3.3.(3)探索三角形全等的条件导学案

合集下载

《探索三角形全等的条件》第一课时参考(完整版)教案

《探索三角形全等的条件》第一课时参考(完整版)教案

精品"正版〞资料系列,由本公司独创 .旨在将"人教版〞、〞苏教版"、〞北师大版"、〞华师大版"等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友 .本资源创作于2021年8月,是当前最||新版本的教材资源 .包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最||正确选择 .§3.3.1 探索三角形全等的条件●教学目标(一)教学知识点1.三角形全等的"边边边〞的条件.2.了解三角形的稳定性.(二)能力训练要求1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.掌握三角形全等的"边边边〞条件.了解三角形的稳定性.3.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.(三)情感与价值观要求1.使学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验.2.让学生体验数学来源于生活,效劳于生活的辩证思想.●教学重点三角形全等的条件.●教学难点三角形全等的条件.●教学方法讨论、引导教学法.●教具准备投影片五张第|一张:复习练习(记作投影片§3.3.1 A )第二张:做一做(记作投影片§3.4.1 B )第三张:议一议(记作投影片§3.3.1 C )第四张:做一做(记作投影片§3.3.1 D )第五张:实验(记作投影片§3.3.1 E )木条或细硬纸条数根.●教学过程Ⅰ.巧设现实情景,引入新课[师]前面我们研究了全等三角形.现在我们来回忆一下:(出示投影片§3.3.1 A )如图图:△ABC≌△DEF.找出其中相等的边与角.[生]图中相等的边是:AB=DE、BC=EF、AC=DF.相等的角是:∠A=∠D、∠B=∠E、∠C=∠F.[师]很好.我这里有一个三角形纸片,你能画一个三角形与它全等吗?如何画?[生]能,先量出这个三角形纸片的每边的长,各个角的度数,然后作出一个三角形,使它的每边长,每个角的度数分别等于三角形纸片的每边长,每个角,这样作出的三角形一定与三角形纸片全等.[师]噢,这位同学他利用了两个三角形全等的定义来作图.但是,是否一定需要六个条件呢?条件能否尽可能少吗?一个条件行吗?两个条件、三个条件呢?我们这节课就来探索三角形全等的条件.Ⅱ.讲授新课[师]下面我们来做一做(出示投影片§3.3.1 B ).1.只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.(1 )三角形的一个内角为30° ,一条边为3 cm.(2 )三角形的两个内角分别为30°和50°.(3 )三角形的两条边分别为4 cm、6 cm.[师]只给一个条件,怎么样呢?想一想.[生]不能.[师]对,只给定一条边时(如图的实线)图由图可知:这三个三角形不全等.只给定一个角时夹角(如图中的实线).图由画图可知:这三个三角形也不全等.因此,只给出一个条件....所画出的三角形一定全等.....时,不能保证接下来我们探索:给出两个条件时,所画的三角形一定全等吗?大家动手画:三角形的一个内角为30° ,一条边为3厘米.[生甲]我们画出的三角形几乎都不一样,如图.图这三个三角形不全等.[师]好,那如果三角形的两个内角分别是30°和50°时,所画的三角形又如何呢?[生乙]我画的三角形和他们画的形状一样,但大小不一样.如图.图这两个三角形不能重合,即不全等.[师]很好.如果给定三角形的两边分别为4 cm、6 cm ,那么所画出的三角形全等吗?[生丙]也不全等.如图5-103.图[师]很好,我们通过画图、观察、比较知道,只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.那给出三个条件时,又怎样呢?大家来议一议(出示投影片§3.3.1 C ).如果给出三个条件画三角形,你能说出有哪几种可能的情况?[生丁]有四种可能.即:三条边,三个角,两边一角和两角一边.[师]对,下面我们来逐一探索(出示投影片§3.3.1 D )做一做:(1 )一个三角形的三个内角分别为40° ,60° ,80°.你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?(2 )一个三角形的三条边分别为4 cm、5 cm和7 cm ,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?[生甲]一个三角形的三个内角分别为40°、60°、80°.能画出这个三角形,但与同伴画的进行比较时,有的能完全重合,有的不重合,所以它们不一定重合.如图.图[师]通过比较得知:给出三角形的三个内角,得到的三角形不一定全等.那给出三角形的三条边又如何呢?[生乙]一个三角形的三条边分别是4 cm ,5 cm和7 cm ,我能画出这个三角形.与同伴们进行比较可知:这样的所有三角形都是全等的.如图.图[生丙]我画的三角形也和别人画的全等.由此可知:三角形的三边,那么画出的所有三角形都全等.[师]是吗?我们来验证:画一个三角形,使它的三边分别等于8 cm、6 cm、10 cm.画出图形后与同伴的进行比较.[生丁]我画出的三角形与其他人的全等.[师]是吗?大家来重叠一下.[生齐声]都能够重合.[师]好,由此我们知道:三角形的三条边画三角形,那么画出的所有三角形全等 (电脑演示重合过程 ).这样就得到了三角形全等的条件:三边对应相等的两个三角形全等. 简写为: "边边边〞或 "SSS 〞 如图.图⎪⎩⎪⎨⎧=−→−==EF BC DF AC DE AB △ABC ≌△DEF . 注意:三边对应相等是前提条件 ,三角形全等是结论. 下面我们来做一个实验 (出示投影片§3.3.1 E )取三根长度适当的木条 ,用钉子钉成一个三角形的框架 ,你所得到的框架的形状固定吗 ?用四根木条钉成的框架的形状固定吗 ?[师]做实验时 ,可用细纸条代替木条.实验后分组讨论.[生]用三根木条钉成的三角形框架是固定的 ,用四根木条钉成的框架 ,它的形状是可以改变的.[师]很好 ,看屏幕 (演示图 ).图图 (1 )是用三根木条钉成的三角形框架 ,它的大小和形状是固定不变的 ,三角形的这个性质叫做三角形的稳定性.三角形的稳定性在生产和生活中是很有用的.如:房屋的人字梁具有三角形的结构 ,它就稳固和稳定.图(2 )的形状是可以改变的,它不具有稳定性.大家想一想,如何才能使图(2 )的框架不能活动?[生]在相对的顶点上钉一根木条,使它变为两个三角形框架即可.[师]对,在生活中经常会看到采用三角形的结构去建筑.就是用到了它的稳定性.同学们能举出一些生活中应用三角形的稳定性的例子吗?[生]能.如:大桥钢架、索道支架、输电线支架等等.[师]很好,下面我们来做一练习以熟悉掌握本节内容.Ⅲ.课堂练习(一)课本习题3.6 1、21.准备几根硬纸条(1 )取出三根硬纸条钉成一个三角形,你能拉动其中两边,使这个三角形的形状发生变化吗?(2 )取出四根硬纸条钉成一个四边形,拉动其中两边,这个四边形的形状改变了吗?钉成一个五边形,又会怎么样?(3 )上面的现象说明了什么?解:(1 )三角形的形状不会发生变化.(2 )四边形,五边形的形状发生了变化.(3 )说明了三角形具有稳定性,而四边形、五边形不具有稳定性.2.两个锐角对应相等的两个直角三角形全等吗?为什么?解:不一定全等.如图.图Rt△ABC与Rt△A′B′C′不全等.(二)看课本然后小结.Ⅳ.课时小结本节课我们重点探索了三角形全等的条件 ,还了解了三角形的稳定性. 三角形全等的条件:三边对应相等的两个三角形全等. 如图.图−→−⎪⎭⎪⎬⎫===DF AC EF BC DE AB △ABC ≌△DEF . Ⅴ.课后作业(一 )课本习题3.6 3 (二 )1.预习内容 2.预习提纲三角形全等的条件是什么 ? Ⅵ.活动与探究图一个六边形钢架ABCDEF .由6条钢管连接而成 (如下列图 ) ,为使这一钢架稳固 ,请你用三条钢管连接使它不能活动 ,你能找出几种方法 ?过程:让学生思考、探索 ,进一步理解三角形的稳定性在现实生活中的应用. 结果: (1 )可从这六个顶点中的任意一个作对角线 ,把这个六边形划分成四个三角形.如图(1 )为其中的一种.(2 )也可以把这个六边形划分成四个三角形.如图(2 ).图●板书设计§3.3.1 探索三角形全等的条件一、三角形全等的条件:三边对应相等的两个三角形全等. "SSS〞二、三角形的稳定性.三、课堂练习四、课时小结五、课后作业以下为赠送内容别想一下造出大海,必须先由小河川开始 .成功不是只有将来才有,而是从决定做的那一刻起,持续积累而成!人假设软弱就是自己最||大的敌人,人假设勇敢就是自己最||好的朋友 . 成功就是每天进步一点点!如果要挖井,就要挖到水出为止 .即使爬到最||高的山上,一次也只能脚踏实地地迈一步 .今天拼搏努力,他日谁与争锋 .在你不害怕的时候去斗牛,这不算什么;在你害怕的时候不去斗牛,这没什么了不起;只有在你害怕的时候还去斗牛才是真正的了不起 .行动不一定带来快乐,但无行动决无快乐 .只有一条路不能选择- -那就是放弃之路;只有一条路不能拒绝|| - -那就是成长之路 .坚韧是成功的一大要素,只要在门上敲得够久够大声,终会把人唤醒的 .只要我努力过,尽力过,哪怕我失败了,我也能拍着胸膛说:"我问心无愧 ."用今天的泪播种,收获明天的微笑 .人生重要的不是所站的位置,而是所朝的方向 .弱者只有千难万难,而勇者那么能披荆斩棘;愚者只有声声哀叹,智者却有千路万路 .坚持不懈,直到成功!最||淡的墨水也胜过最||强的记忆 .凑合凑合,自己负责 .有志者自有千计万计,无志者只感千难万难 .我中|考,我自信!我尽力我无悔!听从命运安排的是凡人;主宰自己命运的才是强者;没有主见的是盲从,三思而行的是智者 .相信自己能突破重围 .努力造就实力,态度决定高度 .把自己当傻瓜,不懂就问,你会学的更多 .人的活动如果没有理想的鼓舞,就会变得空虚而渺小 .安乐给人予舒适,却又给人予早逝;劳作给人予磨砺,却能给人予长久 .眉毛上的汗水和眉毛下的泪水,你必须选择一样!假设不给自己设限,那么人生中就没有限制你发挥的藩篱 .公众号:惟微小筑相信自己我能行!任何业绩的质变都来自于量变的积累 .明天的希望,让我们忘了今天的痛苦 .世|界上最||重要的事情,不在于我们身在何处,而在于我们朝着什么方向走 . 爱拼才会赢努力拼搏,青春无悔!。

七年级数学下册 4.3《探索三角形全等的条件》教案 北师大版(2021学年)

七年级数学下册 4.3《探索三角形全等的条件》教案 北师大版(2021学年)

七年级数学下册4.3《探索三角形全等的条件》教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册4.3《探索三角形全等的条件》教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册4.3《探索三角形全等的条件》教案(新版)北师大版的全部内容。

《探索三角形全等的条件》教学目标一、知识与技能1.掌握三角形全等的条件;2.会证明简单的三角形全等问题;二、过程与方法1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.通过观察、动手操作、类比、推断等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维;三、情感态度和价值观1.通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧;2.通过分组讨论学习,体会合作学习的兴趣;教学重点探究三角形全等的条件;教学难点寻求三角形全等的条件;教学方法引导发现法、启发猜想课前准备教师准备课件、多媒体学生准备练习本课时安排3课时教学过程一、导入小明作业本上画的三角形被墨迹污染了,她想画一个与原来完全一样的三角形,她该怎么办?请你帮助小颖想一个办法,并说明你的理由?注意:与原来完全一样的三角形,即是与原来三角形全等的三角形.要画一个三角形与小明画的三角形全等。

需要几个与边或角的大小有关的条件呢?一个条件?两个条件?三个条件?···让我们一起来探索三角形全等的条件二、新课做一做1.只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.(1)三角形的一个内角为30° ,一条边为3cm;(2)三角形的两个内角分别为30°和50° ;(3)三角形的两条边分别为4cm,6cm.结论:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.议一议如果给出三个条件画三角形,你能说出有哪几种可能的情况?有四种可能:三条边、三个角、两边一角和两角一边.做一做(1)已知一个三角形的三个内角分别为40° ,60°和80° ,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?结论:三个内角对应相等的两个三角形不一定全等.(2)已知一个三角形的三条边分别为4 cm,5cm和7cm,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?754三边分别相等的两个三角形全等,简写为“边边边"或“SSS”。

初一数学探索三角形全等的条件(三)导学案

初一数学探索三角形全等的条件(三)导学案

初一数学探索三角形全等的条件(三)导学案姓名:学习目标:1.通过分组画图比较,得出SAS的结论,培养学生思维的全面性。

2.让学生在活动过程中,发展合作交流能力和语言表达能力。

3.能够利用全等条件判定两个三角形全等并会用数学语言说明理由。

4.在解决问题中发现问题,通过虚心交流解决问题,互相启发,互相受益。

5.在活动过程中体会结论的客观真实性,感受数学与现实生活的密切联系,增强学生的数学应用意识,初步培养学生依据已知结论分析问题、解决问题的良好习惯。

重点:能够利用全等条件判定两个三角形全等并会用数学语言说明理由难点:能够利用全等条件判定两个三角形全等并会用数学语言说明理由教学过程:第一环节知识回顾活动内容:复习提问。

判断三角形全等的方法有几种,分别用语言加以描述。

第二环节分类研究活动内容:通过小组讨论,明确两边及一角的情况,就此三个条件找出分为两类,并对每类的情况进行解释说明。

第三环节画图比较活动内容:1.按要求画图:已知两边分别为2.5厘米、3.5厘米,它们的夹角为40°。

分小组画图,鼓励学生利用量角器、直尺、三角板等一切工具画三角形,并要求画出的三角形尽可能准确,减少误差。

2.按要求作图:以2.5厘米,3.5厘米为边,以2.5厘米的边所对的角为40°。

分小组画图,要求同1。

第四环节合作学习活动内容:1.⑴学生根据各小组所画的图形,剪下后对比分析,看图形是否完全重合。

⑵通过对比、交流,最终对研究的问题作出决策。

⑶总结结论,培养了语言表达能力。

2.小组内合作探究,剪下所画图形后对比分析图形是否全等,并互相补充产生这种情况的原因。

第五环节练习提高活动内容:1.分别找出各题中的全等三角形,说明理由。

2.小明做了一个如图所示的风筝,其中∠EDH=∠FDH,DE=FD。

将上述条件标注在图中,小明不用测量就能知道EH=FH吗?与同伴交流。

DCBAFDE40°CBA40°迟文先编辑制作迟文先编辑制作3.在△ABC 中,AB=AC ,AD 是∠BAC 的角平分线。

4.3探索三角形全等的条件教案

4.3探索三角形全等的条件教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形全等的基本概念。三角形全等是指两个三角形的三个角和三条边完全相同。它是解决几何问题的重要工具,可以帮助我们计算角度和边长。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何使用SSS和SAS条件判断两个三角形是否全等,以及全等三角形在实际问题中的应用。
2.教学难点
-难点在于理解全等三角形的本质,即不仅仅是外观相似,而是每一个角和每一条边都完全相同。
-学生在理解SAS全等条件时,可能会对夹角的概念感到困惑,不清楚如何准确地判断两个角的相等性。
-在实际操作中,如何正确使用直尺和圆规进行全等三角形的作图,尤其是当条件不完整时。
-难点还在于如何将全等三角形的性质应用到解决复杂几何问题中,如四边形的不规则图形中。
举例:
a)难点解释:在SAS全等条件中,学生需要理解“夹角”是指两条边的公共端点所对的角,而不是任意两条边之间的角。
b)实际操作难点:在作图时,学生可能难以准确地通过给定的一边和夹角来确定另一边的位置,需要教师引导如何利用已知信息进行作图。
c)应用难点:在解决综合几何问题时,学生可能不知道如何将问题简化为全等三角形的判定问题,需要教师通过具体案例分析来帮助学生理解。
4.解决实际问题,运用三角形全等的条件判断生活中的物体形状是否相同。
二、核心素养目标
本节课旨在培养学生的几何直观、逻辑推理和问题解决能力,具体目标如下:
1.通过探索三角形全等的条件,提高学生对几何图形的观察、分析和推理能力,发展几何直观;
2.引导学生运用逻辑推理方法证明SSS和SAS全等条件,培养严谨的逻辑思维和推理能力;
4.3探索三角形全等的条件教案
一、教学内容

探索三角形全等的条件 导学案

探索三角形全等的条件  导学案

第四章 三角形探索三角形全等的条件 导学案姓名: 一、SSSB CA D F E 二、ASAB CA D F E三、AAS B CA D F E四、SAS B CA D F E练习:1、下列各条件中,不能作出唯一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边2、下列各组条件中,能判定△ABC ≌△DEF 的是( )A .AB=DE ,BC=EF ,∠A=∠DB .∠A=∠D ,∠C=∠F ,AC=EFC .AB=DE ,BC=EF ,△ABC 的周长= △DEF 的周长D .∠A=∠D ,∠B=∠E ,∠C=∠F3、已知如图,∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF ,需补充4、在△ABC 与△DEF 中,给出下列六个条件:(1)AB =DE ;(2)BC =EF ;(3)AC =DF ;(4)∠A =∠D ;(5)∠B =∠E ;(6)∠C =∠F ,以其中三个条件为已知,能判断△ABC 与△DEF 全等的是( )A.(1)(5)(2) B.(1)(2)(3)C.(4)(6)(1) D.(2)(3)(4)5、如图,若AB =DE ,BE =CF ,要证△ABF ≌△DEC ,需补充条件________ 。

6、根据下列条件,能判定△ABC ≌△DEF 的是( )A. AB=DE ,BC=EF ,∠A=∠DB.∠A=∠D ,∠C=∠F ,AC=EFC.∠B=∠E ,∠A=∠D ,AC=EFD.AB=DE ,BC=EF ,∠B=∠EF E D C BA A B C DEFA B D7、如图,已知AC =EB ,要使△ABC ≌△DCB ,则需要补充的条件为___________8、如图,已知AB =DE ,要使△ABC ≌△DEF ,则需要补充的条件为___________9、如图, 若判定 ABC ADC △≌△则添加一个条件是10、如图,给出下列四组条件:其中,能使ABC DEF △≌△的条件共有( )组①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,;③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.11、如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是12、如图,点B 、E 、F 、C 在同一直线上. 已知∠A =∠D ,∠B =∠C ,要使△ABF ≌△DCE ,需要补充的一个条件是 (写出一个即可).AC EBD13、如图,BAC ABD=∠=∠,请你添加一个条件:,使OC OD。

部编七年级数学探索三角形全等的条件导学案一

部编七年级数学探索三角形全等的条件导学案一

部编七年级数学探索三角形全等的条件导学案一主备人: 教案审核: 班级 姓名 课 题 1.3探索三角形全等的条件(3)教 学 目 标 1.掌握三角形全等的条件“ASA ”,并能运用其来判别两个三角形是否全等. 2.会利用“ASA ”作三角形. 3.发展有条理表达能力.重 点 重点:掌握三角形全等的条件“ASA ”,并能运用它们判别三角形是否全等. 难 点难点:探索三角形全等的条件“ASA ”的过程及应用.教学流程随笔栏 情境引入:1.一块三角形形状的玻璃破裂成如图所示的三块,请你配一块一模一样的玻璃,你会选其中的哪一块呢?探究活动:2.按要求在纸上作图:用直尺和圆规作△ABC ,使AB=a ,∠A=∠α,∠B=∠β.作法 图形 1.作AB=a .2.在AB 的同一侧分别作∠MAB=∠α,∠NBA=∠β,AM 、BN 交于点C .△ABC 就是所求作的三角形.βαa你作的三角形与其他同学作的三角形能完全重合吗?由问题1、问题2的结论你能得到什么三角形全等的条件?3. 课本P19练习14. 已知:△ABC 中,D 是BC 的中点,点E 、F 分别在AB 、AC 上且DE ∥AC ,DF ∥AB ,求证:BE=DF DE=CF①②③F DE A B C拓展提升:5. △ABC 中,AB=AC ,AD ⊥BC 于点D ,将△ADC 绕点A 顺时针旋转,使AC 与AB 重合,点D 落在点E 处,AE 的延长线交CB 的延长线于点M ,EB 的延长线交AD 的延长线于点N. 求证:AM=AN检测反馈:1.如图所示,在ABC ∆中,90C ∠=,AD 平分BAC ∠,DE AB ⊥于E ,8BC cm =,则DE DB += .2.如图,已知AC 与BD 相交于点O ,AD//BC ,AD=BC , 求证:(1)△AOD ≌△COB(2)△AOB ≌△COD.3.已知AC BD =, //AE CF ,//BE DF ,求证:BE DF =.4.如图,已知BF DE =,//AE CF ,//AB CD . 求证:AE CF =反思小结:A B CDOED C BAFE DC B AE NB D AM C E D A BCF。

1.3探索三角形全等的条件(SAS)导学案2022-2023学年苏科版数学八年级上册

1.3探索三角形全等的条件(SAS)导学案2022-2023学年苏科版数学八年级上册

1.3 探索三角形全等的条件(SAS)导学案导学目标•了解SAS(边-角-边)的三角形全等条件•掌握使用SAS判断两个三角形是否全等的方法•能够在实际问题中应用SAS判断三角形的全等性导入问题1.如果两个三角形的两个边分别相等,并且夹角相等,可以说这两个三角形全等吗?2.如果两个三角形的两个边分别相等,并且夹角相等,它们的第三边是否一定相等?3.如果两个三角形的两个边分别相等,并且第三边相等,它们的夹角是否一定相等?4.从导入问题中我们可以得出什么结论?导学过程SAS全等条件的介绍SAS全等条件是指在两个三角形中,如果一个三角形的两边和夹角分别等于另一个三角形的两边和夹角,那么这两个三角形全等。

在三角形ABC和三角形DEF中,如果满足以下条件,即可判断这两个三角形全等:•AB = DE (两边相等)•AC = DF (两边相等)•∠BAC = ∠EDF (夹角相等)使用SAS判断全等的例题例题:已知∆ABC中,AB=5 cm,AC=4 cm,∠BAC=45°,请判断∆ABC与以下哪个三角形全等:(A)∆DEF,其中DE=5 cm,DF=4 cm,∠EDF=45°;(B)∆XYZ,其中XY=6 cm,XZ=3 cm,∠YXZ=45°;(C)∆UVW,其中UV=4cm,UW=5 cm,∠VUW=45°;(D)∆PQR,其中PQ=6 cm,PR=4 cm,∠QPR=45°。

解析:根据题目中所给的条件,我们需要找到与∆ABC满足SAS全等条件的三角形。

•对于选项A,符合条件DE=5cm,DF=4cm,但∠EDF=45°,与∠BAC不相等,所以排除选项A;•对于选项B,符合条件XY=6cm,XZ=3cm,但∠YXZ=45°,与∠BAC不相等,所以排除选项B;•对于选项C,符合条件UV=4cm,UW=5cm,并且∠VUW=45°,与∠BAC相等,所以∆ABC与∆UVW全等;•对于选项D,符合条件PQ=6cm,PR=4cm,但∠QPR=45°,与∠BAC不相等,所以排除选项D。

《探索三角形全等的条件》教案

《探索三角形全等的条件》教案

《探索三角形全等的条件》教案教案:探索三角形全等的条件教学目标:1.了解三角形全等的概念和条件;2.能够运用全等条件判断三角形是否全等;3.发展逻辑思维和推理能力。

教学重点:1.三角形全等的条件;2.运用全等条件进行判断。

教学准备:1.教师准备:白板、马克笔、教材《数学七年级上册》;2.学生准备:课本、笔和纸。

教学过程:Step 1:引入新知识(10分钟)1.教师用白板上画出两个全等的三角形,让学生观察并提出它们之间的特点;2.引导学生思考,询问三角形全等的条件是什么;3.学生提出自己的想法,教师鼓励并给予肯定。

Step 2:探索全等的条件(20分钟)1.将学生分为小组,每个小组由3-4人组成,并给每个小组发放纸和笔;2.学生讨论,尝试构造一些具有共同性质的全等三角形,寻找它们之间的共同特点;3.学生通过讨论和实例的方式,发现三角形全等的条件。

Step 3:归纳总结(15分钟)1.教师引导学生汇总各组的发现,呈现在白板上;2.全班讨论并筛选出最为普遍和具有代表性的三角形全等条件。

Step 4:巩固练习(25分钟)1.教师将教材中的相关练习题呈现在白板上,让学生完成;2.学生在小组中互相讨论,梳理各步推理过程和答案;3.全班共同讨论,解答并纠正错误。

Step 5:拓展延伸(15分钟)1.教师给学生提供一些延伸题目,让学生进一步巩固和拓展所学知识;2.学生可以以小组形式完成,互相检查答案并讨论解题思路;3.学生可以将拓展题目的解题思路和结果汇报给全班,展示和分享自己的思考过程。

Step 6:课堂小结与反思(5分钟)1.教师对本节课的内容进行复盘总结,强调三角形全等的条件和运用;2.教师鼓励学生对这节课的学习进行思考和反思,提出自己的感受和问题。

教学反思:通过本节课的教学,我采用了探索式教学的方式,让学生围绕三角形全等的条件进行自主探索和讨论。

这种方式既可以调动学生的学习积极性,又能够培养学生的逻辑思维和推理能力。

北师大版七年级下册数学教案-第4章 三角形-3 探索三角形全等的条件

北师大版七年级下册数学教案-第4章 三角形-3 探索三角形全等的条件

3探索三角形全等的条件第1课时“边边边(SSS)”和三角形的稳定性教学目标一、基本目标1.掌握三角形全等的“边边边”条件,了解三角形的稳定性.2.经历探索三角形全等条件的过程,体会利用画图、操作、归纳获得数学结论的过程,初步形成解决问题的基本策略.二、重难点目标【教学重点】利用三角形全等的“边边边”条件证明两个三角形全等;三角形的稳定性.【教学难点】利用“SSS”说明三角形全等的思考和推理过程.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P97~P99的内容,完成下面练习.【3 min反馈】1.(教材P97“做一做”)只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?略2.(教材P97“做一做”)给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.(1)三角形的一个内角为30°,一条边为3 cm;(2)三角形的两个内角分别为30°和50°;(3)三角形的两条边分别为4 cm,6 cm.略3.(教材P97“议一议”)如果给出三个条件画三角形,你能说出有哪几种可能的情况?解:三条边;三个角;两条边和一个角;两个角和一条边.4.(教材P98“做一做”)(1)已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?(2)已知一个三角形的三条边分别为4 cm,5 cm和7 cm,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?解:(1)三个内角对应相等的两个三角形不一定全等.(2)三边分别相等的两个三角形全等,简称为“边边边”或“SSS”.通常写成下面的格式: 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,所以△ABC ≌△DEF (SSS).5.2017年11月5日19时45分,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”的方式成功发射第二十四、二十五颗北斗导航卫星.这两颗卫星属于中国地球轨道卫星,是我国北斗三号第一、二颗组网卫星,开启了北斗卫星导航系统全球组网的新时代.如图所示,在发射运载火箭时,运载火箭的发射架被焊接成了许多的三角形,这样做的原因是:三角形具有稳定性.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,已知AB =DE ,AC =DF ,点E 、C 在直线BF 上,且BE =CF .求证:△ABC ≌△DEF .【互动探索】(引发学生思考)已知两个三角形有两组对边相等,同一直线上的一组边相等,可考虑用“SSS ”证明△ABC ≌△DEF .【证明】因为BE =CF ,所以BE +EC =CF +EC ,即BC =EF . 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,所以△ABC ≌△DEF (SSS).【互动总结】(学生总结,老师点评)判定两个三角形全等,先根据已知条件或易证的结论确定判定三角形全等的方法,然后再根据判定方法,看缺什么条件,再去证什么条件.【例2】如图,已知AB =AD ,DC =BC ,∠B 与∠D 相等吗?为什么?【互动探索】(引发学生思考)要判断角相等,可考虑用三角形全等证明,需添加辅助线AC 构造三角形进行证明.【解答】∠B =∠D .理由如下:连结AC . 在△ADC 和△ABC 中,因为⎩⎪⎨⎪⎧AD =AB ,AC =AC ,DC =BC ,所以△ADC ≌△ABC (SSS), 所以∠B =∠D .【互动总结】(学生总结,老师点评)要证∠B 与∠D 相等,可证这两个角所在的三角形全等,而现有的条件并不满足,可以考虑添加辅助线证明.【例3】要使下列木架稳定,可以在任意两个点之间钉上木棍,各图至少需要钉上多少根木棍?【互动探索】(引发学生思考)三角形具有稳定性,怎样添加木棍才能使多边形具有稳定性呢?【解答】如图1,四边形木架至少需要钉上1根木棍; 如图2,五边形木架至少需要钉上2根木棍; 如图3,六边形木架至少需要钉上3根木棍.图1 图2 图3【互动总结】(学生总结,老师点评)n 边形沿一个顶点的对角线添加(n -3)条木棍后就具有稳定性.活动2 巩固练习(学生独学)1.下列实际情景运用了三角形稳定性的是( C ) A .人能直立在地面上 B .校门口的自动伸缩栅栏门 C .古建筑中的三角形屋架D .三轮车能在地面上运动而不会倒2.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M 、N 重合,过角尺顶点C 作射线OC .由做法得△MOC ≌△NOC 的依据是SSS.3.如图,AC 与BD 交于点O ,AD =CB ,E 、F 是BD 上两点,且AE =CF ,DE =BF . 求证:(1)∠D =∠B ; (2)AE ∥CF .证明:(1)在△ADE 和△CBF 中,⎩⎪⎨⎪⎧AE =CF ,AD =BC ,DE =BF ,所以△ADE ≌△CBF (SSS), 所以∠D =∠B . (2)因为△ADE ≌△CBF , 所以∠AED =∠CFB .因为∠AED +∠AEO =180°,∠CFB +∠CFO =180°, 所以∠AEO =∠CFO , 所以AE ∥CF .环节3 课堂小结,当堂达标 (学生总结,老师点评)1.“边边边(SSS)”:三边分别相等的两个三角形全等. 2.三角形具有稳定性,四边形具有不稳定性.练习设计请完成本课时对应练习!第2课时 “角边角(ASA)”和“角角边(AAS)”教学目标一、基本目标1.掌握三角形全等的“ASA”“AAS”条件,并会进行简单的应用.2.经历探索三角形全等“两角一边”的过程,体会通过操作、归纳获得数学结论的趣味. 二、重难点目标 【教学重点】应用三角形全等的“ASA”“AAS”条件. 【教学难点】探索三角形全等条件“两角一边”.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P100~P101的内容,完成下面练习. 【3 min 反馈】1.两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA ”.通常写成下面的格式:在△ABC 与△DEF 中,⎩⎪⎨⎪⎧∠B =∠E ,BC =EF ,∠C =∠F ,所以△ABC ≌△DEF .2.两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“角角边”或“AAS ”.通常写成下面的格式:在△ABC 与△DEF 中,⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠E ,BC =EF ,所以△ABC ≌△DEF .3.能确定△ABC ≌△DEF 的条件是( D ) A .AB =DE ,BC =EF ,∠A =∠E B .AB =DE ,BC =EF ,∠C =∠E C .∠A =∠E ,AB =EF ,∠B =∠D D .∠A =∠D ,AB =DE ,∠B =∠E4.如图,已知点F 、E 分别在AB 、AC 上,且AE =AF ,请你补充一个条件:∠B =∠C ,使得△ABE ≌△ACF .(只需填写一种情况即可)教师点拨:此题答案不唯一,还可以填AB =AC 或∠AEB =∠AFC . 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,已知AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .【互动探索】(引发学生思考)回忆我们学过的判定三角形全等的条件,结合已知中的平行线段,可考虑利用“ASA ”证明△ADF ≌△CBE .【证明】因为AD ∥BC ,BE ∥DF , 所以∠A =∠C ,∠DF A =∠BEC . 因为AE =CF ,所以AE +EF =CF +EF ,即AF =CE . 在△ADF 和△CBE 中,⎩⎪⎨⎪⎧∠A =∠C ,AF =CE ,∠DF A =∠BEC ,所以△ADF ≌△CBE (ASA).【互动总结】(学生总结,老师点评)在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分.在“ASA ”中,“边”必须是“两角的夹边”.【例2】如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 交于点F .若BF =AC ,求证:△ADC ≌△BDF .【互动探索】(引发学生思考)观察图形,要证△ADC ≌△BDF ,只需∠DAC =∠DBF 即可.由在Rt △ADC 与Rt △BDF 中,利用等角的余角相等即可得∠DAC =∠DBF .【证明】因为AD ⊥BC ,BE ⊥AC , 所以∠ADC =∠BDF =∠BEA =∠BEC =90°. 又因为∠AFE =∠BFD , 所以∠DAC =∠DBF .在△ADC 和△BDF 中,⎩⎪⎨⎪⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,所以△ADC ≌△BDF (AAS).【互动总结】(学生总结,老师点评)在解决三角形全等的问题时,要注意挖掘题中的隐含条件,如:对顶角、公共边、公共角等.活动2 巩固练习(学生独学)1.完成教材P102“习题4.7”第1~3题. 略2.如图,点B 在线段AD 上,BC ∥DE ,AB =ED ,∠A =∠E .求证:BC =DB .证明:因为BC ∥DE , 所以∠ABC =∠EDB .在△ABC 和△EDB 中,⎩⎨⎧∠A =∠E ,AB =ED ,∠ABC =∠EDB ,所以△ABC ≌△EDB (ASA), 所以BC =BD .环节3 课堂小结,当堂达标 (学生总结,老师点评)1.“角边角(ASA)”:两角及其夹边分别相等的两个三角形全等.2.“角角边(AAS)”:两角分别相等且其中一组等角的对边相等的两个三角形全等.练习设计请完成本课时对应练习!第3课时“边角边(SAS)”教学目标一、基本目标1.经历画图比较,得出判定三角形全等的“SAS”条件.2.能够利用“SAS”判定两个三角形全等并会用数学语言说明理由.3.在探索三角形全等及其应用的过程中,能够进行有条理地思考并进行简单推理.二、重难点目标【教学重点】通过画图比较,得出“SAS”结论的过程及应用.【教学难点】探索“边边角”能否用于判定全等.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P102~P104的内容,完成下面练习.【3 min反馈】1.(1)两边及夹角,三角形两边分别为2.5 cm,3.5 cm,它们所夹的角为40°,你能画出这个三角形吗?你画的三角形与同桌画的一定全等吗?(2)以2.5 cm,3.5 cm为三角形的两边,长度为2.5 cm的边所对的角为40°,情况又怎样?动手画一画,你发现了什么?解:(1)与同桌画的是全等的(如图1).(2)与同桌画的不一定全等(如图2).图1图2总结:(1)两边及其一边所对的角对应相等,两个三角形不一定全等;(2)三角形全等的判定方法4:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.通常写成下面的格式:在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,所以△ABC ≌△DEF .2.如图,已知BD =CD ,要根据“SAS”判定△ABD ≌△ACD ,则还需添加的条件是∠ADB =∠ADC .环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,A 、D 、F 、B 在同一直线上,AD =BF ,AE =BC ,且AE ∥BC .求证:△AEF ≌△BCD .【互动探索】(引发学生思考)由题意可知,如果∠A =∠B 就可证△AEF ≌△BCD .由AE ∥BC 可得∠A =∠B .【证明】因为AE ∥BC ,所以∠A =∠B .因为AD =BF ,所以AD +DF =DF +FB ,即AF =BD . 在△AEF 和△BCD 中,⎩⎪⎨⎪⎧AE =BC ,∠A =∠B ,AF =BD ,所以△AEF ≌△BCD (SAS).【互动总结】(学生总结,老师点评)判定两个三角形全等时,若有两边一角对应相等时,角必须是两边的夹角.【例2】如图,BC ∥EF ,BC =BE ,AB =FB ,∠1=∠2,若∠1=60°,求∠C 的度数.【互动探索】(引发学生思考)已知两组边对应相等,可考虑证明△ABC ≌△FBE ,从而得出∠C =∠BEF .又由BC ∥EF 可得∠BEF =∠1,进而解决问题.【解答】因为∠1=∠2,所以∠1+∠ABE =∠2+∠ABE ,即∠ABC =∠FBE . 在△ABC 和△FBE 中,⎩⎪⎨⎪⎧BC =BE ,∠ABC =∠FBE ,AB =FB ,所以△ABC ≌△FBE (SAS), 所以∠C =∠BEF . 又因为BC ∥EF ,所以∠C =∠BEF =∠1=60°.【互动总结】(学生总结,老师点评)(1)全等三角形是证明线段和角相等的重要工具;(2)学会挖掘题中的已知条件,如“公共边”“公共角”等.活动2 巩固练习(学生独学)1.如图,AB =AC ,AD =AE ,欲证△ABD ≌△ACE ,可补充条件( A )A .∠1=∠2B .∠B =∠C C .∠D =∠ED .∠BAE =∠CAD2.下列条件中,不能证明△ABC ≌△DEF 的是( C )A .AB =DE ,∠B =∠E ,BC =EF B .AB =DE ,∠A =∠D ,AC =DF C .BC =EF ,∠B =∠E ,AC =DF D .BC =EF ,∠C =∠F ,AC =DF3.如图,已知AB =AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?解:AC 平分∠BCD .理由如下:因为AC 平分∠BAD ,所以∠BAC =∠DAC .在△ABC 和△ADC 中,⎩⎪⎨⎪⎧ AB =AD ,∠BAC =∠DAC ,AC =AC ,所以△ABC ≌ADC (SAS),所以∠ACB =∠ACD ,所以AC 平分∠BCD .活动3 拓展延伸(学生对学)【例3】如图,四边形ABCD 、DEFG 都是正方形,连结AE 、CG .求证:(1)AE =CG ;(2)AE ⊥CG .【互动探索】(1)观察图形,证明△ADE ≌△CDG ,即可得出AE =CG ;(2)结合全等三角形的性质和正方形的性质即可得AE ⊥CG .【证明】(1)因为四边形ABCD 、DEFG 都是正方形,所以AD =CD ,GD =ED ,∠CDA =∠GDE =90°.因为∠CDG =90°+∠ADG ,∠ADE =90°+∠ADG ,所以∠CDG =∠ADE .在△ADE 和△CDG 中,⎩⎪⎨⎪⎧ AD =CD ,∠ADE =∠CDG ,DE =GD ,所以△ADE ≌△CDG (SAS),所以AE =CG .(2)设AE 与DG 相交于点M ,与CG 相交于点N .由(1)得△ADE ≌△CDG ,所以∠CGD =∠AED .因为∠GMN =∠DME ,∠DEM +∠DME =90°,所以∠CGD +∠GMN =90°,所以∠GNM =90°,所以AE ⊥CG .【互动总结】(学生总结,老师点评)正方形的四条边相等,四个角都等于90°,利用正方形的性质结合全等三角形的判定与性质即可解决问题.环节3课堂小结,当堂达标(学生总结,老师点评)1.“边角边(SAS)”:两边及其夹角分别相等的两个三角形全等.2.利用全等三角形的判定和性质可以证明角或线段相等.练习设计请完成本课时对应练习!。

初中数学教学导学案设计(1)[修改版]

初中数学教学导学案设计(1)[修改版]

第一篇:初中数学教学导学案设计(1)初中数学教学引导案例设计(修正版)课题:探索三角形全等的条件一、教学设计:1. 学习方式:为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,运用多媒体课件---主要是白板作图来引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

2. 教学目标:(1)学生在教师引导下,利用白板作图,积极引导学生探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

(2)展示多媒体课件,让学生掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,运用图片让学生了解三角形的稳定性,能用三角形的全等解决一些实际问题。

(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

3 教学的重点与难点:重点:三角形全等条件的探索过程是本节课的重点。

运用白板作图,设置情景,提出问题,动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。

难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

二、创设情景提出问题怎样才能画一个三角形与他的三角形全等(运用白板作图)?我们知道全等三角形三条边分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗? 对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

全等三角形全章导学案

全等三角形全章导学案

1全等三角形 导学案 一、学习目标:1.理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。

2.掌握全等三角形的性质,并运用性质解决有关的问题。

3.会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。

二、重点难点:运用全等三角形的性质解决相关的计算及证明等问题。

三、学习过程(一)、自主预习课本内容,回答下列问题:1、能够________的图形就是全等图形, 两个全等图形的_______和________完全相同。

2、一个图形经过______、______、_________后所得的图形与原图形 。

3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 。

“全等”用“ ”表示,读作 。

4、如图所示,△OCA ≌△OBD ,对应顶点有:点___和点___,点___和点___,点___和点___; 对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,____和____,_____和_____.5、全等三角形的性质:全等三角形的 相等, 相等。

(二)、练一练1.如图,△AB C ≌△CDA ,AB 和CD ,BC 和DA 是对应边。

写出其他对应边及对应角。

2如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB 与AC 是对应边。

写出其他对应边及对应角。

《课内探究》1.如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)写出其他对应边及对应角. (2)求线段MN 及线段HG 的长.2.如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗? 为什么?课题:《三角形全等的判定》(SSS)导学案【学习目标】 1、能自己试验探索出判定三角形全等的SSS 判定定理。

3.3 探索三角形全等的条件(SAS)一等奖创新教学设计

3.3 探索三角形全等的条件(SAS)一等奖创新教学设计

3.3 探索三角形全等的条件(SAS)一等奖创新教学设计《4.3.3探索三角形全等的条件》教学设计一、教学内容分析本节课选自北师大版《七年级数学下册》第四章第三节探索三角形全等的条件第三课时,本节课探索第三种判定方法—“边角边”,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,以“问题串”的形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。

二、学生学习情况分析学生的知识技能基础:学生在前两节中,已经了解了图形的全等,探索了三角形全等的条件,这已是第三个课时。

在前两课时中,学生通过画图、观察、比较、交流等方式探索到了三角形全等的一些条件。

探讨的步骤学生已很熟悉,也很有激情,教师可以因势利导,引导学生更进一步探索三角形全等的另外一些条件。

学生在探讨过程中,一定会遇到“两边及一边的对角”的条件,有很多学生难于发现其错误所在,教师应适当指点迷津,与学生友好合作,引导学生到达成功的彼岸。

已经具备了一定的知识技能基础。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了探索三角形全等的条件的活动,通过拼小木棒、画图、等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

三、设计思想建构主义学习论主张教师提供大量的素材,学生利用资源建构自己的知识体系。

我们的教学设备齐全,学生学习基础较好,在这之前他们已了解了三角形全等的三种判定方法,并且积累了探究三角形全等的条件的活动经验,为再探究“边角边”做好了充足的准备。

另外,学生也基本具备了利用已知条件画出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。

遵循启发式教学原则,采用引探式教学方法。

《探索三角形全等的条件》学情分析方案

《探索三角形全等的条件》学情分析方案

《探索三角形全等的条件》学情分析方案一、引言三角形全等是三角形的重要性质之一,也是解决三角形问题的基础。

探索三角形全等的条件,可以帮助学生深入理解三角形的性质,并培养他们的逻辑思维和证明能力。

本文将通过学情分析方案,探讨如何有效地教授三角形全等的条件,并提出相应的教学方法和策略。

二、学情分析1.知识背景学生在学习三角形全等之前,已经具备了相关的数学基础知识,包括角的概念、直角三角形的性质、平行线与三角形的关系等。

他们对于平行线的性质和四边形的相关知识掌握较好。

2.学生特点学生学习三角形全等的主要难点在于理解和应用全等的条件,并进行相应的证明。

许多学生在解题时倾向于按部就班地运用公式,而缺乏对于全等条件的理解和运用能力。

3.学习目标通过学习三角形全等的条件,学生应该能够:(1)理解和应用全等的条件,包括SSS、SAS、ASA、AAS和HL;(2)通过观察图形和推理来判断两个三角形是否全等;(3)能够合理运用全等的条件进行证明;三、教学内容和方法1.教学内容(1)SSS(三边全等):如果两个三角形的三条边分别相等,则这两个三角形全等。

(2)SAS(两边一角全等):如果两个三角形的两条边和它们之间夹的角相等,则这两个三角形全等。

(3)ASA(角边角全等):如果两个三角形的两个角和它们之间的一条边相等,则这两个三角形全等。

(4)AAS(角角边全等):如果两个三角形的两个角和另一边的对应边相等,则这两个三角形全等。

(5)HL(斜边和直角边全等):如果两个右三角形的一条直角边和斜边分别相等,则这两个三角形全等。

2.教学方法(1)启发式教学法:通过引导学生观察、发现和归纳,培养他们的逻辑思维和推理能力。

例如,教师可以给学生一些已知条件,让他们根据条件推理出结论,从而发现全等的条件。

(2)实例分析法:教师可以通过实际生活中的例子,如房子的屋顶等,让学生观察并发现其中的全等条件。

然后引导学生将所观察到的规律抽象成为三角形全等的条件。

4.3.3探索三角形全等的条件(3)——SAS

4.3.3探索三角形全等的条件(3)——SAS

4.3.3三角形全等的条件(SAS)导学案
教学目标:
1.掌握全等三角形的判定方法“SAS”.
2.能运用“SAS”判定两个三角形全等,并会用几何语言进行说理证明.
学习过程:
一、复习思考
1.到目前为止,可以作为判别两三角形全等的方法有种,分别是、和
2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究最后一种:已知两边一角是否可以判断两三角形全等?三角形中已知两边一角又分成哪两种呢?
二、自主预习(阅读课本P102-104,思考并尝试完成下列各题)
1、三角形全等的“边角边”条件的文字叙述?
三、例题讲解
例1.如图,AB=AC,AD=AE,求证:BE=CD.
例2.如图,AB=AC,AD=AE, ∠1=∠2.求证:∠B=∠C.
四、课堂练习
1.如图,AD=AE ,BD=CE,∠ADB=∠AEC=100°,∠BAE=70°,下列结论错误的是( )
A .△ABE ≌△ACD B.△ABD ≌△ACE
C .∠DAE=40°
D .∠C=30°
2.如图,AB=EB, ∠1=∠2,∠ADE=120°,AE 、BD 相交于F ,则∠3的度数为___ ___.
3.如图,AB=CB ,AD=CD ,E 是BD 上任意一点,求证:AE=CE .
4. 如图所示,点D 是△ABC 的边AB 上一点,E 是AC 的中点,F 是DE 延长线上的一点,且DE=EF ,连结CF.求证:∠B+∠BCF= 180.
五、小结反思:学完这节课,我学会了 A D B C F E。

探索三角形全等的条件3导学案

探索三角形全等的条件3导学案

4.3探索三角形全等的条件(3)(导学案)学习目标:1.能积极探索三角形全等的条件(SAS),体会利用操作归纳获得结论的过程。

2.能运用三角形全等的“边角边(SAS)”的判定条件有条理的思考并进行简单的证明。

3、综合运用三角形全等的判定方法来判定三角形全等。

学习重难点:重点:学会运用SAS证明两个三角形全等.难点:探索三角形全等的条件“SAS”的过程及几种方法的综合应用学习过程:一、学习准备:1.我们在前面学过______ _______ _______方法判定两个三角形全等。

2.从三角形的判定方法知,判定两个三角形至少须_______个条件。

其中必有。

二、探究探究1:做一做:画△ABC,使两边为15cm、12cm,夹角为450并剪下,于同桌进行比较,它们能互相重合吗?结论:如果两个三角形两边和它们的_______对应相等,那么这两个三角形________。

简记为“__________”或“____________”。

在△ABC与△DEF中文字语言图形语言几何语言探究2:是否只能是两边及其夹角呢?两边及其中一边对角行吗?做一做:作三角形,两边为15cm 、12cm,其中12cm 边对角为450,和同桌进行比较,它们一样吗?结论:两边及其一边所对的角相等,两个三角形 全等三、例题解析例1:如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D例2 如图,点E 在AB 上,AC=AD ,请你添加一个条件,使图中存在全等三角形,并给予证明。

所添条件____________。

你得到的一对全等三角形是△________≌△________。

证明:第19题图A B C DEF变式训练:如图,在△ABD和△ACE中,有下列四个等式:①AB=AC ②AD=AE ③∠1=∠2 ④BD=CE请你以其中三个等式作条件,余下的作为结论,写出一个正确的结果:(用序号ⓧⓧⓧ⇒ⓧ的形式写出)并说说你的理由D能力提升:已知:如图:∠1=∠2,∠3=∠4,点P在AB上。

三角形全等的判定SAS 导学案

三角形全等的判定SAS    导学案

3421B A CD E 三角形全等的判定SAS 导学案【学习目标】1.知道三角形全等“边角边”的内容.2.会运用“S AS ”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.【学习重点】用SAS 的方法证明两个三角形全等及证明三角形全等时的书写格式.【学习难点】1、探索两个三角形全等的判定方法SAS ;2、用SAS 的方法证明两个三角形全等,进而证明角相等、线段相等与平行. 【学习过程】一、创设情境二、自主探究(一)自学课本P8—P10的内容,探索三角形全等的条件归纳总结: 相等的两个三角形全等(简称“边角边”或“SAS ”)巩固应用:如图,已知AD ∥BC ,AD =CB .求证:△ABC ≌△CDA .(提示:要证明两个三角形全等,已具有两个条件,一是AD =CB (已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:(二)探究:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm 和3cm ,长度为3cm 的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?把你的发现和同伴交流。

三、巩固拓展1.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF .求证:AB ∥CD2.如图,已知AB =AC ,AD =AE ,∠1=∠2.求证:△ABD ≌△ACE .3如图,AD=AE ,点D 、E 在BC 上,BD=CE ,∠1=∠2.求证:∠B=∠C21E D C B A D C B AO D C B A D CB A提问:此题还能得到哪些结论? 。

四、知识点归纳【课堂检测】1.如图1,OA=OC ,OB=OD ,则图中有多少对全等三角形( )A .2B .3C .4D .5OD C B A 21E D CB A D CB A(1) (2) (3)2.如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( )A .∠1=∠2B .∠B=∠C C .∠D=∠ED .∠BAE=∠CAD3.如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( )A .AB ∥CD B .AD ∥BC C .∠A=∠CD .∠ABC=∠CDA4.如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据__________可得到△AOD ≌△COB ,从而可以得到AD=_________.(4) (5) (6)5.如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.∵AD 平分∠BAC∴∠________=∠_________(角平分线的定义)在△ABD 和△ACD 中∵___________________________________________∴△ABD ≌△ACD ( )6.如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7.如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?(1)E D C B A (2)E D C B(C)A8.如图(1),AB ⊥BD ,DE ⊥BD ,点C 是BD 上一点,且BC=DE ,CD=AB .(1)试判断AC 与CE 的位置关系,并说明理由.(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)【学习反思】本节课我得收获:____________________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3探索三角形全等的条件(3)
学习目标
1.能主动积极探索三角形全等的条件(SAS),体会利用操作归纳获得结论的过程。

2.能运用三角形全等的“边角边(SAS)”的判定条件有条理的思考并进行简单的证明。

重点:指导学生分析问题,寻找判定三角形全等的条件.
难点:三角形全等证明的书写格式.
一、学习准备:
1.我们在前面学过______ _______ _______方法判定两个三角形全等。

2.从三角形的判定方法知,判定两个三角形至少须_______个条件。

其中必有一边。

二、探索练习:
按要求画以下三角形:
1.三角形两边AB=2.5cm,BC=3.5cm,他们所夹角∠B=40度。

把画出后三角形与同伴相比较,看是否全等?
2.同样三角形两边AB=2.5cm,BC=3.5cm,∠C=40度。

把画出后三角形与同伴相比较,看是否全等?
结论:两边及其中一边所对的角相等的两个三角形________(一定,不一定)全等。

定理:如果两个三角形两边和它们的_______对应相等,那么这两个三角形________。

简记为“__________”或“____________”。

三、例题解析:
例1.已知:如图,C 为BE 的中点,A B ∥DC ,AB=DC, 求证:△ABC ≌△DCE 。

(标:将所有的已知条件标在图中,联:证明全等的
条件到齐了吗?)
证明:∵AB ∥DC (已知)
∴∠B =∠DCE ( )
又∵C 为BE 的中点 ∴BC =CE ( ) 在△ABC 和△DCE 中
∴△ABC ≌△DCE ( )
例2.已知如图,A B ∥DE ,AB =DE , BE =CF ,
求证:AC =DF 。

四、课堂总结
1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件. 2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.
3.证明的书写格式:
(1)通过证明,先把题设中的间接条件转化成为可以直接用于判定三角形全等的条件; (2)再写出在哪两个三角形中:具备按边角边的顺序写出可以直接用于判定全等的三个条件,并用括号把它们括起来;
(3)最后写出判定这两个三角形全等的结论.
⎪⎩
⎪⎨⎧=∠=∠=(已证)(已证)已知)CE BC DCE DC AB B (
C
D
A B
O
五、探索三角形全等的条件(3)达标检测
1、能判定△ABC ≌△A ’B ’C ’的条件是( )
A .A
B =A ’B ’,A
C =A ’C ’,∠C =∠C ’;B .AB =A ’B ’,∠A =∠A ’,BC =B ’C ’; C .AC =A ’C ’,∠A =∠A ’,BC =B ’C ’;
D .AC =A ’C ’,∠C =∠C ’,BC =B ’C ’; 2、(云南)如图,∠CAB =∠DBA ,AC=BD ,则下列结论中,不正确的是( ) A 、BC=AD ; B 、CO=DO ; C 、∠C =∠D ; D 、∠AOB=∠C +∠D
3、如图,已知∠B =∠DEC ,AB =DE ,要推得△ABC ≌△DEC ,
(1)若以“SAS ”为依据,还缺条件___________________; (2)若以“ASA ”为依据,还缺条件__________________; (3)若以“AAS ”为依据,还缺条件__________________; 4、已知:如图,AE=CF ,AD ∥BC ,AD=CB, △ADF 与△CBE 全等吗?为什么?
5、如图,在四边形ABCD 中,点E 在AC 上,∠1=∠2,∠3=∠4,说明∠5=∠6的理由。

B
A
C
E D
2 1
5
6
4 3
M
N
A
C
B
D
6、(2004·福建泉州)如图,已知A 、B 、C 、D 四点在同一直线上,AM=CN ,BM=DN ,
∠M =∠N ,试说明:AC=BD
7、已知:如图,AC=AD ,∠CAB =∠DAB ,△ACB 与△ADB 全等吗?说明理由。

8、如图,AD 是△ABC 的中线,在AD 及其延长线上截取DE =DF ,连接CE 、BF ,
试证明:(1)△BDF ≌△CDE 。

(2)BF 与CE 有何位置关系?
谈谈本节课你有什么收获和困惑? 一、成功之处: 二、不足之处:。

相关文档
最新文档