第十三讲 反比例函数
2014中考总复习第13讲反比例函数
知识回顾
重点解析
探究拓展
真题演练
5 1. (2013·兰州)当 x>0 时, 函数 y=- x 的图象在(
)
A. 第四象限 C. 第二象限
B. 第三象限 D. 第一象限
5 【解析】 ∵函数 y=- x 中 k=-5<0, ∴其图象位于第二、四象限, 当 x>0 时, 其图
象位于第四象限. 【答案】 A
知识回顾
重点解析
探究拓展
真题演练
∵O E =2, ∴C E =3, ∴点 C 的坐标是( -2, 3) .
6 ∴k=-2× 3=-6, ∴y=- x .
( 2) 设直线 AB 的解析式为 y=kx+b( k≠0) .
1 k b 2 2 则 4k b 0 , 解得 . b 2
第一部分
复习目标
知识回顾
重点解析
探究拓展
真题演练
一、反比例函数的有关概念 1. 反比例函数的定义: 形如 y= 量, y是 x的函数. 2. 反比例函数的解析式的三种形式: ( 1) y= 0, k为常数) . ( k≠0, k为常数) ; ( 2) y= ( k≠0, k为常数) ; ( 3) xy=k( k≠ ( k≠0, k为常数) 的函数叫做反比例函数, 其中 x是自变
BD 1 1 1 ∴ OD = 3 , BD = 4 BO . 又∵S△AB O =1, ∴ 2 B D ·B A=1, 8 ∴B O ·B A=8. 设 A 点坐标为 A ( x, y) , 由 xy=8, 得 y= x . 8 【答案】y= x ( x>0)
第一部分
k
.
复习目标
知识回顾
重点解析
第13讲反比例函数
宇轩图书
宇轩图书
第13讲 反比例函数
首页 上一页 下一页
宇轩图书
考点知识梳理 中考典例精析 基础巩固训练 考点训练
首页 上一页 下一页
宇轩图书
考点一反比例函数的定义
一般地,函数 y=
k x
(或写成 y=kx-1)(k 是常数,k≠0)叫做反比例函数.
反比例函数解析式可以写成 xy=k(k≠0),它表明在反比例函数中自变量 x 与其对应
宇轩图书
2.反比例函数的图象和性质 反比例函数 y=kx(k≠0)的图象总是关于原点对称的,它的位置和性质受 k 的符号的影响.
考点知识梳理 中考典例精析 基础巩固训练 考点训练
首页 上一页 下一页
宇轩图书
考点三反比例函数解析式的确定 由于反比例函数的关系式中只有一个待定系数,因此只需已知一组对应值就可以. 待定系数法求解析式的步骤: (1)设出含有待定系数的函数解析式; (2)把已知条件代入解析式,得到关于待定系数的方程; (3)解方程求出待定系数,从而确定解析式.
(2)D 将(-1,-2)代入反比例函数的解析式得-2=k--11,解得 k=3,故选 D. (3)A 由函数关系式可知-(k2+1)<0,即图象位于第二、四象限,且在每个象限内,y 随 x 的增大而增大,而(2,y1),( 5,y2)都位于第四象限,2< 5,所以 y1<y2,故选 A. (4)(2,-1) 反比例函数及正比例函数图象都是关于原点对称的中心对称图象,故其交 点也关于原点中心对称,所以点 B 的坐标为(2,-1).
考点知识梳理 中考典例精析 基础巩固训练 考点训练
首页 上一页 下一页
宇轩图书
例 2 (2012·河南)如图,点 A,B 在反比例函数 y=kx(k>0,x>0)的图象上,过点 A,B 作 x 轴的垂线,垂足分别为 M,N,延长线段 AB 交 x 轴于点 C,若 OM=MN=NC,△AOC 的 面积为 6,则 k 的值为____________.
第十三讲反比例函数详解
第十三讲 反比例函数第一部分 知识梳理一、反比例函数的解析式1.反比例函数的概念一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。
2.反比例函数解析式的确定 由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
二、反比例函数的图像及性质1.反比例函数的图象反比例函数的图象是双曲线,有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2.反比例函数的性质3.反比例函数中反比例系数的几何意义(如图)面积为k 。
连接该点和原点,所得三三角形(如图)的面积m 的值D .21-〖选题意图〗对于反比例函数)0(≠=k xky 。
由于11-=x x ,所以反比例函数也可以写成1-=x y (k 是常数,k ≠0)的形式,有时也以xy=k (k 是常数,k ≠0)的形式出现。
(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内.本题需要理解好反比例函数定义中的系数和指数,同时需要掌握反比例函数的性质,这样才能防止漏解或多解。
〖解题思路〗根据反比例函数的定义m 2﹣5=﹣1,又图象在第二、四象限,所以m+1<0,两式联立方程组求解即可.〖参考答案〗解:∵函数()521-+=m xm y 是反比例函数,且图象在第二、四象限内,∴⎩⎨⎧+-=-01152<m m ,解得m =±2且m <﹣1,∴m =﹣2.故选B .【课堂训练题】1.已知y=y 1+y 2,y 1与x 成正比例,y 2与x ﹣2成反比例,且当x =1时,y =﹣1;当x=3时,y=5.求y 与x 的函数关系式. 〖难度分级〗A 类〖参考答案〗解:设y 1=k 1x (k 1≠0),y 2=错误!未找到引用源。
第十三讲 反比例函数 一元二次方程知识回顾
第十三讲反比例函数【基础知识回顾】一、反比例函数的概念:一般地:函数y (k是常数,k≠0)叫做反比例函数【名师提醒:1、在反比例函数关系式中:k≠0、x≠0、y≠02、反比例函数的另一种表达式为y=(k是常数,k≠0)3、反比例函数解析式可写成xy= k(k≠0)它表明反比例函数中自变量x与其对应函数值y之积,总等于】二、反比例函数的图象和性质:1、反比例函数y=kx(k≠0)的图象是,它有两个分支,关于对称2、反比例函数y=kx(k≠0)当k>0时它的图象位于象限,在每一个象限内y随x的增大而当k<0时,它的图象位于象限,在每一个象限内,y随x的增大而【名师提醒:1、在反比例函数y=kx中,因为x≠0,y≠0所以双曲线与坐标轴无限接近,但永不与x轴y轴2、在反比例函数y随x的变化情况中一定注明在每一个象限内】3、反比例函数中比例系数k的几何意义:双曲线y=kx(k≠0)上任意一点向两坐标轴作垂线两垂线与坐标轴围成的矩形面积为,即如图:S矩形ABOC=S△AOB=【名师提醒:k的几何意义往常与前边提示中所谈到的xy=k联系起来理解和应用】三、反比例函数解析式的确定因为反比例函数y=kx(k≠0)中只有一个待定系数所以求反比例函数关系式只需知道一组对应的x、y值或一个点的坐标即可,步骤同一次函数解析式的求法一、反比例函数的应用解反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,这里要特别注意自变量的一元二次方程总复习考点1:一元二次方程的概念一、一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程.二、一般形式:ax2+bx+c=0(a ≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a )²=b (b ≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
中考总复习数学13-第一部分 第13讲 反比例函数及其应用
返回思维导图
第13讲 反比例函数及其应用— 考点梳理
返回栏目导航
续表
在每个象限内,y随x的增大
增减性
而⑤ 减小
对称性
是轴对称图形,对称轴为直线y=⑦
⑧ 原点O
在每个象限内,y随x的增大
而⑥增大
±x
; 是中心对称图形,对称中心是
图象由分别位于两个象限的双曲线组成,图象无限接近坐标轴,但不与
图象特征
坐标轴相交.
第13讲 反比例函数及其应用— 考点梳理
返回思维导图
返回栏目导航
考点 4 反比例函数的应用
1.判断同一坐标系中反比例函数图象和一次函数图象的方法
(假设法)假设反比例函数正确,即可确定 k的取值范围,再根据 k 的取值范围
确定一次函数图象,无矛盾,则正确.
2.已知两个函数图象,求交点坐标
(1)求一次函数图象与反比例函数图象的交点,将两个函数解析式联立方程组
位置关系,依据图象在上方的函数值总比图象在下方的函数值大 ,在各区域
内找对应的x的取值范围.
4.求图形面积
(1)当图形有一边在坐标轴上时,通常将坐标
轴上的边作为底边,再利用点的坐标求出底边上的高,最后用面积公式求解.
(2)当图形三边都不在坐标轴上时,一般用“割补法”.
第13讲 反比例函数及其应用— 考点梳理
返回思维导图
2.与反比例函数中k的几何意义有关的面积计算
S△AOP=⑩
S△APP‘=
|k|
2|k|
S△OBP= |k|
S△ABC=
|k|
S矩形OAPB=|k|
S▱ABCD=
|k|
返回栏目导航
第十三讲反比例函数详解
06
总结回顾与拓展延伸
关键知识点总结回顾
反比例函数定义
形如$y = frac{k}{x}$($k$为常 数且$k neq 0$)的函数称为反
比例函数。
反比例函数图象
反比例函数的图象是双曲线,当 $k > 0$时,图象位于第一、三 象限;当$k < 0$时,图象位于
解得$x$无实数解,说明一元反比例函数在其定义域内无极值。 • 例题二:求二元反比例函数$f(x,y) = \frac{1}{xy}$在条件$x+y=1$下的
极小值。 • 解题思路:引入拉格朗日乘数$\lambda$,构造拉格朗日函数
$L(x,y,\lambda) = \frac{1}{xy} + \lambda(x+y-1)$,然后分别求偏导 数并令偏导数等于零,解得可能的极值点。最后结合约束条件和函数的 性质判断极值点的真假及极小值的大小。
分析
同样根据反比例函数的性质,我们知 道在$(-infty, 0)$区间内,函数是单调 减少的。因此,在子区间$(-2, -1)$内 ,函数也是单调减少的。
04
反比例函数极值问题求解策 略
极值存在条件及求解方法
极值存在条件
对于一元反比例函数,其极值存在的条件是一阶导数等于零且二阶导数不为零;对于多元反比例函数,极值存在 的条件是其偏导数等于零且二阶偏导数矩阵(Hessian矩阵)正定或负定。
判断反比例函数$f(x)
=
frac{1}{x}$在区间$(1, 2)$内的单
调性。
分析
根据反比例函数的性质,我们知 道在$(0, +infty)$区间内,函数 是单调减少的。因此,在子区间 $(1, 2)$内,函数同样单调减少。
第十三讲 反比例函数
第十三讲 反比例函数考点综述:反比例函数也是中考重点考查的内容之一,它要求考生能结合具体情境体会反比例函数的意义,根据已知条件确定反比例函数的关系式;会画反比例函数的图象,并能根据图象和关系式探索其性质;能用反比例函数解决实际问题。
中考课标要求考点精析考点1 反比例函数(1)反比例函数的概念:一般地,形如xk y =(k 为常数,0≠k )的函数叫做反比例函数,其中x 是自变量,y 是x 的函数,k 是比例系数。
注意:反比例函数也可以写成1-=kx y 和k xy =的形式。
(2)反比例函数的特征①自变量x 位于分母上,且其次数是1; ②常量0≠k ;③自变量x 的取值范围是0≠x 的一切实数; ④函数值y 的取值范围是非0实数。
考点2 反比例函数的图像与性质 (1)反比例函数的图像:反比例函数xk y =(k 为常数,0≠k )的图像由两个分支组成,叫做双曲线;它的两个分支分别在第一、三或第二、四象限,这两个分支关于坐标原点成中心对称。
(2)反比例函数的性质①当0>k 时,双曲线的两个分支分别位于第一、三象限,在每一象限内,y 随x 的增大而减小; ②当0<k 时,双曲线的两个分支分别位于第二、四象限,在每一象限内,y 随x 的增大而增大。
注意:①由于双曲线在0=x 处是断开的,因此其性质强调在每一个象限内y 随x 的变化而变化的情况,整个图像没有这样的性质,使用时,必须分别在每一个象限内来研究函数值y 随x 的变化情况;②根据图像说出性质、根据性质大致画出图像及求解析式是一个难点,要逐步理解和掌握。
考点3 反比例函数解析式的确定:因为反比例函数的解析式xk y =中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数,因而一般只需要给出一组x 、y 的对应值或图像上一点的坐标,代入xk y =中即可求出k 的值,从而确定反比例函数的解析式。
考点4 反比例函数的应用在实际生活中,如何应用反比例函数只是解题,关键是建立反比例函数模型,即列出符合题意的函数解析式,然后再根据反比例函数的性质,综合方程、不等式、几何知识和图像求解。
中考数学专题复习第十三讲 反比例函数
中考数学专题复习第十三讲反比例函数【基础知识回顾】一、反比例函数的概念:一般地:互数y (k是常数,k≠0)叫做反比例函数【名师提醒:1、在反比例函数关系式中:k≠0、x≠0、y≠02、反比例函数的另一种表达式为y= (k是常数,k≠0)3、反比例函数解析式可写成xy= k(k≠0)它表明反比例函数中自变量x与其对应函数值y之积,总等于】二、反比例函数的同象和性质:1、反比例函数y=kx(k≠0)的同象是它有两个分支,关于对称2、反比例函数y=kx(k≠0)当k>0时它的同象位于象限,在每一个象限内y随x的增大而当k<0时,它的同象位于象限,在每一个象限内,y随x的增大而【名师提醒:1、在反比例函数y=kx中,因为x≠0,y≠0所以双曲线与坐标轴无限接近,但永不与x轴y轴2、在反比例函数y随x的变化情况中一定注明在每一个象限内】3、反比例函数中比例系数k的几何意义:反曲线y=kx(k≠0)上任意一点向两坐标轴作垂线→两线与坐标轴围成的形面积,即如图:AOBP=S△AOP=【名师提醒:k的几何意义往常与前边提示中所谈到的xy=k联系起来理解和应用】三、反比例函数解析式的确定因为反比例函数y=kx(k≠0)中只有一个被定系数所以求反比例函数关系式只需知道一组对应的x、y值或一个点的坐标即可,步骤同一次函数解析式的求法一、反比例函数的应用二、解反比例函数的实际问题时,先确定函数解析式,再利用同象找出解决问题的方案,这里要特别注意自变量的【重点考点例析】考点一:反比例函数的同象和性质例1 (2012•张家界)当a≠0时,函数y=ax+1与函数ayx=在同一坐标系中的图象可能是()A.B.C.D.思路分析:分a>0和a<0两种情况讨论,分析出两函数图象所在象限,再在四个选项中找到正确图象.解:当a>0时,y=ax+1过一、二、三象限,y=ayx=过一、三象限;当a<0时,y=ax+1过一、二、四象限,y=ayx=过二、四象限;故选C.点评:本题考查了一次函数与二次函数的图象和性质,解题的关键是明确在同一a值的前提下图象能共存.例2 (2012•佳木斯)在平面直角坐标系中,反比例函数22a ayx-+ =图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限思路分析:把a2-a+2配方并根据非负数的性质判断出是恒大于0的代数式,再根据反比例函数的性质解答.解:a2-a+2,=a2-a+14-14+2,=(a-12)2+7 4 ,∵(a-12)2≥0,∴(a-12)2+7 4 >0, ∴反比例函数图象的两个分支分别位于第一、三象限. 故选A .点评:本题考查了反比例函数图象的性质,先判断出a 2-a+2的正负情况是解题的关键,对于反比例函数ky x=(k ≠0):(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内.例3 (2012•台州)点(-1,y 1),(2,y 2),(3,y 3)均在函数6y x=的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 2<y 3<y 1C .y 1<y 2<y 3D .y 1<y 3<y 2 思路分析:先根据反比例函数的解析式判断出此函数图象所在的象限,再根据各点的坐标判断出各点所在的象限,根据函数图象在各象限内点的坐标特点解答. 解:∵函数6y x=中k=6>0, ∴此函数的图象在一、三象限,且在每一象限内y 随x 的增大而减小, ∵-1<0,∴点(-1,y 1)在第三象限, ∴y 1<0, ∵0<2<3, ∴(2,y 2),(3,y 3)在第一象限, ∴y 2>y 3>0, ∴y 2>y 3>y 1. 故选D . 点评:本题考查的是反比例函数图象上点的坐标特点,根据题意判断出函数图象所在象限是解答此题的关键.对应训练1.(2012•毕节地区)一次函数y=x+m (m ≠0)与反比例函数my x=的图象在同一平面直角坐标系中是( )A .B .C .D .1.C2.(2012•内江)函数1y x=的图象在( ) A .第一象限 B .第一、三象限 C .第二象限 D .第二、四象限 2.A2x≥0,1x中x≠0,故x>0,此时y>0,则函数在第一象限.故选A.3.(2012•佛山)若A(x1,y1)和B(x2,y2)在反比例函数2yx=的图象上,且0<x1<x2,则y1与y2的大小关系是y1 y2.3.>考点二:反比例函数解析式的确定例4 (2012•哈尔滨)如果反比例函数1kyx-=的图象经过点(-1,-2),则k的值是()A.2 B.-2 C.-3 D.3思路分析:根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.解答:解:根据题意,得-2=11k--,即2=k-1,解得k=3.故选D.点评:此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.对应训练4.(2012•广元)已知关于x的方程(x+1)2+(x-b)2=2有唯一的实数解,且反比例函数1b yx+ =的图象在每个象限内y随x的增大而增大,那么反比例函数的关系式为()A.3yx=-B.1yx=C.2yx=D.2yx=-4.D4.分析:关于x的方程(x+1)2+(x-b)2=2有唯一的实数解,则判别式等于0,据此即可求得b的值,然后根据反比例函数1byx+=的图象在每个象限内y随x的增大而增大,则比例系数1+b<0,则b的值可以确定,从而确定函数的解析式.解:关于x的方程(x+1)2+(x-b)2=2化成一般形式是:2x2+(2-2b)x+(b2-1)=0,△=(2-2b)2-8(b2-1)=-4(b+3)(b-1)=0,解得:b=-3或1.∵反比例函数1byx+=的图象在每个象限内y随x的增大而增大,∴1+b<0 ∴b<-1,∴b=-3.则反比例函数的解析式是:y=13y x -=,即2y x=-. 故选D .考点三:反比例函数k 的几何意义例5 (2012•铁岭)如图,点A 在双曲线4y x=上, 点B 在双曲线ky x=(k ≠0)上,AB ∥x 轴, 分别过点A 、B 向x 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是8,则k 的值为( ) A .12 B .10 C .8 D .6思路分析:先根据反比例函数的图象在第一象限判断出k 的符号,再延长线段BA ,交y 轴于点E ,由于AB ∥x 轴,所以AE ⊥y 轴,故四边形AEOD 是矩形,由于点A 在双曲线4y x=上,所以S 矩形AEOD=4,同理可得S矩形OCBE=k ,由S矩形ABCD=S矩形OCBE-S矩形AEOD即可得出k的值.解:∵双曲线ky x=(k ≠0)上在第一象限, ∴k >0,延长线段BA ,交y 轴于点E , ∵AB ∥x 轴, ∴AE ⊥y 轴,∴四边形AEOD 是矩形, ∵点A 在双曲线4y x=上, ∴S 矩形AEOD =4, 同理S 矩形OCBE =k ,∵S 矩形ABCD =S 矩形OCBE -S 矩形AEOD =k-4=8, ∴k=12. 故选A .点评:本题考查的是反比例函数系数k 的几何意义,即反比例函数ky x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.对应训练5.(2012•株洲)如图,直线x=t(t>0)与反比例函数21,y yx x-==的图象分别交于B、C两点,A为y轴上的任意一点,则△ABC的面积为()A.3 B.3 2 tC.32D.不能确定5.C5.解:把x=t分别代入21,y yx x-==,得21,y yt t==-,所以B(t,2t)、C(t,1t-),所以BC=2t-(1t-)=3t.∵A为y轴上的任意一点,∴点A到直线BC的距离为t,∴△ABC的面积=133 22tt⨯⨯=.故选C.考点四:反比例函数与一次函数的综合运用例6 (2012•岳阳)如图,一次函数y1=x+1的图象与反比例函数22yx=的图象交于A、B 两点,过点作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BODD.当x>0时,y1、y2都随x的增大而增大思路分析:求出两函数式组成的方程组的解,即可得出A、B的坐标,即可判断A;根据图象的特点即可判断B;根据A、B的坐标和三角形的面积公式求出另三角形的面积,即可判断C;根据图形的特点即可判断D.解:A、12y xyx=+⎧⎪⎨=⎪⎩①②,∵把①代入②得:x+1=2x,解得:x1=-2,x2=1,代入①得:y1=-1,y2=2,∴B(-2,-1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当-2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=12×1×2=1,S△BOD=12×|-2|×|-1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;故选C.点评:本题考查了一次函数与反比例函数的交点问题的应用,主要考查学生观察图象的能力,能把图象的特点和语言有机结合起来是解此题的关键,题目比较典型,是一道具有一定代表性的题目.对应训练6.(2012•达州)一次函数y1=kx+b(k≠0)与反比例函数y2=mx(m≠0),在同一直角坐标系中的图象如图所示,若y1>y2,则x的取值范围是()A.-2<x<0或x>1 B.x<-2或0<x<1C.x>1 D.-2<x<16.A6.解:由函数图象可知一次函数y1=kx+b与反比例函数y2=mx(m≠0)的交点坐标为(1,4),(-2,-2),由函数图象可知,当-2<x<0或x>1时,y1在y2的上方,∴当y1>y2时x的取值范围是-2<x<0或x>1.故选A.【聚焦山东中考】1.(2012•青岛)点A(x1,y1),B(x2,y2),C(x3,y3)都是反比例函数3yx-=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2 B.y1<y2<y3C.y3<y2<y1D.y2<y1<y31.A1.解:∵反比例函数y=-3 x 中,k=-3<0,∴此函数图象在二四象限,且在每一象限内y随x的增大而增大,∵x1<x2<0<x3,∴y3<0,y3<0<y1<y2,∴y3<y1<y2.故选A.2.(2012•菏泽)反比例函数2yx=的两个点(x1,y1)、(x2,y2),且x1>x2,则下式关系成立的是()A.y1>y2B.y1<y2C.y1=y2D.不能确定2.D3.(2012•滨州)下列函数:①y=2x-1;②y=5x-;③y=x2+8x-2;④y=22x;⑤y=12x;⑥y=ax中,y是x的反比例函数的有(填序号)。
反比例函数课件
反比例函数与实际问题的应用
1 经济学
反比例函数可以用于描述商品的需求和价格 的关系。
2 物理学
反比例函数可以用于描述物体的速度和时间 的关系。
3 工程学
4 生物学
反比例函数可以用于描述电阻与电流的关系。
反比例函数可以用于描述生物种群的增长和 资源的关系。
简单的反比例函数例题
例题1
已知某种物体的质量与体积成反比,当质量为8时,体积为6。求该物体的质量为12时,体积 为多少?
当反比例函数的解析式为分式时,解题的方法与简单例题类似,只是需要通 过代入法或正比例的求解方法进行计算。
练习题目与答案解析
1
题目1
已知一根长10米的绳子均匀地系在8个钉子上,如图所示。绳子从钉子1到钉子8 的长度比为3:1 :2 :1 :2 :1 :4 :3 。求每段绳子的长度。
2Hale Waihona Puke 题目2已知电阻与电流成反比,当电流为4A时,电阻为10欧姆。求电流为8A时,电阻 为多少欧姆?
反比例函数ppt课件
欢迎来到反比例函数ppt课件!通过本课件,你将学到反比例函数的定义、图 像、性质以及实际应用。我会带你从简单例题到解析式为分式的例题,并提 供练习题目与答案解析。让我们开始吧!
反比例函数的定义
反比例函数是指一个函数,其自变量和因变量之间成反比关系。当自变量增 大时,因变量就会减小;当自变量减小时,因变量就会增大。
3
题目3
某种物体的密度与体积成反比,当体积为20时,密度为5。求该物体的体积为8 时,密度为多少?
例题2
小明骑自行车到学校的时间与他的速度成反比,当速度是10km/h时,他需要30分钟到达学 校。问他以15km/h的速度骑车到学校需要多长时间?
2023年河北省中考数学复习全方位第13讲 反比例函数及其应用 课件
4
.
返回子目录
7. (2020·河北,19)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每
个台阶凸出的角的顶点记作Tm(m为1~8的整数).函数y= (x<0)的图象为曲线L.
(1)若L过点T1,则k= -16
;
(2)若L过点T4,则它必定还过另一点Tm,则m= 5
;
(3)若曲线L使得T 1 ~T 8 这些点分布在它的两侧,每侧各4个点,则k的整数值有
(2)通过计算,说明一次函数y=kx+3-3k
(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y
随x的增大而增大时,确定点P横坐标的取值范围(不必写出过程).
返回子目录
解:(1)∵点B,C的横坐标相等,∴BC⊥x轴.
∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
∵当x=4时,y= =1,∴点N在反比例函数y= 的图象上.
(3)4≤m≤8.
考点梳理
考点 1
反比例函数的概念
考点 2
反比例函数的图象及性质
考点 3
反比例函数解析式的确定
返回子目录
2
考点1
考点梳理
反比例函数的概念
1. 定义:一般地,形如①
y=
(k是常数,k≠0)的函数,叫反比例函数,其中x
是自变量,y是函数.自变量x的取值范围是x≠0.
2. 三种表达式(k为常数,k≠0):y= ;y=kx-1;xy=k.
返回子目录
考点2
反比例函数的图象及性质
1. 反比例函数图象与性质
九年级暑假数学补课资料 第十三讲 反比例函数的图像与性质
第十三讲:反比例函数的图像与性质一、复习引入1.什么叫做反比例函数?3种形式的表达式?反比例函数 y =x k 有下列性质:反比例函数的图象y = xk是由两支曲 线组成的。
(1) 当 k>0 时,两支曲线分别位于第一、三象限, (2) 当 k<0 时,两支曲线分别位于第二、四象限. 二、探究新知 1.观察反比例函数xy x y x y 6,4,2===的图象,你能发现它们的共同特征吗? 表达式中的k 都是大于零的.(1)函数图象分别位于哪几个象限内?(2)在每一个象限内,随着x 值的增大,y 的值是怎样变化的?能说明这是 为什么吗?(3)反比例函数的图象可能与x 轴相交吗?可能与y 轴相交吗?为什么? (1)函数图象分别位于第一、三象限内.(2)观察函数y = 的图象,在第一象限任取两点A (x1,y1),B(x2,y2), 分别向x 轴,y 轴作垂线,找到对应的x1,x2,y1,y2,因为在坐标轴上能比较 出x1与x2,y1与y2的大小,所以就可判断函数值的变化随自变量的变化是如 何变化的.山图可知x1<x2,y2<y1,所以在第一象限内有y 随x 的增大而减小. (3)从关系式y =x2中看,因为x ≠0,所以图象与y 轴不可能能有交点; 因为不论x 取任何实数,2是常数,y =x2永远也不为0,所以图象与x 轴也不 可能有交点.总结:当k>0时,函数图象分别位于第一、三象限内,并且在每一个象限 内,y 随x 的增大而减小. 2.议一议考察当k =-2,-4,-6时,反比例函数的图象,它们有哪些共 同特征?(1)y=-,y=-,y=-中的k 都小于0,它们的图象都位于第二,四象限,所以当A<0时,反比例函数的图象位于第二、四象限内.(2)在图象y=-中,在第二象限内任取两点A(x1,y1),B(x2,y2),可知x1>x2,y1>y2,所以可以得出当自变量逐渐减小时,函数值也逐渐减小,即函数值y随自变量x的增大而增大.(3)这些反比例函数的图象不可能与x轴相交,也不可能与y轴相交.性质:反比例函数的图象,当k>0时,在每个象限内,y的值随x值的增大而减小;当k<0时,在每一象限内,y的值随x值的增大而增大。
第十三讲:反比例函数(1)
第十三讲:一元二次方程与反比例函数应用【例1】(1)如图,一次函数y 1=ax +b (a ≠0)与反比例函数2k y =x的图象交于A (1,4)、 B (m ,1)两点,若使y 1>y 2,则x 的取值范围是 .(2)如图,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,是等腰直角三角形,点P 1,P 2,P 3,在反比列函数4y x=的图象上,斜边OA 1,A 1A 2,A 2A 3,…都在x 轴上,则点A 2的坐标是 .(3)如图,M 为双曲线上的一点,过点M 作x 轴、y 轴的垂线,分别交直线 y =-x +m 于点D 、C 两点,若直线y =-x +m 与y 轴交于点A ,与x 轴相交于点B ,则AD•BC 的值为 .第(1)题图 第(2)题图 第(3)题图【例2】已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求△AO B 的面积;(3)根据图象写出使反比例函数的值不大于一次函数的值的x 的取值范围.【例3】某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)下表是该小学的作息时间,若同学们希望在上午第一节下课8:20时能喝到不超过40℃的开水,已知第一节下课前无人接水,请直接写出生活委员应该在什么时间或时间段接通饮水机电源.(不可以用上课时间接通饮水机电源)【例4】随着人们环保意识不断增强,我市家庭电动自行车拥有量逐年增加.据统计,某小区2009年底拥有家庭电动自行车125辆,2011年底家庭电动自行车的拥有量达到180辆.(1)若该小区2009年底到2012年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2012年底电动自行车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.【例5】今年3月,位于虎溪大学城的龙湖“千万间”公租房项目开始动工.这是一个让人心动的“民生住房账本”未来10年,重庆市将建设4000万平方米的公共租赁房,今年开建500万平方米,3年(2010年~2012年)时间内完成2000万平方米的建设任务.某建筑公司积极响应,计划在今年12个月完成一定的建房任务.已知每平米的成本为1200元,按每平方米1600元的价格卖给政府.该公司平时每月能建2000平方米,为了加快进度,公司采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到提高.这样,第一月建了2200平方米,以后每月建房都比前一月多200平方米.由于机器损耗等原因,每增加100平方米,当月的所有建筑面积,平均每1平方米的成本就增加2元.(1)若全市公共租赁房今年(2010年)到明年的建筑面积增长率就是以后每年的增长率,求此增长率.(2)今年4月份玉树发生了7.1级地震,该公司决定把最近某个月144万元的利润捐给灾区、请问是第几的个月?【例6】2008年5月1日,目前世界上最长的跨海大桥--杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B 地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?【例7】如图,一条直线与反比例函数的图象交于A(1,4)、B(4,n)两点,与x轴交于D点,AC⊥x轴,垂足为C.(1)如图甲,①求反比例函数的解析式;②求n的值及D点坐标;(2)如图乙,若点E在线段AD上运动,连接CE,作∠CEF=45°,EF交AC于F点.①试说明△CDE∽△EAF;②当△ECF为等腰三角形时,求出F点坐标.。
中考数学 第三章 函数 第13课 反比例函数
间的关系如图所示(即
图中线段OA和双曲线在
A点及其右侧的部分).
根据图象所示信息,解
2.关于反比例函数
的图象,下列说法正
确的是( C )
A.经过点(-1,-2)
B.无论x取何值时,y随x的增大而增大
C.当x <0时,图象在第二象限
D.图象不是轴对称图形
3.(2015•台州市)若反比例函数
的图象
经过点(2,-1),则该反比例函数的图象在
(D )
A.第一、二象限 B.第一、三象限
C.第二、三象限 D.第二、四象限
答下列问题:
考点3:能用反比例函数解决简单实际问题.
(1)写出从药物释放开始,y与x之间的函数关系 式及自变量的取值范围.
(2)据测定,当空气中每立方米的含药量低于 2mg时,对人体无毒害作用.那么从消毒开始, 至少在多长时间内,师生不能进入教室?
变式训练 (2014•云南省)将油箱注满k L油后,轿车可行驶的总路程s(单位:km) 与平均耗油量a( 单位:L/km)之间是反比例函数关系 (k是 常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为0.1 L/km的速度行 驶,可行驶700 km. (1)求该轿车可行驶的总路程s与平均耗油量a之间的函数关系式. (2)当平均耗油量为0.08 L/km时,该轿车可以行驶多少千米?
第13课 反比例函数
1.结合具体情境体会反比例函数的意义,能根 据已知条件确定反比例函数表达式. 2.能画出反比例函数的图象,根据图象和表达
第13讲反比例函数
(2013.河南)20.(9分)如图,矩形 OABC的顶点A、C分别在x轴和y
轴上,点B 的坐标为(2,3) .双曲线 y=k/x(x>0)的图
像经过BC的中点D,且与AB交于点E ,连接DE 。
(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC
∽ △DEB ,求直线FB的解析式.
考点梳理
于点A(1,a),则k=
.
(2014•河南)20.(9分)如图,在直角梯形OABC中,BC∥AO,
∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上
一点,且BD=2AD,双曲线y= k/x
(k>0)经过点D,交BC于点E.
(1)求双曲线的解析式;
(2)求四边形ODBE的面积.
复习大讲义
2、讨论交流“考点梳理”
要求:(1分钟) 解决自己的疑惑、加深对概念的理解和记忆。
考点梳理
典例精析
当堂训练
复习大讲义
3、课堂展示:(2分钟)
(1)本节课复习了哪些知识点? (2)你认为哪些是易错点? (3)你认为哪些是重点、易考点?
考点梳理
典例精析
当堂训练
复习大讲义
(2015河南)11.(3分)如图,直线 y=kx与双曲线 y=2/x(x>0)交
典例精析
当堂训练
复习大讲义
4、典例精析: 《讲义》例1—例4
要求:(4分钟) (1)先自己解答以下各例题; (2)再快速浏览解析,对比思路; (3)画出自己不会做、看不懂的。
考点梳理
典例精析
当堂训练
复习大讲义
5、讨论交流:
要求:(2分钟) (1)通过交流尽力解决自己的困难; (2)通过交流还有解决不了的问题,也要 弄清是哪方面的问题; (3)总结出你认为的高频考点。
人教版数学九年级上册第13讲 反比例函数-课件
-2
2
【思路点拨】根据反比例函数的性质可以得到△AOB的面积等于|k|的一半,由此可以得到它们的关系;由点 A的坐标以及AB∥x轴,可得出点B的坐标,从而得出AD、AB的长度,利用矩形的面积公式即可得出结论.
【思路点拨】根据点A坐标,以及AB=3BD求出D坐标,代入反比例函 数解析式求出k的值;直线y=3x与反比例函数解析式联立方程组即可求 出点C坐标;作C关于y轴的对称点C′,连接C′D交y轴于M,则d=MC+ MD最小,得到C′点坐标,求得直线C′D的解析式,直线与y轴的交点即 为所求.
都二
能分
运浇
用灌
好,
“八
二分八等Βιβλιοθήκη 定待律;”二
,分
我管
们教
一,
起八
,分
静放
待手
花;
开二
。分
成
➢ Pure of heart, life is full of sweet and joy!
绩 ,
八
分
方
法
。
愿
全
天
下
所
有
父
母
我们,还在路上……
第13讲 反比例函数
D
-2 1
【思路点拨】反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
A
A
解析:∵k1<0<k2,b=-1<0,∴直线过第二、三、四象限;双曲线位于第一、三 象限.故选A. 【思路点拨】反比例函数的图象是中心对称图形,则它与经过原点的直线的两个交点一 定关于原点对称;根据反比例函数的图象性质及正比例函数的图象性质可作出判断.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三讲 反比例函数
【教材链接: 八(下)第十七章反比例函数】
【基础知识回顾】
一、 反比例函数的概念:
一般地:函数y (k 是常数,k≠0)叫做反比例函数 【名师提醒:1、在反比例函数关系式中:k≠0、x≠0、y≠0
2、反比例函数的另一种表达式为y= (k 是常数,k≠0)
3、反比例函数解析式可写成xy= k (k≠0)它表明反比例函数中自变量x 与其对应函数值y 之积,总等于 】 二、反比例函数的图象和性质:
1、反比例函数y=
k
x
(k≠0)的图象是 ,它有两个分支,关于 对称
2、反比例函数y=k
x
(k≠0)当k>0时它的图象位于 象限,在每一个象限内y 随x
的增大而 当k<0时,它的图象位于 象限,在每一个象限内,y 随x 的增大而
【名师提醒:1、在反比例函数y=
k
x
中,因为x≠0,y≠0所以双曲线与坐标轴无限接近,但
永不与x 轴y 轴
2、在反比例函数y 随x 的变化情况中一定注明在每一个象限内】
3、反比例函数中比例系数k 的几何意义:
双曲线y=
k
x
(k≠0)上任意一点向两坐标轴作垂线
两垂线与坐标轴围成的矩形面积为 ,即如图:S 矩形ABOC = S △AOB =
【名师提醒:k 的几何意义往常与前边提示中所谈到的xy=k 联系起来理解和应用】 三、反比例函数解析式的确定
因为反比例函数y=k
x
(k≠0)中只有一个待定系数 所以求反比例函数关系式只需
知道一组对应的x 、y 值或一个点的坐标即可,步骤同一次函数解析式的求法 一、 反比例函数的应用
解反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,这里要特别注意自变量的
【重点考点例析】
是()
A.B.C. D.
3
A.图象经过点(1,-3)
B.图象在第二、四象限
C.x>0时,y随x的增大而增大
D.x<0时,y随x增大而减小
对应训练
中的图象可能是()
A. B. C.D.
m
A.①②B.②③C.③④D.①④
考点二:反比例函数解析式的确定
例4 (2015•哈尔滨)如果反比例函数
1
k
y
x
-
=的图象经过点(-1,-2),则k的值是()
A.2 B.-2 C.-3 D.3 对应训练
4.(2015•广元)已知关于x的方程(x+1)2+(x-b)2=2有唯一的实数解,且反比例函数
1b y
x
+ =
的图象在每个象限内y随x的增大而增大,那么反比例函数的关系式为()
A.
3
y
x
=-B.
1
y
x
=C.
2
y
x
=D.
2
y
x
=-
A.1 B.2 C.3 D.4
又∵M为矩形ABCO对角线的交点,
∴S矩形ABCO=4S□ONMG=4|k|,
对应训练
A.-2 B.2 C.4 D.-4
5.A
考点四:反比例函数与一次函数的综合运用
例6 (2015•岳阳)如图,一次函数y1=x+1的图象与反比例函数
22
y
x
=的图象交于A、B
两点,过点作AC⊥x轴于点C,过点B作BD⊥x轴于点D,
连接AO、BO,下列说法正确的是()
A.点A和点B关于原点对称
B.当x<1时,y1>y2
C.S△AOC=S△BOD
D.当x>0时,y1、y2都随x的增大而增大
思路分析:求出两函数式组成的方程组的解,即可得出A、B的坐标,即可判断A;根据图
象的特点即可判断
B;根据A、B的坐标和三角形的面积公式求出另三角形的面积,即可判断C;根据图形的特点即可判断D.
解:A、
1
2
y x
y
x
=+
⎧
⎪
⎨
=
⎪⎩
①
②
,
∵把①代入②得:x+1=2
x
,
解得:x1=-2,x2=1,
代入①得:y1=-1,y2=2,
∴B(-2,-1),A(1,2),
∴A、B不关于原点对称,故本选项错误;
B、当-2<x<0或x>1时,y1>y2,故本选项错误;
C、∵S△AOC=1
2
×1×2=1,S△BOD=
1
2
×|-2|×|-1|=1,
∴S△BOD=S△AOC,故本选项正确;
D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;
故选C.
点评:本题考查了一次函数与反比例函数的交点问题的应用,主要考查学生观察图象的能力,能把图象的特点和语言有机结合起来是解此题的关键,题目比较典型,是一道具有一定代表性的题目.
对应训练
6.(2015•达州)一次函数y1=kx+b(k≠0)与反比例函数y2=m
x
(m≠0),在同一直角坐标
系中的图象如图所示,若y1>y2,则x的取值范围是()A.-2<x<0或x>1 B.x<-2或0<x<1
C.x>1 D.-2<x<1
【聚焦山东中考】
A.y=
x B.y=
x
C.y=
x
D.y=
2x
【备考真题过关】
x
A.B.C.D.
k
x
A.B.C.D.
A.m<-2 B.m<0 C.m>-2 D.m>0
A.第四象限B.第三象限C.第二象限D.第一象限
A.y=
2x B.y=
x
C.y=
x
D.y=
4x
5.(2015•六盘水)下列图形中,阴影部分面积最小的是()
A.B.C.D.二、填空题
AOB= .
3k
15.(2015•张家界)如图,直线x=2与反比例函数y=2
x
和y=-
1
x
的图象分别交于A、B两点,若点P是
y轴上任意一点,则△PAB的面积是.。