数3﹣i,∴复数3﹣i的虚部是:﹣1.故选:D.2.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=()A.(﹣2,+∞)B.[﹣1,1] C.[﹣1,1]∪[2,+∞)D.(﹣2,1]【考点】并集及其运算.【分析】先化简集合A,B,再根据并集的定义即可求出.【解答】解:集合A={x|x+2>0}=(﹣2,+∞),B={y|y=sinx,x∈R}=[﹣1,1],则A∪B=(﹣2,+∞),故选:A.3.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A.圆柱 B.圆锥 C.棱锥 D.棱柱【考点】由三视图求面积、体积.【分析】由于圆锥的三视图中一定不会出现正方形,即可得出结论.【解答】解:圆锥的三视图中一定不会出现正方形,∴该空间几何体不可能是圆锥.故选:B.4.已知向量=(cosα,sinβ),=(sinα,cosβ),若∥,则α,β的值可以是()A.α=,β=﹣B.α=,β=C.α=,β=﹣D.α=,β=﹣【考点】平面向量共线(平行)的坐标表示.【分析】根据向量的平行的条件以及两角和的余弦公式即可判断.【解答】解:向量=(cosα,sinβ),=(sinα,cosβ),若∥,∴cosαcosβ﹣sinαsinβ=0,即cos(α+β)=0,∴α+β=kπ+,k∈Z,对于A:α+β=0,不符合,对于B,α+β=π,不符合,对于C:α+β=﹣,符合,对于D,α+β=,不符合,故选:C.5.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是()A.a n=(﹣1)n﹣1+1 B.a n=C.a n=2sin D.a n=cos(n﹣1)π+1【考点】数列的概念及简单表示法.【分析】令n=1,2,3,4分别代入验证:即可得出答案.【解答】解:令n=1,2,3,4分别代入验证:可知C:a3=﹣2,因此不成立.故选:C.6.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),且f(x)=,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)【考点】函数的值.【分析】由f(x+1)=﹣f(x),得到函数的周期是2,根据分段函数的表达式结合函数的周期性进行求解即可.【解答】解:由f(x+1)=﹣f(x),得f(x+2)=﹣f(x+1)=f(x),则函数的周期是2,则f(2.5)=f(2+0.5)=f(0.5)=﹣1,f(f(2.5))=f(﹣1)=f(﹣1+2)=f(1)=﹣1f(f(1.5))=f(f(2﹣0.5))=f(f(﹣0.5))=f(1)=﹣1,f(2)=f(0)=1,即列函数值为1的f(2),故选:D.7.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表使用智能手机不使用智能手机合计学习成绩优秀 4 8 12学习成绩不优秀16 2 18合计20 10 30附表:p(K2≥k0)0.15 0.10 0.05 0.025 0.010 0.005 0.001k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828经计算K2=10,则下列选项正确的是:()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响【考点】独立性检验的应用.【分析】根据观测值K2,对照数表,即可得出正确的结论.【解答】解:因为7.879<K2=10<10.828,对照数表知,有99.5%的把握认为使用智能手机对学习有影响.故选:A.8.函数的单调递增区间是()A.B. C.D.【考点】复合三角函数的单调性.【分析】由2kπ﹣≤+≤2kπ+(k∈Z)与x∈[﹣2π,2π]即可求得答案.【解答】解:y=sin(+)的单调递增区间由2kπ﹣≤+≤2kπ+(k∈Z)得:4kπ﹣≤x≤4kπ+(k∈Z),∵x∈[﹣2π,2π],∴﹣≤x≤.即y=sin(+)的单调递增区间为[﹣,].故选A.9.平面直径坐标系xOy中,动点P到圆(x﹣2)2+y2=1上的点的最小距离与其到直线x=﹣1的距离相等,则P点的轨迹方程是()A.y2=8x B.x2=8y C.y2=4x D.x2=4y【考点】直线与圆的位置关系.【分析】设动点P(x,y),由已知得|x+1|=﹣1,由此能求出点P的轨迹方程.【解答】解:设动点P(x,y),∵动点P到直线x=﹣1的距离等于它到圆:(x﹣2)2+y2=1的点的最小距离,∴|x+1|=﹣1,化简得:6x﹣2+2|x+1|=y2,当x≥﹣1时,y2=8x,当x<﹣1时,y2=4x﹣4<﹣8,不合题意.∴点P的轨迹方程为:y2=8x.故选:A.10.非负实数x、y满足ln(x+y﹣1)≤0,则关于x﹣y的最大值和最小值分别为()A.2和1 B.2和﹣1 C.1和﹣1 D.2和﹣2【考点】简单线性规划;对数函数的图象与性质.【分析】作出不等式组对应的平面区域,利用z的几何意义进行求解即可.【解答】解:由题意得,作出不等式组对应的平面区域如图:设z=x﹣y,由z=x﹣y,得y=x﹣z表示,斜率为1纵截距为﹣z的一组平行直线,平移直线y=x﹣z,当直线y=x﹣z经过点C(2,0)时,直线y=x﹣z的截距最小,此时z 最大,最大为z max=2﹣0=2当直线经过点A(0,2)时,此时直线y=x﹣z截距最大,z最小.此时z min=0﹣2=﹣2.故选:D.11.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7 B.0.75 C.0.8 D.0.9【考点】程序框图.【分析】模拟执行程序,可得此程序框图的功能是计算并输出S=+的值,结合选项,只有当S的值为0.7时,n不是正整数,由此得解.【解答】解:模拟执行程序,可得此程序框图执行的是输入一个正整数n,求+的值S,并输出S,由于S=+=1+…+﹣=1﹣=,令S=0.7,解得n=,不是正整数,而n分别输入2,3,8时,可分别输出0.75,0.8,0.9.故选:A.12.已知函数f(x)=e x,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是()A.∀x∈R,f(x)>g(x)B.∃x1,x2∈R,f(x1)<g(x2)C.∃x0∈R,f(x0)=g(x0)D.∃x0∈R,使得∀x∈R,f(x0)﹣g(x0)≤f(x)﹣g(x)【考点】命题的真假判断与应用.【分析】根据全称命题和特称命题的定义进行判断即可.【解答】解:设h(x)=f(x)﹣g(x),则h(x)=e x﹣x﹣1,则h′(x)=e x﹣1,当x<0时,h′(x)<0,h(x)单调递减,当x>0时,h′(x)>0,则h(x)单调递增,即当x=0时,函数h(x)取得极小值同时也是最小值h(0)=0,即h(x)≥0,即∀x∈R,f(x)>g(x)不一定成立,故A是假命题,故选:A二、填空题13.在空间直角坐标系中,已知点A(1,0,1),B(﹣1,1,2),则线段AB的长度为.【考点】空间两点间的距离公式.【分析】根据两点间的距离公式,进行计算即可.【解答】解:空间直角坐标系中,点A(1,0,1),B(﹣1,1,2),所以线段AB的长度为|AB|==.故答案为:.14.记等差数列{a n}的前n项和为S n,若S3=2a3,S5=15,则a2020=2020.【考点】等差数列的前n项和.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:设等差数列{a n}的公差为d.∵S3=2a3,S5=15,∴d=2(a1+2d),d=15,解得a1=d=1.则a2020=1+×1=2020.故答案为:2020.15.△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于1.【考点】正弦定理.【分析】利用正弦定理得出a,b,c和外接圆半径R的关系,根据周长列出方程解出R.【解答】解:设△ABC的三边分别为a,b,c,外接圆半径为R,由正弦定理得,∴a=2RsinA,b=2RsinB,c=2RsinC,∵a+b+c=2(sinA+sinB+sinC),∴2RsinA+2RsinB+2RsinC=2(sinA+sinB+sinnC),∴R=1.故答案为:1.16.M,N分别为双曲线﹣=1左、右支上的点,设是平行于x轴的单位向量,则|•|的最小值为4.【考点】双曲线的简单性质.【分析】根据向量数量积的定义结合双曲线的性质进行求解即可.【解答】解:由向量数量积的定义知•即向量在向量上的投影||模长的乘积,故求|•|的最小值,即求在x轴上的投影的绝对值的最小值,由双曲线的图象可知|•|的最小值为4,故答案为:4三、解答题17.如图,OPQ是半径为2,圆心角为的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.(1)找出S与θ的函数关系;(2)试探求当θ取何值时,S最大,并求出这个最大值.【考点】三角函数中的恒等变换应用;弧度制的应用;三角函数的最值.【分析】(1)由面积公式即可得到S与θ的函数关系.(2)对三角函数化简,由θ的范围,得到S的最大值.【解答】解:(1)∵S=S△OPC+S△OQC=OP•0Csin∠POC+OQ•OCsin∠QOC=2sinθ+2sin(﹣θ)(θ∈(0,))(2)由(1)知,S=2sinθ+2sin(﹣θ)=sinθ+cosθ=2sin(θ+)∵θ∈(0,),∴θ+∈(,)∴当θ+=,即θ=时,S最大,为2.18.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了去年某地某月10天的AQI的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)(2)若从样本的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)由茎叶图可得样本中空气质量优良的天数,可得概率,用总天数乘以概率可得;(2)该样本中轻度污染共4天,分别记为a,b,c,d,中度污染为1天,记为A,重度污染为1天,记为α,列举可得总的基本事件共15个,其中空气质量等级恰好不同有9个,由概率公式可得的.【解答】解:(1)由茎叶图可发现样本中空气质量优的天数为1,空气质量为良的天数为3,故空气质量优良的概率为=,故利用该样本估计该地本月空气质量优良的天数为30×=12;(2)该样本中轻度污染共4天,分别记为a,b,c,d,中度污染为1天,记为A,重度污染为1天,记为α,则从中随机抽取2天的所有可能结果为:(a,b)(a,c)(a,d)(a,A)(A,α)(b,c)(b,d)(b,A)(b,α)(c,d)(c,A)(c,α)(d,A)(d,α)(A,α)共15个,其中空气质量等级恰好不同有(a,A)(A,α)(b,A)(b,α)(c,A)(c,α)(d,A)(d,α)(A,α)共9个,该两天的空气质量等级恰好不同的概率P==19.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.(1)求三棱锥A﹣FGC的体积.(2)求证:面GEF⊥面AEF.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【分析】(1)由平面BDEF⊥平面ABCD得FB⊥平面ABCD,故FB⊥AB,又AB⊥BC,于是AB⊥平面FBCG,即AB为棱锥A﹣FCG的高;(2)建立空间坐标系,分别求出平面AEF和平面EFG的法向量,证明他们的法向量垂直即可.【解答】解:(1)∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,FB⊥BD,FB ⊂平面BDEF,∴FB⊥平面ABCD,∵AB⊂平面ABCD,∴AB⊥FB,又AB⊥BC,∴AB⊥平面BCGF,===.∴V A﹣FGC(2)以B为原点,AB,BC,BF为坐标轴建立空间直角坐标系,如图:则A(﹣2,0,0),E(﹣2,2,2),F(0,0,2),G(0,2,1),∴=(0,2,2),=(2,﹣2,0),=(0,2,﹣1).设平面AEF的法向量为=(x,y,z),平面EFG的法向量为=(a,b,c),则,,即,,令z=1得=(﹣1,﹣1,1),令c=1得=(,,1).∴=﹣=0.∴,∴平面AEF⊥平面EFG.20.已知椭圆C1: +=1(a>b>0)的顶点到直线l1:y=x的距离分别为,.(1)求C1的标准方程;(2)设平行于l1的直线l交C1与A、B两点,若以AB为直径的圆恰好过坐标原点,求直线l的方程.【考点】椭圆的简单性质.【分析】(1)由a>b,可设顶点(a,0)到直线y=x的距离为,又顶点(0,b)到直线y=x的距离为,运用点到直线的距离公式,计算可得a=2,b=1,进而得到椭圆方程;(2)设直线l的方程为y=x+t(t≠0),代入椭圆方程x2+4y2=4,设A(x1,y1),B(x2,y2),运用韦达定理和判别式大于0,以及直径所对的圆周角为直角,由向量垂直的条件:数量积为0,化简整理,可得t,进而得到所求直线l的方程.【解答】解:(1)由a>b,可设顶点(a,0)到直线y=x的距离为,可得=,即a=2,又顶点(0,b)到直线y=x的距离为,可得=,即b=1,则椭圆方程为+y2=1;(2)设直线l的方程为y=x+t(t≠0),代入椭圆方程x2+4y2=4,可得5x2+8tx+4t2﹣4=0,设A(x1,y1),B(x2,y2),即有△=64t2﹣20(4t2﹣4)>0,解得﹣<t<,且t≠0,x1+x2=﹣,x1x2=,y1y2=(x1+t)(x2+t)=x1x2+t2+t(x1+x2)=+t2﹣=,以AB为直径的圆恰好过坐标原点,可得OA⊥OB,即有•=0,即x1x2+y1y2=0,即为+=0,解得t=±,满足﹣<t<,且t≠0,则直线l的方程为y=x±.21.已知函数f(x)=x2+(a为实常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断是否存在直线l与f(x)的图象有两个不同的切点,并证明你的结论.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(1)求出导数,由题意可得2x3﹣a≥0在(0,+∞)上恒成立,即a≤2x3,求出右边函数的值域,即可得到a的范围;(2)不存在直线l与f(x)的图象有两个不同的切点.假设存在这样的直线l,设两切点为(x1,f(x1)),(x2,f(x2)),由假设可得f′(x1)=f′(x2)=,运用导数和函数的解析式,化简整理,即可得到矛盾.【解答】解:(1)函数f(x)=x2+的导数为f′(x)=2x﹣=,由f(x)在(0,+∞)上单调递增,可得2x3﹣a≥0在(0,+∞)上恒成立,即a≤2x3,由2x3在(0,+∞)上递增,可得2x3的值域为(0,+∞),则a≤0,即有a的取值范围为(﹣∞,0];(2)不存在直线l与f(x)的图象有两个不同的切点.证明:假设存在这样的直线l,设两切点为(x1,f(x1)),(x2,f(x2)),由假设可得f′(x1)=f′(x2)=,由f′(x1)=f′(x2),可得2x1﹣=2x2﹣,即有2(x1﹣x2)=a•,显然x1+x2≠0,x1﹣x2≠0,即有a=﹣,而﹣f′(x1)=﹣2x1+=x1+x2﹣﹣2x1+=x2﹣x1+﹣=﹣≠0,即f′(x1)=f′(x2)≠,故不存在直线l与f(x)的图象有两个不同的切点.[选修4-1:几何证明选讲]22.如图,C,D是以AB为直径的半圆上两点,且=.(1)若CD∥AB,证明:直线AC平分∠DAB;(2)作DE⊥AB交AC于E,证明:CD2=AE•AC.【考点】与圆有关的比例线段;弦切角.【分析】(1)证明:直线AC平分∠DAB,只要证明∠DAC=∠BAC,利用平行线的性质及等弧对等角即可;(2)作DE⊥AB交AC于E,证明:△ADE∽△ACD,即可证明CD2=AE•AC.【解答】证明:(1)∵CD∥AB,∴∠DCA=∠BAC,∵=,∴∠DAC=∠DCA,∴∠DAC=∠BAC,∴直线AC平分∠DAB;(2)∵DE⊥AB,∴∠ADE+∠DAB=90°,∵AB为直径,∴∠DBA+∠DAB=90°,∴∠ADE=∠ABD,∵∠ABD=∠DCA,∴∠ADE=∠ACD,∴△ADE∽△ACD,∴AD2=AE•AC,∵AD=DC,∴CD2=AE•AC.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2﹣4ρcosθ+3=0,θ∈[0,2π].(1)求C1的直角坐标方程;(2)曲线C2的参数方程为(t为参数),求C1与C2的公共点的极坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)把ρ2=x2+y2,x=ρcosθ,代入曲线C1的极坐标方程可得直角坐标方程.(2)由曲线C2的参数方程为(t为参数),可知:此条直线经过原点,倾斜角为.因此C1的极坐标方程为:,或(ρ>0).分别代入C1的极坐标方程即可得出.【解答】解:(1)把ρ2=x2+y2,x=ρcosθ,代入曲线C1的极坐标方程ρ2﹣4ρcosθ+3=0,θ∈[0,2π],可得:x2+y2﹣4x+3=0,配方为:(x﹣2)2+y2=1.(2)由曲线C2的参数方程为(t为参数),可知:此条直线经过原点,倾斜角为.因此C1的极坐标方程为:,或(ρ>0).将代入C1可得:ρ2﹣2ρ+3=0,解得ρ=.将代入C1可得:ρ2+2ρ+3=0,解得ρ=﹣,舍去.故C1与C2的公共点的极坐标为.[选修4-5:不等式选讲]24.设α、β、γ均为实数.(1)证明:|cos(α+β)|≤|cosα|+|sinβ|;|sin(α+β)|≤|cosα|+|cosβ|.(2)若α+β+γ=0.证明:|cosα|+|cosβ|+|cosγ|≥1.【考点】绝对值三角不等式.【分析】(1)利用和的余弦、正弦公式,结合三角不等式,即可证明结论;(2)由(1)可得|cos[α+(β+γ]=|cosα|+|sin(β+γ)|≤|cosα|+|cosβ|+|cosγ|,即可证明结论.【解答】证明:(1)|cos(α+β)|=|cosαcosβ﹣sinαsinβ|≤|cosαcosβ|+|sinαsinβ|≤|cosα|+|sinβ|;|sin(α+β)|=|sinαcosβ﹣cosαsinβ|≤|sinαcosβ|+|cosαsinβ|≤|cosα|+|cosβ|.(2)由(1)可得|cos[α+(β+γ)]≤|cosα|+|sin(β+γ)|≤|cosα|+|cosβ|+|cosγ|,∵α+β+γ=0,∴|cos[α+β+γ]=1∴|cosα|+|cosβ|+|cosγ|≥1.2020年9月12日。
2020年湖南省第一次高考模拟考试文科数学试题与答案
2020年湖南省第一次高考模拟考试文科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
|﹣1<x<5},集合A={1,3},则集合∁U A的子集的个数是()1. 设全集U={x NA. 16B. 8C. 7D. 42. 下列各式的运算结果为纯虚数的是()A. i(1+i)2B. i2(1﹣i)C. (1+i)2D. i(1+i)3. 为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定。
其中所有正确结论的编号为()A. ①③B. ①④C. ②③D. ②④4. 已知直线,直线为,若则( )A.或 B.C .D .或5. 已知,条件甲:;条件乙:,则甲是乙的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 轴截面为正方形的圆柱的外接球的体积与该圆柱的体积的比值为( ) A . B .C .D .7. 在中,a ,b ,c 分别是角A ,B ,C 的对边,,则角B=( )A.B. C.D.8. 执行如图所示的程序框图,输出的S=( )A. 25B. 9C. 17D. 209. 设直线1:210l x y -+=与直线A 的交点为A ;,P Q 分别为12,l l 上任意两点,点M 为,P Q 的中点,若12AM PQ =,则m 的值为( ) A. 2B. 2-C. 3D. 3-10.在V ABC 中,sin B A =,BC =4C π=,则=AB ( )B. 5C. D.11. 已知函数,若,且函数存在最小值,则实数的取值范围为( ) A.B.C. D. 12.已知三棱锥的底面的顶点都在球的表面上,且,,,且三棱锥的体积为,则球的体积为( ) A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
湖南省长沙一中2019届高三下学期高考模拟卷(一)文科数学试卷(含答案)
文科数学试题参考答案!一中版"!&!
!#"设 &8/'71<&连接 <;! 由!""&8*平面'7;&6<; 是;8 在平面'7; 内的射影& 6;8 与平面'7; 所成的角为+8;<! 5&3.7;&&30平面 78;&7;&平面 78;& 6&3.平面 78;& 6点3 到平面78; 的距离等于点& 到平面78; 的距离! 在平面&'87 内作&= *87&交87 延长线于= ! 5平面&'87*平面 78;& 6&=*平面 78;&
! " 6存在3
湖南省长沙一中2025届高考数学一模试卷含解析
湖南省长沙一中2025届高考数学一模试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 是虚数单位,若复数1z i =+,则22||z z z+=( )A .1i +B .1i -C .1i --D .1i -+2.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则20206log a =( ) A .1-B .1C .2D .23.若双曲线()22210x y a a-=>的一条渐近线与圆()2222x y +-=至多有一个交点,则双曲线的离心率的取值范围是( ) A .)2,⎡+∞⎣ B .[)2,+∞C .(1,2⎤⎦ D .(]1,2 4.用数学归纳法证明,则当时,左端应在的基础上加上( )A .B .C .D .5.231+=-ii ( ) A .15i 22-+ B .1522i -- C .5522i + D .5122i - 6.若双曲线22214x y a -=3,则双曲线的焦距为( )A .26B .25C .6D .87.已知向量()3,1a =,()3,1b =-,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π 8.已知向量(3sin ,2)a x =-,(1,cos )b x =,当a b ⊥时,cos 22x π⎛⎫+= ⎪⎝⎭( )A .1213-B .1213C .613-D .6139.斜率为1的直线l 与椭圆22x y 14+=相交于A 、B 两点,则AB 的最大值为( )A .2B .455C .4105D .810510.一艘海轮从A 处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .62海里B .3C .2海里D .311.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表: 实施项目种植业养殖业工厂就业服务业参加用户比40% 40% 10% 10%脱贫率95% 95% 90% 90%那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( ) A .2728倍 B .4735倍 C .4835倍 D .75倍 12.已知函数()cos f x x =与()sin(2)(0)g x x ϕϕπ=+<的图象有一个横坐标为3π的交点,若函数()g x 的图象的纵坐标不变,横坐标变为原来的1ω倍后,得到的函数在[0,2]π有且仅有5个零点,则ω的取值范围是( )A .2935,2424⎡⎫⎪⎢⎣⎭B .2935,2424⎡⎤⎢⎥⎣⎦C .2935,2424⎛⎫⎪⎝⎭ D .2935,2424⎛⎤⎥⎝⎦ 二、填空题:本题共4小题,每小题5分,共20分。
湖南省湘潭市高考数学一模试卷(文科)
湖南省湘潭市高考数学一模试卷(文科)年湖南省湘潭市高考数学一模试卷(文科)一、选择题(共8小题,每小题5分,满分40分)1、(20XX年?宁夏)已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A、{3,5}B、{3,6}C、{3,7}D、{3,9}考点:交集及其运算。
专题:计算题。
分析:直接按照集合的交集的运算法则求解即可.解答:解:因为A∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9} 故选B点评:本题考查交集及其运算,做到集合中的元素,不重复而且是两个集合的公共元素,才是二者的交集.基础题.2、函数f(x)=lgx的零点所在的区间是()A、(0,1]B、(1,10]C、(10,100]D、(100,+∞)考点:函数的零点;二分法的定义。
专题:计算题。
分析:先求出f(1)f(10)<0,再由二分法进行判断.解答:解:由于f(1)f(10)=(0)(1)=(1)×<0,根据二分法,得函数在区间(1,10]内存在零点.故选B.点评:本题考查函数的零点问题,解题时要注意二分法的合理运用.3、某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n=()A、60B、70C、80D、90考点:分层抽样方法。
专题:计算题。
分析:先求出总体中中A种型号产品所占的比例,是样本中A种型号产品所占的比例,再由条件求出样本容量.解答:解:由题意知,总体中中A种型号产品所占的比例是=,因样本中A种型号产品有16件,则×n=16,解得n=80.故选C.点评:本题考查了分层抽样的定义应用,即保证样本结构与总体结构一致按一定的比例进行抽取,再由条件列出式子求出值来.4、如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是()A 、B 、C 、D 、考点:由三视图求面积、体积。
湖南省长沙市第一中学2019届高三数学下学期模拟卷(一)文(含解析)
长沙市一中2019届高考模拟卷(一)数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合{}{}(4)0,3,0,1,3A x x x B =-<=-,则A I B=( ) A. {}3,1-- B. {}1,3 C. {}3,1,0-- D. {}0,1,3【答案】B 【解析】 【分析】通过不等式的解法求出集合A ,然后求解交集即可. 【详解】由已知得{|(4)0}{|04}A x x x x x =-<=<<, 所以{1,3}A B =I , 故选B.【点睛】本题考查二次不等式的求法,交集的定义及运算,属于基础题.2.已知函数1()()xxf x e e=-,则下列判断正确的是( ) A. 函数()f x 是奇函数,且在R 上是增函数 B. 函数()f x 是偶函数,且在R 上是增函数 C. 函数()f x 是奇函数,且在R 上是减函数 D. 函数()f x 是偶函数,且在R 上是减函数 【答案】A 【解析】 【分析】求出()f x 的定义域,判断()f x 的奇偶性和单调性,进而可得解. 【详解】()f x 的定义域为R ,且()()xx 1f x e f x e-=-=-;∴()f x 是奇函数;又xy e =和x1y ()e=-都是R 上的增函数;()x x 1f x e ()e∴=-是R 上的增函数.故选:A .【点睛】本题考查奇偶性的判断,考查了指数函数的单调性,属于基础题.3.将一颗质地均匀的骰子(它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具)先后抛掷2次,记第一次出现的点数为m ,记第二次出现的点数为n ,则m =2n 的概率为( ) A.118B.112C.19D.16【答案】B 【解析】 【分析】基本事件总数n =6×6=36,利用列举法求出m =2n (k ∈N *)包含的基本事件有3个,由古典概型概率公式计算即可.【详解】由题意得,基本事件总数有:6636⨯=种,事件“2m n =”包含的基本事件有:(2,1),(4,2),(6,3)共3个,所以事件“2m n =”的概率为313612P ==.故选B. 【点睛】本题考查概率的求法,考查列举法、古典概型等基础知识,是基础题.4.已知复数1z ,2z 在复平而上对应的点分别为A (1,2),B (-1,3),则12z z 的虚部为( ) A. 1 B. 12i -C. iD. 12-【答案】D 【解析】 分析】点的坐标得到复数z 1,z 2,代入12z z 后由复数代数形式的除法运算化简求值即可得到12z z 的虚部.【详解】解:由复数12z z ,在复平面上对应的点分别是A (1,2),B (﹣1,3), 得:1z =1+2i ,2z =﹣1+3i则()()()()12121312551131313102i i z ii i z i i i +--+--====-+-+--. 12z z 的虚部为12- 故选:D .【点睛】本题考查了复数代数形式的表示法及其几何意义,考查了复数代数形式的除法运算,是基础题.5.若双曲线2221(0)x y a a-=>的实轴长为2,则其渐近线方程为( )A. y x =±B. 2y x =±C. 12y x =±D. 2y x =±【答案】A 【解析】 【分析】利用双曲线的实轴长求出a ,然后求解渐近线方程即可.【详解】双曲线的实轴长为2,得1a =,又1b =,所以双曲线的渐近线方程为y x =±. 故选A.【点睛】本题考查双曲线的简单性质的应用,考查渐近线方程,属于基础题.6.某几何体的三视图如图所示,则该几何体的侧视图的面积为( )A. 242+B. 442+C. 2D. 22【答案】C 【解析】 【分析】根据三视图的几何特点,利用三视图的数据,求出侧视图的面积即可.【详解】由三视图的数据,结合“长对正,宽相等”可得俯视图斜边上的高2即为侧视图的底边长,正视图的高即为侧视图的高, 所以侧视图的面积为:12222⨯⨯=. 故选:C .【点睛】本题考查三视图在形状、大小方面的关系,考查空间想象能力,属于基础题.7.等比数列{}n a 各项为正,354,,a a a -成等差数列,n S 为{}n a 的前n 项和,则42S S =( ) A. 2 B.78C.98 D.54【答案】D 【解析】 【分析】设{}n a 的公比为q (q ≠0,q ≠1),利用a 3,a 5,﹣a 4成等差数列结合通项公式,可得2a 1q 4=a 1q 2﹣a 1q 3,由此即可求得数列{}n a 的公比,进而求出数列的前n 项和公式,可得答案.【详解】设{}n a 的公比为(0,1)q q q >≠, ∵3a ,5a ,成等差数列,∴4231112a q a q a q =-,10a ≠,0q ≠,∴2210q q +-=,得12q =或1q =-(舍去),∴4242211()1521()1241()2SS-==+=-.故选D.【点睛】本题考查等差数列与等比数列的综合,熟练运用等差数列的性质,等比数列的通项是解题的关键.8.在正方体ABCD-A1B1C1D1中,点O是四边形ABCD的中心,关于直线A1O,下列说法正确的是()A. A1O∥DCB. A1O⊥BCC. A1O∥平面BCDD. A1O⊥平面ABD【答案】C【解析】【分析】推导出A1D∥B1C,OD∥B1D1,从而平面A1DO∥平面B1CD1,由此能得到A1O∥平面B1CD1.再利用空间线线、线面的位置关系排除其它选项即可.【详解】∵由异面直线的判定定理可得A1O与DC是异面直线,故A错误;假设A1O⊥BC,结合A1A⊥BC可得BC⊥A1ACC1,则可得BC⊥AC,显然不正确,故假设错误,即B错误;∵在正方体ABCD﹣A1B1C1D1中,点O是四边形ABCD的中心,∴A1D∥B1C,OD∥B1D1,∵A1D∩DO=D,B1D1∩B1C=B1,∴平面A1DO∥平面B1CD1,∵A1O⊂平面A1DO,∴A1O∥平面B1CD1.故C正确;又A1A⊥平面ABD,过一点作平面ABD的垂线有且只有一条,则D错误,故选:C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.9.已知函数()sin()(0,)22f x x ππωθωθ=+>-≤≤的图象相邻的两个对称中心之间的距离为2π,若将函数()f x 的图象向左平移6π后得到偶函数()g x 的图象,则函数()f x 的一个单调递减区间为( ) A. [,]36ππ-B. 7[,]412ππC. [0,]3πD. 5[,]26ππ【答案】B 【解析】 【分析】由对称中心之间的距离为2π可得三角函数的周期,从而可求得ω的值,利用经过平移变换后得到的函数()g x 是偶函数求得θ的值,从而根据正弦函数的单调性可得结果. 【详解】因为函数()()sin (0,)22f x x ππωθωθ=+>-≤≤的图象相邻的两个对称中心之间的距离为2π,所以T π=,可得2ω=, 将函数()f x 的图象向左平移6π后,得到()sin 23g x x πθ⎛⎫=++ ⎪⎝⎭是偶函数, 所以()32k k Z ππθπ+=+∈,解得()6k k Z πθπ=+∈,由于22ππθ-≤≤,所以当0k =时6πθ=.则()sin 26f x x π⎛⎫=+ ⎪⎝⎭, 令()3222262k x k k Z πππππ+≤+≤+∈, 解得()263k x k k Z ππππ+≤≤+∈, 当0k =时,单调递减区间为2,63ππ⎡⎤⎢⎥⎣⎦, 由于][72,,41263n ππππ⎡⎤⎢⎥⎣⎦, 所以7,412ππ⎡⎤⎢⎥⎣⎦是函数()f x 的一个单调递减区间,故选B . 【点睛】本题主要考查正弦型函数的周期性和单调性的应,以及三角函数图象的平移变换规律,属于中档题.函数sin()y A x ωϕ=+的单调区间的求法:若0,0A ω>>,把x ωϕ+看作是一个整体,由22k x ππωϕ+≤+≤()322k k Z ππ+∈求得函数的减区间,由2222k x k πππωϕπ-+≤+≤+求得增区间.10.已知抛物线C :22(0)y px p =>的焦点为F ,准线为l ,点M 在第一象限的抛物线C 上,直线MF 点M 在直线l 上的射影为A ,且△MAF 的面积为,则p 的值为( )A. 1B. 2C. D. 4【答案】B 【解析】 【分析】如图所示,由直线MF ,可得∠AMF =60°.再利用抛物线的定义得出面积的表达式,解出p 即可. 【详解】如图所示,∵直线MF 的斜率为3,∴∠MFx =60°. ∴∠AMF =60°,由抛物线的定义可得:|MA |=|MF |, ∴1sin 6043,2MAF S MF MA ∆=⋅︒=得4MA MF ==,所以MAF ∆为等边三角形,∴24MA p ==,2p =, 故选B.【点睛】本题考查了抛物线的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.11.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推那么该数列的前50项和为()A. 1044B. 1024C. 1045D. 1025【答案】A 【解析】 【分析】将已知数列分组,使每组第一项均为1,第一组:02,第二组:02,12,第三组:02,12,22,…第k 组:02,12,22,…,12k -,根据等比数列前n 项和公式,能求出该数列的前50项和.【详解】将已知数列分组,使每组第一项均为1, 即:第一组:02, 第二组:02,12,第三组:02,12,22, …第k 组:02,12,22,…,12k -, 根据等比数列前n 项和公式,求得每项和分别为:121-,221-,321-,…,21k -, 每项含有的项数为:1,2,3,…,k , 总共的项数为()11232k k N k +=+++⋯+=,当9k =时,()1452k k+=,故该数列的前50项和为()912395021221212121124816931104412S -=-+-+-+⋯+-+++++=-+=-.故选:A .【点睛】本题考查类比推理,考查等比数列、分组求和等基础知识,考查运算求解能力、推理论证能力、归纳总结能力,属于中档题.12.若不等式1ln x m m e x +-≤+对1[,1]x e∈成立,则实数m 的取值范围是( ) A. 1[,)2-+∞B. 1(,]2-∞-C. 1[,1]2-D. [1,)+∞【答案】A 【解析】 【分析】 设1ln t x x =+,由题意将原问题转化为求max ||t m -,利用导数分析1ln t x x=+的单调性求得最大值,代入解不等式即可. 【详解】设1ln t x x =+,由1,1e x ⎡⎤∈⎢⎥⎣⎦, 则22111t x x x x ='-=-在1,1e x ⎡⎤∈⎢⎥⎣⎦上t 0'≤恒成立,∴1ln t x x=+单调递减,则[1,1]t e ∈-; 当2em ≤时,max ||1t m e m m e -=--≤+, 解得:12m ≥-;当2em >时,max ||1t m m m e -=-≤+,恒成立; 综上知:当m R ∆1[,)2-+∞时,不等式1ln x m m e x +-≤+对1,1e x ⎡⎤∈⎢⎥⎣⎦成立. 故选A.【点睛】本题考查了利用导数求解函数最值的问题,考查了绝对值不等式的解法,考查了恒成立问题的转化,属于中档题.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.如图,在△ABC 中,AB =2,BC =3,∠ABC=60°,AH⊥BC 于点H ,若AH AB BC λμ=+u u u r u u u r u u u r,则λμ+=_________.【答案】43. 【解析】 【分析】由题意可得13BH BC =u u u r u u u r ,从而由13AH AB BH AB BC =+=+u u u r u u u r u u u r u u u r u u u r,解得λ+μ.【详解】∵AB =2,∠ABC =60°, ∴BH =1,∴13 BH BC=u u u r u u u r,∴13AH AB BH AB BC=+=+=u u u r u u u r u u u r u u u r u u u rλAB+u u u rμBCuuu r,,故λ1=,μ13=,故λ+μ43=;故答案为:43.【点睛】本题考查了平面向量的线性运算的应用及平面向量基本定理的应用.14.已知x,y满足约束条件202010x yx yy++≥⎧⎪--≤⎨⎪+≤⎩,则目标函数2z x y=-的最大值为__________________。
【水印已去除】2019年湖南省长沙一中高考数学模拟试卷(文科)(一)(5月份)
2019年湖南省长沙一中高考数学模拟试卷(文科)(一)(5月份)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={x|x(x﹣4)<0},B={﹣3,0,1,3},则A∩B=()A.{﹣3,﹣1}B.{1,3}C.{﹣3,﹣1,0}D.{0,1,3} 2.(5分)已知函数f(x)=e x﹣()x,则下列判断正确的是()A.函数f(x)是奇函数,且在R上是增函数B.函数f(x)是偶函数,且在R上是增函数C.函数f(x)是奇函数,且在R上是减函数D.函数f(x)是偶函数,且在R上是减函数3.(5分)将一颗质地均匀的骰子(它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具)先后抛掷2次,记第一次出现的点数为m,记第二次出现的点数为n,则m =2n的概率为()A.B.C.D.4.(5分)已知复数z1,z2在复平而上对应的点分别为A(1,2),B(﹣1,3),则的虚部为()A.1B.﹣i C.i D.﹣5.(5分)若双曲线的实轴长为2,则其渐近线方程为()A.y=±x B.C.D.y=±2x6.(5分)某几何体的三视图如图所示,则该几何体的侧视图的面积为()A.B.C.D.7.(5分)等比数列{a n}各项为正,a3,a5,﹣a4成等差数列,S n为{a n}的前项和,则=()A.2B.C.D.8.(5分)在正方体ABCD﹣A1B1C1D1中,点O是四边形ABCD的中心,关于直线A1O,下列说法正确的是()A.A1O∥D1C B.A1O⊥BCC.A1O∥平面B1CD1D.A1O⊥平面AB1D19.(5分)已知函数f(x)=sin(ωx+θ)(ω>0,﹣)的图象相邻的两个对称中心之间的距离为,若将函数f(x)的图象向左平移后得到偶函数g(x)的图象,则函数f(x)的一个单调递减区间为()A.[﹣]B.[]C.[0,]D.[] 10.(5分)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,点M在第一象限的地物线C上,直线MF的斜率为,点M在直线l上的射影为A,且△MAF的面积为4,则p的值为()A.1B.2C.2D.411.(5分)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推那么该数列的前50项和为()A.1044B.1024C.1045D.102512.(5分)若不等式对成立,则实数m的取值范围是()A.B.C.D.[1,+∞)二、填空題:本大题共4小題,每小题5分,共20分.13.(5分)如图,在△ABC中,AB=2,BC=3,∠ABC=60°,AH⊥BC于点H,若,则λ+μ=14.(5分)已知x,y满足约束条件,则目标函数z=2x﹣y的最大值为.15.(5分)若函数f(x)称为“准奇函数”,则必存在常数a,b,使得对定义域的任意x 值,均有f(x)+f(2a﹣x)=2b,已知与为准奇函数”,则a+b=.16.(5分)已知等△ABC的面积为4,AD是底边BC上的高,沿AD将△ABC折成一个直二面角,则三棱锥A一BCD的外接球的表面积的最小值为.三、解答题:本大题共70分.解答应写出文字说明,证明过程或演算步骚.第17~21題为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答,(一)必考题:共60分,17.(12分)如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°(1)若∠AMB=60°,求BC;(2)设∠DCM=θ,若MB=4MC,求tan60°.18.(12分)为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示,(1)求a的值及通过电子阅读的居民的平均年龄;(2)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成下面2×2列联表,并判断是否有97.5%的把握认为阅读方式与年齡有关?参考公式:K2=19.(12分)如图,多面体ABCDEF中,四边形ABCD是边长为2的菱形,且平面ABCD ⊥平画DCE.AF∥DE,且AF=DE=2,BF=2.(1)求证:AC⊥BE;(2)若点F到平面DCE的距离为,求直线EC与平面BDE所成角的正弦值.20.(12分)已知圆x2+y2=9,A(1,1)为圆内一点,P,Q为圆上的动点,且∠P AQ=90°,M是PQ的中点.(1)求点M的轨迹曲线C的方程;(2)设对曲线C上任意一点H,在直线ED上是否存在与点E 不重合的点下,使是常数,若存在,求出点F的坐标,若不存在,说明理由.21.(12分)已知函数f(x)=e x+m(1﹣x)+n(1)讨论函数f(x)的单调性(2)函数,且g(2)=0.若g(x)在区间(0,2)内有零点,求实数m的取值范围.(二)选考题:共10分.请考生在22、23两題中任选一题作答,如果多做,则按所做的第一题计分[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的普通方程为,曲线C参数方程为为参数):以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为.(1)求C1的参数方和的直角坐标方程;(2)已知P是C2上参数对应的点,Q为C1上的点,求PQ中点M到直线以的距离取得最大值时,点Q的直角坐标.[选修4一5:不等式选讲]23.已知函数f(x)=m﹣|2﹣x|,m∈R,且f(x﹣2)≥0的解集为[3,5].(1)求m的值;(2)a,b均为正实数,,且a+b=m,求α+β的最小值.2019年湖南省长沙一中高考数学模拟试卷(文科)(一)(5月份)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.【分析】可求出集合A,然后进行交集的运算即可.【解答】解:A={x|0<x<4};∴A∩B={1,3}.故选:B.【点评】考查描述法、列举法的定义,一元二次不等式的解法,以及交集的运算.2.【分析】可看出f(x)的定义域为R,并可求出f(﹣x)=﹣f(x),从而判断出f(x)是奇函数,而根据y=e x和都是R上的增函数,即可得出f(x)是R上的增函数,从而选A.【解答】解:f(x)的定义域为R,且;∴f(x)是奇函数;又y=e x和都是R上的增函数;∴是R上的增函数.故选:A.【点评】考查奇函数的定义及判断,以及指数函数的单调性,增函数的定义.3.【分析】基本事件总数n=6×6=36,利用列举法求出m=2n包含的基本事件(m,n)有3个,由此能求出m=2n的概率.【解答】解:将一颗质地均匀的骰子(它是一种各面上分别标有1,2,3,4,5,6点数的正方体玩具)先后抛掷2次,记第一次出现的点数为m,记第二次出现的点数为n,基本事件总数n=6×6=36,m=2n(k∈N*)包含的基本事件(m,n)有:(2,1),(4,2),(6,3)共3个,故m=2n的概率为=,故选:B.【点评】本题考查概率的求法,考查列举法、古典概型等基础知识,考查运算求解能力,是基础题.4.【分析】由已知求得z1,z2,再由复数代数形式的乘除运算化简得答案.【解答】解:由题意,z1=1+2i,z2=﹣1+3i,∴=.∴的虚部为.故选:D.【点评】本题考查复数代数形式的乘除运算,考查复数的代数表示法及基本概念,是基础题.5.【分析】直接利用双曲线的标准方程求出实轴长,即可求出a,然后求解渐近线方程.【解答】解:双曲线的实轴长为2,可得a=1,所以双曲线x2﹣y2=1(a>0)的实轴长为2,则其渐近线方程为:y=±x.故选:A.【点评】本题考查双曲线的简单性质的应用,是基本知识的考查.6.【分析】利用三视图的画法,说明侧视图的形状,然后求解面积.【解答】解:由题意可知三视图的侧视图是直角三角形,高为2,底面直角边长为:,所以侧视图的面积为:=.故选:C.【点评】本题考查三视图求解几何体的侧视图面积,是基本知识的考查.7.【分析】设{a n}的公比为q(q≠0,q≠1),利用a3,a5,﹣a4成等差数列结合通项公式,可得2a1q4=a1q2﹣a1q3,由此即可求得数列{a n}的公比,进而求出数列的前n项和公式,可得答案.【解答】解:设{a n}的公比为q(q>0,q≠1)∵a3,a5,﹣a4成等差数列,∴2a1q4=a1q2﹣a1q3,∵a1≠0,q≠0,∴2q2+q﹣1=0,解得q=或q=﹣1(舍去)∴==.故选:D.【点评】本题考查等差数列与等比数列的综合,熟练运用等差数列的性质,等比数列的通项是解题的关键.8.【分析】推导出A1D∥B1C,OD∥B1D1,从而平面A1DO∥平面B1CD1,由此能得到A1O ∥平面B1CD1.【解答】解:∵在正方体ABCD﹣A1B1C1D1中,点O是四边形ABCD的中心,∴A1D∥B1C,OD∥B1D1,∵A1D∩DO=D,B1D1∩B1C=B1,∴平面A1DO∥平面B1CD1,∵A1O⊂平面A1DO,∴A1O∥平面B1CD1.故选:C.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.9.【分析】首先利用函数的图象确定函数的关系式,进一步求出函数的单调区间,再根据所求的区间的子集关系确定结果.【解答】解:函数f(x)=sin(ωx+θ)(ω>0,﹣)的图象相邻的两个对称中心之间的距离为,则:T=π,所以:ω=2将函数f(x)的图象向左平移后,得到g(x)=sin(2x++θ)是偶函数,故:(k∈Z),解得:(k∈Z),由于:,所以:当k=0时.则,令:(k∈Z),解得:(k∈Z),当k=0时,单调递减区间为:[],由于[]⊂[],故选:B.【点评】本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数的性质周期性和单调性的应用,主要考查学生的运算能力和转化能力,属于基础题型.10.【分析】设准线l与x轴交于点N.由直线MF的斜率为,可得∠AFN=60°.∠AMF =60°,利用抛物线的定义可得△AMF是等边三角形.|AF|=4.求解即可.【解答】解:如图所示,设准线l与x轴交于点N.∴S△AMF=.|MA|=|MF|=4.∴△AMF是边长为4的等边三角形.MA=2P=4,所以p=2.故选:B.【点评】本题考查了抛物线的定义标准方程及其性质、等边三角形的面积,考查了推理能力与计算能力,属于中档题.11.【分析】将已知数列分组,使每组第一项均为1,第一组:20,第二组:20,21,第三组:20,21,22,…第k组:20,21,22,…,2k﹣1,根据等比数列前n项和公式,能求出该数列的前50项和.【解答】解:将已知数列分组,使每组第一项均为1,即:第一组:20,第二组:20,21,第三组:20,21,22,…第k组:20,21,22,…,2k﹣1,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2k﹣1,每项含有的项数为:1,2,3,…,k,总共的项数为N=1+2+3+…+k=,当k=9时,=45,故该数列的前50项和为S50=21﹣1+22﹣1+23﹣1+…+29﹣1+1+2+4+8+16=﹣9+31=1044.故选:A.【点评】本题考查类比推理,考查等比数列、分组求和等基础知识,考查运算求解能力、推理论证能力、归纳总结能力,属于中档题.12.【分析】设t(x)=lnx+,利用导数判断t(x)的单调性,求出函数的值域,再讨论m 的取值情况,从而去掉绝对值,求得不等式对成立时m的取值范围.【解答】解:设t(x)=lnx+,t′(x)=﹣=,由x∈[,1],得t(x)是单调减函数,且t(x)∈[1,e﹣1];它的区间中点为=,当m≤时,|t(x)﹣m|max=e﹣1﹣m≤m+e,解得m≥;当m>时,|t(x)﹣m|max=m﹣1≤m+e恒成立,综上知,m≥﹣时,不等式对成立,所以实数m的取值范围是[﹣,+∞).故选:A.【点评】本题考查了不等式恒成立应用问题,也考查了函数的单调性与最值问题,是中档题.二、填空題:本大题共4小題,每小题5分,共20分.13.【分析】由已知结合向量数量积的性质可知=()•==0,从而可得,λ=3μ,然后把,作为基底表示,结合B ,H ,C 共线及向量共线定理即可求解.【解答】解:∵AB =2,BC =3,∠ABC =60°,AH ⊥BC 于点H , 又,∴=()•==0,∴, 整理可得,λ=3μ, ∴===,又B ,H ,C 共线, ∴2μ+μ=1, ∴,λ=1,则λ+μ=, 故答案为:.【点评】本题主要考查了向量共线定理及向量数量积的性质的简单应用,属于基础试题. 14.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由x ,y 满足约束条件作出可行域如图,联立,解得A (1,﹣1).化目标函数z =2x ﹣y 为y =2x ﹣z .由图可得,当直线y =2x ﹣z 过A 时,直线在y 轴上的截距最小,z 有最大值为2×1+1=3.故答案为:3.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.【分析】根据题意,由“准奇函数”的函数的定义分析可得函数的图象关于点(a,b)中心对称,分析的对称中心,即可得a、b的值,计算即可得答案.【解答】解:根据题意,若函数f(x)称为“准奇函数”,则存在常数a,b,使得对定义域的任意x值,均有f(x)+f(2a﹣x)=2b,则函数f(x)的图象关于点(a,b)中心对称,=1+,其图象关于点(1,1)对称,已知与为准奇函数”,则a=b=1;故a+b=2;故答案为:2.【点评】本题考查函数的对称性,注意由f(x)+f(2a﹣x)=2b分析函数的对称性,属于基础题.16.【分析】由题意画出图形,设AD=a,BC=2b,则ab=4,将三棱锥补形为长方体,则三棱锥A﹣BCD的外接球就是该长方体的外接球,且该长方体的长宽高分别为a、b,b,求出外接球的半径,代入球的表面积公式,结合等腰三角形△ABC的面积为4,利用基本不等式求最值.【解答】解:如图,设AD=a,BC=2b,则ab=4,由已知,BD⊥平面ADC,将三棱锥补形为长方体,则三棱锥A﹣BCD的外接球就是该长方体的外接球,且该长方体的长宽高分别为a、b,b,则球的直径2R=.∴球的表面积S=4πR2=(a2+2b2)π,∵,∴.故答案为:.【点评】本题考查多面体外接球的表面积最值的求法,训练了利用基本不等式求最值,是中档题.三、解答题:本大题共70分.解答应写出文字说明,证明过程或演算步骚.第17~21題为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答,(一)必考题:共60分,17.【分析】(1)利用直角三角形的边角关系求得MB、MC的值,再利用余弦定理求得BC 的值;(2)用∠DCM=θ,利用直角三角形的边角关系求出MC、MB的值,由MB=4MC列出关系式求得tanθ的值.【解答】解:(1)由∠BMC=60°,∠AMB=60°,得∠CMD=60°,在Rt△ABM中,MB=2AM=4,在Rt△CDM中,MC=2MD=2;在△MBC中,由余弦定理得,BC2=BM2+MC2﹣2BM•MC•cos∠BMC=12,则BC=2;(2)因为∠DCM=θ,所以∠ABM=60°﹣θ,0°<θ<60°,在Rt△MCD中,MC=,在Rt△MAB中,MB=,由MB=4MC,可得2sin(60°﹣θ)=sinθ,变形可得:cosθ﹣sinθ=sinθ,即2sinθ=cosθ,整理可得:tanθ=.【点评】本题考查三角形中的几何计算,涉及正弦、余弦定理的应用问题,是中档题.18.【分析】(1)由频率分布直方图能求出a的值和通过电子阅读的居民的平均年龄.(2)由题意200人中通过电子阅读与纸质阅读的人数之比为3:1,纸质阅读的人数为200×=50,其中中老年有30人,纸质阅读的青少年有20人,电子阅读的总人数为150,青少年人数为:150×(0.1+0.15+0.35)=90,中老年人有60人,得2×2列联表,求出K2=≈6.061>5.024,从而有97.5%的把握认为阅读方式与年龄有关.【解答】解:(1)由频率分布直方图得:10×(0.01+0.015+a+0.03+0.01)=1,解得a=0.035,∴通过电子阅读的居民的平均年龄为:20×10×0.01+30×10×0.015+40×10×0.035+50×10×0.03+60×10×0.01=41.5.(2)由题意200人中通过电子阅读与纸质阅读的人数之比为3:1,∴纸质阅读的人数为200×=50,其中中老年有30人,∴纸质阅读的青少年有20人,电子阅读的总人数为150,青少年人数为:150×(0.1+0.15+0.35)=90,则中老年人有60人,得2×2列联表:∴K2==≈6.061>5.024,∴有97.5%的把握认为阅读方式与年龄有关.【点评】本题考查频率、平均数的求法,考查独立检验的应用,考查频率分布直方图等基础知识,考查运算求解能力,是基础题.19.【分析】(1)推导出AF⊥AB,DE⊥DC,从而DE⊥平面ABCD,进而DE⊥AC,推导出AC⊥BD,从而AC⊥平面BDE,由此能证明AC⊥BE.(2)设AC∩BD=O,连结OE,则OE是EC在平面BDE内的射影,EC与平面BDE 所成角为∠CEO,推导出AF∥平面DCE,点F到平面DCE的距离等于点A到平面DCE 的距离,在平面ABCD作AH⊥CD,交CD延长线于H,由此能求出直线EC与平面BDE 所成角的正弦值.【解答】证明:(1)∵AF=AB=2,BF=2,∴AF2+AB2=BF2,∴∠F AB=90°,∴AF⊥AB,∵AF∥DE,AB∥CD,∴DE⊥DC,∵平面ABCD⊥平面DCE,DE⊂平面DCE,平面ABCD∩平面DCE=DC,∴DE⊥平面ABCD,∴DE⊥AC,∵四边形ABCD是菱形,∴AC⊥BD,∵DE∩BD=D,∴AC⊥平面BDE,∵BE⊂平面BDE,∴AC⊥BE.解:(2)设AC∩BD=O,连结OE,由(1)知AC⊥平面BDE,∴OE是EC在平面BDE内的射影,∴EC与平面BDE所成角为∠CEO,∵AF∥DE,AF⊄平面DCE,DE⊂平面DCE,∴AF∥平面DCE,∴点F到平面DCE的距离等于点A到平面DCE的距离,在平面ABCD作AH⊥CD,交CD延长线于H,∵平面ABCD⊥平面DCE,∴AH⊥平面DCE,∴AH=,∵AD=2,∴∠ADH=60°,∴菱形ABCD中,∠BDC=60°,∴OC=,在Rt△DEC中,EC==2,∴sin∠OEC===,∴直线EC与平面BDE所成角的正弦值为.【点评】本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.【分析】(1)设点M(x,y),由∠P AQ=90°,得|AM|=|PM|=,代入点的坐标整理即可得到点M的轨迹曲线C的方程;(2)写出直线ED的方程为y=,假设存在点F(t,)(t)满足条件,设H(x,y),则有,分别写出|HE|2与|HF|2,得到是常数,可得,由此求得t值,可得存在F ()满足条件.【解答】解:(1)设点M(x,y),由∠P AQ=90°,得|AM|=|PQ|=|PM|=,化简得:,即;(2),直线ED的方程为y=,假设存在点F(t,)(t)满足条件,设H(x,y),则有,,.当是常数时,是常数,∴,解得t=或t=(舍).∴存在F()满足条件.【点评】本题考查轨迹方程的求法,考查直线与圆位置关系的应用,考查运算能力,是中档题.21.【分析】(1)先求出导数,然后对m讨论判断其单调性;(2)利用导数研究函数g(x)在区间(0,2)内的变化趋势,从而根据变化趋势建立不等式来求解.【解答】解:(1)f′(x)=e x﹣m,当m≤0时,f′(x)>0成立,f(x)在R上单调递增;当m>0时,令f′(x)=0,得x=lnm,则f(x)在(﹣∞,lnm)单调递减,在(lnm,+∞)单调递增.(2)g′(x)=e x+m(1﹣x)+n=f(x),设x0是g(x)在区间(0,2)内的一个零点,因为g(0)=0,g(x0)=g(0)可知,g(x)在区间(0,x0)上不单调,故f(x)在区间(0,x0)存在零点x1,同理g(x0)=g(2)=0,可知f(x)在区间(x0,2)存在零点x0,即f(x)在区间(0,2)内至少有两个不同的零点x1和x2.由(1)知m>0,lnm∈(0,2)得1<m<e2,此时f(x)在区间(0,lnm)单调递减,在(lnm,2)单调递增;由g(2)=0知,所以,则f(x)min=f(lnm)≤f(1)<0;故只需解得,所以实数m的取值范围是.【点评】本题考查函数的单调性、零点的综合问题,属于中档题目.(二)选考题:共10分.请考生在22、23两題中任选一题作答,如果多做,则按所做的第一题计分[选修4-4:坐标系与参数方程]22.【分析】(1)直接由C1的普通方程写出曲线C1的参数方程,由直线l的极坐标方程写出直线l的直角坐标方程;(2)由题设得P(﹣2,0),由(1)可设Q(cosβ,),得到M(﹣1+,),由点到直线距离公式写出M到直线l的距离,利用三角函数求最值,并求得Q的直角坐标.【解答】解:(1)∵曲线C1的普通方程为,∴曲线C1的参数方程为(β为参数),∵直线l的极坐标方程为,∴直线l的直角坐标方程为x﹣y=0;(2)由题设,P(﹣2,0),由(1)可设Q(cosβ,),于是M(﹣1+,),M到直线l的距离d==.∴当时,d取得最大值,此时Q的直角坐标为(,).【点评】本题考查简单曲线的极坐标方程,考查点到直线的距离公式的应用,训练了利用三角函数求最值,是中档题.[选修4一5:不等式选讲]23.【分析】(1)f(x﹣2)≥0等价于m﹣|2﹣x+2|≥0等价于|x﹣4|≤m⇔4﹣m≤x≤4+m,依题意可得4﹣m=3,4+m=5,解m=1.(2)利用基本不等式可得.【解答】解:(1)f(x﹣2)≥0等价于m﹣|2﹣x+2|≥0等价于|x﹣4|≤m⇔4﹣m≤x≤4+m,依题意可得4﹣m=3,4+m=5,解m=1.(2)由(1)知a+b=1,∵α+β=a+b++=1++=3++=5,当且仅当a=b=时等号成立.【点评】本题考查了绝对值不等式的解法,属中档题.。
湖南省长沙市高考数学模拟试卷(文科)(5月份)解析版
高考数学模拟试卷(文科)(5月份)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.设集合A={1,2,3},B={2,3,4},则A∪B=()A.2, 3, B. 2, C. 3 , D. 3,2.(1+i)(2+i)=( )A. 1-iB. 1+3iC. 3+iD. 3+3i3.已知3m=5n=15,则+的值是( )A. 4B. 3C. 2D. 14.已知命题p:∃x∈R,x2-x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是( )A. p∧qB. p∧¬qC. ¬p∧qD. ¬p∧¬q5.设x,y满足约束条件,则Z=2x+y的最小值是( )A. -15B. -9C. 1D. 96.设α,β是空间中两个不同的平面,m是空间中的一条直线,若m⊥α,则“α⊥β”是“m∥β“的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7.执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A. 5B. 4C. 3D. 28.函数f(x)=+的最小值是( )A.1+3 B. 3+ C. 4 D. 59.一个圆柱被一个平面所截,截面椭圆方程是+=1,被截后的几何体的最短母线长为2,则这个几何体的体积是( )A. 20πB. 16πC. 14πD. 8π10.函数f(x)=,且a∈[0,1],b∈(1,2],则满足f(a)≥f(b)的概率是( )A. B. C. D. 以上都不对11.若把能表示为两个连续偶数的平方差的正整数称为“和平数”,则在1~100这100个数中,能称为“和平数”的所有数的和是( )A. 130B. 325C. 676D. 130012.已知球的半径为R,则该球内接正四棱锥体积的最大值是( )A. R3B. R3C. R3D. R3二、填空题(本大题共4小题,共20.0分)13.已知向量=(-2,3),=(3,m),且,则m=______.14.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=______.15.抛物线y=x2-x+1的焦点坐标是______16.若关于x的方程e x+2(-x2+x+1)-b=0有且只有一个实数根,则实数b的取值范围是:______三、解答题(本大题共7小题,共82.0分)17.已知数f(x)=sin x cosx-cos2x+.(1)求f(x)的最小正周期;(2)求f(x)的最小值及取得最小值时x的集合;(3)若(x)在区间(-,m)上的最大值为,求m的最小值18.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,M为侧棱PB的中点,N为棱AD上的动点,且AN=λ•AD,(0<λ<1).(1)当直线MN∥平面PCD时,求λ的值(2)在(1)的基础上,S为线段MN的中点.求三棱锥S-PCD的体积.19.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).(Ⅰ)求图中a的值;(Ⅱ)估计该次考试的平均分(同一组中的数据用该组的区间中点值代表);(Ⅲ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?晋级成功晋级失败合计男16女50合计(参考公式:K2=,其中n=a+b+c+d)P(K2≥k)0.400.250.150.100.050.025k0.780 1.323 2.072 2.706 3.841 5.02420.已知椭圆C:+=1(a>b>0)的离心率为,左,右焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点,△AF2B的周长为8,(1)求该椭圆C的方程.(2)设P为椭圆C的右顶点,Q为椭圆C与y轴正半轴的交点,若直线l:y=x+m,(-1<m<1)与圆C交于M,N两点,求P、M、Q、N四点组成的四边形面积S 的取值范围.21.已知函数f(x)=ax3-x2+a2x,其中a∈R(1)当a=-2时,求函数f(x)的极值:(2)若函数g(x)=f(x)+f′(x)-a2x,x∈[0,2],在x=0处取得最大值,求a 的取值范围.22.在直角坐标系xOy中,曲线C的参数方程为(m为参数)(1)写出C的普通方程(2)曲线C按向量=(3,4)平移后得曲线M,过原点O且斜率为k的直线与曲线M相交于A,B两点,求|OA|与|OB|的乘积23.已知f(x)=|x-a|+|x-3|,a∈R.(1)若f(x)≥5恒成立,求a的取值范围;(2)若f(x)<x+3的解集是(1,t),求a与t的值.答案和解析1.【答案】A【解析】【分析】本题主要考查并集及其运算,解题的关键是正确理解并集的定义及求并集的运算规则,属于基础题.集合A={1,2,3},B={2,3,4},可用并集的定义直接求出两集合的并集.【解答】解:∵A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4}.故选A.2.【答案】B【解析】解:原式=2-1+3i=1+3i.故选:B.利用复数的运算法则即可得出.本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.3.【答案】D【解析】【分析】本题考查代数式求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.由3m=5n=15,得+=log153+log155,由此能求出结果.【解答】解:由3m=5n=15,得m=log315,n=log515,∴+=log153+log155=log1515=1.故选D.4.【答案】B【解析】【分析】本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,属于容易题.先判断命题p,q的真假,进而根据复合命题真假的真值表,可得答案.【解答】解:命题p:∃x=0∈R,使x2-x+1≥0成立.故命题p为真命题;当a=1,b=-2时,a2<b2成立,但a<b不成立,故命题q为假命题,故命题p∧q,¬p∧q,¬p∧¬q均为假命题;命题p∧¬q为真命题,故选B.5.【答案】A【解析】解:x,y满足约束条件的可行域如图:在坐标系中画出可行域△ABC,A(-6,-3),B(0,1),C(6,-3),由图可知,当x=-6,y=-3时,则目标函数Z=2x+y的最小,最小值为-15.故选:A.先根据条件画出可行域,Z=2x+y,再利用几何意义求最值,将最小值转化为y轴上的截距,只需求出直线Z=2x+y,过可行域内的点A(-6,-3)时的最小值,从而得到Z的最小值即可.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.6.【答案】B【解析】解:当m⊥α时,若m∥β,则α⊥β成立,证明如下:设过直线m的平面θ交β于l,∵m∥β,∴l∥m,∵m⊥α,∴l⊥α,∵l⊂β,∴α⊥β反之若α⊥β,则m∥β或m⊂β,即充分性不成立,故“α⊥β”是“m∥β“的必要不充分条件,故选:B.根据线面垂直和线面平行的性质结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行和垂直的位置关系是解决本题的关键.7.【答案】D【解析】【分析】本题考查程序框图,判断出什么时候跳出循环体是解决本题的关键,注意解题方法的积累,属于中档题.通过模拟程序,可得到S的取值情况,进而可得结论.【解答】解:由题可知初始值t=1,M=100,S=0,要使输出S的值小于91,应满足“t≤N”,则进入循环体,从而S=100,M=-10,t=2,要使输出S的值小于91,应接着满足“t≤N”,则进入循环体,从而S=90,M=1,t=3,要使输出S的值小于91,应不满足“t≤N”,跳出循环体,此时N的最小值为2,故选D.8.【答案】D【解析】解:由题意,f(x)=+=设动点P(x,0),定点A(1,1)和B(4,-3);那么f(x)=|PA|+|PB|≥|AB|=.故选:D.将f(x)=+=转化为动点(x,0)到定点(1,1)和(4,-3)的距离最小值问题,利用三角形三边性质即可求解;本题主要考查函数最值的求解,转化思想,将+=转化为动点P(x,0)到定点A(1,1)和B(4,-3)的距离是解决本题的关键.9.【答案】C【解析】解:由椭圆的方程+=1可知椭圆的长轴长为5,短轴长为4,由已知圆柱底面半径为r=2,即直径为4,设截面与圆柱母线成角为α,则,所以,所以几何体的最长母线长为2+2a cosα=2+5×=5,用同样的几何体补在上面,可得一个半径r=2,高为7的圆柱,其体积为,V=π×22×7=28π,所求几何体的体积为14π,故选:C.根据椭圆的方程求得圆柱的底面半径,利用几何关系求得其圆柱的高,即可求得其几何体的体积.本题考查椭圆的方程及圆锥曲线的应用,考查空间想象能力,属于中档题/10.【答案】C【解析】【分析】本题考查了面积型的几何概型,考查扇形面积的计算,正方形面积的计算,属于中档题.所有试验结果构成的区域为a∈[0,1],b∈(1,2]的正方形区域,面积为1,满足f(a)≥f(b)的区域即满足a2+(b-1)2≤1的区域为以(0,1)为圆心,以1为半径的圆与正方形的公共区域,即为个圆,求出面积代入几何概型的概率公式即可.【解答】解:依题意,所有试验结果构成的区域为a∈[0,1],b∈(1,2]的正方形区域,面积为1,满足f(a)≥f(b)的区域即满足a2+(b-1)2≤1的区域为以(0,1)为圆心,以1为半径的圆与正方形的公共区域,即为个圆,所以则满足f(a)≥f(b)的概率是:P===.故选C.11.【答案】C【解析】解:设两个连续偶数为2k+2和2k,则(2k+2)2-(2k)2=4(2k+1),故和平数的特征是4的奇数倍,故在1~100之间,能称为和平数的有4×1、4×3、…、4×25,共计13个,其和为;故选:C.根据题意,设两个连续偶数为2k+2和2k,根据题意,计算其和平数可得(2k+2)2-(2k )2=4(2k+1),故和平数的特征是4的奇数倍,分析可得在1~100之间所有和平数,由等差数列的前n项和公式,计算可得答案.本题考查数列的求和,关键是根据和平数的定义,分析得到和平数的性质,进而转化为数列求和的问题.12.【答案】B【解析】解:设正四棱锥S-ABCD的底面边长等于a,底面到球心的距离等于x,则:,而正四棱锥的高为h=R+x,故正四棱锥体积为:V(x)=a2h=a2(R+x)=(R2-x2)(R+x).其中x∈(0,R),∵(R2-x2)(R+x)=(2R-2x)(R+x)(R+x)≤•=R3.当且仅当x=R时,等号成立.故这个正四棱锥体积的最大值为:R3.故选:B.设正四棱锥S-ABCD的底面边长等于a,底面到球心的距离等于x,得到x与a,R之间的关系,又正四棱锥的高为h=R+x,从而得出正四棱锥体积关于x函数表达式,最后利用基本不等式求出这个正四棱锥体积的最大值即可.本题考查球内接多面体、棱柱、棱锥、棱台的体积等基本知识,考查了空间想象力,训练了利用基本不等式求最值,是中档题.13.【答案】2【解析】【分析】本题考查平面向量数量积坐标运算法则和向量垂直的性质,属于基础题.利用平面向量数量积坐标运算法则和向量垂直的性质求解.【解答】解:∵向量=(-2,3),=(3,m),且,∴=-6+3m=0,解得m=2.故答案为2.14.【答案】75°【解析】【分析】本题考查了三角形的内角和以及正弦定理,属于基础题.根据正弦定理和三角形的内角和计算即可.【解答】解:根据正弦定理可得=,C=60°,b=,c=3,∴sin B==,∵b<c,∴B=45°,∴A=180°-B-C=180°-45°-60°=75°,故答案为75°.15.【答案】(4,1)【解析】解:由抛物线方程为y=x2-x+1,整理得(x-4)2=8(y+1),∴2p=8,∴=2,顶点为(4,-1),对称轴方程为x=4,焦点为(4,1).故答案为:(4,1).把抛物线方程化为标准形式,求出p,再写出顶点、对称轴方程和焦点坐标.本题考查了抛物线方程的应用问题,是基础题.16.【答案】b<-5或b=e3【解析】解:由已知有b=e x+2(-x2+x+1),记f(x)=e x+2(-x2+x+1)(x∈R);∴f′(x)=e x+2(-x2-x+2),令f′(x)=0⇒x=-2或1;令f′(x)>0⇒-2<x<1;令f′(x)<0⇒x<-2或x>1,且x<-2时,f(x)<0恒成立;∴f(-2)=-5,f(1)=e3;则可得f(x)的图象为:要使题设成立,只需y=f(x)的图象与直线y=b有且只有一个公共点,∴实数b的范围为b<-5或b=e3.→∞故答案为:b<-5或b=e3.将方程有一个实数根转化为两条线段只有一个交点的问题,通过对曲线段求最值即可得到答案.本题考查了函数有几个实数根需要满足的充要条件,考查了转化思想的应用,属于中档题.17.【答案】解:(1)函数f(x)=sin x cosx-cos2x+==sin(2x)+.所以函数的最小正周期为T==π,(2)令(k∈Z),解得(k∈Z).故函数在{x|}(k∈Z)时,函数的最小值为.(3)当x∈(-,m)时,则-,所以,即时,函数f(x)在区间(-,m)上的最大值为,所以m的最小值为.【解析】(1)首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(2)利用函数的性质的应用求出函数的最小值.(3)利用函数的单调区间的应用求出m的最小值.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.18.【答案】解:(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,M(1,0,1),N(0,2λ,0),P(0,0,2),C(2,2,0),D(0,2,0),=(-1,2λ,-1),=(2,2,-2),=(0,2,-2),设平面PCD的法向量=(x,y,z),则,取y=1,得=(0,1,1),∵直线MN∥平面PCD,∴•=2λ-1=0,解得.(2)由(1)得N(0,1,0),S(),==2,点S到平面PCD的距离d===.∴三棱锥S-PCD的体积V===.【解析】(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出结果.(2)由(1)得N(0,1,0),S(),由此利用向量法能求出三棱锥S-PCD的体积.本题考查实数值的求法,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】解:(Ⅰ)由频率分布直方图各小长方形面积总和为1,得(2a+0.020+0.030+0.040)×10=1,解得a=0.005;(Ⅱ)由频率分布直方图知各小组依次是[50,60),[60,70),[70,80),[80,90),[90,100],其中点分别为55,65,75,85,95,对应的频率分别为0.05,0.30,0.40,0.20,0.05,计算平均分为=55×0.05+65×0.3+75×0.4+85×0.2+95×0.05=74(分);(Ⅲ)由频率分布直方图值,晋级成功的频率为0.2+0.05=0.25,故晋级成功的人数为100×0.25=25,填写2×2列联表如下,晋级成功晋级失败合计男1634 50女 9 4150合计25 75100假设晋级成功与性别无关,根据上表计算K2==≈2.613>2.072,所以有超过85%的把握认为“晋级成功”与性别有关.【解析】(Ⅰ)由频率和为1,列方程求出a的值;(Ⅱ)利用直方图中各小组中点乘以对应的频率,求和得平均分;(Ⅲ)根据题意填写,计算观测值K2,对照临界值得出结论.本题考查了频率分布直方图与独立性检验的应用问题,是基础题.20.【答案】解:(1)由已知可得,解得椭圆C的方程:.(2)设M(x1,y1),N(x2,y2),⇒x2+2mx+2m2-2=0.x1+x2=-2m,x1x2═2m2-2,|MN|==,(-1<m<1)Q(0,1)到直线MN的距离d1=,P(2,0)到直线MN的距离为d2=.P、M、Q、N四点组成的四边形面积S=|MN|(d1+d2)==2∵-1<m<1,∴0≤m2<1,∴2∈(2,4],∴P、M、Q、N四点组成的四边形面积S的取值范围为(2,4]【解析】(1)利用椭圆的离心率,以及|,△AF2B的周长,列出方程组,转化求解椭圆方程即可.(2)设出直线方程,利用直线与椭圆的方程联立,利用韦达定理以及弦长公式,点到直线的距离求解三角形的表达式,然后求解四边形面积的范围.本题考查直线与椭圆的位置关系的综合应用,点到直线的距离以及韦达定理的应用,考查转化思想以及计算能力.21.【答案】解:(1)当a=-2时,函数f(x)=-x3-x2+6x,∴f′(x)=-3x2-3x+6,令f′(x)=-3x2-3x+6=0,解得x=-2或x=1,当x<-2或x>1时,f′(x)>0,函数f(x)单调递减,当-2<x<1时,f′(x)<0,函数f(x)单调递增,∴f(x)极小值=f(-2)=8-6-12=-10,f(x)极大值=f(2)=-1-+6=;(2)∵f′(x)=ax2-3x+a2,∴函数g(x)=f(x)+f′(x)-a2x=ax3-x2+a2x+ax2-3x+a2-a2x=ax3+(a-)x2-3x+ a2,∴g′(x)=ax2+(3a-3)x-3,∵△=(3a-3)2+12×a=3(a2+1)>0,∴g′(x)=0,有两个不相等的实数根x1,x2,(i)当a>0时,x1,x2异号,若g(x)在x=0处取得最大值,只需g(0)≥g(2),解得0<a≤,(ii)当a=0时,g(x)=-x(x+2),∴g(x)在[0,2]上单调递减,∴g(x)max=g(0),满足题意,(iii)当a<0时,∴g′(x)这个二次函数的图象的对称轴为x=-<0,∴g′(x)在[0,2]上单调递减,∴g(x)≤g′(0)=-3<0,∴g(x)在[0,2]上单调递减,∴g(x)max=g(0),满足题意,综上所述a的取值范围是a≤.【解析】(1)根据导数和函数极值的关系即可求出,(2)要求函数g(x)=f(x)+f'(x),x∈[0,2],在x=0处取得最大值,即先根据求出函数的极值,在与断点出的函数值比较,得出最大值,从而得到关于a的不等式.本题考查了利用导数求闭区间上函数的最值,分类讨论的思想,属于中档题.22.【答案】解:(1)曲线C的参数方程为(m为参数)所以,x=,所以,由于,所以代入整理得x2+y2=4.所以曲线C的普通方程为x2+y2=4(x≠-2).(2)曲线C按向量=(3,4)平移后得曲线M,即(x-3)2+(y-4)2=4(x≠1),设直线AB的参数方程为(t为参数)代入曲线M的方程,得到t2-t(6cosα+8sinα)t+21=0,所以|OA|•|OB|=|t1•t2|=21.【解析】(1)直接利用转换关系,把参数方程转换为直角坐标方程.(2)利用直线和曲线间的位置关系式,进一步利用一元二次方程根和系数的关系式的运算求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考察学生的运算能力和转换能力,属于基础题型.23.【答案】解:(1)f(x)=|x-a|+|x-3|≥|(x-a)-(x-3)|=|a-3|.∵f(x)≥5恒成立,∴|a-3|≥5,∴a≥8或a≤-2,∴a的取值范围为(-∞,-2]∪[8,+∞);(2)∵不等式f(x)<x+3的解集是(1,t),∴t>1且1是方程f(x)=x+3的实根,∴|1-a|+2=4,∴a=-1或a=3.当a=-1时,由f(x)=|x+1|+|x-3|<x+3,解得1<x<5,∴t=5;当a=3时,由f(x)=|x-3|+|x-3|<x+3,解得1<x<9,∴t=9,∴a=-1,t=5或a=3,t=9.【解析】(1)利用绝对值三角不等求出f(x)的最小值为|a-3|,然后由f(x)≥5恒成立,可得|a-3|≥5,解不等式可得a的范围;(2)不等式f(x)<x+3的解集是(1,t),则1为方程f(x)=x+3的实根,求出a 后代入不等f(x)<x+3中可得t的值.本题考查了绝对值三角不等式和不等式的解集与方程根的关系,考查了方程思想和转化思想,属中档题.。
2020年湖南省长沙一中高考数学模拟试卷(文科)(一)(5月份)(有答案解析)
青少年(人)
中老年(人)
合计(人)
参考公式:K2=
P(K2>k) 0.15
k
2.072
0.10 2.706
0.05 3.841
0.025 5.024
0.010 6.635
0.005 7.879
0.001 10.828
第 3 页,共 16 页
19. 如图,多面体 ABCDEF 中,四边形 ABCD 是边长为 2 的菱形,且平面
B. A1O⊥BC D. A1O⊥平面 AB1D1
9. 已知函数 f(x)=sin(ωx+θ)(ω>0,-
)的图象相邻的两个对称中心之间的距离为 ,
若将函数 f(x)的图象向左平移 后得到偶函数 g(x)的图象,则函数 f(x)的一个单调递减区
间为( )
A. [- ]
B. [ ]
C. [0, ]
D. [ ]
项是 20,21,再接下来的三项是 20,21,22,依此类推那么该数列的前 50 项和为( )
A. 1044
B. 1024
C. 1045
D. 1025
12. 若不等式
对
成立,则实数 m 的取值范围是( )
A.
B.
C.
D. [1,+∞)
二、填空题(本大题共 4 小题,共 20.0 分) 13. 如图,在△ABC 中,AB=2,BC=3,∠ABC=60°,AH⊥BC 于点 H,若
∴=
.
∴ 的虚部为 .
故选:D. 由已知求得 z1,z2,再由复数代数形式的乘除运算化简得答案. 本题考查复数代数形式的乘除运算,考查复数的代数表示法及基本概念,是基础题.
2017年湖南省长沙市长郡中学高考数学一模试卷(文科)(解析版)
2017年湖南省长沙市长郡中学高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知全集U=R,集合,则A∩(∁U B)=()A.(﹣1,+∞)B.[3,+∞)C.(﹣1,0)∪(3,+∞) D.(﹣1,0]∪[3,+∞)2.设复数(i为虚数单位),z则的虚部为()A.i B.﹣i C.﹣1 D.13.已知等比数列,则“a1>0”是“a2017>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.函数y=x2+ln|x|的图象大致为()A.B. C.D.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第三天走了()A.60里B.48里C.36里D.24里6.据统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学学习时间x与数学成绩y进行数据收集如表:由表中样本数据求回归直线方程=bx+a,则点(a,b)与直线x+18y=110的位置关系为是()A.点在直线左侧B..点在直线右侧C..点在直线上 D.无法确定7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体最长的棱长为()A.B. C.6 D.8.为了得到函数的图象,可以将函数y=cos2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位9.执行如图的程序框图,若输入a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.已知数列{a n}的前n项和为S n,a1=1,S n=2a n,则当n>1时,S n=()+1A.()n﹣1 B.2n﹣1 C.()n﹣1 D.(﹣1)11.已知直线l过点A(﹣1,0)且与⊙B:x2+y2﹣2x=0相切于点D,以坐标轴为对称轴的双曲线E过点D,一条渐进线平行于l,则E的方程为()A.﹣=1 B.﹣=1 C.﹣x2=1 D.﹣=112.已知函数f(x)=2sinx﹣3x,若对任意m∈[﹣2,2],f(ma﹣3)+f(a2)>0的恒成立,则a的取值范围是()A.(﹣1,1)B.(﹣∞,﹣1)∪(3,+∞)C.(﹣3,3)D.(﹣∞,﹣3)∪(1,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件,则z=x +2y 的最小值为 . 14.已知点A (1,0),B (1,),点C 在第二象限,且∠AOC=150°,=﹣4+λ,则λ= .15.椭圆的左、右焦点分别为,上、下顶点分别为B 1,B 2,右顶点为A ,直线AB 1与B 2F 1交于点D .若2|AB 1|=3|B 1D |,则C 的离心率等于 . 16.函数f (x )=4sin x ﹣所有零点的和等于 .三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.已知函数.(Ⅰ)求f (x )的单调递增区间;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知,,试判断△ABC 的形状.18.某校卫生所成立了调查小组,调查“按时刷牙与不患龋齿的关系”,对该校某年级800名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:按时刷牙且不患龋齿的学生有160 名,不按时刷牙但不患龋齿的学生有100 名,按时刷牙但患龋齿的学生有 240 名.(1)该校4名校卫生所工作人员甲、乙、丙、丁被随机分成两组,每组 2 人,一组负责数据收集,另一组负责数据处理,求工作人员甲乙分到同一组的概率.(2)是否有99.9%的把握认为该年级学生的按时刷牙与不患龋齿有关系?19.如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,.(Ⅰ)求证:OM∥平面ABD;(Ⅱ)求证:平面ABC⊥平面MDO;(Ⅲ)求三棱锥M﹣ABD的体积.20.已知动圆P与圆相切,且与圆都内切,记圆心P的轨迹为曲线C.(1)求曲线C的方程;(2)直线l与曲线C交于点A,B,点M为线段AB的中点,若|OM|=1,求△AOB面积的最大值.21.已知函数.(1)当a=0时,求函数f(x)在(1,f(1))处的切线方程;(2)令g(x)=f(x)﹣(ax﹣1),求函数g(x)的极值;(3)若a=﹣2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.在平面直角坐标系中,曲线C的参数方程为(α为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=.l与C交于A、B两点.(Ⅰ)求曲线C的普通方程及直线l的直角坐标方程;(Ⅱ)设点P(0,﹣2),求|PA|+|PB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣a|+x,其中a>0(1)当a=1时,求不等式f(x)≥x+2的解集;(2)若不等式f(x)≤3x的解集为{x|x≥2},求实数a的值.2017年湖南省长沙市长郡中学高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知全集U=R,集合,则A∩(∁U B)=()A.(﹣1,+∞)B.[3,+∞)C.(﹣1,0)∪(3,+∞) D.(﹣1,0]∪[3,+∞)【考点】交、并、补集的混合运算.【分析】求解A,B中的不等式的定义域可得集合A,集合B,根据集合的基本运算即可求.【解答】解:由可得,x>﹣1,∴集合A={x|x>﹣1},由log3x<1可得0<x<3,∴集合A={x|0<x<3},则(∁U B)={x|x≥3或x≤0}那么:A∩(∁U B)={x|0≥x>﹣1或x≥3},故选D2.设复数(i为虚数单位),z则的虚部为()A.i B.﹣i C.﹣1 D.1【考点】复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:∵=,∴z的虚部为1.故选:D.3.已知等比数列,则“a1>0”是“a2017>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】利用通项公式求解得出a2017=a1q2016,利用充分必要条件的定义求解.【解答】解:∵a1>0,q=0a2017=a1q2016>0,∴“a1>0”是“a2017>0”的充分条件;∵a2017=a1q2016>0,∴a1>0,∴“a1>0”是“a2017>0”的必要条件;等比数列,则“a1>0”是“a2017>0”的充要条件故选:C4.函数y=x2+ln|x|的图象大致为()A.B. C.D.【考点】函数的图象.【分析】先求出函数为偶函数,再根据函数值的变化趋势或函数的单调性即可判断.【解答】解:∵f(﹣x)=x2+ln|x|=f(x),∴y=f(x)为偶函数,∴y=f(x)的图象关于y轴对称,故排除B,C,当x→0时,y→﹣∞,故排除D,或者根据,当x>0时,y=x2+lnx为增函数,故排除D,故选:A5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第三天走了()A.60里B.48里C.36里D.24里【考点】等比数列的前n项和.【分析】由题意得:每天行走的路程成等比数列{a n}、且公比为,由条件和等比数列的前项和公式求出a1,由等比数列的通项公式求出答案即可.【解答】解:由题意得,每天行走的路程成等比数列{a n},且公比为,∵6天后共走了378里,∴S6=,解得a1=192,∴第三天走了a3=a1×=192×=48,故选B.6.据统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学学习时间x与数学成绩y进行数据收集如表:由表中样本数据求回归直线方程=bx+a,则点(a,b)与直线x+18y=110的位置关系为是()A.点在直线左侧B..点在直线右侧C..点在直线上 D.无法确定【考点】线性回归方程.【分析】求出样本中心坐标,代入回归直线方程,得到110=18b+a,即可判断点(a,b)与直线x+18y=110的位置关系.【解答】解:由题意可知=18,=110.样本中心(18,110)在回归直线上,∴110=18b+a.∴点(a,b)在直线上.故选:C.7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体最长的棱长为()A.B. C.6 D.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】根据几何体的三视图还原几何体形状,求出各棱的长度,比较后,可得答案.【解答】解:利用“三线交汇得顶点”的方法,该几何体位三棱锥P﹣ABC如图所示,其中,正方体棱长为4,点P是正方体其中一条棱的中点,则:,所以最长棱为6.故选:C8.为了得到函数的图象,可以将函数y=cos2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:法一:用诱导公式:sin(2x﹣)=sin(2x﹣)=cos(2x﹣)=cos2(x﹣),故得:向右平移个单位,故选D.法二:由y=cos2x的图象得到函数的图象,(注意:函数名不同)设y=cos2x的图象向左平移m个单位,可得:y=cos2(x+m)=cos(2x+2m)=sin(2x+2m+)由题意可得:2m+=,解得:m=﹣故得:向右平移个单位,故选D.9.执行如图的程序框图,若输入a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的a,b,k的值,当M=时满足条件n≤k,退出循环,输出M的值.【解答】解:n=1时,M=1+=,n=2时,M=2+=,n=3时,M=+=,故选:D.10.已知数列{a n}的前n项和为S n,a1=1,S n=2a n,则当n>1时,S n=()+1A.()n﹣1 B.2n﹣1 C.()n﹣1 D.(﹣1)【考点】数列递推式.【分析】利用递推关系与等比数列的通项公式即可得出.【解答】解:∵S n=2a n+1,a1=1,∴a1=2a2,解得a2=.=2a n,当n≥2时,S n﹣1∴a n=2a n+1﹣2a n,化为=.∴数列{a n}从第二项起为等比数列,公比为.∴S n=2a n+1=2××=.故选:A.11.已知直线l过点A(﹣1,0)且与⊙B:x2+y2﹣2x=0相切于点D,以坐标轴为对称轴的双曲线E过点D,一条渐进线平行于l,则E的方程为()A.﹣=1 B.﹣=1 C.﹣x2=1 D.﹣=1【考点】双曲线的简单性质.【分析】设直线l:y=k(x+1),求得圆的圆心和半径,运用正弦和圆相切的条件:d=r,求得斜率k,联立直线和圆方程解得交点,求出渐近线方程,设出双曲线方程,代入D的坐标,解方程即可得到所求方程.【解答】解:可设直线l:y=k(x+1),⊙B:x2+y2﹣2x=0的圆心为(1,0),半径为1,由相切的条件可得,d==1,解得k=±,直线l的方程为y=±(x+1),联立x2+y2﹣2x=0,解得x=,y=±,即D(,±),由题意可得渐近线方程为y=±x,设双曲线的方程为y2﹣x2=m(m≠0),代入D的坐标,可得m=﹣=.则双曲线的方程为﹣=1.故选:D.12.已知函数f(x)=2sinx﹣3x,若对任意m∈[﹣2,2],f(ma﹣3)+f(a2)>0的恒成立,则a的取值范围是()A.(﹣1,1)B.(﹣∞,﹣1)∪(3,+∞)C.(﹣3,3)D.(﹣∞,﹣3)∪(1,+∞)【考点】函数恒成立问题.【分析】先利用定义、导数分别判断出函数的奇偶性、单调性,然后利用函数的性质可去掉不等式中的符号“f”,转化具体不等式,借助一次函数的性质可得a 的不等式组,解出可得答案.【解答】解:∵f(﹣x)=2sin(﹣x)﹣3(﹣x)=﹣(2sinx﹣3x)=﹣f(x),∴f(x)是奇函数,又f'(x)=2cosx﹣3<0,∴f(x)单调递减,f(ma﹣3)+f(a2)>0可化为f(ma﹣3)>﹣f(a2)=f(﹣a2),由f(x)递减知ma﹣3<﹣a2,即ma+a2﹣3<0,∴对任意的m∈[﹣2,2],f(ma﹣3)+f(a2)>0恒成立,等价于对任意的m∈[﹣2,2],ma+a2﹣3<0恒成立,则,解得﹣1<a<1,故选:A.二、填空题:本大题共4小题,每小题5分,共20分.13.若x,y满足约束条件,则z=x+2y的最小值为2.【考点】简单线性规划.【分析】画出约束条件的可行域,利用目标函数以及可行域,判断最值点的位置,然后求解最小值即可.【解答】解:因为线性约束条件所决定的可行域为非封闭区域且目标函数为线性的,最值一定在边界点处取得.分别将点代入目标函数,求得:,所以最小值为2.故答案为:2.14.已知点A(1,0),B(1,),点C在第二象限,且∠AOC=150°,=﹣4+λ,则λ=1.【考点】平面向量的基本定理及其意义.【分析】根据向量的基本运算表示出C的坐标,利用三角函数的定义进行求解即可.【解答】解:∵点A(1,0),B(1,),点C在第二象限,=﹣4+λ,∴C(λ﹣4,),∵∠AOC=150°,∴tan150°==﹣,解得λ=1.故答案为:1.15.椭圆的左、右焦点分别为,上、下顶点分别为B1,B2,右顶点为A,直线AB1与B2F1交于点D.若2|AB1|=3|B1D|,则C的离心率等于.【考点】椭圆的简单性质.【分析】由2|AB1|=3|B1D|,得:,根据三角形相似得:,则,代入即可求得e的值.【解答】解:如图所示,设D(x0,y0),由2|AB1|=3|B1D|,得:,根据三角形相似得:,求得:,又直线B2F1的方程为将点代入,得:,∴.故答案为:.16.函数f(x)=4sin x﹣所有零点的和等于18.【考点】根的存在性及根的个数判断.【分析】作出y=4sin x和y=的函数图象,利用导数的几何意义判断f (x)的零点个数,根据函数图象的对称性得出零点之和.【解答】解:令f(x)=0得4sin x=,令g(x)=4sin x,h(x)=,做出y=g(x)和y=h(x)的函数图象如图所示:显然x=0和x=6为f(x)的零点,且f(x)在(1,3)和(3,5)上各存在一个零点,∵g′(x)=2πcos x,∴g′(0)=2π,∵y=h(x)的图象为圆心为(3,0),半径为3的半圆,∴y=h(x)在(0,0)处的切线为y轴,∴f(x)在(0,1)上存在零点,同理f(x)在(5,6)上存在一个零点.∴f(x)在[0,6]上共有6个零点,∵g(x)和h(x)的函数图象关于直线x=3对称,∴f(x)的零点关于直线x=3对称,∴f(x)的所有零点之和为6×3=18.故答案为:18.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知函数.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c.已知,,试判断△ABC的形状.【考点】三角形的形状判断;两角和与差的正弦函数;正弦定理.【分析】(Ⅰ)将f(x)解析式第二项利用两角和与差的正弦函数公式及特殊角的三角函数值化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的单调递增区间列出关于x的不等式,求出不等式的解集即可得到f(x)的单调递增区间;(Ⅱ)由第一问确定的函数解析式及f(A)=,求出sin(A﹣)的值,由A的范围求出A﹣的范围,利用特殊角的三角函数值求出A的度数,再由a= b,利用正弦定理求出sinB的值,由a大于b,利用三角形的边角关系得出A大于B,利用特殊角的三角函数值求出B的度数,进而确定出C的度数,判定出三角形ABC的形状.【解答】解:(Ⅰ)f(x)=sinx+sin(x﹣)=sinx+sinx﹣cosx=sinx﹣cosx=(sinx﹣cosx)=sin(x﹣),由2kπ﹣≤x﹣≤2kπ+,k∈Z,解得:2kπ﹣≤x≤2kπ+,k∈Z,则f(x)的单调递增区间为[2kπ﹣,2kπ+],k∈Z;(Ⅱ)∵f(A)=sin(A﹣)=,∴sin(A﹣)=,∵0<A<π,∴﹣<A﹣<,∴A=,又a=b,∴由正弦定理=得:sinB=,又a>b,A=,∴B=,∴C=,则△ABC为直角三角形.18.某校卫生所成立了调查小组,调查“按时刷牙与不患龋齿的关系”,对该校某年级800名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:按时刷牙且不患龋齿的学生有160 名,不按时刷牙但不患龋齿的学生有100 名,按时刷牙但患龋齿的学生有240 名.(1)该校4名校卫生所工作人员甲、乙、丙、丁被随机分成两组,每组 2 人,一组负责数据收集,另一组负责数据处理,求工作人员甲乙分到同一组的概率.(2)是否有99.9%的把握认为该年级学生的按时刷牙与不患龋齿有关系?【考点】独立性检验的应用.【分析】(1)利用列举法确定基本事件的个数,再利用古典概型概率公式求解即可;(2)先作出2×2列联表,再利用公式求出K2的值,与临界值比较,即可得到结论.【解答】解:(1)4人分组的所有情况如下表;因此4人分组的情况共有6种,其中工作人员甲乙分到同一组有2种,…所以工作人员甲乙分到同一组的概率是P==.…(2)根据题意,列2×2联表如下,因为k2=≈20.513>10.828,…所以有99.9%的把握认为该年级学生的按时刷牙与不患龋齿有关系.…19.如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,.(Ⅰ)求证:OM∥平面ABD;(Ⅱ)求证:平面ABC⊥平面MDO;(Ⅲ)求三棱锥M﹣ABD的体积.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)根据点O是菱形ABCD的对角线的交点,则O是AC的中点.又点M是棱BC的中点,根据中位线定理可知OM∥AB,而OM⊄平面ABD,AB⊂平面ABD,满足线面平行的判定定理;(Ⅱ)根据OM=OD=3,而,则OD⊥OM,根据菱形ABCD的性质可知OD⊥AC,而OM∩AC=O,根据线面垂直的判定定理可得OD⊥平面ABC,OD⊂平面MDO,满足面面垂直的判定定理,从而证得结论;(Ⅲ)根据三棱锥M﹣ABD的体积等于三棱锥D﹣ABM的体积,由(Ⅱ)知,OD⊥平面ABC,则OD=3为三棱锥D﹣ABM的高,最后根据三棱锥的体积公式解之即可.【解答】(Ⅰ)证明:因为点O是菱形ABCD的对角线的交点,所以O是AC的中点.又点M是棱BC的中点,所以OM是△ABC的中位线,OM∥AB.…因为OM⊄平面ABD,AB⊂平面ABD,所以OM∥平面ABD.…(Ⅱ)证明:由题意,OM=OD=3,因为,所以∠DOM=90°,OD⊥OM.…又因为菱形ABCD,所以OD⊥AC.…因为OM∩AC=O,所以OD⊥平面ABC,…因为OD⊂平面MDO,所以平面ABC⊥平面MDO.…(Ⅲ)解:三棱锥M﹣ABD的体积等于三棱锥D﹣ABM的体积.…由(Ⅱ)知,OD⊥平面ABC,所以OD=3为三棱锥D﹣ABM的高.…△ABM的面积为BA×BM×sin120°=×6×3×=,…所求体积等于.…20.已知动圆P与圆相切,且与圆都内切,记圆心P的轨迹为曲线C.(1)求曲线C的方程;(2)直线l与曲线C交于点A,B,点M为线段AB的中点,若|OM|=1,求△AOB面积的最大值.【考点】圆方程的综合应用.【分析】(1)确定|PE|+|PF|=6>2,可得P的轨迹是以E,F为焦点的椭圆,且a=3,c=,b=,即可求C的方程;(2)将直线方程代入椭圆方程,由韦达定理及中点坐标公式,即可求得M点坐标,由|OM|=1,可得n2=,由三角形面积公式,结合换元、配方法即可求得△AOB面积的最大值.【解答】解:(1)设动圆P的半径为r,由已知|PE|=r+5,|PF|=1﹣r,则有|PE|+|PF|=6>2,∴P的轨迹是以E,F为焦点的椭圆,且a=3,c=,b=∴曲线C的方程为=1;(2)设直线l:x=my+n,A(x1,y1),B(x2,y2),代入椭圆方程,整理得:(3+2m2)y2+4mny+2n2﹣18=0①y1+y2=﹣,y1•y2=,x1+x2=,由中点坐标公式可知:M(,﹣)∵|OM|=1,∴n2=②,…设直线l与x轴的交点为D(n,0),则△AOB面积S2=n2(y1﹣y2)2=设t=4m2+9(t≥9),则S2=﹣,当t=9时,即m=0时,△AOB的面积取得最大值…21.已知函数.(1)当a=0时,求函数f(x)在(1,f(1))处的切线方程;(2)令g(x)=f(x)﹣(ax﹣1),求函数g(x)的极值;(3)若a=﹣2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:.【考点】利用导数研究函数的极值.【分析】(1)求出f(x)的解析式,求出切点坐标,从而求出切线方程即可;(2)求导数,然后通过研究不等式的解集确定原函数的单调性;(3)结合已知条件构造函数,然后结合函数单调性得到要证的结论.【解答】解:(1)当a=0时,f(x)=lnx+x,则f(1)=1,所以切点为(1,1),又f′(x)=+1,则切线斜率k=f′(1)=2,故切线方程为:y﹣1=2(x﹣1),即2x﹣y﹣1=0;(2)g(x)=f(x)﹣(ax﹣1)=lnx﹣ax2+(1﹣a)x+1,所以g′(x)=﹣ax+(1﹣a)=,当a≤0时,因为x>0,所以g′(x)>0.所以g(x)在(0,+∞)上是递增函数,无极值;当a>0时,g′(x)=,令g′(x)=0,得x=,所以当x∈(0,)时,g′(x)>0;当x∈(,+∞)时,g′(x)<0,因此函数g(x)在x∈(0,)是增函数,在(,+∞)是减函数,当a>0时,函数g(x)的递增区间是(0,),递减区间是(,+∞),∴x=时,g(x)有极大值g()=﹣lna,综上,当a≤0时,函数g(x)无极值;当a>0时,函数g(x)有极大值﹣lna,无极小值;(3)由x1>0,x2>0,即x1+x2>0.令t=x1x2,则由x1>0,x2>0得,φ′(t)=,t>0,可知,φ(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增.所以φ(t)≥φ(1)=1,所以(x1+x2)2+(x1+x2)≥1,解得x1+x2≥或x1+x2≤,又因为x1>0,x2>0,因此x1+x2≥成立.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.在平面直角坐标系中,曲线C的参数方程为(α为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=.l与C交于A、B两点.(Ⅰ)求曲线C的普通方程及直线l的直角坐标方程;(Ⅱ)设点P(0,﹣2),求|PA|+|PB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)利用三种方程互化方法,曲线C的普通方程及直线l的直角坐标方程;(Ⅱ)点P(0,﹣2)在l上,l的参数方程为为(t为参数),代入5x2+y2=1整理得,3t2﹣2t+3=0,即可求|PA|+|PB|的值.【解答】解:(Ⅰ)曲线C的参数方程为(α为参数),普通方程为C:5x2+y2=1;直线l的极坐标方程为ρcos(θ+)=,即ρcosθ﹣ρsinθ=2,l:y=x﹣2.…(Ⅱ)点P(0,﹣2)在l上,l的参数方程为(t为参数)代入5x2+y2=1整理得,3t2﹣2t+3=0,由题意可得|PA|+|PB|=|t1|+|t2|=|t1+t2|=…[选修4-5:不等式选讲]23.设函数f(x)=|x﹣a|+x,其中a>0(1)当a=1时,求不等式f(x)≥x+2的解集;(2)若不等式f(x)≤3x的解集为{x|x≥2},求实数a的值.【考点】绝对值不等式的解法.【分析】(1)由条件可得|x﹣1|≥2,即x﹣1≥2,或x﹣1≤﹣2,由此求得x 的范围.(2)不等式即|x﹣a|≤2x,求得x≥.再根据不等式f(x)≤3x的解集为{x|x≥2},可得=2,由此求得a的值.【解答】解:(1)当a=1时,不等式f(x)≥x+2,即|x﹣1|+x≥x+2,即|x﹣1|≥2,∴x﹣1≥2,或x﹣1≤﹣2,求得x≥3,或x≤﹣1,故不等式f(x)≥x+2的解集为{x|x≥3,或x≤﹣1}.(2)不等式f(x)≤3x,即|x﹣a|+x≤3x,即|x﹣a|≤2x,可得,求得x≥.再根据不等式f(x)≤3x的解集为{x|x≥2},可得=2,∴a=6.2017年3月12日。
2019届湖南省衡阳市高三第一次模拟文科数学试题(带答案解析)
2019届湖南省衡阳市高三第一次模拟文科数学试题1.已知复数z x yi =+(x ∈R ,y ∈R ,i 为虚数单位)满足1z i=,则x y +=( ) A .1B .0C .1-D .2-2.若2{|1}M y y x x R ,==-∈,22{|1,,}N x x y x R y R =+=∈∈,则M N ⋂=( ) A .()1,1-B .[]1,1-C .[)1,1- D .∅3.甲、乙两名同学八次数学测试成绩的茎叶图如图所示,则甲同学成绩的众数与乙同学成绩的中位数依次为( )A .85,85B .85,86C .85,87D .86,864.cos15sin375︒+︒的值为( ) A.2B.2C.2-D.2-5.在等比数列{}n a 中,1344a a a ==,则6a 的所有可等值构成的集合是( ) A .{}6B .{}-88,C .{}-8D .{}86.有两条不同的直线,m n 与两个不同的平面.αβ,下列结论中正确的是( ) A .,//m n αβ⊥,且//αβ,则m n ⊥ B .,m n αβ⊥⊥,且αβ⊥,则//m n C .//,m n αβ^,且αβ⊥,则//m n D .//,//m n αβ,且//αβ,则//m n7.若实数,x y 满足222020(1)1x y x y x y -⎧⎪-⎨⎪-+⎩…„„,则2y 最大值为( )A .45B .1C .85D .28.若双曲线22221(0,0)x y a b a b-=>>的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的渐近线方程是( )A .20x y ±=B .20x y ±=C .0x ±=D 0y ±=9.某多面体的三视图如图所示,网格纸上小正方形的边长为1,则该多面体的表面积为( )A .2+B .2++C .2+D .8+10.现有四个函数:①sin y x x =⋅;②cos y x x =⋅;③cos y x x =⋅;④2x y x =⋅的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是( )A .①④②③B .①④③②C .④①②③D .③④②①11.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,函数[]()y x x =∈R 称为高斯函数,其中[]x 表示不超过x 的最大整数,例如:[ 2.1]3-=-,[3.1]3=.已知函数122()12x xf x +=+,则函数[()]y f x =的值域是( ) A .{0,1}B .(0,1]C .(0,1)D .{1,0,1}-12.已知ln 0a b -=,1c d -=,则22()()a c b d -+-的最小值是( ). A .1BC .2D.13.已知点(0,1)A ,(3,2)B ,向量(4,3)AC =u u u r ,则向量BC uuu r的坐标是_____.14.阅读如图所示的程序框图,运行相应的程序,则输出i 的值为________.15.在ABC V 中,角A,B,C 的对边分别为a,b,c,2a c bbc b c--=,ABC V 外接圆的半径为3,则a =_____16.已知函数1232,0(),2,0x x f x x x x -⎧->⎪=⎨--≤⎪⎩若在区间[]-22,内随机选取一个实数a ,则方程2[()]()10f x af x +-=有且只有两个不同实根的概率为________.17.已知等差数列{}n a 的前n 项和为n S ,且315S =,38522a a a +=+. (1)求n a ;(2)设数列1n s ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:34n T <.18.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:(I )在答题卡上作出这些数据的频率分布直方图:(II )估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III )根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.如图,四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,222AB BC CD ===,SAD V 为正三角形.(1)点M 为棱AB 上一点,且//BC 平面SDM ,求线段AM 的长度; (2)若BC SD ⊥,求点B 到平面SAD 的距离.20.如图,圆C 与x 轴相切于点()2,0T ,与y 轴正半轴相交于,M N 两点(点M 在点N 的下方),且3MN =.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆22184x y +=相交于两点AB 、,连接AN BN 、,求证:ANM BNM ∠=∠.21.已知232()4()3f x x ax x x =+-∈R ,且()f x 在区间[1,1]-上是增函数. (1)求实数a 的值组成的集合A ;(2)设函数()f x 的两个极值点为1x 、2x ,试问:是否存在实数m ,使得不等式21213m tm x x ++-…对任意a A ∈及[1,1]t ∈-恒成立?若存在,求m 的取值范围;若不存在,请说明理由.22.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,已知直线l的参数方程是212x m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为2sin 4cos 0(0)ρθθρ-=….(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于,A B 两点,且|16|AB =,求实数m 的值. 23.已知函数()22f x x ax =+--.(1)当2a =时,求不等式()21f x x ≥+的解集;(2)若不等式()2f x x >-对任意的(0,2)x ∈恒成立,求a 的取值范围.参考答案1.C 【解析】 【分析】利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解. 【详解】解:1x yi i i +==-Q ,0x ∴=,1y =-,1x y ∴+=-.故选:C . 【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,属于基础题. 2.B 【解析】 【分析】由M 与N 中的方程确定出y 的范围,即可求出M 与N 的交集. 【详解】由2{|1}M y y x x R ,==-∈,得到{|1}M y y =≥-, 由{|11}N x x =-≤≤,则[]1,1M N ⋂=-, 故选B .【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 3.B 【解析】 【分析】根据茎叶图的数据,选择对应的众数和中位数即可. 【详解】由图可知,甲同学成绩的众数是85;乙同学的中位数是8587862+=. 故选:B.【点睛】本题考查由茎叶图计算数据的众数和中位数,属基础计算题. 4.A 【解析】 【分析】利用诱导公式及两角和的正弦化简求值. 【详解】解:cos15sin375cos15sin1515)60︒+︒=︒+︒=︒+︒=︒. 故选:A . 【点睛】本题考查三角函数的化简求值,考查诱导公式及两角和的正弦,属于基础题. 5.D 【解析】 【分析】利用等比数列的通项公式即可得出1a q =,再根据561a a q =进而求出结果.【详解】设等比数列{}n a 的公比为q ,∵1344a a a ==,∴223114a q a q ==,解得1a q ==, 则5618a a q ==. 故选D .【点睛】本题考查了等差数列与等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题. 6.A 【解析】 【分析】根据线面、面面平行与垂直的判断定理和性质定理,逐项判断,即可得出结果. 【详解】对于A ,由m α⊥,//αβ可得m β⊥,又//n β,所以m n ⊥,故A 正确; 对于B ,由,ααβ⊥⊥m 得//m β或m β⊂,又n β⊥,所以m n ⊥,故B 错误;对于C ,由n β⊥, αβ⊥得//n α或n ⊂α,又//m α,所以//m n 或,m n 相交或异面,故C 错误;对于D ,由//,//m n αβ,且//αβ得,m n 可能相交或平行或异面,故D 错误. 故选A. 【点睛】本题主要考查线面关系,面面关系相关命题的判定,熟记线面、面面平行与垂直的判定定理与性质,以及空间中线线、线面、面面位置关系即可,属于常考题型. 7.D 【解析】 【分析】做出不等式组的可行域,如图阴影部分所示,找出y 的最大值即可. 【详解】解:做出直线2y x =,2y x =与圆22(1)1x y -+=的图象,得出不等式组对应的可行域,如图阴影部分所示,根据题意得:y 的最大值为1,所以2y 的最大值为2. 故选:D .【点睛】此题考查了简单线性规划,做出满足题意的图形是解本题的关键,属于基础题. 8.C 【解析】试题分析:因为双曲线22221(0,0)x y a b a b -=>>的一个焦点到一条渐近线的距离为,b 所以2,2.4c b c b ==因此.a =因为双曲线22221(0,0)x y a b a b -=>>的渐近线方程为,by x a=±所以该双曲线的渐近线方程是0x ±=. 考点:双曲线的渐近线方程 9.A 【解析】 【分析】判断几何体的形状,画出直观图,然后求解表面积. 【详解】解:由题意可知几何体的三棱锥,是正方体的一部分,棱长为2, 所以,几何体的表面积为:11122222222⨯⨯+⨯⨯⨯⨯=+ 故选:A .【点睛】本题考查空间几何体的三视图求解几何体的表面积,判断几何体的形状是解题的关键,属于中档题. 10.A 【解析】 【分析】根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到. 【详解】解:①sin y x x =⋅为偶函数,它的图象关于y 轴对称,故第一个图象即是; ②cos y x x =⋅为奇函数,它的图象关于原点对称,它在0,2π⎛⎫⎪⎝⎭上的值为正数, 在,2ππ⎛⎫⎪⎝⎭上的值为负数,故第三个图象满足; ③cos y x x =⋅为奇函数,当0x >时,()0f x ≥,故第四个图象满足; ④2x y x =⋅,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足, 故选A . 【点睛】本题主要考查函数的图象,函数的奇偶性、函数的值的符号,属于中档题. 11.A 【解析】 【分析】先求出函数的值域,再根据新定义即可求出函数[()]y f x =的值域 【详解】解:1222()11222x x x xf x +==++,1222x x +Q …, 0()1f x ∴<„,则函数[()]y f x =的值域为{0,1}, 故选:A . 【点睛】本题考查了函数性质,以及新定义的应用,属于中档题. 12.C 【解析】 【分析】设点(),b a 是曲线:ln C y x =上的点,点()d c ,是直线:1l y x =+上的点;()()22a cb d -+-可看成曲线C 上的点到直线l 上的点的距离的平方.然后将问题转化为求曲线C 上一点到直线l 距离的最小值的平方,直接对函数ln y x =求导,令导数为零,可求出曲线C 上到直线l 距离最小的点,然后利用点到直线的距离公式可求出最小距离,从而得出答案. 【详解】设(),b a 是曲线:ln C y x =上的点,()d c ,是直线:1l y x =+上的点;()()22a cb d -+-可看成曲线C 上的点到直线l 上的点的距离的平方. 对函数ln y x =求导得1y x'=,令1y '=,得1x =, 所以,曲线C 上一点到直线l 上距离最小的点为()10,, 该点到直线l 的距离为 因此,()()22a c b d -+-的最小值为22=. 故选C .【点睛】本题考查距离的最值问题,将问题进行转化是解本题的关键,属于中等题. 13.()1,2 【解析】 【分析】根据向量的坐标运算即可求出. 【详解】解:Q 点(0,1)A ,(3,2)B ,∴(3,1)AB =u u u r,Q (4,3)AC =u u u r, ∴(1,2)BC AC AB =-=u u u r u u u r u u u r,故答案为:()1,2 【点睛】本题考查了向量的坐标运算,属于基础题. 14.4 【解析】【分析】依次写出循环语句,直到判断50n a >时,输出对应的i 即可 【详解】由题知,001,0a i ==,则1011011,11112i i a i a =+==⋅+=⨯+=; 2122112,12215i i a i a =+==⋅+=⨯+=; 3233213,135116i i a i a =+==⋅+=⨯+=;4344314,1416165i i a i a =+==⋅+=⨯+=,此时450a >,输出的4i =故答案为:4 【点睛】本题考查程序框图中由循环语句计算输出值,属于基础题 15.3 【解析】 【分析】首先对2a c b bc b c--=cos A ,进而求出sin A ,然后再根据外接圆半径和正弦定理,即可证明结果. 【详解】由题意可得222a c b bc --=根据余弦定理可知cos A =,所以1sin 2A =,根据正弦定理可得6sin aA=,所以3a =. 【点睛】本题主要考查了正弦定理、余项定理的应用,属于基础题. 16.38【解析】 【分析】首先根据题意令()t f x =,则()()210f x af x ⎡⎤+-=⎣⎦,等价于210t at +-=,由韦达定理可知方程210t at +-=有两个根,设两根分别是12,t t ,则121t t =-,通过对函数()f x 的图像分析可知()()121,2,,0t t ∈-∞,令()2g 1t t at =+-,可得()()102320g a g a ⎧=<⎪⎨=+>⎪⎩进而求出a 的取值范围,然后再根据几何概型即可求出结果. 【详解】令()t f x =,则()()210f x af x ⎡⎤+-=⎣⎦,等价于210t at +-=,又2+40a ∆=>,所以方程210t at +-=有两个根,设两根分别是12,t t ,则121t t =-;作出()f x 的图像,如下图,由图像可知,要使得()()210f x af x ⎡⎤+-=⎣⎦有且只有两个不同实根,则()()121,2,,0t t ∈-∞,所以方程210t at +-=的两根()()121,2,,0t t ∈-∞,令()2g 1t t at =+-,所以()()103023202g a a g a ⎧=<⎪⇒-<<⎨=+>⎪⎩; 又[]-22a ∈,,设事件A 为“在区间[]-22,内随机选取一个实数a ,则方程()()210f x af x ⎡⎤+-=⎣⎦有且只有两个不同实根的概率”,由几何概型可知()3032=48P A ⎛⎫-- ⎪⎝⎭=.【点睛】本题考查了方程的根与函数的零点的关系应用、几何概型以及数形结合的思想应用,同时考查了分类讨论与转化思想的应用及导数的综合应用,属于难题. 17.(1)21n a n =+;(2)见解析 【解析】 【分析】(1)利用已知条件求出数列的通项公式.(2)利用(1)的通项公式,进一步利用裂项相消法求出数列的和,再利用放缩法求出结果. 【详解】(1)3215,5,S a Q =∴=,3852832222,2a a a a a a a +=+=++∴-=又,即2d =公差,所以()52221n a n n =+-⨯=+. (2) 由(1)21n a n =+,则有()232122n nS n n n =++=+. 则()11111222n S n n n n ⎛⎫==- ⎪++⎝⎭. 11111111111-232435112n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L )( 111131-).22124n n (=+-<++ 【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.(1)见解析;(2)平均数100,方差为104;(3)不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定. 【解析】 【分析】 【详解】(1)直方图如图,(2)质量指标值的样本平均数为800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=.质量指标值的样本方差为22222(20)0.06(10)0.2600.38100.22200.08104s =-⨯+-⨯+⨯+⨯+⨯=.(3)质量指标值不低于95的产品所占比例的估计值为0.380.220.080.68++=,由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.19.(1)1AM =;(2)3; 【解析】 【分析】(1)由线面平行的性质推导出//BC DM ,M 为AB 的中点,由此能求出AM . (2)由BC SD ⊥,BC CD ⊥,得BC ⊥平面SCD ,从而平面SCD ⊥平面ABCD ,连结BD ,由S ABD B ASD V V --=,能求出点B 到平面SAD 的距离. 【详解】解:(1)//BC Q 平面SDM ,BC ⊂平面ABCD ,平面SDM ⋂平面ABCD DM =, //BC DM ∴,//AB DC Q ,M ∴为AB 的中点,1AM ∴=.(2)BC SD ⊥Q ,BC CD ⊥,SD CD D =I ,SD ⊂平面SCD ,CD ⊂平面SCD ,BC ∴⊥平面SCD ,又BC ⊂Q 平面ABCD ,∴平面SCD ⊥平面ABCD , 平面SCD I 平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E , 则SE ⊥平面ABCD , 在Rt SEA V和Rt SED V 中, SA SD =Q,AE DE ∴===,又由题知45EDA ∠=︒,AE ED ∴⊥,由题意得AD =1AE ED SE ∴===,连结BD ,则111133S ABD V -=⨯⨯=,SAD S ∆=,S ABD B ASD V V --=Q ,∴点B 到平面SAD的距离113S ABD SADVd S-∆===【点睛】本题考查线段长的求法,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间中线线、线面、面面间的位置关系等基础知识考查运算求解能力,考查数形结合思想,属于中档题.20.(Ⅰ)()22525224x y ⎛⎫-+-= ⎪⎝⎭;(Ⅱ)见解析【解析】分析:(1)设圆心坐标为()2,r ,根据3MN =.可由勾股定理求出r ,求得圆的方程。
2020年湖南省湘潭市高考数学一模试卷(文科)(有解析)
2020年江苏省无锡市锡山区天一中学高考数学模拟试卷(二)一、填空题(本大题共14小题,共70.0分)1.已知集合A={1,2,3},B={x|(x+1)(x−2)<0,x∈Z},则A∪B=______ .2.i是虚数单位,复数6+7i1+2i=________.3.执行下边的流程图,若输入的x的值为−2,则输出y的值是__________.4.样本数据11,8,9,10,7的方差是________.5.甲、乙两名学生选修4门课程(每门课程被选中的机会相等),要求每名学生必须选1门且只需选1门,则他们选修的课程互不相同的概率是______ .6.已知等比数列{a n}的前n项和为S n,若S3=7,S6=63,则a1=________.7.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:x2a2−y2b2=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线的离心率等于______.8.若cosα=13(0<α<π),则sin2α=______.9.设f(x)是定义在(0,+∞)上的函数,其导函数为f′(x),且f′(x)<f(x),则关于x的不等式xf(1)<ef(ln x)的解集为_____.10.已知函数的定义域和值域都是[0,1],则实数a的值是____.11. 已知函数f(x)=e x−2+x −3(e 为自然对数的底数),g(x)=x 2−(a +1)x −a +7,若存在实数x 1、x 2、x 3(x 2≠x 3),使得f(x 1)=g(x 2)=g(x 3)=0,且|x 1−x 2|≤1和|x 1−x 3|≤1同时成立,则实数a 的取值范围是__________.12. 已知a ≥0,b ≥0,且a +b =13则1a+2b +12a+b 的最小值为 .13. 若函数f(x)=16(2x −1)3−x +2(1≤x ≤4),则f(x)的最大值是__________.14. 在平面直角坐标系xOy 中,A(−12,0),B(0,6),点P 在圆O :x 2+y 2=50上.若PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ ≤20,则点P 的横坐标的取值范围是________. 二、解答题(本大题共6小题,共90.0分)15. 已知函数f(x)=2sinx ⋅cosx −cos 2x +sin 2x ,x ∈R .(1)求f(x)的最小正周期及单调递减区间; (2)求f(x)在区间[0,π2]上的最大值和最小值.16. 在梯形ABCD 中,AB//CD ,AD =DC =CB =a ,∠ABC =60°.平面ACEF ⊥平面ABCD ,四边形ACEF 是矩形,AF =a ,点M 在线段EF 上. (Ⅰ)求证:BC ⊥AM ;(Ⅱ)试问当AM 为何值时,AM//平面BDE ?证明你的结论. (Ⅲ)求三棱锥A −BFD 的体积.17.如图所示,等腰△ABC的底边AB=8,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AE,记BE=x,V(x)表示四棱锥P−ACEF的体积.(1)求V(x)的表达式;(2)当x为何值时,V(x)取得最大,并求最大值.18. 已知椭圆x 2a 2+y2b 2=1(a >b >0)离心率为12,过点E(−√7,0)的椭圆的两条切线相互垂直. (1)求此椭圆的方程;(2)若存在过点(t,0)的直线l 交椭圆于A ,B 两点,使得FA ⊥FB(F 为右焦点),求t 的取值范围.19. 数列{a n }满足a 1=2,a n+1=2n+1a n(n+12)an+2n(n ∈N ∗)(1)设b n =2na n,求数列{b n }的通项公式;(2)设c n =1n(n+1)a n+1,数列{c n }的前n 项和为S n ,不等式14m 2−14m >S n 对一切n ∈N ∗成立,求m 得范围.20. 已知函数f (x )=x 3−ax 2+427.(1)若f(x)在(a −1,a +3)上存在极大值,求a 的取值范围;(2)若x轴是曲线y=f(x)的一条切线,证明:当x≥1时,f(x)>lnx−23.27【答案与解析】1.答案:{0,1,2,3}解析:先求出集合A,B,由此利用并集的定义能求出A∪B的值.本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.解:∵集合A={1,2,3},B={x|(x+1)(x−2)<0,x∈Z}={0,1},∴A∪B={0,1,2,3}.故答案为:{0,1,2,3}.2.答案:4−i解析:本题考查复数的四则运算,根据复数除法的运算法则直接计算即可,属于基础题.解:6+7i1+2i =(6+7i)(1−2i)(1+2i)(1−2i)=6+14+7i−12i5=20−5i5=4−i.故答案为4−i.3.答案:5解析:x=−2<0,则y=−2×(−2)+1=5.4.答案:2解析:本题考查了方差的公式,属于基础题.将数据直接代入方差计算公式可得答案.解:因为样本平均数x=7+8+10+11+95=9,故方差s2=15[(11−9)2+(8−9)2+(9−9)2+(10−9)2+(7−9)2]=2,故答案为2.5.答案:34解析:此题考查了古典概型概率计算公式,掌握古典概型概率公式:概率=所求情况数与总情况数之比是解题的关键.利用分步乘法原理,分别计算出甲、乙两名学生任选一门选修课程的情况总数和满足他们选修的课程互不相同的情况数,代入古典概型概率计算公式,可得答案.解:设选修4门课程名称为A,B,C,D甲、乙两名学生选修课程名称记为(x,y),则共有4×4=16种不同情况,其中他们选修的课程互不相同的事件有4×3=12种不同情况,故他们选修的课程互不相同的概率P=1216=34,故答案为:34.6.答案:1解析:本题考查等比数列的前n项和公式以及应用,注意分析q是否为1.根据题意,由等比数列前n项和公式可得S3=a1(1−q3)1−q =7,S6=a1(1−q6)1−q=63;变形可得1+q3=9,解可得q的值,将q的值代入S3=a1(1−q3)1−q=7,计算可得答案.解:根据题意,等比数列{a n}满足S3=7,S6=63,则其公比q≠1,若S3=7,则a1(1−q3)1−q=7;S6=63,则a1(1−q6)1−q=63;变形可得:1+q3=9,解可得q=2;又由a1(1−q 3)1−q=7,解可得a1=1.故答案为17.答案:√5解析:解:取双曲线的一条渐近线:y=ba x,联立{y2=2pxy=bax解得{x=2pa2b2y=2pab,故A(2pa2b2,2pab).∵点A到抛物线的准线的距离为p,∴p2+2pa2b=p,化为a2b=14.∴双曲线C2的离心率e=ca =√1+b2a2=√5.故答案为√5.取双曲线的一条渐近线:y=bax,与抛物线方程联立即可得到交点A的坐标,再利用点A到抛物线的准线的距离为p,即可得到a,b满足的关系式,利用离心率计算公式即可得出.熟练掌握抛物线及双曲线的标准方程及其性质、渐近线方程和离心率计算公式是解题的关键.8.答案:4√29解析:解:∵cosα=13(0<α<π),∴sinα=2√23,∴sin2α=2sinαcosα=2×2√23×13=4√29,故答案为:4√29.由题意可得sinα=2√23,再根据sin2α=2sinαcosα,计算求得结果.本题主要考查同角三角函数的基本关系、二倍角的正弦公式的应用,属于中档题.9.答案:(1,e)解析:本题考查的是利用导数研究函数的单调性问题,属于基础题.解:设函数g(x)=f(x)e x ,则g′(x)=ex f′(x)−e x f(x)(e x)2=f′(x)−f(x)e x<0,所以g(x)=f(x)e x为(0,+∞)上的单调递减函数.当x>0时,不等式xf(1)<ef(ln x)等价于f(ln x)x >f(1)e,即f(ln x)e ln x>f(1)e,所以0<ln x<1,即1<x<e.故答案为(1,e).10.答案:2解析:本题考查对数函数的单调性,属于基础题.分a >1和0<a <1讨论,结合对数函数的性质即可求解. 解:当a >1时,函数f(x)=log a (x +1)在定义域上是增函数, 所以,解得a =2;当0<a <1时,函数f(x)=log a (x +1)在定义域上是减函数, 所以,无解;综上a =2, 故答案为2 .11.答案:(3,134]解析:本题主要考查函数与方程的综合知识,首先求出函数f(x)的导数,可得f(x)单调递增,解得f(x)=0的解为x 1=2,由题意可得g(x)=x 2−(a +1)x −a +7=0在1≤x ≤3上有两个不等的根,通过判别式对称轴等可求得a 的取值范围,难度中等.解:函数f(x)=e x−2+x −3的导数为f ′(x)=e x−2+1>0, ∴f(x)在R 上单调递增,由f(2)=0,可得x 1=2,又存在实数x 1、x 2、x 3(x 2≠x 3),使得f(x 1)=g(x 2)=g(x 3)=0,且|x 1−x 2|⩽1和|x 1−x 3|⩽1同时成立,∴存在实数x 2、x 3(x 2≠x 3),使得g(x 2)=g(x 3)=0,且|2−x 2|⩽1和|2−x 3|⩽1同时成立, 即g(x)=x 2−(a +1)x −a +7=0在1≤x ≤3上有两个不等的根, 则{g (1)=−2a +7≥0g (3)=−4a +13≥0Δ=(a +1)2−4(−a +7)>01<a+12<3,解得3<a ≤134, 即a 的取值范围为(3,134]12.答案:4 解析:本题考查柯西不等式,结合已知条件将原式变形,即1a+2b +12a+b=(a+2b+2a+b)(1a+2b+12a+b),进而运用柯西不等式求解.解:因为a+b=13,所以1a+2b +12a+b=(a+2b+2a+b)(1a+2b+12a+b)≥(√a+2b·a+2b +√2a+b2a+b)2=4,当且仅当√a+2b√2a+b =√2a+b√a+2b,即a=b时取等号.故答案为4.13.答案:3316.解析:本题考察了导数与函数的单调性,根据单调性求最值即可。
湖南省高三下学期模拟考试(文科)数学试卷-附含答案解析
湖南省高三下学期模拟考试(文科)数学试卷-附含答案解析班级:___________姓名:___________考号:___________一、单选题1.已知集合{}{}1,0,1,|1A B x N x =-=∈<,则A B ⋃=( ) A .{}0B .{}1,0-C .{1,-0,1}D .(),1-∞2.设m 、n 是两条不同的直线,α和β是两个不同的平面,则下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β且m ⊥n ,则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β3.已知角α的终边经过点()sin150,cos30A ,则tan α=( )A B .C D .4.在中国传统佳节元宵节中赏花灯是常见的活动.某单位拟举办庆祝元宵的活动,购买了A ,B ,C 三种类型的花灯,其中A 种花灯4个,B 种花灯5个,C 种花灯1个,现从中随机抽取4个花灯,则A ,B ,C 三种花灯各至少被抽取一个的情况种数为( ) A .30B .70C .40D .845.已知函数()32233f x x ax x =-++是定义在R 上的奇函数,则函数()f x 的图像在点()()2,2f --处的切线的斜率为( ) A .27-B .25-C .23-D .21-6.如图为陕西博物馆收藏的国宝——唐金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.222:1(0)y C x b b-=>的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周得到的几何体,若P 为C 右支上的一点,F 为C 的左焦点,则PF 与P 到C 的一条渐近线的距离之和的最小值为( )A .2B .3C .4D .57.已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为( )A .3B .4C .5D .68.已知函数()log ,03,40a x x f x x x >⎧=⎨+-≤<⎩(0a >且1a ≠).若函数()f x 的图象上有且只有两个点关于原点对称,则a 的取值范围是( ) A .10,4⎛⎫⎪⎝⎭B .()10,1,4⎛⎫⋃+∞ ⎪⎝⎭C .()1,11,4⎛⎫⋃+∞ ⎪⎝⎭D .()()0,11,4⋃二、多选题9.某中学为了解高三男生的体能情况,通过随机抽样,获得了200名男生的100米体能测试成绩(单位:秒),将数据按照分成9组,制成了如图所示的频率分布直方图.由直方图推断,下列选项正确的是( ) A .直方图中a 的值为0.38B .由直方图估计本校高三男生100米体能测试成绩的众数为13.75秒C .由直方图估计本校高三男生100米体能测试成绩不大于13秒的人数为54D .由直方图估计本校高三男生100米体能测试成绩的中位数为13.7秒10.已知狄利克雷函数()1,0,x f x x ⎧=⎨⎩是有理数是无理数,则下列结论正确的是( )A .()f x 的值域为[]0,1B .()f x 定义域为RC .()()1f x f x +=D .()f x 是奇函数11.已知拋物线2:2(0)C x py p =>的焦点F 与圆22:(2)1M x y ++=上点的距离的最小值为2,过点F 的动直线l 与抛物线C 交于,A B 两点,以,A B 为切点的抛物线的两条切线的交点为P ,则下列结论正确的是( ) A .2p =B .当l 与M 相切时,则l 的斜率是C .点P 在定直线上D .以AB 为直径的圆与直线1y =-相切12.已知正方体1111ABCD A B C D -的棱长为1,,M N 分别为1,BB AB 的中点.下列说法正确的是( )A .点M 到平面1ANDB .正方体1111ABCD A BCD - C .面1AND 截正方体1111ABCD A B C D -外接球所得圆的面积为34πD .以顶点A三、填空题13.已知角α终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,则化简()()()()sin 3sin sin 2cos 4παπααπαπ+---+--得___________. 14.若512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式的常数项为________.15.若函数21()ln 22f x a x x bx =++在区间[1,2]上单调递增,则4a b +的最小值是__________. 16.定义x 是与实数x 的距离最近的整数(当x 为两相邻整数的算术平均值时,则x 取较大整数),如451,2,22,2.5333====‖‖‖‖,令函数()K x x =,数列{}n a 的通项公式为n a =其前n 项和为n S ,则4S =__________;2023S =__________.四、解答题17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin sin 1sin sin sin sin A b BB C b A c B+=++(1)求角C ;(2)CD 是ACB ∠的角平分线,若CD =,ABC的面积为c 的值. 18.记n S 为数列{}n a 的前n 项和,已知11,(1)n S a n n ⎧⎫=⎨⎬+⎩⎭的公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a ++⋅⋅⋅+< 19.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,平面PAD ⊥平面ABCD ,PAD 是斜边PA的长为E ,F 分别是棱PA ,PC 的中点,M 是棱BC 上一点(1)求证:平面DFM ⊥平面PBC ;(2)若直线MF 与平面ABCD EDM 与平面DMF 夹角的余弦值. 20.国家发改委和住建部等六部门发布通知提到:2025年,农村生活垃圾无害化处理水平将明显提升.现阶段我国生活垃圾有填埋、焚烧、堆肥等三种处理方式,随着我国生态文明建设的不断深入,焚烧处理已逐渐成为主要方式.根据国家统计局公布的数据,对2013-2020年全国生活垃圾焚烧无害化处理厂的个数y (单位:座)进行统计,得到如下表格:(1)根据表格中的数据,可用一元线性回归模型刻画变量y 与变量x 之间的线性相关关系,请用相关系数加以说明(精确到0.01);(2)求出y 关于x 的经验回归方程,并预测2022年全国生活垃圾焚烧无害化处理厂的个数;(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,还能用(2)所求的经验回归方程预测吗?请简要说明理由.参考公式:相关系数()()niix x y y r --=∑ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为()()()121ˆˆˆ,nii i nii xx y y bay bx xx ==--==--∑∑ 参考数据:88882211112292,204,730348,12041i iii i i i i i y x y x y ========∑∑∑∑257385.84=≈ 21.已知函数()f x ax =(1)当1a =-时,则证明:当1x ≥x .(2)当0a =时,则对任意的1x ≥都有()22x m mf x x -≥-成立,求m 的取值范围.22.已知函数()()ln 1f x x ax =+-在12x =-处的切线的斜率为1.(1)求a 的值及()f x 的最大值. (2)证明:()1111ln 123n n++++>+()*N n ∈ (3)若()()e xg x b x =-,若()()f x g x ≤恒成立,求实数b 的取值范围.参考答案与解析1.C【分析】首先简化集合B ,然后根据并集的定义得结果. 【详解】B={x ∈N|x <1}={0}A ∪B={-1,0,1}∪{0}={-1,0,1}. 故选C .【点睛】此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键. 2.B【分析】A. 利用空间直线的位置关系判断;B.利用线面垂直的性质定理判断;C.利用平面与平面的位置关系判断;D.利用平面与平面的位置关系判断.故选:B 3.C【分析】根据三角函数的定义直接求得答案.【详解】由题意可知12A ⎛ ⎝⎭则tan 2α=故选:C. 4.B【解析】由题可得,,A B C 三种花灯各至少被抽取一个的情况共有两种,列式计算即可. 【详解】由题意可知,,A B C 三种花灯各至少被抽取一个的情况共有两种:A 种花灯选2个,B 种花灯选1个,C 种花灯选1个; A 种花灯选1个,B 种花灯选2个,C 种花灯选1个.故不同的抽取方法有211121451451304070C C C C C C +=+=(种).故选:B. 5.D【分析】先由奇函数的性质求a ,再由导数的几何意义求切线的斜率.【详解】因为函数()32233f x x ax x =-++是定义在R 上的奇函数所以()()f x f x -=-,即()()()3232233233x a x x x ax x -+-+=----所以3232233233x ax x x ax x -+--= 所以0a =所以()323f x x x =-+,故()263f x x '=-+所以()221f '=-所以函数()f x 的图像在点()()2,2f --处的切线的斜率为21-. 故选:D. 6.C【分析】根据双曲线的离心率求得双曲线C 的方程,求得双曲线右焦点到渐近线的距离,结合双曲线的定义求得所求的最小值.【详解】由题意可知1,ca e c a====2224,2b c a b =-=∴= 双曲线方程为22:14y C x -=,一条渐近线方程为20x y -=焦点)2F 到渐近线20x y -=的距离为2==d 22PF a PF =+,2PF 与P 到C 的一条渐近线的距离之和的最小值为2d =所以PF 与P 到C 的一条渐近线的距离之和的最小值为224a +=. 故选:C 7.C【分析】根据三角函数的性质,利用整体思想,由单调区间与周期的关系,根据零点与对称轴之间的距离,表示所求参数,逐个检验取值,可得答案.【详解】由f (x )在186ππ⎛⎫⎪⎝⎭,上单调,即12618T ππ≥-,可得29T π≥,则ω≤9;∵4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴根据三角函数的图象可知零点与对称轴之间距离为:()1214T k ⨯-,k ∈N *.要求ω最大,则周期最小,∴()12142k T π-⨯=,则T 221k π=-;∴ω=2k ﹣1;当9ω=时,则由2πϕ≤,则4πϕ=-,可得()cos 94f x x π⎛⎫=- ⎪⎝⎭易知()f x 在5,1836ππ⎛⎫ ⎪⎝⎭上单减,在5,366ππ⎛⎫⎪⎝⎭上递增,不合题意; 当7ω=时,则由2πϕ≤,则4πϕ=,可得()cos 74f x x π⎛⎫=+ ⎪⎝⎭易知()f x 在3,1828ππ⎛⎫⎪⎝⎭上单减,在3,286ππ⎛⎫ ⎪⎝⎭上递增,不合题意;当5ω=时,则由2πϕ≤,则4πϕ=-,可得()cos 54f x x π⎛⎫=- ⎪⎝⎭易知()f x 在,186ππ⎛⎫⎪⎝⎭上单减,符合题意;故选:C . 8.C【分析】根据原点对称的性质,求出当40x -≤<时函数关于原点对称的函数,条件转化为函数()log a f x x =与|3|,(04)y x x =--+≤≤只有一个交点,作出两个函数的图象,利用数形结合的方法,再结合对数函数的性质进行求解即可【详解】当40x -≤<时,则函数|3|y x =+关于原点对称的函数为|3|y x -=-+,即|3|,(04)y x x =--+≤≤ 若函数()f x 的图象上有且只有两个点关于原点对称,则等价于函数()log a f x x =与|3|,(04)y x x =--+≤≤只有一个交点,作出两个函数的图象如图:若1a >时,则()log a f x x =与函数|3|,(04)y x x =--+≤≤有唯一的交点,满足条件; 当4x =时,则|43|1y =--+=-若01a <<时,则要使()log a f x x =与函数|3|,(04)y x x =--+≤≤有唯一的交点则要满足(4)1f <-,即1log 41log a a a -<-=解得故114a <<; 综上a 的取值范围是()1,11,4⎛⎫⋃+∞ ⎪⎝⎭故选:C 9.BC【分析】A :根据频率直方图中,所有小矩形的面积之和为1,进行求解判断即可; B :根据众数的定义,结合频率直方图进行判断即可; C :根据直方图,结合题意进行判断即可;D :根据中位数的定义,结合结合频率直方图进行判断即可. 【详解】A :因为频率直方图中,所有小矩形的面积之和为1所以(0.080.160.30.520.30.120.080.04)0.510.4a a ++++++++⨯=⇒= 因此本选项说法不正确;B :分布在[)13.5,14小组的矩形面积最大,因此众数出现在这个小组内,因此估计众数为13.51413.752+=,因此本选项说法正确; C :高三男生100米体能测试成绩不大于13秒的小组有:频率之和为:(0.080.160.3)0.50.27++⨯=因此估计估计本校高三男生100米体能测试成绩不大于13秒的人数为0.2720054⨯=,所以本选项说法正确;D :设中位数为b ,因此有(0.080.160.30.4)0.50.52(13.5)0.513.56b b +++⨯+-=⇒≈ 所以本选项说法不正确 故选:BC 10.BC【分析】根据函数的解析式逐个判定即可. 【详解】对A, ()f x 的值域为{}0,1,故A 错误. 对B, ()f x 定义域为R .故B 正确.对C,当x 是有理数时1x +也为有理数,当x 是无理数时1x +也为无理数故()()1f x f x +=成立.故C 正确. 对D, 因为()01f =,故D 错误. 故选:BC【点睛】本题主要考查了新定义函数性质的判定,属于基础题. 11.ACD【分析】根据题意求出p 的值,判断A ;根据直线和圆相切求出直线的斜率,判断B ;设直线方程,联立抛物线方程,可得根与系数的关系,求出以,A B 为切点的抛物线的两条切线的方程,结合根与系数的关系求得点P 坐标,判断C ;求出弦AB 的长以及弦AB 的中点到抛物线准线的距离,即可判断D.【详解】对于A ,由题意拋物线2:2(0)C x py p =>的焦点F 与圆22:(2)1M x y ++=上点的距离的最小值为2 即F 与圆上的点(0,1)-的距离为2,则||1,2OF p =∴=,A 正确;对于B ,过点(0,1)F 的动直线l 与M 相切时,则斜率必存在,设l 的方程为1y kx =+1=,解得k =B 错误;对于C ,设1122,,(()A x y B x y ),,由24x y =可得12y x '=联立214y kx x y =+⎧⎨=⎩ 消掉x 得2440x kx --= 216(1)0k ∆=+>所以12124,4x x k x x +==-设在点,A B 的切线斜率分别为12,k k ,则1212,22x x k k == 所以抛物线在点A 点的切线方程为111()2x y y x x -=-,即21124x x y x =-①同理可得在点B 的切线方程为 22224x x y x =-②由①②可得1222P x x x k +==,将122P x x x +=代入①得1214p x xy ==-所以P 点坐标为(21)k -,,即点P 在定直线1y =-上,C 正确;对于D ,由题意知12||42AB x x p k =++=+ AB 的中点的横坐标为124222x x kk +== 可得AB 的中点到抛物线准线1y =-的距离为121||2k AB +=则以线段AB 为直径的圆与抛物线C 的准线相切,故D 正确 故选:ACD 12.BCD【分析】A 选项由等体积法11M AND D AMN V V --=求得点M 到平面1AND 的距离即可;B 选项由外接球的直径为体对角线即可判断;C 选项由面1AND 经过外接球球心求得其外接圆圆心,即可求解;D 选项将球面与正方体的表面相交所得的曲线分为两类,按照弧长公式计算即可.【详解】1111211112,2242228AND ANM AD S S =⨯⨯==⨯⨯=,设M 到平面1AND 的距离为d ,由11M AND D AMN V V --=,即1111133AND ANM d S D A S ⨯⨯=⨯⨯,解得4d =,故A 错误;正方体1111ABCD A B C D -=外接球的体积为343π⨯=⎝⎭故B 正确;易得面1AND 经过正方体1111ABCD A B C D -其圆的面积为34π,故C 正确; 如图球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点A 所在的三个面上,即面11AA B B 、面ABCD 和面11AA D D 上;另一类在不过顶点A 的三个面上,即面11BB C C 、面11CC D D 和面1111D C B A 上.在面11AA B B 上,交线为弧EF 且在过球心A 的大圆上因为1A E ==,则16A AE π∠=,同理6BAF π∠=,所以6EAF π∠=,故弧EF 的长为6π=,而这样的弧共有三条. 在面11BB C C 上,交线为弧FG 且在距球心为1的平面与球面相交所得的小圆上,此时,则小圆的圆心为B ,半径为1BF A E ==所以弧FG 2π=,这样的弧也有三条.于是,所得的曲线长33=D 正确. 故选:BCD. 13.34-##0.75-【分析】根据任意角三角函数的概念,可得3tan 4α=-,再利用诱导公式对原式化简,可得原式等于tan α,由此即可求出结果.【详解】因为角α终边与单位圆相交于点43,55P ⎛⎫- ⎪⎝⎭,所以3tan 4α=-又()()()()()()()()sin 2sin sin 3sin sin 2cos 4sin 2cos 4ππαπαπαπααπαπαπαπ⎡⎤⎡⎤++-++--⎣⎦⎣⎦=-+---++()()sin sin sin sin tan sin cos sin cos πααααααααα+-===--所以()()()()sin 3sin 3sin 2cos 44παπααπαπ+--=--+--.故答案为:34-14.40【分析】由1()(2)n a x x x x +-的展开式中的各项系数的和为2,令x =1,求得1a =,写出51(2)x x-的展开式的通项,分别乘以x ,1x再令x 的指数为0求得r 值,则展开式中的常数项可求. 【详解】解:由1()(2)n a x x xx+-的展开式中的各项系数的和为2 令1x =,得5(1)12a +=,得1a =. ∴5111()(2)()(2)n a x x x x xxxx+-=+-51(2)x x-的通项55521551(2)()(1)2,0,1,2,3,4,5r r r r r r r r T C x C x x r ---+=-=-⋅⋅⋅=.∴511()(2)x x x x+-的展开式中的通项有5625(1)2r r r r C x ---⋅⋅⋅和5425(1)2r r r r C x ---⋅⋅⋅.令420r -=,得2r =,则展开式中的常数项为2325(1)280C -⋅⋅=; 令620r -=,得3r =,则展开式中的常数项为3235(1)240C -⋅⋅=- 所以该展开式的常数项为80-40=40. 故答案为:40. 15.-4【分析】对函数求导可得:22()x bx af x x++'=,函数()f x 在区间[1,2]上单调递增等价于()f x '在区间[1,2]上大于等于零恒成立,即220x bx a ++≥在区间[1,2]上恒成立,利用二次函数的图像讨论出a ,b 的关系,再结合线性规划即可得到4a b +的最小值. 【详解】 函数21()ln 22f x a x x bx =++在区间[1,2]上单调递增 ∴22()20a x bx af x x b x x ++'=++=≥在区间[1,2]上恒成立,即220x bx a ++≥在区间[1,2]上恒成立,令2()2h x x bx a =++,其对称轴:x b =-当1b -≤,即1b ≥-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:1(1)210b h a b ≥-⎧⎨=++≥⎩ 由线性规划可得:min (4)14(1)3a b +=+⨯-=-当2b -≥,即2b ≤-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:2(2)440b h a b ≤-⎧⎨=++≥⎩ 由线性规划可得:min (4)44(2)4a b +=+⨯-=-当12b <-<,即21b -<<-时,则220x bx a ++≥在区间[1,2]上恒成立等价于:221()0b h b a b -<<-⎧⎨-=-≥⎩ 则244a b b b +≥+,由于24b b +在21b -<<-上的范围为(4,3)--,则443a b -<+<-综上所述4a b +的最小值是-4.【点睛】本题考查导数与函数单调性、线性规划、函数与不等式等知识,考查学生综合运用数学知识的能力,运算能力以及逻辑思维能力,属于难题. 16. 3400345【分析】根据数列新定义可知数列n a =()11111111111111,1,(,,,),(,,,,,),,(,,,)2222333333n nn,且满足第n 组有2n 个数,且每组中所有数之和为122n n⨯=,即可求解. 【详解】因为()()123411111,1,,,2122a a a a K K ======== 所以41111322S =+++=;根据()K x x =以此类推,将n a =()11111111111111,1,(,,,),(,,,,,),,(,,,)2222333333n nn第n 组有2n 个数,且每组中所有数之和为122n n⨯=设2023a =1n +组中则(22)20232n n+≤,可得(1)2023n n +≤解得44n ≤ 所以(20231140032444345452023S K=+=⨯+⨯=故答案为:3 40034517.(1)3C π=;(2)c =【分析】(1)先由正弦定理得21a b b c ba cb+=++,化简整理得222a b c ab +-=,再由余弦定理求得cos C ,即可求解;(2)先由面积求得8ab =,再由角平分线得AD b BD a=,结合平面向量得a bCD CA CB a b a b =+++,平方整理求得6a b +=,再由(1)中222a b c ab +-=即可求出c 的值.【详解】(1)由正弦定理得21a b b c ba cb+=++,即1a b b c a c +=++,整理得()()()()a a c b b c a c b c +++=++ 化简得222a b c ab +-=,由余弦定理得2221cos 22a b c C ab +-==,又()0,C π∈,则3C π=;(2)由面积公式得11sin 22ab C ab ==,解得8ab =,又CD 是ACB ∠的角平分线,则1sin261sin 26ACD BCDCA CD SCA AD SCB BD CB CD ππ⋅⋅⋅===⋅⋅⋅ 即AD b BD a =,则()b b a b CD CA AD CA AB CA CB CA CA CB a b a b a b a b=+=+=+-=+++++ 所以()()()2222222222a b a ab b CD CA CB CA CA CB CB a b a b a b a b a b ⎛⎫=+=+⋅+ ⎪++⎝⎭+++,即()()()2222222162132a b ab a b ab a b a b a b =+⋅⋅++++ 整理得()2221633a b a b =+,又8ab =,解得6a b +=,则()222220a b a b ab +=+-= 由(1)知22220812c a b ab =+-=-=,则c =.18.(1)2n a n =;(2)证明见解析.【分析】(1)利用题意建立等式求出n S ,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出通项即可;(2)先将2221111123n+++⋅⋅⋅+放大为11111223(1)n n +++⋅⋅⋅+⨯⨯-,然后裂项求和即可. 【详解】(1)因为11a =,所以11122S =⨯ 又因为(1)n S n n ⎧⎫⎨⎬+⎩⎭是公差为13的等差数列,所以11(1)(1)23n S n n n =+-+ 所以1(1)(21)6n S n n n =++.当2n ≥时,则21,1n n n a S S n n -=-==时,则11a =也满足上式.所以{}n a 的通项公式是2n a n =;(2)当1n =时,则1112a =<,不等式成立; 当2n ≥时,则22212111111111111231223(1)n a a a n n n++⋅⋅⋅+=+++⋅⋅⋅+<+++⋅⋅⋅+⨯⨯- 11111111222231n n n ⎛⎫⎛⎫⎛⎫=+-+-+⋅⋅⋅+-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.19.(1)证明见解析【分析】(1)根据面面垂直的性质定理可得PD ⊥平面ABCD ,从而PD BC ⊥,又BC CD ⊥,由线面垂直的判定定理得BC ⊥平面PCD ,则BC DF ⊥,又DF ⊥PC ,得DF ⊥平面PBC ,根据面面垂直的判定定理即可证得结论;(2)取CD 的中点N ,则//NF PD ,112NF PD ==结合(1)得NF ⊥平面ABCD ,结合线面角的定义得FMN ∠是直线MF 与平面ABCD 所成角,求得MN ,MC ,建立空间直角坐标系,分别求出平面EDM 、DMF 的法向量,利用空间向量夹角公式进行求解即可.【详解】(1)因为PAD 是斜边PA的长为PD DA ⊥ 2PD DA == 又平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD DA =,PD ⊂平面PAD ∴PD ⊥平面ABCD ,又BC ⊂平面ABCD ,∴PD BC ⊥又BC CD ⊥,PD CD D ⋂=和,PD CD ⊂平面PCD ,∴BC ⊥平面PCD 因为DF ⊂平面PCD ,∴BC DF ⊥∵PD DC =,F 是棱PC 的中点,∴DF ⊥PC又⋂=PC CB C ,,PC CB ⊂平面PBC ,∴DF ⊥平面PBC . 又DF ⊂平面DFM ,∴平面DFM ⊥平面PBC . (2)如图,取CD 的中点N ,连接MN ,NF则//NF PD 112NF PD == 由(1)知PD ⊥平面ABCD ,∴NF ⊥平面ABCD ∴FMN ∠是直线MF 与平面ABCD 所成角 ∴1tan FMN MN ∠==∴MN 23MC =以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立空间直角坐标系设平面EDM 的法向量为(),,m a b c =,平面DMF 的法向量为(),,n x y z = 则02023DE m a cDM m a b⎧=⋅=+⎪⎨=⋅=+⎪⎩,令3a =-,则()3,1,3m =- 有02023DF n y zDM n x y ⎧=⋅=+⎪⎨=⋅=+⎪⎩,令3x =-,则()3,1,1n =--∴cos 19m n m n m n⋅⋅===⋅∴平面EDM 与平面DMF . 20.(1)答案见解析(2)ˆ41.12101.46yx =+ 513 (3)答案见解析【分析】(1)根据相关系数的公式,即可代入求值,根据相关系数的大小即可作出判断 (2)利用最小二乘法即可计算求解(3)根据相关关系不是确定的函数关系,而受多因素影响,即可求解. 【详解】(1)1234567892292573,8282x y +++++++====相关系数()()88niii ix x y y x y x yr ---⋅==∑∑957312041817270.9820.585.84-⨯⨯=≈≈⨯因为y 与x 的相关系数0.98r =,接近1,所以y 与x 的线性相关程度很高,可用线性回归模型拟合y 与x 的关系.(2)()()()8118222118ˆ8n iii ii i niii i x x y y x y x ybx x xx====---⋅==--∑∑∑∑957312041817272241.12814220484-⨯⨯==≈-⨯ 5739ˆˆ41.12101.4622ay bx =-≈-⨯= 所以y 与x 的线性回归方程为ˆ41.12101.46yx =+ 又2022年对应的年份代码10x =,当10x =时,则41.1210101.46512.6513ˆ6y=⨯+=≈ 所以预测2022年全国生活垃圾焚烧无害化处理厂的个数为513.(3)对于2035年全国生活垃圾焚烧无害化处理厂的个数,不能由(2)所求的线性回归方程预测,理由如下(说出一点即可):①线性回归方程具有时效性,不能预测较远情况;②全国生活垃圾焚烧无害化处理厂的个数有可能达到上限,一段时间内不再新建; ③受国家政策的影响,可能产生新的生活垃圾无害化处理方式. 21.(1)证明见解析. (2)[2,1]-【分析】(1)方法1:由分析法可证得结果. 方法2:换元法求()f x 的最大值即可证得结果.(2)设出不等号两边的函数,转化为对任意的1x ≥都有()()g x h x ≥成立,对参数分类讨论,分别研究两个函数的单调性、最值即可. 【详解】(1)方法1:∵1x ≥ ∴2(1)0x -≥ ∴原命题得证. 方法2:对称轴1t =,()h t 在[1,)+∞上单调递减 ∴max ()(1)0h t h ==∴()0h t ≤,即:当1x ≥时,则()0f x ≤恒成立即:当1x ≥x .(2)当0a =时,则()f x =即:对任意的1x ≥都有22x m x -≥成立令22()g x x m =-, ()h x x = 即:对任意的1x ≥都有()()g x h x ≥成立 当1x =时,则211m m -≥-,故21m -≤≤. ①当20m -≤≤时,则()g x 在[1,)+∞上单调递增∴2min ()(1)1g x g m ==-,∴2()1g x m ≥-()h x 在[1,)+∞上单调递减,∴max ()(1)1h x h m ==-,∴()1h x m ≤-此时2min max ()()20g x h x m m -=--≥∴min max ()()g x h x ≥即()()g x h x ≥,故20m -≤≤符合.②当01m <≤时,则由(1)知1x ∀≥x ≤恒成立∴1x ∀≥ mx x ≤∴1x ∀≥,0x ≤ 即:1x ∀≥ ()0≤h x又∵()g x 在[1,)+∞上单调递增,∴2min ()(1)1g x g m ==-,∴2()10g x m ≥-≥∴1x ∀≥ ()()g x h x ≥ ∴01m <≤符合. 综述:21m -≤≤【点睛】对于x D ∀∈,()()f x g x ≥恒成立求参数,可以先取特殊值确定参数的初步范围,再利用下面的两种方法.方法1:当x D ∈时,则min [()()]0f x g x -≥; 方法2:当x D ∈时,则min max ()()f x g x ≥. 求最值的方法:方法1:分离参数求最值;方法2:分类讨论研究函数的最值.22.(1)1a = max (0)f x =;(2)证明见解析;(3)[)0,∞+【分析】(1)由题意可得112f ⎛⎫'-= ⎪⎝⎭,可求出a 的值,然后利用导数求出函数的单调区间,从而可求出函数的最大值;(2)由(1)得()ln 1x x +≤,令()1N x k k *=∈,则有11ln 1k k ⎛⎫>+ ⎪⎝⎭,然后利用累加法可证得结论; (3)由于()()00,0f g b ==,所以()()f x g x ≤恒成立,则0b ≥,然后分0b =和0b >两种情况讨论即可.【详解】(1)函数的定义域为()()11,,1f x a x'-+∞=-+. 由已知得112f ⎛⎫'-= ⎪⎝⎭,得11112a -=⎛⎫+- ⎪⎝⎭,解得1a =. 此时()()()1ln 1,111x f x x x f x x x-'=+-=-=++. 当10x -<<时,则()0f x '>,当0x <时,则()0f x '<所以()f x 在(1,0)-上单调递增,()f x 在(0,)+∞单调递减所以()max ()00f x f ==;(2)由(1)得()ln 1x x +≤,当且仅当0x =时,则等号成立 令()1N x k k *=∈,则11ln 1k k ⎛⎫>+ ⎪⎝⎭ 所以()()1ln 1ln 1,2,3,,k k k n k >+-=将上述n 个不等式依次相加,得()1111ln 123n n++++>+; (3)因为()()00,0f g b ==,若()()f x g x ≤恒成立,则0b ≥①0b =时,则显然成立②0b >时,则由()()e x g x b x =-,得()()e 1x g x b '=-.当()1,0-时,则()()0,g x g x '<单减,当()0,x ∈+∞时,则()()0,g x g x '>单增所以()g x 在0x =处取得极小值,即最小值()()min ()00g x g b f x ==>≥,即()()f x g x ≤恒成立综合①②可知实数b 的取值范围为[)0,∞+.【点睛】关键点点睛:此题考查导数的综合应用,考查利用导数求函数的最值,考查利用导数证明不等式,考查利用导数解决不等式恒成立问题,第(3)问解题的关键是先由()()00,0f g b ==,从而可得0b ≥,然后分情况讨论即可得答案,考查数转化思想,属于较难题.。
2020-2021学年湖南省高考数学一模试卷(文科)及答案解析
湖南省高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x<0},N={x|x2﹣x﹣2<0},则M∩N=()A.{x|﹣1<x<0} B.{x|﹣2<x<0} C.{x|x<2} D.{x|x<1}2.复数z满足(z﹣1)(1+i)=2i,则|z|=()A.1 B.2 C.D.53.若p:a,b∈R+;q:a2+b2≥2ab,则()A.p是q充要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.已知平面向量为单位向量,,则向量的夹角为()A.B.C.D.5.函数,则函数的零点个数为()A.3 B.2 C.1 D.06.设x,y满足约束条件,则z=x+2y﹣3的最大值为()A.8 B.5 C.2 D.17.现有一枚质地均匀且表面分别标有1、2、3、4、5、6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为()A.B.C.D.8.如图程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示m除以n的余数),若输入的m,n分别为495,135,则输出的m=()A.0 B.5 C.45 D.909.抛物线y2=8x的焦点F与双曲线(a>0,b>0)右焦点重合,又P为两曲线的一个公共交点,且|PF|=5,则双曲线的实轴长为()A.1 B.2 C.D.610.数列{a n}满足:,则数列{a n a n+1}前10项的和为()A.B.C.D.11.某几何体的三视图如图所示,则该几何体外接球的表面积为()A.B.3πC.6πD.24π12.已知函数f(x)=xsinx+cosx+x2,则不等式的解集为()A.(e,+∞)B.(0,e)C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上.13.已知定义在R上的函数f(x)满足f(x+2)﹣f(x)=0,当x∈(0,2]时,f(x)=2x,则f 的最小正周期为π.(Ⅰ)求ω的值及f(x)的单调递减区间;(Ⅱ)将函数f(x)的图象向右平移个长度单位后得到函数g(x)的图象,求当时g(x)的最大值.18.某机构为了解某地区中学生在校月消费情况,随机抽取了100名中学生进行调查.如图是根据调查的结果绘制的学生在校月消费金额的频率分布直方图.已知[350,450),[450,550),[550,650)三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.(Ⅰ)求m,n的值,并求这100名学生月消费金额的样本平均数(同一组中的数据用该组区间的中点值作代表);(Ⅱ)根据已知条件完成下面2×2列联表,并判断能否有90%的把握认为“高消费群”与性别有关?高消费群非高消费群合计男女10 50合计(参考公式:,其中n=a+b+c+d)P(K2≥k)0.10 0.05 0.025 0.010 0.005 0.001k 2.706 3.841 5.024 6.635 7.879 10.82819.如图,四棱锥A﹣BCDE中,CD⊥平面ABC,BE∥CD,AB=BC=CD,AB⊥BC,M为AD上一点,EM⊥平面ACD.(Ⅰ)求证:EM∥平面ABC.(Ⅱ)若CD=2BE=2,求点D到平面EMC的距离.20.已知椭圆C1:的离心率为,焦距为,抛物线C2:x2=2py(p >0)的焦点F是椭圆C1的顶点.(Ⅰ)求C1与C2的标准方程;(Ⅱ)若C2的切线交C1于P,Q两点,且满足,求直线PQ的方程.21.已知函数,曲线y=f(x)在点(e2,f(e2))处的切线与直线2x+y=0垂直(其中e为自然对数的底数).(Ⅰ)求f(x)的解析式及单调递减区间;(Ⅱ)是否存在常数k,使得对于定义域内的任意x,恒成立?若存在,求出k的值;若不存在,请说明理由.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.[选修4-1:几何证明选讲]22.如图,已知AB=AC,圆O是△ABC的外接圆,CD⊥AB,CE是圆O的直径.过点B作圆O的切线交AC的延长线于点F.(Ⅰ)求证:AB•CB=CD•CE;(Ⅱ)若,,求△ABC的面积.解答题(共1小题,满分0分)23.已知曲线C的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A,B的极坐标分别为A(2,π),.(Ⅰ)求直线AB的直角坐标方程;(Ⅱ)设M为曲线C上的动点,求点M到直线AB距离的最大值.[选修4-5:不等式选讲]24.己知函数f(x)=|2x+1|﹣|x﹣1|.(Ⅰ)求不等式f(x)<2的解集;(Ⅱ)若关于x的不等式f(x)≤a﹣有解,求a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x<0},N={x|x2﹣x﹣2<0},则M∩N=()A.{x|﹣1<x<0} B.{x|﹣2<x<0} C.{x|x<2} D.{x|x<1}【考点】交集及其运算.【分析】求出N中不等式的解集确定出N,找出M与N的交集即可.【解答】解:由N中不等式变形得:(x﹣2)(x+1)<0,解得:﹣1<x<2,即N={x|﹣1<x<2},∵M={x|x<0},∴M∩N={x|﹣1<x<0},故选:A.2.复数z满足(z﹣1)(1+i)=2i,则|z|=()A.1 B.2 C.D.5【考点】复数求模.【分析】利用复数的代数形式混合运算化简求解,然后求出复数的模即可.【解答】解:复数z满足(z﹣1)(1+i)=2i,可得z===2+1.|z|==.故选:C.3.若p:a,b∈R+;q:a2+b2≥2ab,则()A.p是q充要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义分别判断其充分性和必要性即可.【解答】解:由a2+b2≥2ab得:(a﹣b)2≥0,∀a,b是R恒成立,推不出a>0,b>0,不是必要条件,由“a>0,b>0”能推出“a2+b2≥2ab,是充分条件,故“a>0,b>0”是“a2+b2≥2ab的充分不必要条件,故选:B.4.已知平面向量为单位向量,,则向量的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】由题意可得到,从而由便可得到,进行向量数量积的运算便可得到,从而便可得出向量,的夹角.【解答】解:根据条件,;∴由得,;∴;∴向量的夹角为.故选:D.5.函数,则函数的零点个数为()A.3 B.2 C.1 D.0【考点】函数零点的判定定理.【分析】的零点,即方程f(x)﹣的根,也就是f(x)=的根,即函数y=f(x)与y=交点的横坐标,画出图形得答案.【解答】解:由f(x)﹣,得f(x)=,作出函数y=f(x)与y=的图象如图,由图可知,函数的零点个数为3.故选:A.6.设x,y满足约束条件,则z=x+2y﹣3的最大值为()A.8 B.5 C.2 D.1【考点】简单线性规划.【分析】先由约束条件画出可行域,再求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证即得答案.【解答】解:如图即为满足的可行域,由图易得:当x=4,y=2时z=x+2y﹣3的最大值为5,故选:B.7.现有一枚质地均匀且表面分别标有1、2、3、4、5、6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再利用列举法求出这两次出现的点数之和大于点数之积包含的基本事件个数,由此能求出这两次出现的点数之和大于点数之积的概率.【解答】解:现有一枚质地均匀且表面分别标有1、2、3、4、5、6的正方体骰子,将这枚骰子先后抛掷两次,基本事件总数n=6×6=36,这两次出现的点数之和大于点数之积包含的基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个,∴这两次出现的点数之和大于点数之积的概率为p=.故选:D.8.如图程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示m除以n的余数),若输入的m,n分别为495,135,则输出的m=()A.0 B.5 C.45 D.90【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量m的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体,r=90,m=135,n=90,不满足退出循环的条件;第二次执行循环体,r=0,m=45,n=0,满足退出循环的条件;故输出的m值为45,故选:C9.抛物线y2=8x的焦点F与双曲线(a>0,b>0)右焦点重合,又P为两曲线的一个公共交点,且|PF|=5,则双曲线的实轴长为()A.1 B.2 C.D.6【考点】抛物线的简单性质;双曲线的简单性质.【分析】求得抛物线的焦点和准线方程,可得c=2,设出P的坐标,运用抛物线的定义,可得P 的坐标,代入双曲线的方程,解得a=1,进而得到双曲线的实轴长.【解答】解:抛物线y2=8x的焦点F(2,0),准线为x=﹣2,由题意可得c=2,设P(m,n),由抛物线的定义可得|PF|=m+2=5,解得m=3,n=±2,将P(3,±2)代入双曲线的方程,可得﹣=1,且a2+b2=4,解得a=1,b=,即有双曲线的实轴长为2a=2.故选:B.10.数列{a n}满足:,则数列{a n a n+1}前10项的和为()A.B.C.D.【考点】数列的求和.【分析】通过对a n﹣a n+1=2a n a n+1变形可知﹣=2,进而可知a n=,并项相加即得结论.【解答】解:∵a n﹣a n+1=2a n a n+1,∴﹣=2,又∵=5,∴=+2(n﹣3)=2n﹣1,即a n=,∴a n a n+1=(a n﹣a n+1)=(﹣),∴所求值为(1﹣+﹣+…+﹣)=(1﹣)=,故选:A.11.某几何体的三视图如图所示,则该几何体外接球的表面积为()A.B.3πC.6πD.24π【考点】由三视图求面积、体积.【分析】根据三视图知几何体是三棱锥为长方体一部分,画出直观图,由长方体的性质求出该几何体外接球的半径,利用球的表面积公式求出该几何体外接球的表面积.【解答】解:根据三视图知几何体是:三棱锥P﹣ABC为长方体一部分,直观图如图所示:且长方体的长、宽、高分别是1、1、2,∴三棱锥P﹣ABC的外接球与长方体的相同,设该几何体外接球的半径是R,由长方体的性质可得,2R==,解得R=,∴该几何体外接球的表面积S=4πR2=6π,故选:C.12.已知函数f(x)=xsinx+cosx+x2,则不等式的解集为()A.(e,+∞)B.(0,e)C.D.【考点】其他不等式的解法.【分析】求出函数的导数,求出单调增区间,再判断函数的奇偶性,则不等式,转化为f(lnx)<f(1)即为f|lnx|)<f(1),则|lnx|<1,运用对数函数的单调性,即可得到解集.【解答】解:函数f(x)=xsinx+cosx+x2的导数为:f′(x)=sinx+xcosx﹣sinx+2x=x(2+cosx),则x>0时,f′(x)>0,f(x)递增,且f(﹣x)=xsinx+cos(﹣x)+(﹣x)2=f(x),则为偶函数,即有f(x)=f(|x|),则不等式,即为f(lnx)<f(1)即为f|lnx|)<f(1),则|lnx|<1,即﹣1<lnx<1,解得,<x<e.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上.13.已知定义在R上的函数f(x)满足f(x+2)﹣f(x)=0,当x∈(0,2]时,f(x)=2x,则f=f (2),代值计算可得.【解答】解:∵定义在R上的函数f(x)满足f(x+2)﹣f(x)=0,∴f(x+2)=f(x)即函数f(x)为周期为2的周期函数,又∵当x∈(0,2]时,f(x)=2x,∴f=22=4,故答案为:4.14.在等比数列{a n}中,,则a3+a4= 2 .【考点】等比数列的通项公式.【分析】等比数列{a n}的公比为q,由于,可得q4(a1+a2)==8,解得q2,即可得出.【解答】解:设等比数列{a n}的公比为q,∵,∴q4(a1+a2)==8,解得q2=4.则a3+a4=q2(a1+a2)==2.故答案为:2.15.已知圆C的方程为x2+y2+8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围为.【考点】圆的一般方程.【分析】将圆C的方程整理为标准形式,找出圆心C的坐标与半径r,根据直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,即圆心到直线y=kx﹣2的距离小于等于2,利用点到直线的距离公式列出关于k的不等式求出不等式的解集即可得到k的范围.【解答】解:将圆C的方程整理为标准方程得:(x+4)2+y2=1,∴圆心C(﹣4,0),半径r=1,∵直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴圆心(﹣4,0)到直线y=kx﹣2的距离d=,解得:≤k≤0.故答案为:.16.为了测得一铁塔AB的高度,某人在塔底B的正东方向C处测得塔顶A的仰角为45°,再由C点沿北偏东30°方向走了20米后到达D点,又测得塔顶A的仰角为30°,则铁塔AB的高度为20 米.【考点】解三角形的实际应用.【分析】作出示意图,用AB表示出BC,BD,在△BCD中使用余弦定理列方程解出AB.【解答】解:由题意知CD=20,∠BCD=120°,∠ACB=45°,∠ADB=30°.AB⊥BC,AB⊥BD.设AB=h,则BC=h,BD=.在△BCD中,由余弦定理得BD2=BC2+CD2﹣2BC•CDcos∠BCD,即3h2=h2+400+20h,解得h=20.故答案为:20.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数,且f(x)的最小正周期为π.(Ⅰ)求ω的值及f(x)的单调递减区间;(Ⅱ)将函数f(x)的图象向右平移个长度单位后得到函数g(x)的图象,求当时g(x)的最大值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【分析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=,利用周期公式即可解得ω的值,利用正弦函数的图象和性质,令,即可解得f(x)的单调减区间.(Ⅱ)根据函数y=Asin(ωx+φ)的图象变换可求g(x)=2sin(2x﹣)+1,由x的范围,可求,由正弦函数的图象和性质即可得解.【解答】(本题满分12分)解:(Ⅰ)∵=,∵,∴ω=1,…从而:,令,得,∴f(x)的单调减区间为.…(Ⅱ)∵,…∵,∴,∴当,即时,g(x)max=2×1+1=3.…18.某机构为了解某地区中学生在校月消费情况,随机抽取了100名中学生进行调查.如图是根据调查的结果绘制的学生在校月消费金额的频率分布直方图.已知[350,450),[450,550),[550,650)三个金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.(Ⅰ)求m,n的值,并求这100名学生月消费金额的样本平均数(同一组中的数据用该组区间的中点值作代表);(Ⅱ)根据已知条件完成下面2×2列联表,并判断能否有90%的把握认为“高消费群”与性别有关?高消费群非高消费群合计男女10 50合计(参考公式:,其中n=a+b+c+d)P(K2≥k)0.10 0.05 0.025 0.010 0.005 0.001k 2.706 3.841 5.024 6.635 7.879 10.828【考点】独立性检验的应用.【分析】(Ⅰ)利用已知条件列出方程组求解m、n即可.(Ⅱ)利用已知条件直接列出联列表,然后情况k2,即可判断能否有90%的把握认为“高消费群”与性别有关.【解答】(本题满分12分)解:(Ⅰ)由题意知100(m+n)=0.6且2m=n+0.0015解得m=0.0025,n=0.0035…所求平均数为:(元)…(Ⅱ)根据频率分布直方图得到如下2×2列联表:高消费群非高消费群合计男15 35 50女10 40 50合计25 75 100…根据上表数据代入公式可得所以没有90%的把握认为“高消费群”与性别有关.…19.如图,四棱锥A﹣BCDE中,CD⊥平面ABC,BE∥CD,AB=BC=CD,AB⊥BC,M为AD上一点,EM⊥平面ACD.(Ⅰ)求证:EM∥平面ABC.(Ⅱ)若CD=2BE=2,求点D到平面EMC的距离.【考点】点、线、面间的距离计算;直线与平面平行的判定.【分析】(Ⅰ)取AC的中点F,连接BF,证明BF⊥平面ACD,结合EM⊥平面ACD,所以EM∥BF,再结合线面平行的判定定理得到EM∥面ABC;(Ⅱ)由等面积法求出点D到平面EMC的距离.【解答】证明:(Ⅰ)取AC的中点F,连接BF,因为AB=BC,所以BF⊥AC,又因为CD⊥平面ABC,所以CD⊥BF,所以BF⊥平面ACD,…因为EM⊥平面ACD,所以EM∥BF,因为EM⊄面ABC,BF⊂平面ABC,所以EM∥平面ABC;…解:(Ⅱ)因为EM⊥平面ACD,EM⊂面EMC,所以平面CME⊥平面ACD,平面CME∩平面ACD=CM,过点D作直线DG⊥CM,则DG⊥平面CME,…由已知CD⊥平面ABC,BE∥CD,AB=BC=CD=2BE,可得AE=DE,又EM⊥AD,所以M为AD的中点,在Rt△ABC中,,在Rt△ADC中,,,在△DCM中,,由等面积法知,所以,即点D到平面EMC的距离为.…20.已知椭圆C1:的离心率为,焦距为,抛物线C2:x2=2py(p >0)的焦点F是椭圆C1的顶点.(Ⅰ)求C1与C2的标准方程;(Ⅱ)若C2的切线交C1于P,Q两点,且满足,求直线PQ的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)设椭圆C1的焦距为2c,求得c,运用椭圆的离心率公式,可得a,b,进而得到椭圆方程;求得椭圆的上顶点,可得抛物线的焦点,进而得到抛物线的方程;(II)显然直线PQ的斜率存在.设直线PQ的方程为y=kx+m,设P(x1,y1),Q(x2,y2),求得向量FP,FQ的坐标,运用向量的数量积的坐标表示,联立直线方程和椭圆方程,运用韦达定理,联立抛物线的方程,运用判别式为0,化简整理,计算即可得到k,m的值,进而得到所求直线方程.【解答】解:(Ⅰ)设椭圆C1的焦距为2c,依题意有,,解得,b=2,故椭圆C1的标准方程为;又抛物线C2:x2=2py(p>0)开口向上,故F是椭圆C1的上顶点,∴F(0,2),∴p=4,故物线C2的标准方程为x2=8y.(II)显然直线PQ的斜率存在.设直线PQ的方程为y=kx+m,设P(x1,y1),Q(x2,y2),则,,∴,即(*),联立,消去y整理得,(3k2+1)x2+6kmx+3m2﹣12=0(**).依题意,x1,x2是方程(**)的两根,△=144k2﹣12m2+48>0,∴,,将x1+x2和x1•x2代入(*)得m2﹣m﹣2=0,解得m=﹣1,(m=2不合题意,应舍去),联立,消去y整理得,x2﹣8kx+8=0,令△'=64k2﹣32=0,解得,经检验,m=﹣1符合要求.故直线PQ的方程为.21.已知函数,曲线y=f(x)在点(e2,f(e2))处的切线与直线2x+y=0垂直(其中e为自然对数的底数).(Ⅰ)求f(x)的解析式及单调递减区间;(Ⅱ)是否存在常数k,使得对于定义域内的任意x,恒成立?若存在,求出k的值;若不存在,请说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(I)令f′(e2)=解出m,得出f(x)的解析式,令f′(x)<0解出f(x)的单调递减区间;(II)分离参数得出k>2x﹣2lnx(0<x<1)或k<2x﹣2lnx(x>1),分情况讨论求出右侧函数的最大值或最小值,从而得出k的范围.【解答】解:(Ⅰ),∵曲线y=f(x)在点(e2,f(e2))处的切线与直线2x+y=0垂直,∴f′(e2)==,解得m=2,∴,∴,令f'(x)<0解得:0<x<1或1<x<e,∴函数f(x)的单调减区间为(0,1)和(1,e).(Ⅱ)∵恒成立,即,①当x∈(0,1)时,lnx<0,则恒成立,令,则g′(x)=,再令,则h′(x)=<0,所以h(x)在(0,1)内递减,所以当x∈(0,1)时,h(x)>h(1)=0,故,所以g(x)在(0,1)内递增,g(x)<g(1)=2∴k≥2.②当x∈(1,+∞)时,lnx>0,则恒成立,由①可知,当x∈(1,+∞)时,h'(x)>0,所以h(x)在(1,+∞)内递增,所以当x∈(1,+∞)时,h(x)>h(1)=0,故,所以g(x)在(1,+∞)内递增,g(x)>g(1)=2⇒k≤2;综合①②可得:k=2.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.[选修4-1:几何证明选讲]22.如图,已知AB=AC,圆O是△ABC的外接圆,CD⊥AB,CE是圆O的直径.过点B作圆O的切线交AC的延长线于点F.(Ⅰ)求证:AB•CB=CD•CE;(Ⅱ)若,,求△ABC的面积.【考点】与圆有关的比例线段.【分析】(Ⅰ)连接AE,证明Rt△CBD∽Rt△CEA,结合AB=AC,即可证明:AB•CB=CD•CE;(Ⅱ)证明△ABF~△BCF,可得AC=CF,利用切割线定理有FA•FC=FB2,求出AC,即可求△ABC 的面积.【解答】证明:(Ⅰ)连接AE,∵CE是直径,∴∠CAE=90°,又CD⊥AB,∴∠CDB=90°,∵∠CBD=∠CEA,故Rt△CBD∽Rt△CEA,…∴,∴AC•CB=CD•CE又AB=AC,∴AB•CB=CD•CE.…(Ⅱ)∵FB是⊙O的切线,∴∠CBF=∠CAB.∴在△ABF和△BCF中,,∴△ABF~△BCF,∴,∴FA=2AB=2AC,∴AC=CF…设AC=x,则根据切割线定理有FA•FC=FB2∴x•2x=8,∴x=2,∴.…解答题(共1小题,满分0分)23.已知曲线C的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A,B的极坐标分别为A(2,π),.(Ⅰ)求直线AB的直角坐标方程;(Ⅱ)设M为曲线C上的动点,求点M到直线AB距离的最大值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)由x=ρcosθ,y=ρsinθ,可得A,B的直角坐标,求得AB的斜率,由点斜式方程可得直线方程;(Ⅱ)运用点到直线的距离公式,结合三角函数的辅助角公式,由正弦函数的值域,即可得到所求最大值.【解答】解:(Ⅰ)将A、B化为直角坐标为A(2cosπ,2sinπ)、,即A、B的直角坐标分别为A(﹣2,0)、,即有,可得直线AB的方程为,即为.(Ⅱ)设M(2cosθ,sinθ),它到直线AB距离=,(其中)当sin(θ+φ)=1时,d取得最大值,可得.[选修4-5:不等式选讲]24.己知函数f(x)=|2x+1|﹣|x﹣1|.(Ⅰ)求不等式f(x)<2的解集;(Ⅱ)若关于x的不等式f(x)≤a﹣有解,求a的取值范围.【考点】分段函数的应用.【分析】(Ⅰ)将f(x)写成分段函数式,讨论x的范围,解不等式,求交集即可得到所求解集;(Ⅱ)关于x的不等式f(x)≤a﹣有解,即为f(x)min≤a﹣,运用一次函数的单调性,求得最小值,解二次不等式即可得到所求范围.【解答】解:(Ⅰ)函数f(x)=|2x+1|﹣|x﹣1|=,当x≥1时,x+2<2,即x<0,可得x∈∅;当﹣<x<1时,3x<2,即x<,可得﹣<x<;当x≤﹣时,﹣x﹣2<2,即x>﹣4,可得﹣4<x≤﹣.综上可得,不等式的解集为(﹣4,);(Ⅱ)关于x的不等式f(x)≤a﹣有解,即为:f(x)min≤a﹣,由x≥1时,x+2≥3;﹣<x<1时,﹣<3x<3:x≤﹣时,﹣x﹣2≥﹣.可得f(x)min=﹣,即有a﹣≥﹣,解得﹣1≤a≤3.即有a的取值范围是[﹣1,3].。
湖南省高考数学文科模拟试卷(四)含答案解析
湖南省高考数学模拟试卷(文科)(四)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足1+z=(1﹣z)i,则|z|=()A.B.1 C.D.22.设全集为R,集合A={x|x2﹣9<0},B={x|﹣1<x≤5},则A∩(∁R B)=()A.(﹣3,0)B.(﹣3,﹣1) C.(﹣3,﹣1]D.(﹣3,3)3.已知,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.c>b>a4.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10 B.6 C.14 D.185.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,86.已知等差数列{a n}前四项中第二项为606,前四项和S n为3834,则该数列第4项为()A.2004 B.3005 C.2424 D.7.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.88.已知向量满足,,,则与的夹角为()A.B.C.D.9.已知圆C:x2+y2﹣4x﹣4y=0与x轴相交于A,B两点,则弦AB所对的圆心角的大小()A.B.C.D.10.将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,再将图象上所有点向左平移个单位,则所得函数图象的一条对称轴为()A.B.C.D.11.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为()A.B.2πC.D.12.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.曲线y=e﹣x+1在点(0,2)处的切线与直线y=0和x=0围成三角形的面积为.14.已知等比数列{a n}中,a3+a5=8,a1a5=4,则=.15.若不等式组表示的平面区域为三角形,且其面积等于,则m的值为.16.已知函数,若|f(x)|≥ax,则a的取值范围是.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.18.某城市100户居民的月平均用电量(单位:度)以[160,180),[180,200),[200,220),[220,240)[240,260),[260,280),[280,300]分组的频率分布直方图如图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则越平均用电量在[220,240)的用户中应抽取多少户?19.在边长为5的菱形ABCD中,AC=8,现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为.(1)求证:平面ABD⊥平面CBD;(2)若M是AB的中点,求三棱锥A﹣MCD的体积.20.已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若|AC|=|BD|,求直线l的斜率.21.已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x﹣1).四.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-1几何证明选讲] 22.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B 作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.[选修4-4坐标系与参数方程]23.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A 的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|.(Ⅰ)当a=1时,求不等式f(x)<4的解集;(Ⅱ)设函数f(x)的最小值为g(a),求g(a)的最小值.湖南省高考数学模拟试卷(文科)(四)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足1+z=(1﹣z)i,则|z|=()A.B.1 C.D.2【考点】复数求模.【专题】转化思想;综合法;数系的扩充和复数.【分析】由1+z=(1﹣z)i,可得z=,再利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:∵1+z=(1﹣z)i,∴z====i,则|z|=1.故选:B.【点评】本题考查了复数的运算法则、共轭复数的定义、模的计算公式,考查了推理能力与技能数列,属于基础题.2.设全集为R,集合A={x|x2﹣9<0},B={x|﹣1<x≤5},则A∩(∁R B)=()A.(﹣3,0)B.(﹣3,﹣1) C.(﹣3,﹣1]D.(﹣3,3)【考点】交、并、补集的混合运算.【专题】集合.【分析】根据补集的定义求得∁R B,再根据两个集合的交集的定义,求得A∩(∁R B).【解答】解:∵集合A={x|x2﹣9<0}={x|﹣3<x<3},B={x|﹣1<x≤5},∴∁R B={x|x≤﹣1,或x>5},则A∩(∁R B)={x|﹣3<x≤﹣1},故选:C.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.3.已知,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.c>b>a【考点】对数值大小的比较.【专题】转化思想;综合法;函数的性质及应用.【分析】根据指数的运算求出a的范围,根据对数的运算性质得到b,c的范围,比较即可.【解答】解:==>2,<0,0<<1,即a>2,b<0,0<c<1,即a>c>b,故选:A.【点评】本题考查了指数以及对数的运算性质,是一道基础题.4.阅读如图的程序框图,运行相应的程序,则输出S的值为()A.﹣10 B.6 C.14 D.18【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=8时满足条件i>5,退出循环,输出S的值为6.【解答】解:模拟执行程序框图,可得S=20,i=1i=2,S=18不满足条件i>5,i=4,S=14不满足条件i>5,i=8,S=6满足条件i>5,退出循环,输出S的值为6.故选:B.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的i,S的值是解题的关键,属于基础题.5.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8【考点】茎叶图.【专题】概率与统计.【分析】求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.【解答】解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.【点评】本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.6.已知等差数列{a n}前四项中第二项为606,前四项和S n为3834,则该数列第4项为()A.2004 B.3005 C.2424 D.【考点】等差数列的前n项和;等差数列的通项公式.【专题】等差数列与等比数列.【分析】根据等差数列前n项和公式和通项公式之间的关系进行推导即可.【解答】解:已知a2=606,S4=3834,则S3=a1+a2+a3=3a2=1818即a4=S4﹣S3=3834﹣1818= ,故选:D【点评】本题主要考查等差数列的前n项和公式和通项公式的应用,比较基础.7.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【考点】由三视图求面积、体积.【专题】立体几何.【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.8.已知向量满足,,,则与的夹角为()A.B.C.D.【考点】数量积表示两个向量的夹角.【专题】平面向量及应用.【分析】设与的夹角为θ,由数量积的定义代入已知可得cosθ,进而可得θ【解答】解:设与的夹角为θ,∵,,,∴=||||cosθ=1×2×cosθ=,∴cosθ=﹣,∴θ=故选:D【点评】本题考查数量积与向量的夹角,属基础题.9.已知圆C:x2+y2﹣4x﹣4y=0与x轴相交于A,B两点,则弦AB所对的圆心角的大小()A.B.C.D.【考点】直线与圆的位置关系.【专题】综合题;直线与圆.【分析】根据条件令x=0,求出AB的长度,结合三角形的勾股定理求出三角形ACB是直角三角形即可得到结论.【解答】解:当y=0时,得x2﹣4x=0,解得x=0或x=4,则AB=4﹣0=4,半径R=2,∵CA2+CB2=(2)2+(2)2=8+8=16=(AB)2,∴△ACB是直角三角形,∴∠ACB=90°,即弦AB所对的圆心角的大小为90°,故选:C.【点评】本题主要考查圆心角的求解,根据条件求出先AB的长度是解决本题的关键.10.将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,再将图象上所有点向左平移个单位,则所得函数图象的一条对称轴为()A.B.C.D.【考点】正弦函数的图象.【专题】三角函数的图像与性质.【分析】由条件利用y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数解析式,再根据正弦函数的图象的对称性,求得所得函数图象的一条对称轴.【解答】解:将的图象上各点的横坐标缩短到原来的一半,纵坐标不变,可得函数y=sin(2x+)的图象;再把所得图象象左平移个单位,则所得函数图象对应的解析式为y=sin[2(x+)+]=sin(2x+),令2x+=kπ+,求得x=﹣,k∈z,故所得函数的图象的对称轴方程为x=﹣,k∈z.结合所给的选项,故选:A.【点评】本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.11.已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=AB,若四面体P﹣ABC的体积为,则该球的体积为()A.B.2πC.D.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】设该球的半径为R,则AB=2R,2AC=AB=,故AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,由此能求出球的体积.【解答】解:设该球的半径为R,则AB=2R,2AC=AB=,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,在Rt△ABC中,由勾股定理,得:BC2=AB2﹣AC2=R2,所以Rt△ABC面积S=×BC×AC=,又PO⊥平面ABC,且PO=R,四面体P﹣ABC的体积为,∴V P==,﹣ABC即R3=9,R3=3,=×πR3=×π×3=4π.所以:球的体积V球故选D.【点评】本题考查四面体的外接球的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.12.已知双曲线﹣=1 (a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【考点】双曲线的标准方程.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由抛物线标准方程易得其准线方程,从而可得双曲线的左焦点,再根据焦点在x轴上的双曲线的渐近线方程渐近线方程,得a、b的另一个方程,求出a、b,即可得到双曲线的标准方程.【解答】解:由题意,=,∵抛物线y2=4x的准线方程为x=﹣,双曲线的一个焦点在抛物线y2=4x的准线上,∴c=,∴a=2,b=,∴双曲线的方程为.故选:D.【点评】本题主要考查双曲线和抛物线的标准方程与几何性质,考查学生的计算能力,属于基础题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.曲线y=e﹣x+1在点(0,2)处的切线与直线y=0和x=0围成三角形的面积为2.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;转化法;导数的概念及应用.【分析】求函数的导数,利用导数求出函数的切线方程,结合三角形的面积公式进行求解即可.【解答】解:函数的导数f′(x)=﹣e﹣x,则f′(0)=﹣1,则切线方程为y﹣2=﹣x,即y=﹣x+2,切线与x轴的交点为(2,0),与y轴的交点为(0,2),∴切线与直线y=0和x=0围成三角形的面积S=,故答案为:2【点评】本题主要考查三角形面积的计算,求函数的导数,利用导数的几何意义求出切线方程是解决本题的关键.14.已知等比数列{a n}中,a3+a5=8,a1a5=4,则=9.【考点】等比数列的性质.【专题】等差数列与等比数列.【分析】由等比数列的性质可得a1a5=a32=4,解出a3,分别可得q2,而=q4,代入可得答案.【解答】解:由等比数列的性质可得a1a5=a32=4,解得a3=2,或a3=﹣2,当a3=2时,可得a5=8﹣a3=6,q2==3当a3=﹣2,可得a5=8﹣a3=10,q2==﹣5,(舍去)∴=q4=32=9故答案为:9【点评】本题考查等比数列的性质,涉及分类讨论的思想,属基础题.15.若不等式组表示的平面区域为三角形,且其面积等于,则m的值为1.【考点】二元一次不等式(组)与平面区域.【专题】数形结合;综合法;不等式的解法及应用.【分析】作出不等式组对应的平面区域,求出三角形各顶点的坐标,利用三角形的面积公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:若表示的平面区域为三角形,由,得,即A(2,0),则A(2,0)在直线x﹣y+2m=0的下方,即2+2m>0,则m>﹣1,则A(2,0),D(﹣2m,0),由,解得,即B(1﹣m,1+m),由,解得,即C(,).则三角形ABC的面积S△ABC=S△ADB﹣S△ADC=|AD||y B﹣y C|=(2+2m)(1+m﹣)=(1+m)(1+m﹣)=,即(1+m)×=,即(1+m)2=4解得m=1或m=﹣3(舍).【点评】本题主要考查线性规划以及三角形面积的计算,求出交点坐标,结合三角形的面积公式是解决本题的关键.16.已知函数,若|f(x)|≥ax,则a的取值范围是[﹣2,0].【考点】绝对值不等式的解法;指、对数不等式的解法.【专题】不等式的解法及应用.【分析】由题意可得,当x>0时,log2(x+1)>0恒成立,则此时应有a≤0.当x≤0时,|f(x)|=x2﹣2x≥ax,再分x=0、x<0两种情况,分别求得a的范围,综合可得结论.【解答】解:由于函数,且|f(x)|≥ax,①当x>0时,log2(x+1)>0恒成立,不等式即log2(x+1)≥ax,则此时应有a≤0.②当x≤0时,由于﹣x2+2x 的取值为(﹣∞,0],故不等式即|f(x)|=x2﹣2x≥ax.若x=0时,|f(x)|=ax,a取任意值.若x<0时,有a≥x﹣2,即a≥﹣2.综上,a的取值为[﹣2,0],故答案为[﹣2,0].【点评】本题主要考查绝对值不等式的解法,对数不等式的解法,体现了分类讨论的数学思想,属于中档题.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【考点】正弦定理.【专题】解三角形.【分析】(Ⅰ)由正弦定理及已知可得=,由sinA≠0,即可证明sinB=cosA.(Ⅱ)由两角和的正弦函数公式化简已知可得sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,可得sin2B=,结合范围可求B,由sinB=cosA及A的范围可求A,由三角形内角和定理可求C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.【点评】本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式的应用,属于基础题.18.某城市100户居民的月平均用电量(单位:度)以[160,180),[180,200),[200,220),[220,240)[240,260),[260,280),[280,300]分组的频率分布直方图如图(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则越平均用电量在[220,240)的用户中应抽取多少户?【考点】用样本的数字特征估计总体的数字特征.【专题】计算题;数形结合;整体思想;定义法;概率与统计.【分析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095++0.011)×20+0.0125×(a﹣220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.19.在边长为5的菱形ABCD中,AC=8,现沿对角线BD把△ABD折起,折起后使∠ADC的余弦值为.(1)求证:平面ABD⊥平面CBD;(2)若M是AB的中点,求三棱锥A﹣MCD的体积.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离.【分析】(Ⅰ)由已知条件推导出AO⊥平面BCD,由此能证明平面ABD⊥平面CBD.(Ⅱ)分别以OA,OC,OD所在直线为坐标轴建系,利用向量法能求出三棱锥A﹣MCD的体积.【解答】(Ⅰ)证明:菱形ABCD中,记AC,BD交点为O,AD=5,∴OA=4,OD=3,翻折后变成三棱椎A﹣BCD,在△ACD中,AC2=AD2+CD2﹣2AD•CD•cos∠ADC=25+25﹣2×,在△AOC中,OA2+OC2=32=AC2,∴∠AOC=90°,即AO⊥OC,又AO⊥BD,OC∩BD=O,∴AO⊥平面BCD,又AO⊂平面ABD,∴平面ABD⊥平面CBD.(Ⅱ)解:由(Ⅰ)知OA,OC,OD两两互相垂直,分别以OA,OC,OD所在直线为坐标轴建系,则A (0,0,4),B(0,﹣3,0),C(4,0,0),D(0,3,0),M(0,﹣,2),=(4,,﹣2),=(4,0,﹣4),=(4,﹣3,0),设平面ACD的一个法向量=(x,y,z),则由,得,令y=4,得=(3,4,3),∵=(),∴A到平面ACD的距离d===.∵在边长为5的菱形ABCD中,AC=8,∴S△ACD==12,∴三棱锥A﹣MCD的体积V===.【点评】本题考查平面与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意向量法的合理运用.20.已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若|AC|=|BD|,求直线l的斜率.【考点】直线与圆锥曲线的关系;椭圆的标准方程.【专题】开放型;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过C1方程可知a2﹣b2=1,通过C1与C2的公共弦的长为2且C1与C2的图象都关于y轴对称可得,计算即得结论;(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),通过=可得(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l方程为y=kx+1,分别联立直线与抛物线、直线与椭圆方程,利用韦达定理计算即可.【解答】解:(Ⅰ)由C1方程可知F(0,1),∵F也是椭圆C2的一个焦点,∴a2﹣b2=1,又∵C1与C2的公共弦的长为2,C1与C2的图象都关于y轴对称,∴易得C1与C2的公共点的坐标为(±,),∴,又∵a2﹣b2=1,∴a2=9,b2=8,∴C2的方程为+=1;(Ⅱ)如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),∵与同向,且|AC|=|BD|,∴=,∴x1﹣x2=x3﹣x4,∴(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的斜率为k,则l方程:y=kx+1,由,可得x2﹣4kx﹣4=0,由韦达定理可得x1+x2=4k,x1x2=﹣4,由,得(9+8k2)x2+16kx﹣64=0,由韦达定理可得x3+x4=﹣,x3x4=﹣,又∵(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,∴16(k2+1)=+,化简得16(k2+1)=,∴(9+8k2)2=16×9,解得k=±,即直线l的斜率为±.【点评】本题是一道直线与圆锥曲线的综合题,考查求椭圆方程以及直线的斜率,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.21.已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x﹣1).【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【专题】综合题;开放型;导数的综合应用.【分析】(Ⅰ)求导数,利用导数大于0,可求函数f(x)的单调增区间;(Ⅱ)令F(x)=f(x)﹣(x﹣1),证明F(x)在[1,+∞)上单调递减,可得结论;(Ⅲ)分类讨论,令G(x)=f(x)﹣k(x﹣1)(x>0),利用函数的单调性,可得实数k的所有可能取值.【解答】解:(Ⅰ)∵f(x)=lnx﹣,∴f′(x)=>0(x>0),∴0<x<,∴函数f(x)的单调增区间是(0,);(Ⅱ)令F(x)=f(x)﹣(x﹣1),则F′(x)=当x>1时,F′(x)<0,∴F(x)在[1,+∞)上单调递减,∴x>1时,F(x)<F(1)=0,即当x>1时,f(x)<x﹣1;(Ⅲ)由(Ⅱ)知,k=1时,不存在x0>1满足题意;当k>1时,对于x>1,有f(x)<x﹣1<k(x﹣1),则f(x)<k(x﹣1),从而不存在x0>1满足题意;当k<1时,令G(x)=f(x)﹣k(x﹣1)(x>0),则G′(x)==0,可得x1=<0,x2=>1,当x∈(1,x2)时,G′(x)>0,故G(x)在(1,x2)上单调递增,从而x∈(1,x2)时,G(x)>G(1)=0,即f(x)>k(x﹣1),综上,k的取值范围为(﹣∞,1).【点评】本题考查导数知识的综合运用,考查函数的单调性,考查不等式的证明,正确构造函数是关键.四.请考生在第(22)、(23)(24)三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-1几何证明选讲]22.如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B 作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.【考点】圆的切线的性质定理的证明;直线与圆相交的性质;直线与圆的位置关系;与圆有关的比例线段.【专题】计算题;证明题.【分析】(I)连接AB,根据弦切角等于所夹弧所对的圆周角得到∠BAC=∠D,又根据同弧所对的圆周角相等得到∠BAC=∠E,等量代换得到∠D=∠E,根据内错角相等得到两直线平行即可;(II)根据切割线定理得到PA2=PB•PD,求出PB的长,然后再根据相交弦定理得PA•PC=BP•PE,求出PE,再根据切割线定理得AD2=DB•DE=DB•(PB+PE),代入求出即可.【解答】解:(I)证明:连接AB,∵AC是⊙O1的切线,∴∠BAC=∠D,又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC.(II)∵PA是⊙O1的切线,PD是⊙O1的割线,∴PA2=PB•PD,∴62=PB•(PB+9)∴PB=3,在⊙O2中由相交弦定理,得PA•PC=BP•PE,∴PE=4,∵AD是⊙O2的切线,DE是⊙O2的割线,∴AD2=DB•DE=9×16,∴AD=12【点评】此题是一道综合题,要求学生灵活运用直线与圆相切和相交时的性质解决实际问题.本题的突破点是辅助线的连接.[选修4-4坐标系与参数方程]23.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点A 的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.(1)求a的值及直线l的直角坐标方程;(2)若圆C的参数方程为(α为参数),试判断直线l与圆C的位置关系.【考点】参数方程化成普通方程.【专题】计算题;规律型;转化思想;直线与圆.【分析】(1)利用点在直线上,代入方程求出a,利用极坐标与直角坐标的互化,求出直线的直角坐标方程.(2)化简圆的参数方程与直角坐标方程,求出圆心与半径,利用圆心到直线的距离与半径比较即可得到直线与圆的位置关系.【解答】解:(1)点A的极坐标为(,),直线l的极坐标方程为ρcos(θ﹣)=a,且点A在直线l上.可得:cos(﹣)=a,解得a=.直线l的极坐标方程为ρcos(θ﹣)=,即:ρcosθ+ρsinθ=2,直线l的直角坐标方程为:x+y﹣2=0.(2)圆C的参数方程为(α为参数),可得圆的直角坐标方程为:(x﹣1)2+y2=1.圆心(1,0),半径为:1.因为圆心到直线的距离d==<1,所以直线与圆相交.【点评】本题考查参数方程与极坐标方程与直角坐标方程的互化,直线与圆的位置关系的应用,考查计算能力.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|.(Ⅰ)当a=1时,求不等式f(x)<4的解集;(Ⅱ)设函数f(x)的最小值为g(a),求g(a)的最小值.【考点】绝对值不等式的解法;分段函数的应用.【专题】函数的性质及应用.【分析】(1)化简函数f(x)的解析式,画出函数的f(x)的图象,数形结合求得不等式f(x)<4的解集.(2)由条件利用绝对值的意义求得g(a)的最小值.【解答】解:(1)当a=1时,f(x)=2|x﹣1|+|x﹣3|=,由图可得,不等式f(x)<4的解集为(,3).(2)函数f(x)=|x﹣1|+|x﹣3|+|x﹣a|表示数轴上的x对应点到a、1、3对应点的距离之和,可得f(x)的最小值为g(a)=,故g(a)的最小值为2.【点评】本题主要考查绝对值的意义,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省XX中学高考数学一模试卷(文科)一.本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的.1.已知集合A={﹣2,﹣1,0,1,2},B={x|<0},则A∩B=()A.{0,1} B.{﹣1,0} C.{﹣1,0,1} D.{0,1,2}2.已知1+i=,则在复平面内,复数z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知,若共线,则实数x=()A. B.C.1 D.24.已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边在直线y=3x上,则sin(2θ+)=()A.B.﹣C.D.﹣5.已知单调递增的等比数列{a n}中,a2•a6=16,a3+a5=10,则数列{a n}的前n 项和S n=()A.B. C.2n﹣1 D.2n+1﹣26.已知实数x,y满足不等式组,若目标函数z=kx+y仅在点(1,1)处取得最小值,则实数k的取值范围是()A.(﹣1,+∞)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣∞,1)7.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1﹣B.C.D.1﹣8.《九章算术》是我国古代数学经典名著,它在集合学中的研究比西方早1千年,在《九章算术》中,将四个面均为直角三角形的四面体称为鳖臑,已知某“鳖臑”的三视图如图所示,则该鳖臑的外接球的表面积为()A.200πB.50πC.100πD.π9.椭圆=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为()A. B.C.D.10.执行如图所示的程序框图,如果运行结果为720,那么判断框中应填入()A.k<6?B.k<7?C.k>6?D.k>7?11.设函数f(x)=,若互不相等的实数x1,x2,x3满足f (x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是()A.(] B.()C.(] D.()12.已知定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=﹣1对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),若a=0.76f(0.76),b=log6f(log6),c=60.6f (60.6),则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b二.填空题(每题5分,共20分)13.已知正实数x,y满足xy+2x+y=4,则x+y的最小值为.14.若双曲线的离心率为3,其渐近线与圆x2+y2﹣6y+m=0相切,则m= .15.已知长方体ABCD﹣A1B1C1D1内接于球O,底面ABCD是边长为2的正方形,E为AA1的中点,OA⊥平面BDE,则球O的表面积为.16.函数f(x),g(x)的定义域都是D,直线x=x0(x0∈D),与y=f(x),y=g(x)的图象分别交于A,B两点,若|AB|的值是不等于0的常数,则称曲线y=f(x),y=g(x)为“平行曲线”,设f(x)=e x﹣alnx+c(a>0,c≠0),且y=f(x),y=g(x)为区间(0,+∞)的“平行曲线”,g(1)=e,g(x)在区间(2,3)上的零点唯一,则a的取值范围是.三.解答题(共8题,共70分)17.在数列{a n}中,已知a1=1,a2=3,a n+2=3a n+1﹣2a n.(Ⅰ)证明数列{ a n+1﹣a n}是等比数列,并求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n+1),{b n}的前n项和为S n,求证<2.18.某中学是走读中学,为了让学生更有效率利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便让学生在自习室自主学习、完成作业,同时每天派老师轮流值班.在本学期第二次月考后,高一某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下2×2列联表:非优良优良总计未设立自习室251540设立自习室103040总计354580(1)能否在在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;(2)从该班第一次月考的数学优良成绩中和第二次月考的数学非优良成绩中,按分层抽样随机抽取5个成绩,再从这5个成绩中随机抽取2个,求这2个成绩来自同一次月考的概率.下面的临界值表供参考:P(K2≥k0)0.150.100.050.0250.010.0050.001k0 2.07 2.70 3.84 5.02 6.637.8710.822614598(参考公式:K2=,其中n=a+b+c+d)19.如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.(1)求证:AD⊥PB;(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.20.已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.21.已知函数f(x)=+bx(a≠0),g(x)=1+lnx.(Ⅰ)若b=1,且F(x)=g(x)﹣f(x)存在单调递减区间,求a的取值范围;(Ⅱ)设函数g(x)的图象C1与函数f(x)的图象C2交于点M、N,过线段MN的中点T作x轴的垂线分别交C1、C2于点P、Q,是否存在点T,使C1在点P处的切线与C2在点Q处的切线平行?如果存在,求出点T的横坐标,如果不存在,说明理由.选做题(本题满分10分)22.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t 是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.参考答案与试题解析一.本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的.1.已知集合A={﹣2,﹣1,0,1,2},B={x|<0},则A∩B=()A.{0,1} B.{﹣1,0} C.{﹣1,0,1} D.{0,1,2}【考点】1E:交集及其运算.【分析】先分别求出集合A,B,由此能求出交集A∩B.【解答】解:集合A={﹣2,﹣1,0,1,2},B={x|<0}={x|﹣1<x<2},∴A∩B={0,1}.故选:A.2.已知1+i=,则在复平面内,复数z所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A4:复数的代数表示法及其几何意义.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:1+i=,∴z===i.在复平面内,复数z所对应的点在第一象限.故选:A.3.已知,若共线,则实数x=()A. B.C.1 D.2【考点】9K:平面向量共线(平行)的坐标表示.【分析】利用向量共线时,坐标之间的关系,我们可以建立方程就可求实数x 的值【解答】解:∵,∴∵与共线,∴1×1﹣2×(1﹣x)=0∴x=故选B.4.已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边在直线y=3x上,则sin(2θ+)=()A.B.﹣C.D.﹣【考点】GQ:两角和与差的正弦函数.【分析】根据定义求解sinθ和cosθ的值,利用两角和与差的公式以及二倍角公式即可化简并求解出答案.【解答】解:由题意,已知角θ的顶点与原点重合,始边与x轴正半轴重合,终边在直线y=3x上,可知θ在第一或第三象限.根据正余弦函数的定义:可得sinθ=,cosθ=±,则sin(2θ+)=sin2θcos+cos2θsin=sinθcosθ+==故选:A.5.已知单调递增的等比数列{a n}中,a2•a6=16,a3+a5=10,则数列{a n}的前n 项和S n=()A.B. C.2n﹣1 D.2n+1﹣2【考点】89:等比数列的前n项和.【分析】由等比数列的性质和韦达定理可得a3,a5为方程x2﹣10x+16=0的实根,解方程可得q和a1,代入求和公式计算可得.【解答】解:∵a2•a6=16,a3+a5=10,∴由等比数列的性质可得a3•a5=16,a3+a5=10,∴a3,a5为方程x2﹣10x+16=0的实根,解方程可得a3=2,a5=8,或a3=8,a5=2,∵等比数列{a n}单调递增,∴a3=2,a5=8,∴q=2,,∴故选:B.6.已知实数x,y满足不等式组,若目标函数z=kx+y仅在点(1,1)处取得最小值,则实数k的取值范围是()A.(﹣1,+∞)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣∞,1)【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用目标函数z=kx+y取得最小值时的唯一最优解是(1,1),得到直线y=﹣kx+z斜率的变化,从而求出k的取值范围【解答】解:作出不等式组对应的平面区域如图:(阴影部分OAB).由z=kx+y得y=﹣kx+z,即直线的截距最大,z也最大.平移直线y﹣kx+z,要使目标函数z=kx+y取得最小值时的唯一最优解是(1,1),即直线y=﹣kx+z经过点A(1,1)时,截距最小,由图象可知当阴影部分必须在直线y=﹣kx+z的右上方,此时只要满足直线y=﹣kx+z的斜率﹣k大于直线OA的斜率即可直线OA的斜率为1,∴﹣k>1,所以k<﹣1.故选:B7.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1﹣B.C.D.1﹣【考点】CF:几何概型.【分析】由题意,直接看顶部形状,及正方形内切一个圆,正方形面积为4,圆为π,即可求出“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率.【解答】解:由题意,正方形的面积为22=4.圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1﹣,故选:A.8.《九章算术》是我国古代数学经典名著,它在集合学中的研究比西方早1千年,在《九章算术》中,将四个面均为直角三角形的四面体称为鳖臑,已知某“鳖臑”的三视图如图所示,则该鳖臑的外接球的表面积为()A.200πB.50πC.100πD.π【考点】LR:球内接多面体;L7:简单空间图形的三视图.【分析】几何体复原为底面是直角三角形,一条侧棱垂直底面直角顶点的三棱锥,扩展为长方体,长方体的对角线的长,就是外接球的直径,然后求其的表面积.【解答】解:由三视图复原几何体,几何体是底面是直角三角形,一条侧棱垂直底面直角顶点的三棱锥;扩展为长方体,也外接与球,它的对角线的长为球的直径:=5该三棱锥的外接球的表面积为:=50π,故选B.9.椭圆=1(a>b>0)的一个焦点为F1,若椭圆上存在一个点P,满足以椭圆短轴为直径的圆与线段PF1相切于该线段的中点,则椭圆的离心率为()A. B.C.D.【考点】K4:椭圆的简单性质.【分析】设线段PF1的中点为M,另一个焦点F2,利用OM是△FPF2的中位线,以及椭圆的定义求出直角三角形OMF1的三边之长,使用勾股定理求离心率.【解答】解:设线段PF1的中点为M,另一个焦点F2,由题意知,OM=b,又OM是△FPF1的中位线,∴OM=PF2=b,PF2=2b,由椭圆的定义知PF1=2a﹣PF2=2a﹣2b,又MF1=PF1=(2a﹣2b)=a﹣b,又OF1=c,直角三角形OMF1中,由勾股定理得:(a﹣b)2+b2=c2,又a2﹣b2=c2,可得2a=3b,故有4a2=9b2=9(a2﹣c2),由此可求得离心率e==,故选:D.10.执行如图所示的程序框图,如果运行结果为720,那么判断框中应填入()A.k<6?B.k<7?C.k>6?D.k>7?【考点】EF:程序框图.【分析】由题意,模拟程序框图的运行过程,即可得出判断框中应填写的条件是什么.【解答】解:由题意可知,输出结果为S=720,通过第1次循环得到S=1×2=2,k=3;通过第2次循环得到S=1×2×3=6,k=4;通过第3次循环得到S=1×2×3×4=24,k=5;通过第4次循环得到S=1×2×3×4×5=120,k=6;通过第6次循环得到S=1×2×3×4×5×6=720,k=7;此时执行输出S=720,结束循环,所以判断框中的条件为k>6?.故选:C.11.设函数f(x)=,若互不相等的实数x1,x2,x3满足f (x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是()A.(] B.()C.(] D.()【考点】3B:分段函数的解析式求法及其图象的作法.【分析】先作出函数f(x)=的图象,如图,不妨设x1<x2<x3,则x2,x3关于直线x=3对称,得到x2+x3=6,且﹣<x1<0;最后结合求得x1+x2+x3的取值范围即可.【解答】解:函数f(x)=的图象,如图,不妨设x1<x2<x3,则x2,x3关于直线x=3对称,故x2+x3=6,且x1满足﹣<x1<0;则x1+x2+x3的取值范围是:﹣+6<x1+x2+x3<0+6;即x1+x2+x3∈(,6).故选D12.已知定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=﹣1对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),若a=0.76f(0.76),b=log6f(log6),c=60.6f (60.6),则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b【考点】6B:利用导数研究函数的单调性;3O:函数的图象.【分析】利用导数判断函数的单调性,判断函数的奇偶性,然后求解a,b,c 的大小.【解答】解:定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=﹣1对称,可知函数是偶函数,当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),可知函数y=xf(x)是增函数,x>0时是减函数;0.76∈(0,1),60.6(2,4),log6≈log1.56∈(4,6).所以a>c>b.故选:D.二.填空题(每题5分,共20分)13.已知正实数x,y满足xy+2x+y=4,则x+y的最小值为.【考点】7F:基本不等式.【分析】变形利用基本不等式即可得出.【解答】解:∵正实数x,y满足xy+2x+y=4,∴(0<x<2).∴x+y=x+==(x+1)+﹣3﹣3=﹣3,当且仅当x=时取等号.∴x+y的最小值为.故答案为:.14.若双曲线的离心率为3,其渐近线与圆x2+y2﹣6y+m=0相切,则m= 8 .【考点】KC:双曲线的简单性质.【分析】由于双曲线的离心率为3,得到双曲线的渐近线y=2x,渐近线与圆x2+y2﹣6y+m=0相切,可得圆心到渐近线的距离d=r,利用点到直线的距离公式即可得出.【解答】解:∵双曲线的离心率为3,∴c=3a,∴b=2a,取双曲线的渐近线y=2x.∵双曲线的渐近线与x2+y2﹣6y+m=0相切,∴圆心(0,3)到渐近线的距离d=r,∴,∴m=8,故答案为:8.15.已知长方体ABCD﹣A1B1C1D1内接于球O,底面ABCD是边长为2的正方形,E为AA1的中点,OA⊥平面BDE,则球O的表面积为16π.【考点】LG:球的体积和表面积.【分析】根据已知结合长方体锥的几何特征和球的几何特征,求出球的半径,代入可得球的表面积.【解答】解:∵长方体ABCD﹣A1B1C1D1内接于球O,底面ABCD是边长为2的正方形,设AA1=2a,E为AA1的中点,以A为坐标原点,分别以AB,AD,AA1为x,y,z轴建立空间坐标系,则A(0,0,0),B(2,0,0),D(0,2,0),E(0,0,a),C1(2,2,2a),O(1,1,a),则=(﹣2,2,0),=(﹣2,0,a),=(1,1,a),若OA⊥平面BDE,则,即,即a2﹣2=0,解得a=,∴球O的半径R满足:2R==4,故球O的表面积S=4πR2=16π,故答案为:16π.16.函数f(x),g(x)的定义域都是D,直线x=x0(x0∈D),与y=f(x),y=g(x)的图象分别交于A,B两点,若|AB|的值是不等于0的常数,则称曲线y=f(x),y=g(x)为“平行曲线”,设f(x)=e x﹣alnx+c(a>0,c≠0),且y=f(x),y=g(x)为区间(0,+∞)的“平行曲线”,g(1)=e,g(x)在区间(2,3)上的零点唯一,则a的取值范围是[3e3,+∞).【考点】6H:利用导数研究曲线上某点切线方程.【分析】由题意可得|e x﹣alnx+c﹣g(x)|对x∈(0,+∞)恒为常数,且不为0.令x=1求得常数.再由题意可得f(x)=e x﹣alnx+c在(2,3)上无极值点,运用导数和构造函数,转化为方程无实根,即可得到a的范围.【解答】解:由题意可得|e x﹣alnx+c﹣g(x)|对x∈(0,+∞)恒为常数,且不为0.令x=1,可得|e﹣0+c﹣g(1)|=|e+c﹣e|=|c|>0.由g(x)在区间(2,3)上的零点唯一,可得:f(x)=e x﹣alnx+c在(2,3)上无极值点,即有f′(x)=e x﹣=,则xe x﹣a=0无实数解,由y=xe x,可得y′=(1+x)e x>0,在(2,3)成立,即有函数y递增,可得y∈(2e2,3e3),则a≥3e3,故答案为:[3e3,+∞).三.解答题(共8题,共70分)17.在数列{a n}中,已知a1=1,a2=3,a n+2=3a n+1﹣2a n.(Ⅰ)证明数列{ a n+1﹣a n}是等比数列,并求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n+1),{b n}的前n项和为S n,求证<2.【考点】8K:数列与不等式的综合;8G:等比数列的性质.【分析】(Ⅰ)由a n+2=3a n+1﹣2a n得:a n+2﹣a n+1=2(a n+1﹣a n),结合a1=1,a2=3,即a2﹣a1=2,可得:{ a n+1﹣a n}是首项为2,公比为2的等比数列,进而利用叠加法可得数列{a n}的通项公式;(Ⅱ)设b n=log2(a n+1)=n,则,利用裂项相消法,可得=2<2.【解答】证明:(Ⅰ)由a n+2=3a n+1﹣2a n得:a n+2﹣a n+1=2(a n+1﹣a n),又∵a1=1,a2=3,即a2﹣a1=2,所以,{ a n+1﹣a n}是首项为2,公比为2的等比数列.…a n+1﹣a n=2×2n﹣1=2n,…a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=1+2+22+…+2n﹣1==2n ﹣1;…(Ⅱ)b n=log2(a n+1)=log22n=n,…S n=,…,所以=2<2.…18.某中学是走读中学,为了让学生更有效率利用下午放学后的时间,学校在本学期第一次月考后设立了多间自习室,以便让学生在自习室自主学习、完成作业,同时每天派老师轮流值班.在本学期第二次月考后,高一某班数学老师统计了两次考试该班数学成绩优良人数和非优良人数,得到如下2×2列联表:非优良优良总计未设立自习室251540设立自习室103040总计354580(1)能否在在犯错误的概率不超过0.005的前提下认为设立自习室对提高学生成绩有效;(2)从该班第一次月考的数学优良成绩中和第二次月考的数学非优良成绩中,按分层抽样随机抽取5个成绩,再从这5个成绩中随机抽取2个,求这2个成绩来自同一次月考的概率.下面的临界值表供参考:P(K2≥k0)0.150.100.050.0250.010.0050.001k0 2.0722.7063.8415.0246.6357.87910.828(参考公式:K2=,其中n=a+b+c+d)【考点】BO:独立性检验的应用;CC:列举法计算基本事件数及事件发生的概率.【分析】(1)由2×2列联表,计算K2,对照临界值表得出结论;(2)根据分层抽样比例求出所抽取的5个成绩,利用列举法计算基本事件数、计算对应的概率值.【解答】解:(1)由2×2列联表,计算K2的观测值为k==>7.879,对照临界值表,得出能在犯错误的概率不超过0.005的前提下,认为设立自习室对提高学生成绩有效;(2)根据分层抽样原理,从第一次月考数学优良成绩中抽取×5=3个,记为A、B、C;从第二次月考数学优良成绩中抽取×5=2个,记为d、e;则从这5个成绩中抽取2个,基本事件是AB、AC、Ad、Ae、BC、Bd、Be、Cd、Ce、de共10个,其中抽取的2个成绩均来自同一次月考的基本事件有AB、AC、BC、de共4个,故所求的概率为P==.19.如图,在四棱锥中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.(1)求证:AD⊥PB;(2)已知点M是线段PC上,MC=λPM,且PA∥平面MQB,求实数λ的值.【考点】LS:直线与平面平行的判定;LO:空间中直线与直线之间的位置关系.【分析】(1)连结BD,则△ABD为正三角形,从而AD⊥BQ,AD⊥PQ,进而AD⊥平面PQB,由此能证明AD⊥PB.(2)连结AC,交BQ于N,连结MN,由AQ∥BC,得,根据线面平行的性质定理得MN∥PA,由此能求出实数λ的值.【解答】证明:(1)如图,连结BD,由题意知四边形ABCD为菱形,∠BAD=60°,∴△ABD为正三角形,又∵AQ=QD,∴Q为AD的中点,∴AD⊥BQ,∵△PAD是正三角形,Q为AD中点,∴AD⊥PQ,又BQ∩PQ=Q,∴AD⊥平面PQB,又∵PB⊂平面PQB,∴AD⊥PB.解:(2)连结AC,交BQ于N,连结MN,∵AQ∥BC,∴,∵PN∥平面MQB,PA⊂平面PAC,平面MQB∩平面PAC=MN,∴根据线面平行的性质定理得MN∥PA,∴,综上,得,∴MC=2PM,∵MC=λPM,∴实数λ的值为2.20.已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.①证明:OT平分线段PQ(其中O为坐标原点);②当最小时,求点T的坐标.【考点】KG:直线与圆锥曲线的关系;K3:椭圆的标准方程.【分析】第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a2,b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将表示出来,由取最小值时的条件获得等量关系,从而确定点T的坐标.【解答】解:(1)依题意有解得所以椭圆C的标准方程为+=1.(2)设T(﹣3,t),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,则PQ的斜率.由⇒(m2+3)y2﹣4my﹣2=0,所以,于是,从而,即,则直线ON的斜率,又由PQ⊥TF知,直线TF的斜率,得t=m.从而,即k OT=k ON,所以O,N,T三点共线,从而OT平分线段PQ,故得证.②由两点间距离公式得,由弦长公式得==,所以,令,则(当且仅当x2=2时,取“=”号),所以当最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).21.已知函数f(x)=+bx(a≠0),g(x)=1+lnx.(Ⅰ)若b=1,且F(x)=g(x)﹣f(x)存在单调递减区间,求a的取值范围;(Ⅱ)设函数g(x)的图象C1与函数f(x)的图象C2交于点M、N,过线段MN的中点T作x轴的垂线分别交C1、C2于点P、Q,是否存在点T,使C1在点P处的切线与C2在点Q处的切线平行?如果存在,求出点T的横坐标,如果不存在,说明理由.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【分析】(Ⅰ)先求函数F(x)的解析式,因为函数F(x)存在单调递减区间,所以F'(x)<0有解,求出a的取值范围;(Ⅱ)利用反证法证明设点P、Q的坐标分别是(x1,y1),(x2,y2),0<x1<x2.假设C1在点M处的切线与C2在点N处的切线平行.求出函数的导数,求得切线的斜率,通过构造函数,求导数判断单调性,结论即可得证【解答】解:(Ⅰ)b=1时,函数F(x)=g(x)﹣f(x)=1+lnx﹣﹣x,x>0,则F′(x)=﹣ax﹣1=﹣因为函数F(x)存在单调递减区间,所以F'(x)<0有解,即ax2+x﹣1>0,有x>0的解.①a>0时,y=ax2+x﹣1为开口向上的抛物线,y=ax2+x﹣1>0总有x>0有解;②a<0时,y=ax2+x﹣1为开口向下的抛物线,而y=ax2+x﹣1>0总有x>0的解;则△=1+4a>0,且方程y=ax2+2x﹣1=0至少有一个正根,此时,.综上所述,a的取值范围为(﹣,0)∪(0,+∞);(Ⅱ)设点M、N的坐标是(x1,y1),(x2,y2),0<x1<x2,则点P、Q的横坐标为,C1点在P处的切线斜率为,C2点Q处的切线斜率为假设C1点P处的切线与C2在点Q处的切线平行,则k1=k2即,则∴.设,则①令.则因为t>1时,r'(t)>0,所以r(t)在(1,+∞)上单调递增.故r(t)>r(1)=0则.这与①矛盾,假设不成立.故C1在点P处的切线与C2在点Q处的切线不平行.选做题(本题满分10分)22.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t 是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.【考点】QH:参数方程化成普通方程.【分析】本题(1)可以利用极坐标与直角坐标互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【解答】解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.23.已知a >0,b >0,函数f (x )=|x+a|+|2x ﹣b|的最小值为1. (1)求证:2a+b=2;(2)若a+2b ≥tab 恒成立,求实数t 的最大值.【考点】3R :函数恒成立问题;R5:绝对值不等式的解法.【分析】(1)法一:根据绝对值的性质求出f (x )的最小值,得到x=时取等号,证明结论即可;法二:根据f (x )的分段函数的形式,求出f (x )的最小值,证明即可;(2)法一,二:问题转化为≥t 恒成立,根据基本不等式的性质求出的最小值,从而求出t 的范围即可;法三:根据二次函数的性质判断即可.【解答】解:(1)法一:f (x )=|x+a|+|2x ﹣b|=|x+a|+|x ﹣|+|x ﹣|,∵|x+a|+|x ﹣|≥|(x+a )﹣(x ﹣)|=a+且|x ﹣|≥0,∴f (x )≥a+,当x=时取等号,即f (x )的最小值为a+,∴a+=1,2a+b=2;法二:∵﹣a <,∴f (x )=|x+a|+|2x ﹣b|=,显然f (x )在(﹣∞,]上单调递减,f (x )在[,+∞)上单调递增,∴f (x )的最小值为f ()=a+,∴a+=1,2a+b=2.(2)方法一:∵a+2b≥tab恒成立,∴≥t恒成立,=+=(+)(2a+b )•=(1+4++),当a=b=时,取得最小值,∴≥t,即实数t的最大值为;方法二:∵a+2b≥tab恒成立,∴≥t恒成立,t≤=+恒成立,+=+≥=,∴≥t,即实数t的最大值为;方法三:∵a+2b≥tab恒成立,∴a+2(2﹣a)≥ta(2﹣a)恒成立,∴2ta2﹣(3+2t)a+4≥0恒成立,∴(3+2t)2﹣326≤0,∴≤t≤,实数t的最大值为.。