2016届高考数学第一轮总复习检测19

合集下载

(江苏专用)高三数学一轮总复习 第二章 函数与基本初等函数Ⅰ 第七节 对数与对数函数课时跟踪检测 理

(江苏专用)高三数学一轮总复习 第二章 函数与基本初等函数Ⅰ 第七节 对数与对数函数课时跟踪检测 理

课时跟踪检测(十) 对数与对数函数一抓基础,多练小题做到眼疾手快 1.(2015·某某调研)函数y =log 232x -1的定义域是________.解析:由log 23(2x -1)≥0⇒0<2x -1≤1⇒12<x ≤1.答案:⎝ ⎛⎦⎥⎤12,1 2.函数f (x )=log 12(x 2-4)的单调递增区间为________.解析:函数y =f (x )的定义域为(-∞,-2)∪(2,+∞),因为函数y =f (x )是由y =log 12t 与t =g (x )=x 2-4复合而成,又y =log 12t 在(0,+∞)上单调递减,g (x )在(-∞,-2)上单调递减,所以函数y =f (x )在(-∞,-2)上单调递增.答案:(-∞,-2)3.(2016·某某模拟)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是________.解析:因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1.答案:a =b >c4.(2015·某某高考)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.解析:lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1. 答案:-15.函数y =log 2|x +1|的单调递减区间为______,单调递增区间为______. 解析:作出函数y =log 2x 的图象,将其关于y 轴对称得到函数y =log 2|x |的图象,再将图象向左平移1个单位长度就得到函数y =log 2|x +1|的图象(如图所示).由图知,函数y =log 2|x +1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).答案:(-∞,-1) (-1,+∞)二保高考,全练题型做到高考达标1.函数f (x )=|x -2|-ln x 在定义域内零点的个数为________. 解析:在同一坐标系中分别作函数y =|x -2|与y =ln x 的图象如图所示.由图可知y =|x -2|与y =ln x 有2个交点,所以函数f (x )零点的个数为2.答案:22.(2016·某某五校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f (f (1))+f ⎝⎛⎭⎪⎫log 312的值是________.解析:由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2,f ⎝⎛⎭⎪⎫log 312=331-log 2+1=33log 2+1=2+1=3,所以f (f (1))+f ⎝ ⎛⎭⎪⎫log 312=5.答案:53.设a =log 323,b =log 525,c =log 727,则a ,b ,c 的大小关系为________.解析:因为log 323=log 32-1,log 525=log 52-1,log 727=log 72-1,log 32>log 52>log 72,故a >b >c .答案:a >b >c4.计算:log 2.56.25+lg 0.001+ln e +2-1+log 23=______. 解析:原式=log 2.5(2.5)2+lg 10-3+ln e 12+2log 232 =2-3+12+32=1.答案:15.若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析:令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1.所以函数y =log a M 为增函数,又M =⎝⎛⎭⎪⎫x +342-916,因此M 的单调递增区间为⎝⎛⎭⎪⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32.所以函数f (x )的单调递增区间为(0,+∞).答案:(0,+∞)6.如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log22x ,y =x 12,y =⎝⎛⎭⎪⎫22x的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.解析:由条件得,点A 在函数y =log22x 的图象上,从而由2=2,得x A =12.而点B 在函数y =x 12上,从而2=x 12,解得x B =4.于是点C 的横坐标为4.又点C 在函数y =⎝⎛⎭⎪⎫22x上,从而y C =14,所以点D 的坐标为⎝ ⎛⎭⎪⎫12,14. 答案:⎝ ⎛⎭⎪⎫12,14 7.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值X 围是______.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)8.(2016·某某四市调研)函数f (x )=log 2x ·log 2(2x )的最小值为______.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =22时等号成立,因此函数f (x )的最小值为-14.答案:-149.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x ). 所以函数f (x )的解析式为f (x )=⎩⎨⎧log 12x ,x >0,0,x =0,log 12-x ,x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数, 所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).10.已知函数f (x )=log a (x +1)-log a (1-x ),(a >0且a ≠1). (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集. 解:(1)要使函数f (x )有意义.则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.故所求函数f (x )的定义域为(-1,1). (2)证明:由(1)知f (x )的定义域为(-1,1), 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ), 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1.所以使f (x )>0的x 的解集是(0,1). 三上台阶,自主选做志在冲刺名校1.已知函数f (x )=log a (2x -a )在区间⎣⎢⎡⎦⎥⎤12,23上恒有f (x )>0,则实数a 的取值X 围是________.解析:当0<a <1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是减函数,所以log a ⎝ ⎛⎭⎪⎫43-a >0,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 的取值X 围是⎝ ⎛⎭⎪⎫13,1. 答案:⎝ ⎛⎭⎪⎫13,1 2.(2016·某某中学月考)已知函数f (x )=log a 1-xb +x (0<a <1)为奇函数,当x ∈(-1,a ]时,函数f (x )的值域是(-∞,1],则a +b 的值为________.解析:由1-xb +x >0,解得-b <x <1(b >0).又奇函数定义域关于原点对称,故b =1.所以f (x )=log a 1-x 1+x (0<a <1).又g (x )=1-x x +1=-1+2x +1在(-1,a ]上单调递减,0<a <1,所以f (x )在(-1,a ]上单调递增.又因为函数f (x )的值域是(-∞,1],故f (a )=1,此时g (a )=a ,即1-a a +1=a ,解得a =2-1(负根舍去),所以a +b = 2. 答案: 23.已知函数f (x )=3-2log 2x ,g (x )=log 2x .(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (x )>k ·g (x )恒成立,某某数k 的取值X 围.解:(1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2, 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (x )>k ·g (x ), 得(3-4log 2x )(3-log 2x )>k ·log 2x ,令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2], 所以(3-4t )(3-t )>k ·t 对一切t ∈[0,2]恒成立, ①当t =0时,k ∈R ;②当t ∈(0,2]时,k <3-4t 3-tt恒成立,即k <4t +9t-15,因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t-15的最小值为-3.综上,实数k 的取值X 围为(-∞,-3).。

高三总复习直线与圆的方程知识点总结_2

高三总复习直线与圆的方程知识点总结_2

2016届高考数学复习——直线与圆的方程【考试要求】(1)直线与方程① 在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. ② 理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. ③ 能根据两条直线的斜率判定这两条直线平行或垂直.④ 掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及 一般式),了解斜截式与一次函数的关系.⑤ 能用解方程组的方法求两直线的交点坐标.⑥ 掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程① 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.② 能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方 程,判断两圆的位置关系.③ 能用直线和圆的方程解决一些简单的问题.【知识及公式回顾】1. 点到直线距离:__________________________(已知点(p 0(x 0,y 0)与直线L :AX+BY+C=0) 推论:两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒d=_________________2. 对称问题:(1)点关于点对称:点P (x 1,y 1)关于M (x 0,y 0)的对称点P '( , )2)点关于线的对称:设点P(a,b),则其关于直线l 的对称点P '的坐标?一般方法:Py LP 0x3. 圆的方程① 标准方程 ()22)(r b y a x =-+-,______________为圆心,_______________为半径。

② 一般方程:022=++++F Ey Dx y x , C 圆心______________, 半径=r __________________当0422=-+F E D 时,表示一个点。

当0422<-+F E D 时,不表示任何图形。

4. 点与圆的位置关系:考察点到圆心距离d ,然后与半径r 比较大小。

高考数学一轮复习 第七章 不等式 7.5 绝对值不等式课件

高考数学一轮复习 第七章 不等式 7.5 绝对值不等式课件
∴f(x)min=a+1,
∴a+1=5,
∴a=4.综上,a=-6或a=4.
8.(2014广东,9,5分)不等式|x-1|+|x+2|≥5的解集为
.
答案 {x|x≤-3或x≥2}
解析
原不等式等价于
x 1, (x 1)
(
x
2)
5

2 x 1, (x 1) (x
2)
5

x ( x
2, 1)
(
x
高考数学 (浙江专用)
第七章 不等式
§7.5 绝对值不等式
五年高考
考点 含绝对值不等式的解法
1.(2016浙江,8,5分)已知实数a,b,c. ( ) A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100 B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100 C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100 D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<100
2)
5,
解得x≥2或x≤-3.
故原不等式的解集为{x|x≤-3或x≥2}.
9.(2013重庆,16,5分)若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是
.
答案 (-∞,8]
解析 由绝对值的几何意义得|x-5|+|x+3|的最小值为8,若|x-5|+|x+3|<a无解,应有a≤8. 故a的取值范围是(-∞,8].

【金版教程】2016高考(新课标)数学(理)大一轮复习试题:阶段示范性金考卷4

【金版教程】2016高考(新课标)数学(理)大一轮复习试题:阶段示范性金考卷4

阶段示范性金考卷四(测试范围第七章)(时间:90分钟分值:150分)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. [2014·福建高考]某空间几何体的正视图是三角形,则该几何体不可能是()A. 圆柱B. 圆锥C. 四面体D. 三棱柱答案:A2. [2015·广东七校联考]已知平面α、β和直线m,给出条件:①m ∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.能推导出m∥β的是()A. ①④B. ①⑤C. ②⑤D. ③⑤解析:由两平面平行的性质可知两平面平行,在一个平面内的直线必平行于另一个平面,于是选D.答案:D3. 在下列四个正方体中,能得出AB⊥CD的是()解析:A中,直线AB在平面BCD内的投影与CD垂直,故AB⊥CD.答案:A4. 设α、β、γ为平面,l、m、n为直线,则m⊥β的一个充分条件为()A. α⊥β,α∩β=l,m⊥lB. n⊥α,n⊥β,m⊥αC. α∩γ=m,α⊥γ,β⊥γD. α⊥γ,β⊥γ,m⊥α解析:如图①知A错;如图②知C错;如图③在正方体中,两侧面α与β相交于l,都与底面γ垂直,γ内的直线m⊥α,但m与β不垂直,故D错;由n⊥α,n⊥β,得α∥β.又m⊥α,则m⊥β,故B正确.答案:B5. 设α、β、γ是三个互不重合的平面,m、n是两条不重合的直线,下列命题中正确的是()A. 若α⊥β,β⊥γ,则α⊥γB. 若m∥α,n∥β,α⊥β,则m⊥nC. 若α⊥β,m⊥α,则m∥βD. 若α∥β,m⊄β,m∥α,则m∥β解析:对于A,若α⊥β,β⊥γ,α,γ可以平行,也可以相交,A 错;对于B,若m∥α,n∥β,α⊥β,则m,n可以平行,可以相交,也可以异面,B错;对于C,若α⊥β,m⊥α,则m可以在平面β内,C错;易知D正确.答案:D6. [2015·云南昆明模拟]一个几何体的三视图如图所示,正视图和侧视图都是等边三角形.若该几何体的四个顶点在空间直角坐标系O -xyz 中的坐标分别是(0,0,0),(2,0,0),(2,2,0),(0,2,0),则第五个顶点的坐标可能为( )A. (1,1,1)B. (1,1,2)C. (1,1,3)D. (2,2,3)解析:因为正视图和侧视图是等边三角形,俯视图是正方形,所以该几何体是正四棱锥,还原几何体并结合其中四个顶点的坐标,建立空间直角坐标系,设O (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),则所求的第五个顶点的坐标为S (1,1,z ),正视图为等边三角形,且边长为2,故其高为3,又正四棱锥的高与正视图的高相等,故z =±3,故第五个顶点的坐标可能为(1,1,3)或(1,1,-3),选C.答案:C7. 如图所示,正四棱锥P -ABCD 的底面积为3,体积为22,E 为侧棱PC 的中点,则P A 与BE 所成的角为( ) A.π6 B.π4C.π3D.π2解析:连接AC 、BD 交于点O ,连接OE ,OP ,易得OE ∥P A ,∴所求角为∠BEO .∵PO ⊥OB ,OB ⊥OA ,∴OB ⊥平面P AC ,OB ⊥OE .由所给条件易得OB =62,OE =12P A =22,在△OBE 中,tan ∠OEB =3,∴∠OEB =π3,选C.答案:C8. [2015·辽宁三校联考]某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A. 2π3B. π3C. 2π9D. 16π9解析:由题知该几何体为底面半径为2,高为4的圆锥的13部分,其体积是13π×22×4×13=16π9.故选D.答案:D9. 如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中错误的是( )A. AC ⊥BEB. EF ∥平面ABCDC. 三棱锥A -BEF 的体积为定值D. △AEF 的面积与△BEF 的面积相等解析:由AC ⊥平面DBB 1D 1,可知AC ⊥BE ,故A 正确.由EF ∥BD ,EF ⊄平面ABCD ,知EF ∥平面ABCD ,故B 正确.A 到平面BEF的距离即A 到平面DBB 1D 1的距离为22,且S △BEF =12BB 1×EF =定值,故V A -BEF 为定值,即C 正确.答案:D10. [2014·安徽高考]一个多面体的三视图如图所示,则该多面体的体积为( )A. 233B. 476C. 6D. 7解析:由三视图知这个多面体是正方体截去两个全等的三棱锥后剩余的部分,其直观图如图所示,结合题图中尺寸知,正方体的体积为23=8,一个三棱锥的体积为13×12×1×1×1=16,因此多面体的体积为8-2×16=233,故选A.答案:A11. 在正方体ABCD -A 1B 1C 1D 1中,点M 为棱AA 1的中点,则直线BC 1与平面MC 1D 1所成角的正弦值是( )A. 1015B. 3010C. 1010D. 31010解析:设正方体的棱长为1,以D 点为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则M ⎝ ⎛⎭⎪⎫1,0,12,D 1(0,0,1),C 1(0,1,1),B (1,1,0), 则MD 1→=⎝ ⎛⎭⎪⎫-1,0,12, MC 1→=⎝ ⎛⎭⎪⎫-1,1,12, BC 1→=(-1,0,1).设平面MC 1D 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·MD 1→=0,n ·MC 1→=0,即⎩⎪⎨⎪⎧ -x +12z =0,-x +y +12z =0,所以取x =1,则z =2,y =0,即n =(1,0,2).设直线BC 1与平面MC 1D 1所成角为θ,则sin θ=|cos 〈n ,BC 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·BC 1→|n ||BC 1→|=⎪⎪⎪⎪⎪⎪-1+25×2=1010,故选C. 答案:C12. 在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A. 12B. 23C. 33D. 22解析:以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎨⎧ y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2. ∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos〈n 1,n 2〉=23×1=23. 即所成的锐二面角的余弦值为23.答案:B第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13. [2015·忻州期末]已知不重合的直线m 、l 和不重合的平面α、β,且m ⊥α,l ⊂β,给出下列命题:①若α∥β,则m ⊥l ;②若α⊥β,则m ∥l ;③若m ⊥l ,则α∥β;④若m ∥l ,则α⊥β.其中正确命题的个数是________.解析:对于①,∵m ⊥α,α∥β,∴m ⊥β,又l ⊂β,∴m ⊥l ,①正确;对于②,∵m ⊥α,α⊥β,∴m ∥β或m ⊂β,又l ⊂β,∴m 与l 可能相交、平行或异面,②错误;对于③,∵m ⊥α,m ⊥l ,∴l ∥α或l ⊂α,又l ⊂β,∴α与β有可能相交,也有可能平行,③错误;对于④,∵m ⊥α,m ∥l ,则l ⊥α,又l ⊂β,∴α⊥β,④正确,∴正确命题的个数是2.答案:214. [2015·北京西城区模拟]已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为________.解析:由正三棱柱三视图还原直观图可得正(主)视图是一个矩形,其中一边的长是侧(左)视图中三角形的高,另一边是棱长.因为侧(左)视图中三角形的边长为2,所以高为3,所以正视图的面积为2 3.答案:2 315. 如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1上的点,则点E 到平面ABC 1D 1的距离是________________.解析:解法一:以点D 为坐标原点,DA ,DC ,DD 1所在射线为x ,y ,z 轴,建立如图所示空间直角坐标系,设点E (1,a,1)(0≤a ≤1),连接D 1E ,则D 1E →=(1,a,0).连接A 1D ,易知A 1D ⊥平面ABC 1D 1,则DA 1→=(1,0,1)为平面ABC 1D 1的一个法向量.∴点E 到平面ABC 1D 1的距离是d =|D 1E →·DA 1→||DA 1→|=22. 解法二:点E 到平面ABC 1D 1的距离,即B 1到BC 1的距离,易得点B 1到BC 1的距离为22. 答案:2216. 在三棱锥P -ABC 中,P A ⊥底面ABC ,P A =2,底面△ABC 是边长为2的正三角形,则此三棱锥外接球的半径为________.解析:底面△ABC 是边长为2的正三角形,P A ⊥底面ABC ,可得此三棱锥的外接球即为以△ABC 为底面、以P A 为高的正三棱柱的外接球.∵△ABC 是边长为2的正三角形,∴△ABC 的外接圆半径r =233,球心到△ABC 的外接圆圆心的距离d =1,故球的半径R =r 2+d 2=73=213.答案:213三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17. [2014·江苏高考](本小题满分10分)如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知P A ⊥AC ,P A =6,BC =8,DF =5.求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.证明:(1)因为D,E分别为棱PC,AC的中点,所以DE∥P A.又因为P A⊄平面DEF,DE⊂平面DEF,所以直线P A∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,P A=6,BC=8,所以DE∥P A,DE=12P A=3,EF=12BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又P A⊥AC,DE∥P A,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC,所以DE⊥平面ABC.又DE⊂平面BDE,所以平面BDE⊥平面ABC.18. [2015·江西九江模拟](本小题满分12分)已知点P在矩形ABCD 的边DC上,AB=2,BC=1,点F在AB边上且DF⊥AP,垂足为E,将△ADP沿AP边折起,使点D位于D′位置,连接D′B、D′C得四棱锥D′-ABCP.(1)求证:D′F⊥AP;(2)若PD=1,且平面D′AP⊥平面ABCP,求四棱锥D′-ABCP 的体积.解:(1)证明:∵AP⊥D′E,AP⊥EF,D′E∩EF=E,∴AP⊥平面D′EF,∴AP⊥D′F.(2)连接PF,∵PD=1,∴四边形ADPF是边长为1的正方形,∴D′E=DE=EF=2 2.∵平面D′AP⊥平面ABCP,D′E⊥AP,∴D′E⊥平面ABCP,∵S梯形ABCP=12×(1+2)×1=32,∴V D′-ABCP=13D′E·S梯形ABCP=2 4.19.[2015·大连双基测试](本小题满分12分)已知三棱柱ABC-A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E,F分别在棱AA′,CC′上,且AE=C′F=2.(1)求证:BB′⊥底面ABC;(2)在棱A′B′上找一点M,使得C′M∥平面BEF,并给出证明.解:(1)证明:如图,取BC中点O,连接AO,因为三角形ABC 是等边三角形,所以AO⊥BC,又平面BCC′B′⊥底面ABC,AO⊂平面ABC,平面BCC′B′∩平面ABC=BC,所以AO⊥平面BCC′B′,又BB′⊂平面BCC′B′,所以AO⊥BB′.又BB′⊥AC,AO∩AC=A,AO⊂平面ABC,AC⊂平面ABC,所以BB′⊥底面ABC.(2)如图,显然M不是A′,B′,棱A′B′上若存在一点M,使得C′M∥平面BEF,过M作MN∥AA′交BE于N,连接FN,MC′,所以MN∥C′F,即C′M和FN共面,所以C′M∥FN,所以四边形C′MNF为平行四边形,所以MN=2,所以MN是梯形A′B′BE的中位线,M为A′B′的中点.20. [2015·武汉调研](本小题满分12分)如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =2,AA 1=3,D 是BC 的中点,点E 在棱BB 1上运动.(1)证明:AD ⊥C 1E ;(2)当异面直线AC ,C 1E 所成的角为60°时,求三棱锥C 1-A 1B 1E 的体积.解:(1)证明:∵AB =AC ,D 是BC 的中点,∴AD ⊥BC .①又在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,AD ⊂平面ABC ,∴AD ⊥BB 1.②由①,②得AD ⊥平面BB 1C 1C .由点E 在棱BB 1上运动,得C 1E ⊂平面BB 1C 1C ,∴AD ⊥C 1E .(2)∵AC ∥A 1C 1,∴∠A 1C 1E 是异面直线AC ,C 1E 所成的角,由题设,∠A 1C 1E =60°. ∵∠B 1A 1C 1=∠BAC =90°,∴A 1C 1⊥A 1B 1,又AA 1⊥A 1C 1,从而A 1C 1⊥平面A 1ABB 1,于是A 1C 1⊥A 1E .故C 1E =A 1C 1cos60°=22,又B 1C 1=A 1C 21+A 1B 21=2,∴B 1E =C 1E 2-B 1C 21=2.从而VC 1-A 1B 1E =13S △A 1B 1E ×A 1C 1=13×12×2×2×2=23.21. [2014·陕西高考](本小题满分12分)四面体ABCD 及其三视图如图所示,过棱AB 的中点E 作平行于AD ,BC 的平面分别交四面体的棱BD ,DC ,CA 于点F ,G ,H .(1)证明:四边形EFGH 是矩形;(2)求直线AB 与平面EFGH 夹角θ的正弦值.解:(1)证明:由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1.由题设,BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH .同理EF ∥AD ,HG ∥AD ,∴EF ∥HG ,∴四边形EFGH 是平行四边形.又∵AD ⊥DC ,AD ⊥BD ,∴AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG ,∴四边形EFGH 是矩形.(2)解法一:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),DA →=(0,0,1),BC →=(-2,2,0),BA →=(-2,0,1).设平面EFGH 的法向量n =(x ,y ,z ),∵EF ∥AD ,FG ∥BC ,∴n ·DA →=0,n ·BC →=0,得⎩⎪⎨⎪⎧z =0,-2x +2y =0,取n =(1,1,0), ∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 解法二:如图,以D 为坐标原点建立空间直角坐标系,则D (0,0,0),A (0,0,1),B (2,0,0),C (0,2,0),∵E 是AB 的中点,∴F ,G 分别为BD ,DC 的中点,得E ⎝ ⎛⎭⎪⎫1,0,12,F (1,0,0),G (0,1,0). ∴FE →=⎝ ⎛⎭⎪⎫0,0,12,FG →=(-1,1,0),BA →=(-2,0,1). 设平面EFGH 的法向量n =(x ,y ,z ),则n ·FE →=0,n ·FG →=0,得⎩⎨⎧ 12z =0,-x +y =0,取n =(1,1,0),∴sin θ=|cos 〈BA →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BA →·n |BA →||n |=25×2=105. 22. [2014·重庆高考](本小题满分12分)如图,四棱锥P -ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长;(2)求二面角A -PM -C 的正弦值.解:(1)如图,连接AC ,BD ,因为ABCD 为菱形,则AC ∩BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz .因为∠BAD =π3,故OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知,BM →=14BC →=⎝⎛⎭⎪⎫-34,-14,0, 从而OM →=OB →+BM →=⎝⎛⎭⎪⎫-34,34,0, 即M ⎝⎛⎭⎪⎫-34,34,0. 设P (0,0,a ),a >0,则AP →=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a . 因为MP ⊥AP ,故MP →·AP →=0,即-34+a 2=0,所以a =32或a =-32(舍去),即PO =32.(2)由(1)知,AP →=⎝⎛⎭⎪⎫-3,0,32, MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝ ⎛⎭⎪⎫3,0,32. 设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2),由n 1·AP →=0,n 1·MP →=0,得 ⎩⎨⎧ -3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2, 由n 2·MP →=0,n 2·CP →=0, 得⎩⎨⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2), 从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155, 故所求二面角A -PM -C 的正弦值为105.。

2016届高三数学一轮总复习课件:第七章 立体几何7-4

2016届高三数学一轮总复习课件:第七章 立体几何7-4
行).
符号语言
l⊄α
a⊂α ⇒l∥α a∥l
第六页,编辑于星期五:二十点 十二分。
2.性质定理: 文字语言
如果一条直线和一个平 性 面平行,经过这条直线 质 的平面和这个平面相 定 交,那么这条直线就和 理 交线平行(简记线面平行
⇒线线平行).
图形语言
符号语言
a∥α
a⊂β ⇒a∥b α∩β=b
答案 平行
第十三页,编辑于星期五:二十点 十二分。
知识点二
平面与平面平行
4.设l为直线,α,β是两个不同的平面.下列命题中正确的是
() A.若l∥α,l∥β,则α∥β
B.若l⊥α,l⊥β,则α∥β
C.若l⊥α,l∥β,则α∥β
D.若α⊥β,l∥α,则l⊥β
第十四页,编辑于星期五:二十点 十二分。
解析 l∥α,l∥β,则α与β可能平行,也可能相交,故A项 错;由面面平行的判定定理可知B项正确;由l⊥α,l∥β可知α⊥ β,故C项错;由α⊥β,l∥α可知l与β可能平行,也可能相交,故 D项错.
第二十页,编辑于星期五:二十点 十二分。
问题3 证明面面平行有哪些常见的方法? (1)利用定义:即证两个平面没有公共点(不常用). (2)利用面面平行的判定定理(主要方法). (3)利用垂直于同一条直线的两平面平行(客观题可用). (4)利用平面平行的传递性,即两个平面同时平行于第三个平 面,则这两个平面平行(客观题可用).
第十九页,编辑于星期五:二十点 十二分。
问题2 证明线面平行有哪些常见的方法? (1)利用线面平行的定义(无公共点); (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α); (3)利用面面平行的性质(α∥β,a⊂α⇒a∥β); (4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).

2016届高考数学文科一轮复习课件:10-4参数方程

2016届高考数学文科一轮复习课件:10-4参数方程

栏 目 链 接
课前自修
2.点斜式.
x=x0+at, (t 为参数) y=y0+bt.
b 其中,(x0,y0)表示该直线上的一点, 表示直线的斜率. a 当 a,b 分别表示点 M(x,y)在 x 方向与 y 方向的分速度时,t 就具有物理意义——时间,相应的 at,bt 则表示点 M(x,y)在 x 方向,y 方向上相对(x0,y0)的位移.
栏 目 链 接
参数 . 参变数 ,简称________ y 的变数 t 叫做________
相对于参数方程而言, 直接给出点的横、 纵坐标间关系的方程叫 做普通方程.
课前自修
二、圆的参数方程
圆 (x - x0)2 + (y - y0)2 = r2 的 参 数 方 程 为 _________________(θ 为参数) 特别地,圆心在原点,半径为 r 的圆 x2+y2=r2 的参数 方程是________________ (θ 为参数). 其中参数 θ 的几何意义是 OM0 绕点 O 逆时针旋转到 OM 的位置时,OM0 转过的角度.
2 x=2pt , (t 为参数) y=2pt.
其中参数 t 表示抛物线上除顶点外的任意一点与原点连线的斜率 的倒数,其范围为 t∈(-∞,+∞).
栏 目 链 接
课前自修
六、直线的参数方程
1.标准式.
x=x0+tcos θ, 经过点 M0(x0, y0), 倾斜角为 θ 的直线的参数方程为 (t 为参数) y=y0+tsin θ
栏 目 链渐开线的参数方程.
x=r(cos φ+φsin φ), (φ 为参数) y=r(sin φ-φcos φ).
其中 r 为基圆的半径, φ 为过切点的半径与 x 轴正方向所成的角.

高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文

高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文

高考数学一轮总复习第二章函数、导数及其应用第六节对数与对数函数练习文【最新考纲】 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点.会画底数为2,10,12的对数函数的图象.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a≠1)与对数函数y =log a x(a >0,且a≠1)互为反函数.1.对数的概念如果a x=N(a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b=b(a >0,且a≠1). (2)换底公式:log a b =log c blog c a(a ,c 均大于0且不等于1,b >0).(3)对数的运算性质:如果a >0,且a≠1,M >0,N >0,那么:①log a (M·N)=log a M +log a N ,②log a M N =log a M -log a N ,③log a M n=nlog a M (n∈R).3.对数函数的定义、图象与性质4.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)log2x2=2log2x.( )(2)函数y=log2(x+1)是对数函数.( )(3)函数y=lg(x+3)+lg(x-3)与y=lg[(x+3)(x-3)]的定义域相同.( )(4)当x>1时,若log a x>log b x,则a<b.( )答案:(1)×(2)×(3)×(4)√2.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1解析:由图象可知y =log a (x +c)的图象是由y =log a x 的图象向左平移c 个单位得到的,其中0<c <1.再根据单调性可知0<a <1.答案:D3.(2015·四川卷)lg 0.01+log 216的值是________. 解析:lg 0.01+log 216=lg 1100+log 224=-2+4=2. 答案:24.(2015·北京卷)2-3,312,log 25三个数中最大的数是________.解析:因为2-3=123=18<1,1<312=3<2,log 25>log 24=2,所以三个数中最大的数是lo g 25. 答案:log 255.函数f(x)=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.解析:当x≥1时,log 12x ≤0,当x <1时,0<2x<2,故值域为(0,2)∪(-∞,0]=(-∞,2). 答案:(-∞,2)两种关系1.a b=N ⇔log a N =b(a >0,a ≠1,N >0).2.指数函数y =a x(a >0,且a≠1)与对数函数y =log a x(a >0,且a≠1)互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.两点注意1.在无M >0的条件下,log a M n=nlog a |M|(n∈N *,且n 为偶数).2.解决与对数函数有关的问题时,务必先研究函数的定义域.对数函数的单调性取决于底数a ,应注意底数的取值范围.两类方法1.对数值的大小比较方法:(1)化同底后利用函数的单调性.(2)作差或作商法.(3)利用中间量(0或1).(4)化为同真数后利用图象比较.2.多个对数函数图象比较底数大小的问题,可通过图象与直线y =1交点的横坐标进行判定.一、选择题1.2lg 2-lg 125的值为( )A .1B .2C .3D .4 解析:2lg 2-lg 125=lg ⎝ ⎛⎭⎪⎫22÷125=lg 100=2.答案:B2.(2016·石家庄一模)已知a =312,b =log 1312,c =log 213,则( )A .a >b >cB .b >c >aC .c >b >aD .b >a >c解析:因为312>1,0<log 1312<1,c =log 213<0所以a >b >c. 答案:A4.函数f(x)=lg 1|x +1|的大致图象为( )解析:f(x)=lg 1|x +1|=-lg|x +1|的图象可由偶函数y =-lg|x|的图象左移1个单位得到.由y =-lg|x|的图象可知选D. 答案:D5.(2016·唐山统考)已知f(x)=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( ) A .(-∞,-1] B.⎝ ⎛⎭⎪⎫-1,12 C.⎣⎢⎡⎭⎪⎫-1,12 D.⎝ ⎛⎭⎪⎫0,12解析:要使函数f(x)的值域为R ,则有⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a<12.答案:C 6.设f(x)=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,则使f(x)<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞) 解析:由f(x)是奇函数可得a =-1, ∴f(x)=lg 1+x1-x 的定义域为(-1,1).由f(x)<0,可得0<1+x1-x <1,解得-1<x <0.答案:A二、填空题7.(2014·安徽卷)⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=________.解析:⎝ ⎛⎭⎪⎫1681-34+log 354+log 345=⎝ ⎛⎭⎪⎫23-3+log 31=278+0=278.答案:2788.函数y =log 12(x 2-6x +17)的值域是________.解析:x 2-6x +17=(x -3)2+8≥8,则y≤log 128=-3,即函数的值域为(-∞,-3].答案:(-∞,-3]9.(2015·天津卷)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b)取得最大值.解析:由于a >0,b >0,ab =8,所以b =8a.所以log 2a ·log 2(2b)=log 2a ·log 2⎝ ⎛⎭⎪⎫16a =log 2a ·(4-log 2a)=-(log 2a -2)2+4,当且仅当log 2a =2,即a =4时,log 2a ·log 2(2b)取得最大值4. 答案:4 三、解答题10.已知函数f(x)=log a (x +1)-log a (1-x),a >0且a ≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)若a >1时,求使f(x)>0的x 的取值集合. 解:(1)f(x)=log a (x +1)-log a (1-x),则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1. 故所求函数f(x)的定义域为{x|-1<x <1}. (2)由(1)知f(x)的定义域为{x|-1<x <1}, 且f(-x)=log a (-x +1)-log a (1+x) =-[log a (x +1)-log a (1-x)]=-f(x), 故f(x)为奇函数.(3)因为当a >1时,f(x)在定义域{x|-1<x <1}内是增函数,所以f(x)>0⇔x +11-x >1,解得0<x <1.所以使f(x)>0的x 的解集是{x|0<x <1}.11.设x∈[2,8]时,函数f(x)=12log a (ax)·log a (a 2x)(a >0,且a≠1)的最大值是1,最小值是-18,求a 的值.解:由题意知f(x)=12(log a x +1)·(log a x +2)=12(log 2a x +3log a x +2)=12(log a x +32)2-18. 当f(x)取最小值-18时,log a x =-32,又∵x∈[2,8],∴a ∈(0,1). ∵f(x)是关于log a x 的二次函数,∴函数f(x)的最大值必在x =2或x =8时取得. ①若12(log a 2+32)2-18=1,则a =2-13,此时f(x)取得最小值,x =(2-13)-32=2∉[2,8],舍去.②若12(log a 8+32)2-18=1,则a =12,此时f(x)取得最小值,x =⎝ ⎛⎭⎪⎫12-32=22∈[2,8],符合题意,∴a =12.。

【南方凤凰台】(江苏专用)高考数学大一轮复习 综合模拟卷二

【南方凤凰台】(江苏专用)高考数学大一轮复习 综合模拟卷二

2016高考综合模拟卷(2)数 学一、 填空题(本大题共14小题,每小题5分,共70分) 1. 设集合M={-1,0,1},N={x|x 2≤x},则M ∩N= .2. 某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90,则90~100分数段的人数为.(第2题)3. 一个质地均匀的正四面体(侧棱长与底面边长相等的正三棱锥)玩具的四个面上分别标有1,2,3,4这四个数字.若连续两次抛掷这个玩具,则两次朝下的面上的数字之积为奇数的概率是 .4. 等比数列x,3x+3,6x+6,…的第4项是 .5. “x>y>0”是“xy >1”的 条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)6. 已知变量x,y 满足约束条件x 0,y 1,x y,≥⎧⎪≤⎨⎪≤⎩那么z=4x ·2y的最大值为 .7. 给出下列四个命题:①平行于同一平面的两个不重合的平面平行;②平行于同一直线的两个不重合的平面平行;③垂直于同一平面的两个不重合的平面平行;④垂直于同一直线的两个不重合的平面平行; 其中为真命题的是.(填序号)8. 设某流程图如图所示,该程序运行后输出的k的值是.(第8题)9. 在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A,B两点,则弦AB的长为.10. 已知函数πx-12⎛⎫⎪⎝⎭,x∈R.若cos θ=35,θ∈3π,2π2⎛⎫⎪⎝⎭,则fπ2θ3⎛⎫+⎪⎝⎭= .11. 设正实数x,y,z满足x2-3xy+4y2-z=0,则当zxy取得最大值时,x+2y-z的最大值为.12. 若对任意的k∈R,|BA-k BC|≥|CA|恒成立,则△ABC的形状一定是.13. 已知椭圆C:22xa+22yb=1(a>b>0)的左焦点为F,椭圆C与过原点的直线相交于A,B两点,连接AF,BF,若AB=10,AF=6,cos∠ABF=45,则椭圆C的离心率e= .14. 若不等式(mx-1)[3m 2-(x+1)m-1]≥0对任意的m ∈(0,+∞)恒成立,则实数x 的值为 .二、 解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15. (本小题满分14分)在△ABC 中,角A,B,C 的对边分别是a,b,c,已知sin C+cos C=1-sin C2.(1) 求sin C 的值;(2) 若a 2+b 2=4(a+b)-8,求边c.16. (本小题满分14分)如图,AB 为圆O 的直径,点E,F 在圆上,四边形ABCD 为矩形,AB ∥EF,∠BAF=π3,M 为BD 的中点,平面ABCD ⊥平面ABEF.(1) 求证:BF ⊥平面DAF; (2) 求证:ME ∥平面DAF.(第16题)17. (本小题满分14分)如图,某园林单位准备绿化一块直径为BC 的半圆形空地,△ABC 外的地方种草,△ABC 的内接正方形PQRS 为一水池,其余的地方种花,若BC=a,∠ABC=θ,设△ABC 的面积为S 1,正方形的PQRS 面积为S 2. (1) 用a,θ表示S 1和S 2;(2) 当a 固定,θ变化时,求12S S 的最小值.(第17题)18. (本小题满分16分)如图,已知椭圆C 1:22y a +22x b =1(a>b>0)的短轴长为4,离心率为,其一个焦点在抛物线C 2:x 2=2py(p>0)的准线上,过点M(0,1)的直线交椭圆C 1于C,D 两点,交抛物线C 2于A,B 两点,分别过点A,B 作抛物线C 2的切线,两切线交于点Q. (1) 求C 1,C 2的方程; (2) 求△QCD 面积的最小值.(第18题)19. (本小题满分16分)已知数列{a n }的前三项分别为a 1=5,a 2=6,a 3=8,且数列{a n }的前n 项和S n 满足S n+m =12(S 2n +S 2m )-(n-m)2,其中m,n 为任意正整数.(1) 求数列{a n }的通项公式及前n 项和S n ;(2) 求满足2nS-32a n +33=k 2的所有正整数k,n.20. (本小题满分16分)设函数f n (x)=x n +bx+c(n ∈N *,b,c ∈R ).(1) 当n=2,b=1,c=-1时,求函数f n (x)在区间1,12⎛⎫ ⎪⎝⎭内的零点; (2) 设n ≥2,b=1,c=-1,求证:f n (x)在区间1,12⎛⎫ ⎪⎝⎭内存在唯一的零点; (3) 设n=2,若对任意的x 1,x 2∈[-1,1],有2122f (x )-f (x )≤4,求b 的取值范围.2016届高考综合模拟卷(2)1. {0,1} 【解析】因为N={x|x2≤x}={x|0≤x≤1},所以M∩N={0,1}.2. 810 【解析】高三年级总人数为900.05=1 800;90~100分数段的人数的频率为0.45;90~100分数段的人数为1 800×0.45=810.3. 14【解析】共有16种等可能情况:(1,1),(1,2),(1,3)(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3)(3,4),(4,1),(4,2),(4,3),(4,4).两次朝下的面上的数字之积为奇数共有4种情况,所以所求概率为1 4.4. -24 【解析】由题意,(3x+3)2=x(6x+6),解得x=-1或x=-3.当x=-1时,3x+3=0,故舍去;所以x=-3.则等比数列前3项为-3,-6,-12,故第4项为-24.5. 充分不必要【解析】当x>y>0时,xy>1成立,反之不成立,例如x<y<0时也可得到xy>1.6. 8 【解析】如图,约束条件表示的是以(0,0),(0,1),(1,1)为顶点的三角形及其内部区域,目标函数z=4x·2y=22x+y,在顶点(1,1)处2x+y取得最大值3,目标函数取得最大值23=8.(第6题)7. ①④【解析】若α∥β,α∥γ,则β∥γ,即平行于同一平面的两个不重合的平面平行,故①正确;若a∥α,a∥β,则α与β平行或相交,故②错误;若α⊥γ,β⊥γ,则平面α与β平行或相交,故③错误;若a⊥α,a⊥β,则α与β平行,故④正确.8. 5 【解析】 阅读流程图知:运算规则是S=S ×k 2. 第一次循环:k=3,S=1×32=9; 第二次循环:k=5,S=9×52=225>100. 退出循环,其输出结果k=5.【解析】 圆x 2+y 2=4的圆心O(0,0)到直线3x+4y-5=0的距离d=|-5|5=1,则10. 1725 【解析】 f π2θ3⎛⎫+ ⎪⎝⎭ππ2θ-312⎛⎫+ ⎪⎝⎭·cos π2θ4⎛⎫+ ⎪⎝⎭=cos 2θ-sin 2θ,因为cos θ=35,θ∈3π,2π2⎛⎫ ⎪⎝⎭,所以sin θ=-45,所以sin 2θ=2sin θcos θ=-2425,cos 2θ=cos 2θ-sin 2θ=-725,所以f π2θ3⎛⎫+ ⎪⎝⎭=cos 2θ-sin 2θ=-725-24-25⎛⎫ ⎪⎝⎭=1725.11. 2 【解析】 由题意得z=x 2-3xy+4y 2,所以z xy =22x -3xy 4y xy +=x y +4y x -3≥当且仅当x y =4yx ,即x=2y 时,等号成立,所以x+2y-z=2y+2y-(4y 2-6y 2+4y 2)=-2(y-1)2+2≤2.12. 直角三角形 【解析】 对任意的k ∈R ,|BA -k BC |≥|CA |恒成立可以转化为:对任意的k ∈R ,k 2|BC |2-2k BA ·BC +2BA -2CA ≥0,所以(BA ·BC )2-BC 2(2BA -2CA )≤0,所以a 2c 2cos 2B-a 2(c 2-b 2)≤0,所以c 2cos 2B-c 2+b 2≤0,由正弦定理得sin 2C ≥1,所以C=π2.13. 57 【解析】由余弦定理得62=BF 2+102-2·10·BF ·45,解得BF=8,所以点A 到右焦点的距离也是8.由椭圆定义有2a=6+8=14,又2c=10,所以e=1014=57.14. 1 【解析】方法一:显然x>0,若x ≤0,则mx-1<0,而当m 充分大时,3m 2-(x+1)m-1>0,与题设矛盾.而当x>0时,要使(mx-1)[3m 2-(x+1)m-1]≥0,对任意的m ∈(0,+∞)恒成立.则关于m 的方程mx-1=0与3m 2-(x+1)m-1=0在(0,+∞)内有相同的根.所以321x ⎛⎫ ⎪⎝⎭-(x+1)1x -1=0,解得x=1,x=-32(舍去).(第14题)方法二:设函数y 1=mx-1,y 2=3m 2-(x+1)m-1,要使不等式(mx-1)[3m 2-(x+1)m-1]≥0对任意的m ∈(0,+∞)恒成立,则必有x>0,作出两个函数图象如图所示,则有两个函数图象交于点1,0x ⎛⎫ ⎪⎝⎭,即m=1x 是方程3m 2-(x+1)m-1=0的根,则有213x ⎛⎫ ⎪⎝⎭-(x+1)1x -1=0,解得x=1,x=-32(舍去).15. (1) 由已知得2sin C 2cos C 2+1-2sin 2C2=1-sin C2, 即sin C C C 2cos -2sin 1222⎛⎫+ ⎪⎝⎭=0, 由sin C 2≠0得2cos C 2-2sin C2+1=0, 即sin C 2-cos C 2=12,两边平方得sin C=34.7分(2) 由sin C 2-cos C 2=12>0知sin C 2>cos C 2,则π4<C 2<π2,即π2<C<π,则由sin C=34得cos.因为a 2+b 2=4(a+b)-8,所以a2-4a+4+b2-4b+4=0,(a-2)2+(b-2)2=0, 所以a=2,b=2.由余弦定理得c2=a2+b2所以+1. 14分16. (1) 因为四边形ABCD为矩形,故DA⊥AB. 因为平面ABCD⊥平面ABEF,且DA平面ABCD, 平面ABCD∩平面ABEF=AB,故DA⊥平面ABEF.3分因为BF平面ABEF,故DA⊥BF.4分因为AB为直径,故BF⊥AF.因为DA,AF为平面DAF内的两条相交直线,所以BF⊥平面DAF.7分(2) 因为∠BAF=π3,AB∥EF,所以EF=12AB. 8分取DA的中点N,连接NF,MN,因为M为BD的中点,所以MN∥AB,且MN=12AB,所以四边形MNFE为平行四边形,所以ME∥NF.11分因为NF平面DAF,ME⊄平面DAF,所以ME∥平面DAF.14分注:第(2)问,亦可先证明平面DAF∥平面MOE.17. (1) S1=12asin θ·acos θ=14a2sin 2θ;设正方形的边长为x,则BQ=xtanθ,RC=xtan θ,所以xtanθ+xtan θ+x=a,所以x=a1tan θ1tan θ++=asin2θ2sin2θ+,S 2=2asin2θ2sin2θ⎛⎫ ⎪+⎝⎭=222a sin 2θ4sin 2θ4sin2θ++ . 7分 (2) 当a 固定,θ变化时,12S S =14(4sin2θ+sin 2θ+4),令sin 2θ=t,则12S S =14t 44t⎛⎫++ ⎪⎝⎭(0<t ≤1),利用单调性求得当t=1时,12min S S ⎛⎫ ⎪⎝⎭=94. 14分18. (1) 因为2b=4,所以b=2.因为e=,所以a 2=8,所以椭圆C 1:2y 8+2x 4=1. 2分因为椭圆C 1的焦点为(0,2),(0,-2),所以p=4, 所以抛物线C 2:x 2=8y.4分(2) 设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4),Q(x 0,y 0).由(1)知C 2:y=2x 8,y'=x4,所以过点A 抛物线C 2的切线方程为y-y 1=1x 4(x-x 1),即y=1xx 4-y 1.同理,过点B 的抛物线C 2的切线方程为y=2xx 4-y 2.又因为这两条直线均过点Q,所以y 0=01x x 4-y 1,y 0=02x x 4-y 2,所以点A,B 均在直线y 0=0x x4-y 上,所以直线AB的方程为y=x x4-y0,又因为直线AB过点M(0,1),所以y0=-1,所以直线AB的方程为y=14x0x+1. 8分方法一:联立方程组22y x1, 841y x x1,4⎧+=⎪⎪⎨⎪=+⎪⎩得(2x+32)x2+8x0x-7×16=0,x3+x4=2-8xx32+,x3·x4=2-716x32⨯+,3-x4|=0,点Q到直线AB2.所以△QCD的面积S=02=0. 12分令,则t≥.所以S(t)==224-4ttt⎛⎫⎪⎪⎪+⎝⎭,所以当t ∈∞)时,S(t)单调递增.所以S min. 16分方法二:设k=14x 0,联立方程组221,28,y kx y x =+⎧⎨+=⎩ 消去y 得,(2+k 2)x 2+2kx-7=0, 由C(x 3,y 3),D(x 4,y 4),则x 3+x 4=-222k k +,x 3·x 4=2-72k +,·, 8分设Q 到直线的距离为d,则2, 故△QCD 的面积S=.令则m,S(m)=,S(m)==46m-1m m ⎛⎫⎪⎪⎪+⎝⎭, 函数S(m)=m-61m m +在,+∞)上单调递增,所以S min. 14分另法,令S=f(m),f'(m)=4×222222(3m -5)(m 1)-m(m -1)2m (m 1)+⋅+=4×2222(m 4)-16(m 1)++,因为m≥,所以f'(m)>0,函数f(m)在∞)上单调递增.所以S min. 16分19. (1) 在等式S m+n=12(S2n+S2m)-(n-m)2中,分别令m=1,m=2,得S n+1=12(S2n+S2)-(n-1)2, ①S n+2=12(S2n+S4)-(n-2)2, ②②-①,得a n+2=2n-3+42S-S2. 3分在等式S n+m=12(S2n+S2m)-(n-m2)中,令n=1,m=2,得S3=12(S2+S4)-1,由题设知,S2=11,S3=19,故S4=29.所以a n+2=2n+6(n∈N*),即a n=2n+2(n≥3,n∈N*). 又a2=6也适合上式,故a n=5,n1,2n2,n2,=⎧⎨+≥⎩ 5分S n=25,n1,n3n1,n2,=⎧⎨++≥⎩即Sn=n2+3n+1,n∈N*. 6分(2) 记2nS-32an+33=k2,(*)n=1时,无正整数k满足等式(*);n≥2时,等式(*)即为(n2+3n+1)2-3(n-10)=k2.8分①当n=10时,k=131.9分②当n>10时,则k<n2+3n+1,又k2-(n2+3n)2=2n2+3n+31>0,所以k>n2+3n.从而n2+3n<k<n2+3n+1.又因为n,k∈N*,所以k不存在,从而无正整数k满足等式(*).12分③当n<10时,则k>n2+3n+1,因为k∈N*,所以k≥n2+3n+2.从而(n2+3n+1)2-3(n-10)≥(n2+3n+2)2.即2n2+9n-27≤0.因为n∈N*,所以n=1或2.14分当n=1时,k2=52,无正整数解;当n=2时,k2=145,无正整数解.综上所述,满足等式(*)的n,k分别为n=10,k=131.16分20. (1) 当n=2时,b=1,c=-1时,f2(x)=x2+x-1,令f2(x)=0,得x=,所以f2(x)在区间1,12⎛⎫⎪⎝⎭内的零点是x=. 4分(2) 因为f n12⎛⎫⎪⎝⎭<0,fn(1)>0,所以f n12⎛⎫⎪⎝⎭·fn(1)<0,所以f n(x)在1,12⎛⎫⎪⎝⎭内存在零点.任取x1,x2∈1,12⎛⎫⎪⎝⎭,且x1<x2,则f n(x1)-f n(x2)=(n1x-n2x)+(x1-x2)<0,所以f n(x)在1,12⎛⎫⎪⎝⎭内单调递增,所以fn(x)在1,12⎛⎫⎪⎝⎭内存在唯一的零点. 10分(3) 当n=2时,f2(x)=x2+bx+c,对任意的x1,x2∈[-1,1].有|f2(x1)-f2(x2)|≤4等价于f2(x)在[-1,1]上的最大值与最小值之差M ≤4.据此分类讨论如下:①当b2>1,即|b|>2时,M=|f2(1)-f2(-1)|=2|b|>4,与题设矛盾.②当-1≤-b2<0,即0<b≤2时,M=f2(1)-f2b-2⎛⎫⎪⎝⎭=2b12⎛⎫+⎪⎝⎭≤4恒成立.③当0≤-b2≤1,即-2≤b≤0时,M=f2(-1)-f2b-2⎛⎫⎪⎝⎭=2b-12⎛⎫⎪⎝⎭≤4恒成立.综上可知,实数b的取值范围为[-2,2]. 注:②③也可合并证明如下:用max{a,b}表示a,b中的较大者.当-1≤-b2≤1,即-2≤b≤2时,M=max{f2(1),f2(-1)}-f2b -2⎛⎫ ⎪⎝⎭=22f(-1)f(1)2++22|f(-1)-f(1)|2-f2(-b2)=1+c+|b|-2b-c4⎛⎫+ ⎪⎝⎭=2|b|12⎛⎫+⎪⎝⎭≤4恒成立. 16分。

2016届高考数学(文科,大纲版)一轮复习配套课件:2.2 函数的定义域、值域介绍

2016届高考数学(文科,大纲版)一轮复习配套课件:2.2 函数的定义域、值域介绍

(2)基本初等函数的值域
函数 y= kx+b y= ax2+ bx+ c(a≠ 0) k y= (k≠0) x y= ax(a>0 且 a≠1) y= logax(a>0 且 a≠ 1) y= sin x y= cos x y= tan x 值域 R
4ac- b2 [ ,+∞) ; a>0 时,_______________ 4a 4ac- b2 a<0 时,(-∞, ] 4a
【领悟归纳】
本例中的题目有本质的区别
(1)已知f(x)的定义域,求f[g(x)]的定义域.
(2)已知f[g(x)]的定义域,求fห้องสมุดไป่ตู้x)的定义域.
两个题目中都要视g(x)为一整体,g(x)是复合函数的
中间变量.
跟踪训练 1.本例(2)中题设条件不变,求y=f(lg x)的定义域. 解:由上述解答可知f(x)的定义域为[5,9], ∴5≤lg x≤9,∴105≤x≤109,
x
1
) ln x B. y= x
sin x C. y=xe D. x 1 解析:选 D.函数 y= 3 的定义域为 {x|x≠0},选项 A 中由 sin
x x≠0⇒x≠kπ,k∈ Z,故 A 不对;选项 B 中 x> 0,故 B 不对; 选项 C 中 x∈ R,故 C 不对;选项 D 中由正弦函数及分式型函 数的定义域确定方法可知定义域为{x|x≠ 0},故选 D.
例1
【思路分析】 式组即可求得.
求f(x)的定义域,只需使解析式有意义列不等
【解】
2, 2- |x|≠0, x≠ ± (1)由 2 得 x -1≥ 0, x≤- 1或 x≥1.
∴函数的定义域为(-∞,-2)∪ (- 2,- 1]∪ [1,2)∪ (2,+∞ ).

新高考数学人教A版一轮总复习课件1.1集合应用篇

新高考数学人教A版一轮总复习课件1.1集合应用篇
应用探索
例 (2016北京文,14)某网店统计了连续三天售出商品的种类情况:第一
天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售
出的商品有3种,后两天都售出的商品有4种,则该网店:
①第一天售出但第二天未售出的商品有
种;
②这三天售出的商品最少有
种.
解题导引 “网购”是现代购物的重要方式之一,本题以售出商品的种
由图知该网店第一天售出但第二天未售出的商品有19-3=16(种). ②由①知,前两天售出的商品有19+13-3=29(种),当第三天售出的18种都 是前两天售出的商品时,这三天售出的商品种类最少,售出的商品最少有 29种.
答案 ①16 ②29
方法总结 本题实际上是把实际问题用集合的符号语言及图形语言表 示出来,体现数学的转化与化归思想,这与数学抽象、逻辑推理等学科核 心素养是紧密关联的,在强调核心素养的大环境下,需关注此类问题.解决 此类问题的关键是灵活运用Venn图.
类为背景,考查了集合运算和Venn图等基本知识,同时也涉及转化与化
归、数形结合的数学思想.
①可以通过集合交、补运算确定元素个数;②中三天与前两天售出的商品种类完全相同时,总的种类最少.
解析 ①设第一天售出的商品为集合A,则A中有19个元素,第二天售出的 商品为集合B,则B中有13个元素.由于前两天都售出的商品有3种,则A∩B 中有3个元素,如图所示,

高考数学一轮复习专题03 正态分布(原卷版)

高考数学一轮复习专题03 正态分布(原卷版)

概率与统计 专题三: 正态分布一、知识储备1、若随机变量X 的概率分布密度函数为对任意的x R ∈,()0f x >,它的图象在x 轴的上方.可以证明x 轴和曲线之间的区域的面积为 1.我们称()f x 为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,如上图所示.若随机变量X 的概率分布密度函数为()f x ,则称随机变量X 服从正态分布(normal dis-tribution ),记为2(,)XN μσ.特别地,当0,1μσ==时,称随机变量X 服从标准正态分布,即(0,1)X N .由X 的密度函数及图象可以发现,正态曲线有以下特点: (1)曲线在x 轴的上方,与x 轴不相交。

(2)曲线是单峰的,它关于直线x μ=对称. (3)曲线在x μ=处达到峰值(最高点)(4)当||X 无限增大时,曲线无限接近x 轴. (5)X 轴与正态曲线所夹面积恒等于1 . 2、正态分布的3σ原则22()2(),,x f x x R μσ--=∈()0.6827P X μσμσ-≤≤+≈(22)0.9545P X μσμσ-≤≤+≈ (33)0.9973P X μσμσ-≤≤+≈二、例题讲解1.(2022·湖南高三其他模拟)数学建模是高中数学核心素养的一个组成部分数学建模能力是应用意识和创新意识的重要表现.为全面推动数学建模活动的开展,某学校举行了一次数学建模竞赛活动已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如下.(1)为了对数据进行分析,将60分以下的成绩定为不合格,60分以上(含60分)的成绩定为合格.为科学评估该校学生数学建模水平决定利用分层抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会.记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列和数学期望;(2)已知这60名学生的数学建模竞赛成绩X 服从正态分布()2,N μσ,其中μ可用样本平均数近似代替,2σ可用样本方差近似代替(用一组数据的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,试估计此次竞赛受到奖励的人数.(结果根据四舍五入保留到整数位)解题中可参考使用下列数据:()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈.2.(2022·全国高三其他模拟)中国人民解放军装甲兵学院(前身蚌埠坦克学院),建校至今为我国培养了一大批优秀的军事人才.在今年新入学的学生中,为了加强爱校教育,现在从全体新入学的学生中随机的抽取了100人,对他们进行校史问卷测试,得分在45~95之间,分为[)45,55,[)55,65,[)65,75,[)75,85,[]85,95五组,得到如图所示的频率分布直方图,其中第三组的频数为40.(1)请根据频率分布直方图估计样本的平均数X 和方差2s (同一组中的数据用该组区间的中点值代表);(2)根据样本数据,可认为新人学的学生校史问卷测试分数X 近似服从正态分布()2,N μσ,其中μ近似为样本平均数X ,2σ近似为样本方差2s . (i )求()47.279.9P X <<;(ii )在某间寝室有6人,求这6个人中至少有1人校史问卷测试分数在90.8分以上的概率.参考数据:若()2,XN μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=10.9≈,60.95440.76≈,50.97720.89≈,60.97720.87≈.三、实战练习1.(2022·全国高三专题练习(理))在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分(满分100分)统计结果如下表所示.(1)由频数分布表可以大致认为,此次问卷调查的得分z 服从正态分布(,210)N μ,μ近似为这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求(3679.5)P Z <≤; (2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案: (ⅰ)得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; (ⅰ)每次获赠送的随机话费和对应的概率为:现有市民甲要参加此次问卷调查,记X (单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列与数学期望.14.5,若2~(,)X N μσ, 则①()0.6827P X μσμσ-<≤≤=;②(22)0.9545P X μσμσ-<≤+=;③3309().973P X μσμσ-<≤+=.2.(2022·沙坪坝·重庆八中高三月考)消费扶贫是社会各界通过消费来自贫困地区和贫困人口的产品与服务,帮助贫困人口增收脱贫的一种扶贫方式,是社会力量参与脱贫攻坚的重要途径.某地为了解消费扶贫对贫困户帮扶情况,该地民政部门从本地的贫困户中随机抽取2000户时2021年的收入进行了一个抽样调查,得到如表所示的频数表:(1)将调查的2000户贫困户按照收入从低到高依次编号为1,2,3,……,2000,从这些贫困户中用系统抽样方法等距抽取50户贫困户进行深度帮扶,已知8号被抽到;(i )收入在[)12,14和[]16,18的贫困户卬被抽到进行深度帮扶的户数分别为多少?(ii )收入在[)12,14和[]16,18的贫困户中被抽到进行深度帮扶的凡中随机选取2户,记选取的2户中来自[)12,14的户数为X ,求X 的分布列和数学期望;(2)由频率分布表可认为该地贫困户的收入X 近似服从正态分布()211,2.6N .现从该地的所有贫困户中随机抽取10户,记收入在(]8.4,16.2之外的户数为Y ,求()2P Y ≥(精确到0.001).参考数据1:当()2~,t N μσ时,()0.6827P t μσμσ-<≤+=,()220.9545P t μσμσ-<≤+=,()330.9973P t μσμσ-<≤+=.参考数据2:100.81860.135≈,90.81860.165≈.3.(2022·湖北高三开学考试)从某企业生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布表和频率分布直方图.(1)求m ,n ,a 的值;(2)求出这1000件产品质量指标值的样本平均数x (同一组中的数据用该组区间的中点值作代表);(3)由直方图可以认为,这种产品的质量指标值Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s ,其中已计算得252.6σ=.如果产品的质量指标值位于区间()10.50,39.50,企业每件产品可以获利10元,如果产品的质量指标值位于区间()10.50,39.50之外,企业每件产品要损失100元,从该企业一天生产的产品中随机抽取20件产品,记X 为抽取的20件产品所获得的总利润,求()E X .7.25,()0.6826P x μσμσ-<<+=,()220.9544P x μσμσ-<<+=.4.(2022·四川高三其他模拟(理))在创建“全国文明城市”过程中,我市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次)通过随机抽样,得到参加问卷调查的100人的得分统计结果如表所示:(1)由频数分布表可以大致认为,此次问卷调查的得分(),198Z N μ,μ近似为这100人得分的平均值(同一组中的数据用该组区间的左端点值作代表), ①求μ的值;②利用该正态分布,求()74.588.5P Z <≤;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案: ①得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; ②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记X (单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列与数学期望.14≈.若2~(,)X N μσ,则()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<+=≤.5.(2022·辽宁)《中国制造2025》提出,坚持“创新驱动、质量为先、绿色发展、结构优化、人オ为本”的基本方针,通过“三步走”实现制造强国的战略目标:第一步,到2025年迈入制造强国行列;第二步,到2035年中国制造业整体达到世界制造强国阵营中等水平;第三步,到新中国成立一百年时,综合实力进入世界制造强国前列.质检部门对设计出口的甲、乙两种“无人机”分别随机抽取100架检测某项质量指标,由检测结果得到如下的频率分布直方图:(1)写出频率分布直方图(甲)中a 的值;记甲、乙两种“无人机”100架样本的质量指标的方差分别为2212,S S ,试比较2212,S S 的大小(只需给出答案);(2)若质检部门规定质量指标高于20的无人机为优质产品,根据上面抽取的200架无人机的质量指标进行判断,是否有95%的把握认为甲、乙两种“无人机”的优质率有差异?22()().()()()()n ad bc K n a b c d a b c d a c b d -==+++++++)20k(3)由频率分布直方图可以认为,乙种“无人机”的质量指标值Z 服从正态分布()2,N μσ.其中μ近似为样本平均数2,x σ近似为样本方差22S ,设X 表示从乙种无人机中随机抽取10架,其质量指标值位于(11.6,35.4)的架数,求X 的数学期望.注:①同一组数据用该区间的中点值作代表,计算得211.9S ;②若()2,Z N μσ~,则(P Z μσ-<<0.6826,(22)0.9544P Z μσμσμσ+=-<<+=.6.(2022·山西高三三模(理))2022年是中国共产党百年华诞.中国站在“两个一百年”的历史交汇点,全面建设社会主义现代化国家新征程即将开启.2022年3月23日,中宣部介绍中国共产党成立100周年庆祝活动八项主要内容,其中第一项是结合巩固深化“不忘初心、牢记使命”主题教育成果,在全体党员中开展党史学习教育.这次学习教育贯穿2022年全年,总的要求是学史明理、学史增信、学史崇德、学史力行,教育引导党员干部学党史、悟思想、办实事,开新局.为了配合这次学党史活动,某地组织全体党员干部参加党史知识竞赛,现从参加人员中随机抽取100人,并对他们的分数进行统计,得到如图所示的频率分布直方图.(1)现从这100人中随机抽取2人,记其中得分不低于80分的人数为ξ,试求随机变量ξ的分布列及期望;(2)由频率分布直方图,可以认为该地参加党史知识竞赛人员的分数X 服从正态分布()2,N μσ,其中μ近似为样本平均数,2σ近似为样本方差2s ,经计算2192.44s =.现从所有参加党史知识竞赛的人员中随机抽取500人,且参加党史知识竞赛的人员的分数相互独立,试问这500名参赛者的分数不低于82.3的人数最有可能是多少?13.9≈,()0.6827P X μσμσ-<+=,()220.9545P X μσμσ-<+=,()330.9974P X μσμσ-<+=.7.(2022·全国高三其他模拟)从2021年开始,部分高校实行强基计划,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,越来越多的学生通过参加数学竞赛来证明自己的数学实力.某省举行的数学联赛初赛有10000名学生参加,成绩数据服从正态分布N (80,100),现随机抽取了某市50名参赛学生的初赛成绩进行分析,发现他们的成绩全部位于区间[50,110]内.将成绩分成6组:[50,60),[60,70),[70,80),[80,90),[90,100),[100,110],得到如图所示的频率分布直方图,该50名学生成绩的平均分是77分.(1)求a,b的值(同一组数据用该组区间的中点值为代表).(2)(i)若要在全省选拔15.865%的同学通过初赛进入决赛,则分数线应定为多少?(ii)若给成绩位于全省前228名的同学颁发初赛一等奖的证书,现从本市这50名同学里面能成功进入决赛的同学中任意抽取3人,记这3人中得到初赛一等奖的数为X,求X的分布列和数学期望.附:若X~N(μ,σ²),则P(μ﹣σ≤X≤μ+σ)≈0.6827,P(μ﹣2σ≤X<μ+2σ)≈0.9545,P(μ﹣3σ≤X≤μ+3σ)≈0.9973.8.(2022·河南郑州·(理))已知某生产线的生产设备在正常运行的情况下,生产的零件尺寸X(单位:mm)N.服从正态分布(280,25)(1)从该生产线生产的零件中随机抽取10个,求至少有一个尺寸小于265mm的概率;(2)为了保证生产线正常运行,需要对生产设备进行维护,包括日常维护和故障维修,假设该生产设备使用期限为四年,每一年为一个维护周期,每个周期内日常维护费为5000元,若生产设备能连续运行,则不会产生故障维修费;若生产设备不能连续运行,则除了日常维护费外,还会产生一次故障维修费.已知故障维修费第一次为2000元,此后每增加一次则故障维修费增加2000元.假设每个维护周期互相独立,每个周期内设备不能连续运行的概率为14.求该生产设备运行的四年内生产维护费用总和Y 的分布列与数学期望.参考数据:若~(,2)Z N μσ,则()0.6827P p Z σμσ-<<+=,(22)0.9545P Z μσμσ-<<+=,(33)0.9974Z μσμσ-<<+=,100.99870.9871≈.9.(2022·通辽新城第一中学高三其他模拟(理))近年来,学生职业生涯规划课程逐渐进入课堂,考生选择大学就读专业时不再盲目扎堆热门专业,报考专业分布更加广泛,之前较冷门的数学、物理、化学等专业报考的人数也逐年上升.下表是某高校数学专业近五年的录取平均分与当年该学校的最低提档线对照表:(1)根据上表数据可知,y 与t 之间存在线性相关关系,用最小二乘法求y 关于t 的线性回归方程; (2)据以往数据可知,该大学每年数学专业的录取分数X 服从正态分布(,16)N μ,其中μ为当年该大学的数学录取平均分,假设2022年该校最低提档分数线为540分.(i )若该大学2022年数学专业录取的学生成绩在584分以上的有3人,本专业2022年录取学生共多少人?进入本专业高考成绩前46名的学生可以获得一等奖学金.一等奖学金分数线应该设定为多少分?请说明理由.(ii )若A 同学2022年高考考了562分,他很想报考这所大学的数学专业,想第一志愿填报,请利用概率与统计知识,给该同学一个合理的建议.(第一志愿录取可能性低于60%,则建议谨慎报考)参考公式:()()()1122211ˆnnii i i i i nniii i tty y t y ntybtttnt ====---==--∑∑∑∑,x ˆˆay bt =-. 参考数据:()0.683P X μσμσ-<≤+≈,(22)0.954P X μσμσ-<≤+≈,(33)0.997P X μσμσ-<≤+≈10.(2022·合肥一六八中学高三其他模拟(理))2021年是全面建成小康社会之年,是脱贫攻坚收官之年.莲花村是乡扶贫办的科学养鱼示范村,为了调查该村科技扶贫成果,乡扶贫办调查组从该村的养鱼塘内随机捕捞两次,上午进行第一次捕捞,捕捞到60条鱼,共105kg ,称重后计算得出这60条鱼质量(单位kg )的平方和为200.41,下午进行第二次捕捞,捕捞到40条鱼,共66kg .称重后计算得出这40条鱼质量(单位kg )的平方和为117.(1)请根据以上信息,求所捕捞100条鱼质量的平均数z 和方差2s ; (2)根据以往经验,可以认为该鱼塘鱼质量X 服从正态分布()2,N μδ,用z 作为μ的估计值,用2s作为2δ的估计值.随机从该鱼糖捕捞一条鱼,其质量在[]1.21,3.21的概率是多少?(3)某批发商从该村鱼塘购买了1000条鱼,若从该鱼塘随机捕捞,记ξ为捕捞的鱼的质量在[]1,21,3.21的条数,利用(2)的结果,求ξ的数学期望.附:(1)数据1t ,2t ,…n t 的方差()22221111nn i i i i s t tt nt n n ==⎛⎫=-=- ⎪⎝⎭∑∑, (2)若随机变量X 服从正态分布()2,N μδ,则()0.6827P X μδμδ-≤≤+=;()22P X μδμδ-≤≤+0.9545=;()330.9973P X μδμδ-≤≤+=.13.(2022·湖南师大附中高三其他模拟)某工厂引进新的生产设备M ,为对其进行评估,从设备M 生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:经计算,样本的平均值65μ=,标准差 2.2σ=,以频率值作为概率的估计值.(1)为评估设备M 对原材料的利用情况,需要研究零件中某材料含量y 和原料中的该材料含量x 之间的相关关系,现取了8对观测值,求y 与x 的线性回归方程. 附:①对于一组数据()()()()112233,,,,,,,,n n x y x y x y x y ,其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为1221ˆni ii nii x y nx ybxnx ==-=-∑∑,ˆˆˆay bx =-;②参考数据:8152i i x ==∑,81228i i y ==∑,821478i i x ==∑,811849i ii x y==∑.(2)为评判设备M 生产零件的性能,从该设备加工的零件中任意抽取一件,记其直径为X ,并根据以下不等式进行评判(P 表示相应事件的概率);①()0.6826P X μσμσ-<+;②(22)0,9544P X μσμσ-<+; ③(33)0.9974P X μσμσ-<+.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备M 的性能等级.(3)将直径小于等于2μσ-或直径大于2μσ+的零件认为是次品.从样本中随意抽取2件零件,再从设备M 的生产流水线上随意抽取2件零件,计算其中次品总数Y 的数学期望E (Y ).。

辽宁省庄河高级中学2016届高三数学复习:压轴题

辽宁省庄河高级中学2016届高三数学复习:压轴题

2015年高考数学压轴试题1.已知动点(),P x y 到直线:2l x =-的距离是它到定点()1,0F -倍.(I )求动点P 的轨迹C 的方程;(II )过()1,0F -作与x 轴垂直的直线与轨迹C 在第三象限的交点为Q ,过()1,0F -的动直线与轨迹C 相交于不同的两点,A B ,与直线l 相交于点M ,记直线,,QA QB QM 的斜率依次为123,,k k k ,试证明:123kk k +为定值.2.函数x x a x f ln )(+=,若曲线)(x f 在点))(,e f e (处的切线与直线02=+-e y x e 垂直(其中e 为自然对数的底数).(1)若)(x f 在)1,(+m m 上存在极值,求实数m 的取值范围; (2)求证:当1>x 时,)1)(1(21)(1++>+-x x xe x e e x f .3.已知函数()ln xf x a x a =--e,其中常数0a >.(1)当a =e 时,求函数()f x 的极值; (2)若函数()y f x =有两个零点1212,(0)x x xx <<,求证:1211x x a a<<<<; (3)求证:221ln 0x x x x ----≥ee .4如图,在平面直角坐标系xOy 中,椭圆(第4题)22221 ( 0 )y x a b a b +=>>的左顶点为A ,右焦点为 (0)F c ,.00( )P x y ,为椭圆上一点,且PA PF ⊥.(1)若3a =,b 0x 的值; (2)若0x=,求椭圆的离心率;(3)求证:以F 为圆心,FP 为半径的圆与椭圆的 直线线2a x c=相切.5.设点F 为椭圆2222 1(0)x y E a b a b+=>>:的右焦点,点3(1,)2P 在椭圆E 上,已知椭圆E 的离心率为12.(Ⅰ)求椭圆E 的方程;(Ⅱ)设过右焦点F 的直线l 与椭圆相交于A ,B 两点,记ABP ∆三条边所在直线的斜率的乘积为t ,求t 的最大值.6.设*n ∈N ,函数ln ()nx f x x=,函数e()xng x x =,(0,)x ∈+∞。

2016版高考数学大一轮复习课件:第6章-第2节一元二次不等式及其解法

2016版高考数学大一轮复习课件:第6章-第2节一元二次不等式及其解法

基 础 知 识 点
当 c>2 时,不等式(x-2)(x-c)<0 的解集为{x|2<x<c};
方 法

当 c<2 时,不等式(x-2)(x-c)<0 的解集为{x|c<x<2}; 巧
当 c=2 时,不等式(x-2)(x-c)<0 的解集为∅.
所以,当 c>2 时,不等式 ax2-(ac+b)x+bc<0 的解集










菜单
第十五页,编辑于星期五:二十三点 五十五分。
名师金典·新课标高考总复习·理科数学
(2)a∈R,解关于 x 的不等式 x-1x≥a(x-1).
基 础 知 识 点
【解】 原不等式可转化为x-1[1x-ax+1]≥0(*)
方 法 技

(1)当 a=1 时,(*)式为x-x 1≥0,解得 x<0 或 x≥1.

即 Δ=4a2-4(2-a)≤0 或a<-1,
心 考 向
f-1≥0.
解得-3≤a≤1.
故 a 的取值范围为{a|-3≤a≤1}.
菜单
课 时 限 时 检 测
第二十六页,编辑于星期五:二十三点 五十五 分。
名师金典·新课标高考总复习·理科数学
考向三 [104] 一元二次不等式的实际应用
时 检 测
菜单
第二十四页,编辑于星期五:二十三点 五十五 分。
名师金典·新课标高考总复习·理科数学
(3)若 x∈[-1,+∞)时,x2-2ax+2≥a 恒成立,试求 a
基 础
的取值范围.

识 点
【解】 法一 令 f(x)=x2-2ax+2,x∈[-1,+∞),

高考数学一轮复习 第一章 集合与常用逻辑用语 1.1 集合的概念及运算练习 文-人教版高三全册数学试

高考数学一轮复习 第一章 集合与常用逻辑用语 1.1 集合的概念及运算练习 文-人教版高三全册数学试

§1.1 集合的概念及运算考纲解读考点内容解读要求高考示例常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题Ⅰ2017课标全国Ⅰ,1;2017课标全国Ⅲ,1;2016某某,1选择题★★☆2.集合间的基本关系理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义Ⅱ2013某某,3 选择题★★☆3.集合间的基本运算理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算Ⅱ2017课标全国Ⅱ,1;2017,1;2016课标全国Ⅰ,1;2016课标全国Ⅱ,1;2016课标全国Ⅲ,1选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究五年高考考点一集合的含义与表示1.(2017课标全国Ⅲ,1,5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1 B.2 C.3 D.4答案B2.(2016某某,1,5分)已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}答案A3.(2015课标Ⅰ,1,5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2答案DA.⌀B.{2} C.{0} D.{-2}答案B5.(2013某某,2,5分)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=()A.4 B.2C.0 D.0或4答案A教师用书专用(6—8)6.(2015某某,10,5分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A ⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30答案C7.(2014某某,1,5分)已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}答案D8.(2013课标全国Ⅰ,1,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}答案A考点二集合间的基本关系(2013某某,3,5分)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2 B.3 C.4 D.16答案C考点三集合间的基本运算1.(2017课标全国Ⅱ,1,5分)设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4}答案A2.(2017,1,5分)已知全集U=R,集合A={x|x<-2或x>2},则∁U A=()A.(-2,2) B.(-∞,-2)∪(2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)答案CA.{2} B.{1,2,4}C.{1,2,4,6} D.{1,2,3,4,6}答案B4.(2017某某,1,5分)设集合M={x||x-1|<1},N={x|x<2},则M∩N=()A.(-1,1) B.(-1,2) C.(0,2) D.(1,2)答案C5.(2016课标全国Ⅰ,1,5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}答案B6.(2016课标全国Ⅱ,1,5分)已知集合A={1,2,3},B={x|x2<9},则A∩B=()A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}答案D7.(2016课标全国Ⅲ,1,5分)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=()A.{4,8} B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}答案C8.(2016,1,5分)已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}答案C9.(2016某某,1,5分)设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则∁U(A∪B)=()A.{2,6} B.{3,6}C.{1,3,4,5} D.{1,2,4,6}答案A10.(2016某某,2,5分)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6 B.5 C.4 D.3答案B11.(2015课标Ⅱ,1,5分)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=()A.(-1,3) B.(-1,0) C.(0,2) D.(2,3)答案A12.(2015某某,1,5分)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁U B=()13.(2015某某,1,5分)已知集合A={x|2<x<4},B={x|(x-1)·(x-3)<0},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)答案C14.(2014某某,1,5分)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案D15.(2013课标全国Ⅱ,1,5分)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=()A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}答案C16.(2017某某,1,5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为____.答案1教师用书专用(17—40)17.(2016某某,1,5分)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}答案C18.(2015,1,5分)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=()A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}答案A19.(2015某某,1,5分)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1] B.(0,1] C.[0,1) D.(-∞,1]答案A20.(2015某某,1,5分)已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4) B.(2,3] C.(-1,2) D.(-1,3]答案A21.(2015某某,2,5分)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()22.(2014某某,1,5分)已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}答案C23.(2014某某,1,5分)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于()A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}答案A24.(2014课标Ⅰ,1,5分)已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=()A.(-2,1) B.(-1,1) C.(1,3) D.(-2,3)答案B25.(2014某某,2,5分)设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2) C.[1,2) D.(1,4)答案C26.(2014某某,1,5分)设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5]B.[2,+∞)C.(2,5) D.[2,5]答案D27.(2014大纲全国,1,5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2 B.3 C.5 D.7答案B28.(2014某某,1,5分)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1)C.(0,1] D.[0,1)答案D29.(2013,1,5分)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}答案B30.(2013某某,1,5分)设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=()A.[-4,+∞)B.(-2,+∞)31.(2013某某,2,5分)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=()A.{-2,-1} B.{-2} C.{-1,0,1} D.{0,1}答案A32.(2013某某,1,5分)设集合S={x|x2+2x=0,x∈R},T={x|x2-2x=0,x∈R},则S∩T=()A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}答案A33.(2013某某,1,5分)设集合A={1,2,3},集合B={-2,2},则A∩B=()A.⌀B.{2}C.{-2,2} D.{-2,1,2,3}答案B34.(2013某某,1,5分)已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1} C.{0,2} D.{0,1,2}答案B35.(2013某某,1,5分)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2]B.[1,2] C.[-2,2] D.[-2,1]答案D36.(2013某某,1,5分)设全集为R,函数f(x)=的定义域为M,则∁R M为()A.(-∞,1)B.(1,+∞)C.(-∞,1]D.[1,+∞)答案B37.(2013某某,1,5分)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}答案D38.(2015某某,11,5分)已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁U B)=______.答案{1,2,3}39.(2014某某,11,5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=_______.答案{3,5,13}40.(2013某某,10,5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=__________.答案{6,8}三年模拟A组2016—2018年模拟·基础题组1.(2018某某师大附中11月模拟,1)已知集合A={(x,y)|x,y为实数,且y=x2},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.无数个B.3 C.2 D.1答案C2.(2017某某某某高中毕业班4月调研,2)已知集合A={1,3},B=,则A ∪B=()A.{1,3} B.{1,2,3} C.{1,3,4} D.{1,2,3,4}答案B3.(2016某某某某一模,1)集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},则图中阴影部分所表示的集合是()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}答案B考点二集合间的基本关系4.(2017某某某某一模,2)已知集合M={-1,0,1},N={x|x=ab,a,b∈M,且a≠b},则集合M与集合N的关系是()A.M=N B.M∩N=N C.M∪N=N D.M∩N=⌀答案B5.(2016某某某某二模,1)设集合M={-1,1},N={x|x2-x<6},则下列结论正确的是()A.N⊆M B.N∩M=⌀C.M⊆N D.M∩N=R答案C6.(2018某某某某调研,13)设集合A={1,},B={a},若B⊆A,则实数a的值为______.答案07.(2017某某八市联考,13)已知A={x|x2-3x+2<0},B={x|1<x<a},若A⊆B,则实数a的取值X围是_____.答案[2,+∞)考点三集合间的基本运算8.(2018某某重点中学11月质检,1)已知集合A={x|3x>3},B={x|3x2-2x-5<0},则A∩B=()A.B.(-1,1) C.(-1,+∞)D.9.(2018某某重点中学期中联考,1)已知集合A=,B={x|(x+2)(x-1)>0},则A∩B等于()A.(0,2) B.(1,2)C.(-2,2) D.(-∞,-2)∪(0,+∞)答案B10.(2018某某某某一模,1)若集合A={x|1≤x≤5},B={x|log2x<2},则A∪B等于()A.(-1,5] B.(0,5] C.[1,4) D.[-1,4)答案B11.(2017某某百校联盟4月质检,1)已知集合A={x|2x2-7x+3<0},B={x∈Z|lg x<1},则阴影部分所表示的集合的元素个数为()A.1 B.2 C.3 D.4答案B12.(2017某某某某三模,1)已知全集U=R,集合M={x||x|<1},N={y|y=2x,x∈R},则集合∁U(M∪N)等于()A.(-∞,-1] B.(-1,2)C.(-∞,-1]∪[2,+∞)D.[2,+∞)答案A13.(2017某某襄阳五中模拟,1)设集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0},则∁U A等于()A.{1,2} B.{1,4} C.{2,4} D.{1,3,4}答案B14.(2016中原名校四月联考,1)设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=()A.(2,3] B.(-∞,1]∪(2,+∞)C.[1,2) D.(-∞,0)∪[1,+∞)答案DB组2016—2018年模拟·提升题组(满分:55分时间:40分钟)一、选择题(每小题5分,共35分)1.(2018某某南开中学月考,1)已知全集U={0,1,2,3,4,5},集合A={1,2,3,5},B={2,4},则(∁U A)∪B=()A.{1,2,4} B.{4} C.{0,2,4} D.{0,2,3,4}2.(2018某某浏阳三校联考,1)设A={x|y=},B={y|y=ln(1+x)},则A∩B=()A.{x|x>-1} B.{x|x≤1}C.{x|-1<x≤1}D.⌀答案B3.(2018某某某某重点高中联考,2)已知集合M=,N=,则M∩N=()A.⌀B.{(3,0),(0,2)}C.[-2,2] D.[-3,3]答案D4.(2018某某五校协作体9月联考,2)已知集合P={x|x2-2x-8>0},Q={x|x≥a},P∪Q=R,则a的取值X围是()A.(-2,+∞)B.(4,+∞)C.(-∞,-2] D.(-∞,4]答案C5.(2017某某某某、某某等六市一模,1)已知集合A={(x,y)|y-=0},B={(x,y)|x2+y2=1},C=A∩B,则C的子集的个数是()A.0 B.1 C.2 D.4答案C6.(2017某某某某第二次模拟,2)已知全集U=R,集合M={x|x+2a≥0},N={x|log2(x-1)<1},若集合M∩(∁U N)={x|x=1或x≥3},那么a的取值为()A.a=B.a≤C.a=-D.a≥答案C7.(2016某某某某瑞安八校联考,1)已知集合A={x|ax=1},B={0,1},若A⊆B,则由a的取值构成的集合为()A.{1} B.{0} C.{0,1} D.⌀答案C二、解答题(每小题10分,共20分)8.(2018某某某某四校联考,17)已知三个集合:A={x∈R|log2(x2-5x+8)=1},B={x∈R|=1},C={x∈R|x2-ax+a2-19>0}.(2)已知A∩C≠⌀,B∩C=⌀,某某数a的取值X围.解析(1)∵A={x∈R|log2(x2-5x+8)=1}={x∈R|x2-5x+8=2}={2,3},(2分)B={x∈R|=1}={x∈R|x2+2x-8=0}={2,-4},(4分)∴A∪B={2,3,-4}.(5分)(2)∵A∩C≠⌀,B∩C=⌀,∴2∉C,-4∉C,3∈C.(6分)∵C={x∈R|x2-ax+a2-19>0},∴(7分)即,解得-3≤a<-2.(9分)所以实数a的取值X围是[-3,-2).(10分)9.(2017某某某某、某某联考,18)已知函数f(x)=的定义域为A,函数g(x)=(-1≤x≤0)的值域为B.(1)求A∩B;(2)若C=[a,2a-1],且C∪B=B,某某数a的取值X围.解析(1)要使函数f(x)=有意义,需log2(x-1)≥0,解得x≥2,∴A=[2,+∞).对于函数g(x)=,∵-1≤x≤0,∴1≤g(x)≤2,∴B=[1,2],∴A∩B={2}.(2)∵C∪B=B,∴C⊆B.当2a-1<a,即a<1时,C=⌀,满足条件.当2a-1≥a,即a≥1时,要使C⊆B,则解得1≤a≤.综上可得,a∈.C组2016—2018年模拟·方法题组方法1利用数轴和韦恩(Venn)图解决集合问题的方法1.(2018某某某某一中11月模拟,2)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠⌀,若A∪B=A,则()A.-3≤m≤4B.-3<m<4 C.2<m<4 D.2<m≤4答案D2.(2017豫北名校联考,1)已知全集U={1,2,3,4,5,6,7},M={3,4,5},N={1,3,6},则集合{2,7}=()A.M∩N B.(∁U M)∩(∁U N)C.(∁U M)∪(∁U N) D.M∪N答案B3.(2016某某蓟县期中,1)函数y=的定义域为集合A,函数y=ln(2x+1)的定义域为集合B,则A∩B=()A.B.C.D.答案A方法2解决与集合有关的新定义问题的方法4.(2018某某某某三校联考,4)已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若∀x∈A,y∈B,x<y恒成立,则称(A,B)为集合M的一个“子集对”,则集合M的“子集对”共有个__________.答案175.(2016某某中原名校3月联考,14)当两个集合中一个集合为另一集合的子集时,称这两个集合构成“全食”,当两个集合有公共元素,但互不为对方子集时,称这两个集合构成“偏食”.对于集合A=,B={x|ax2=1,a≥0},若A与B构成“全食”或构成“偏食”,则a的取值集合为___________.答案{0,1,4}。

2016届高考数学一轮复习备考策略及教学设计

2016届高考数学一轮复习备考策略及教学设计
Ⅰ卷11、18题,Ⅱ卷6、19题立体几何问题突出考查了空
间想象能力,能够正确识图、画图和对图形的想象能力,
对图形进行分解、组合的能力,并要求能够熟练进行三 种语言的转换。 半球和半个圆柱的组合体 截去部分为正方体的一个角
其中Ⅱ卷19题立体几何问题与2014年比起来
有所创新,第一问要求画图,并非证明平行和
解析2:ADC 135 ,将AD平移: 向下D无限接近C有:A1B 6 2;向上D无限接近A有:A2B 6 2.
Ⅱ卷(12)设函数 f’(x)是奇函数
的导函数,f(-1)=0,当
>0 时,
,则使得 f (x) >0 成立的 x 的取值范围是 (B) (D)
(A)
(C)
解析 2:改造特殊函数 f(x ) x x 符合题设可得
当P在BC上时,x (0, ), PA PB tan x 4 这一段不可能为线段和 圆弧。

tan 2 x 4 ,
(三)数据处理能力考查
Ⅰ卷的19题,Ⅱ卷18题,考查用概率统计的基本方法和 基本思想解决实际问题的能力。考查对非连续文本阅读的
能力,要求快速从文本中提取、整理、分析并做出判断。
CD t , BC 2, (
6 2 6 2 x t ) sin 15 1, x t 4 4 2 6 2 x. 2
0 x 4,AB
6 2 2 x t x 4 2
AB ( 6 2, 6 2 ).
函数与方程思想、运动变化思想、有限与 无限思想
记时间 C:“A 地区用户的满意度等级高于 B 地区用户的满意度等级”。假设两 地区用户的评价结果相互独立。根据所给数据,以事件发生的频率作为相应事件 发生的概率,求 C 的概率。

【2016届走向高考】高三数学一轮(人教B版)基础巩固:第10章 第6节 排列与组合(理)

【2016届走向高考】高三数学一轮(人教B版)基础巩固:第10章 第6节 排列与组合(理)

第十章 第六节一、选择题1.(2013·温州测试)甲、乙两人计划从A 、B 、C 三个景点中各选择两个游玩,则两人所选景点不全相同的选法共有( )A .3种B .6种C .9种D .12种 [答案] B[解析] 甲、乙两人从A 、B 、C 三个景点中各选两个游玩,共有C 23·C 23=9种,但两人所选景点不能完全相同,所以排除3种完全相同的选择,故有6种,选B.2.(2013·河北教学质量监测)有A 、B 、C 、D 、E 五位学生参加网页设计比赛,决出了第一到第五的名次.A 、B 两位学生去问成绩,老师对A 说:你的名次不知道,但肯定没得第一名;又对B 说:你是第三名.请你分析一下,这五位学生的名次排列的种数为( )A .6B .18C .20D .24[答案] B[解析] 由条件知,A 没得第一名和第三名,故A 的名次有C 13种可能,对于A 的每一种可能名次,C 、D 、E 有A 33种,∴共有C 13A 33=18种. 3.(2014·云南统一检测)在一次学习方法成果交流会上,需要交流示范学校的5篇论文和非示范学校的3篇论文,交流顺序可以是任意的,则最先和最后交流的论文不能来自同一类学校的概率是( )A.1528B .1328 C.1556D .1356[答案] A[解析] 最先和最后交流的论文为示范学校论文的情况有A 25A 66种,最先和最后交流的论文为非示范学校论文的情况有A 23A 66种,故所求概率P =1-A 25A 66+A 23A 66A 88=1528. 4.(2014·安徽理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对[答案] C [解析] 解法1:先找出正方体一个面上的对角线与其余面对角线成60°角的对数,然后根据正方体六个面的特征计算总对数.如图,在正方体ABCD -A 1B 1C 1D 1中,与面对角线AC 成60°角的面对角线有B 1C ,BC 1,C 1D ,CD 1,A 1D ,AD 1,A 1B ,AB 1共8条,同理与BD 成60°角的面对角线也有8条,因此一个面上的对角线与其相邻4个面的对角线,共组成16对,又正方体共有6个面,所有共有16×6=96对.因为每对都被计算了两次(例如计算与AC 成60°角时,有AD 1,计算与AD 1成60°角时有AC ,故AD 1与AC 这一对被计算了2次),因此共有12×96=48对.解法2:间接法.正方体的面对角线共有12条,从中任取2条有C 212种取法,其中相互平行的有6对,相互垂直的有12对,∴共有C 212-6-12=48对.5.(2013·陕西检测)8名游泳运动员参加男子100米的决赛,已知游泳池有从内到外编号依次为1,2,3,4,5,6,7,8的8条泳道,若指定的3名运动员所在的泳道编号必须是3个连续数字(如:5,6,7),则参加游泳的这8名运动员被安排泳道的方式共有( )A .360种B .4320种C .720种D .2160种[答案] B[解析] 先从8个数字中取出3个连续的数字共有6种方法,若指定的3名运动员安排在这3个编号的泳道上,剩下的5名运动员安排在其他编号的5条泳道上,共有6A 33A 55=4320种安排方式.6.(2014·广东理)设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .130[答案] D[解析] 易知|x 1|+|x 2|+|x 3|+|x 4|+|x 5|=1或2或3,下面分三种情况讨论.其一:|x 1|+|x 2|+|x 3|+|x 4|+|x 5|=1,此时,从x 1,x 2,x 3,x 4,x 5中任取一个让其等于1或-1,其余等于0,于是有C 15C 12=10种情况;其二:|x 1|+|x 2|+|x 3|+|x 4|+|x 5|=2,此时,从x 1,x 2,x 3,x 4,x 5中任取两个让其都等于1或都等于-1或一个等于1、另一个等于-1,其余等于0,于是有2C 25+C 25C 12=40种情况;其三:|x 1|+|x 2|+|x 3|+|x 4|+|x 5|=3,此时,从x 1,x 2,x 3,x 4,x 5中任取三个让其都等于1或都等于-1或两个等于1、另一个等于-1或两个等于-1、另一个等于1,其余等于0,于是有2C 35+C 35C 13+C 35C 23=80种情况.由于10+40+80=130,故答案为D.二、填空题7.(2013·抚州模拟)从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax +By +C =0中的系数A 、B 、C ,所得的经过坐标原点的直线有________条(用数字表示).[答案] 30[解析] 因为直线过原点,所以C =0,从1,2,3,5,7,11这6个数中任取2个作为A 、B ,两数的顺序不同,表示的直线不同,所以直线的条数为A 26=30.8.(2013·云南昆明一模)将4名新来的同学分配到A ,B ,C 三个班级中,每个班级至少安排1名学生,其中甲同学不能分配到A 班,那么不同的分配方案有________种.[答案] 24[解析] 将4名新来的同学分配到A 、B 、C 三个班级中,每个班级至少安排一名学生有C 24A 33种分配方案,其中甲同学分配到A 班共有C 23A 22+C 13A 22种方案.因此满足条件的不同方案共有C 24A 33-C 23A 22-C 13A 22=24(种).9.(2013·武汉模拟)某车队有7辆车,现要调出4辆按一定顺序出去执行任务.要求甲、乙两车必须参加,且甲车要先于乙车开出,有________种不同的调度方法(填数字).[答案] 120[解析] 先从其余的5辆车中选出2辆车执行任务,有C 25种选法,这4辆车所有可能开出的先后顺序有A 44种,其中甲在乙车前和后的一样多,故共有不同调度方法12C 25A 44=120种. 10.(2014·浙江嘉兴月考)已知a ,b ∈{1,2,3,4,5,6,7,8,9},u =log a b ,则u 的不同取值个数为________.[答案] 54[解析] 解法1:枚举法.要保证u 的取值不同,则有a =2时,b 可取1,2,3,4,5,6,7,8,9共9种情况;a =3时,b 可取2,4,5,6,7,8共6种情况;a =4时,b 可取2,3,5,6,7,8共6种情况;a =5时,b 可取2,3,4,6,7,8,9共7种情况;a =6时,b 可取2,3,4,5,7,8,9共7种情况;a =7时,b 可取2,3,4,5,6,8,9共7种情况;a =8时,b 可取2,3,4,5,6,7,9共7种情况.a =9时,b 可取2,5,6,7,8共5种情况.所以u 的不同取值个数为9+6+6+7+7+7+7+5=54.解法2:a 可取2~9的数字,有8种取法,b 可取1~9的数字,有9种取法,∴共有8×9=72种不同取法.其中b =1时,log a b =0,这样的取法有8种,a =b 时,log a b =1,这样的取法有8种,又log 24=log 39=2,log 42=log 93=12,log 23=log 49,log 32=log 94, ∴log a b 的不同取值共有72-7-7-4=54种.一、选择题11.(2013·深圳调研)我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则首位为2的“六合数”共有( )A .18个B .15个C .12个D .9个 [答案] B[解析] 依题意,这个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数,分别为400、040、004;由3、1、0组成6个数,分别为310、301、130、103、013、031;由2、2、0组成3个数,分别为220、202、022;由2、1、1组成3个数,分别为211、121、112,共计:3+6+3+3=15个.12.(2014·洛阳统考)将5名实习教师分配到高一年级的3个班实习,每班至少1名,则不同的分配方案有( )A .30种B .60种C .90种D .150种[答案] D[解析] 5名教师分成三组有:2,2,1;3,1,1两种分法,所以不同的分配方案有C 13C 25C 23+C 35A 33=150种.13.(2014·四川成都石室中学一诊)设三位数n=100a+10b+c,若以a,b,c∈{1,2,3,4}为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有() A.12个B.24个C.28个D.36个[答案] C[解析]若为等边三角形,则有4种.若为等腰非等边三角形,以底边为准分类:若底边为1,则有3个等腰三角形;若底边为2,则有2个等腰三角形;若底边为3,则有2个等腰三角形;若底边为4,则有1个等腰三角形.一个等腰非等边三角形对应有3个三位数,所以共有4+(3+2+2+1)×3=28个.14.(2014·四川德阳中学诊断)设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3},A⊆S,a1,a2,a3满足a1<a2<a3且a3-a2≤6,那么满足条件的集合A的个数为() A.76 B.78C.83 D.84[答案] C[解析]在集合S中任取三个数共有C3=84种情况,这三个数大小关系确定,其中不满9足a3-a2≤6的只有{1,2,9},其他均满足题意,所以满足条件的集合A的个数为C39-1=83,故选C.15.(2015·深圳市五校联考)在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处.则不同的搜寻方案有()A.40种B.70种C.80种D.100种[答案] A[解析]Grace不参与该项任务,则有C1C24=30种;5Grace参与该项任务,则有C25=10种,故共有30+10=40种.16.(2014·黑龙江大庆专项训练)设集合A={0,1,2,3,4,5,6,7},如果方程x2-mx-n=0(m,n∈A)至少有一个根x0∈A,就称方程为合格方程,则合格方程的个数为() A.13 B.15C.17 D.19[答案] C[解析] 当m =0时,取n =0,1,4,方程为合格方程;当m =1时,取n =0,2,6,方程为合格方程;当m =2时,取n =0,3,方程为合格方程;当m =3时,取n =0,4,方程为合格方程;当m =4时,取n =0,5,方程为合格方程;当m =5时,n =0,6,方程为合格方程;当m =6时,取n =0,7,方程为合格方程;当m =7时,取n =0,方程为合格方程.综上可得,合格方程的个数为17,故选C.二、填空题17.(2014·合肥质量检测)某办公室共有6人,乘旅行车外出旅行,旅行车上的6个座位如图所示,其中甲、乙2人的关系较为密切,要求在同一排且相邻,则不同的安排方法有________种.○ ○ ○○ ○○[答案] 144[解析] 当甲、乙在第三排且相邻时有4A 44=96种排法,当甲、乙在第二排且相邻时有A 22A 44=48种排法,所以不同的安排方法总数为144.18.(2014·北京市海淀区期末)已知集合M ={1,2,3,…,100},A 是集合M 的非空子集,把集合A 中的各元素之和记作S (A ).①满足S (A )=8的集合A 的个数为________;②S (A )的所有不同取值的个数为________.[答案] 6 5050[解析] ①若S (A )=8,则A ={8},A ={1,7},A ={2,6},A ={3,5},A ={1,2,5}和A ={1,3,4},共6种可能.②若A ={1},则S (A )=1,当A ={1,2,3,…,100}时,S (A )=1+2+3+…+100=1012×100=5050,下面证明任意给定1<m <5050,存在子集A 使得S (A )=m ,若B 为M 的子集,S (B )=i ,则S (綂M B )=5050-i ,故只需说明任意给定1<m <2525,存在子集A 使得S (A )=m ,当A ={1,2,3,…,72}时,S (A )=732×72=2628,同理只需证明给定1<m <1314,存在子集A 使得S (A )=m ,当A ={1,2,3,…,51}时,S (A )=522×51=1326,同理只需说明给定1<m <663,以此类推,可以证明任意给定1<m <5050,存在子集A 使得S (A )=m ,所以S (A )的不同取值为5050个.[点评] 1.排列、组合问题的类型及解答策略排列、组合问题,通常都是以选择题或填空题的形式出现在试卷上,它联系实际,生动有趣;但题型多样,解法灵活.实践证明,备考有效的方法是将题型与解法归类,识别模式、熟练运用.下面介绍常见排列组合问题的解答策略.(1)相邻元素捆绑法.在解决某几个元素必须相邻问题时,可整体考虑将相邻元素视为一个元素参与排列.①有七名同学站成一排照相,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有________种.[答案]192[分析]甲站正中间,左边、右边各3人,乙、丙相邻排列后作为一个“整体元素”,按这个整体元素的站位考虑有4种情况,其他位置可任意排列.[解析]依题意得,满足题意的不同站法共有4·A2·A44=192种.2(2)相离问题插空法.相离问题是指要求某些元素不能相邻,由其他元素将它隔开,此类问题可以先将其他元素排好,再将所指定的不相邻的元素插入到它们的空隙及两端位置,故称“插空法”.②(2013·郑州第一次质量预测)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有()A.12种B.18种C.24种D.48种[答案] C[解析]将甲、乙捆绑,与除丙、丁外的另外一架飞机进行全排列,有A2·A22种方法.而2后将丙、丁进行插空,有3个空,有A23种排法,故共有A22·A22·A23=24种方法.(3)定序问题属组合.排列时,如果限定某些元素或所有元素保持一定顺序称为定序问题,定序的元素属组合问题.③6个人排一队参观某项目,其中甲、乙、丙三人进入展厅的次序必须是先乙,再甲,最后丙,则不同的列队方式有________种.[答案]120[解析]解法1:由于甲、乙、丙三人的次序已定,故只需从6个位置中选取3个排上其余3人,有A36种排法,剩下的三个位置排甲、乙、丙三人,只有一种排法,∴共有A36=120种.解法2:先选取3个位置排甲、乙、丙三人有C36种方法,剩下3个位置站其余3人,有A33种方法,∴共有C36·A33=120种.(4)定元、定位优先排.在有限制条件的排列、组合问题中,有时限定某元素必须排在某位置,某元素不能排在某位置;有时限定某位置只能排(或不能排)某元素.这种特殊元素(位置)解题时要优先考虑.④6位同学安排到3个社区A,B,C参加志愿者服务,每个社区安排两名同学,其中甲同学必须到A社区,乙和丙同学均不能到C社区,则不同的安排方法种数为() A.12B.9C.6D.5[答案] B[解析]当乙、丙中有一人在A社区时有C1C13C22=6种安排方法;当乙、丙两人都在B社2区时有C13C22=3种安排方法,所以共有9种不同的安排方法.(5)至多、至少间接法.含“至多”、“至少”的排列组合问题,是需要分类问题.可用间接法,即排除法,但仅适用于反面情况明确且易于计算的情况.⑤从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有()A.36种B.30种C.42种D.60种[答案] A[解析]解法1(直接法):选出的3名志愿者中含1名女生有C1·C26种选法,含2名女生有2C22·C16种选法,∴共有C12C26+C22C16=36种选法.解法2(间接法):若选出的3名全是男生,则有C36种选法,∴至少有一名女生的选法数为C38-C36=36种.(6)选排问题先选后排法.对于排列组合的混合应用题,一般解法是先选(组合)后排(排列).⑥四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有________种(用数字作答).[答案]144[解析]先从四个小球中取两个放在一起,有C2种不同的取法,再把取出的两个小球与另4外两个小球看作三堆,并分别放入四个盒子中的三个盒子中,有A34种不同的放法,据分步计数原理,共有C24·A34=144种不同的放法.(7)部分符合条件淘汰法.在选取总数中,只有一部分符合条件,可从总数中减去不符合条件数,即为所求.⑦过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对[答案] D[解析]三棱柱共6个顶点,由此6个顶点可组成C4-3=12个不同四面体,而每个四面6体有三对异面直线,则共有12×3=36对.(8)数字问题要弄清可否重复及首位不能为0.⑧用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328C.360 D.648[答案] B[解析]利用分类计数原理,共分两类:(1)0作个位,共A29=72个偶数;(2)0不作个位,共A14·A18·A18=256个偶数,共计72+256=328个偶数,故选B.2.建模思想⑨一只电子蚂蚁在如图所示的网格线上由原点O(0,0)出发,沿向上或向右方向爬至点(m,n),(m,n∈N*),记可能的爬行方法总数为f(m,n),则f(m,n)=________.[答案]C mm+n[解析]从原点O出发,只能向上或向右方向爬行,记向上为1,向右为0,则爬到点(m,n)需m个0和n个1.这样爬行方法总数f(m,n)是m个0和n个1的不同排列方法数.m个0和n个1共占m+n个位置,只要从中选取m个放0即可.∴f(m,n)=C m m+n.[点评](1)例如f(3,4)=C3,其中0010111表示从原点出发后,沿右右上右上上上的路径7爬行.(2)抽象建模后就是一个含相同数字的纯粹排列组合问题.⑩方程x+y+z=8的非负整数解的个数为________.[答案]45[解析]把x、y、z分别看作是x个1,y个1和z个1,则共有8个1,问题抽象为8个1和两个十号的一个排列问题.由于x、y、z非负,故允许十号相邻,如11++111111表示x =2,y=0,z=6,+11111111+表示x=0,y=8,z=0等等,∴不同排法总数为从10个位置中选取2个放十号,∴方程的非负整数解共有C210=45个.⑪一条街道上共有12盏路灯,为节约用电又不影响照明,决定每天晚上十点熄灭其中的4盏,并且不能熄灭相邻两盏也不能熄灭两头两盏,问不同熄灯方法有多少种.[解析]记熄灭的灯为0,亮灯为1,则问题是4个0和8个1的一个排列,并且要求0不相邻,且不排在两端,故先将1排好,在8个1形成的7个空中,选取4个插入0,共有方法数C47=35种.[点评]实际解题中,先找出符合题设条件的一种情形,然后选取一种替代方案,注意是否相邻、相间等受限条件,然后确定有无顺序是排列还是组合,再去求解.⑫如图,从上往下读(不能跳读)构成句子“构建和谐社会,创美好未来”的不同读法种数是()构建建和和和谐谐谐谐社社社社社会会会会会会创创创创创美美美美好好好未未来A.250 B.240C.252 D.300[答案] C[解析]要组成题设中的句子,则每行读一字,不能跳读.每一种读法须10步完成(从上一个字到下一个字为一步),其中5步是从左上角到右下角方向读的,故共有不同读法C510=252种.3.枚举法⑬如果直线a与b异面,则称a与b为一对异面直线,六棱锥的侧棱与底边共12条棱所在的直线中,异面直线共有________对.[答案]24[解析]六棱锥的侧棱都相交,底面六条边所在直线都共面,故异面直线只可能是侧棱与底面上的边.考察P A与底面六条边所在直线可用枚举法列出所有异面直线(P A,BC),(P A,CD),(P A,DE),(P A,EF)共四对.同理与其它侧棱异面的底边也各有4条,故共有4×6=24对.。

2020年高考文科数学新课标第一轮总复习练习:3-7正弦定理和余弦定理含解析

2020年高考文科数学新课标第一轮总复习练习:3-7正弦定理和余弦定理含解析

课时规范练A组基础对点练1.(2016·高考全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知a=5,c=2,cos A=2 3,则b=(D)A. 2B. 3C.2 D.32.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos 2A=0,a=7,c=6,则b=(D)A.10 B.9C.8 D.53.钝角三角形ABC的面积是12,AB=1,BC=2,则AC=(B)A.5 B. 5 C.2 D.1解析:∵钝角三角形ABC的面积是12,AB=c=1,BC=a=2,∴S=12ac sin B=12,即sin B=22,当B为钝角时,cos B=-1-sin2B=-2 2,利用余弦定理得AC2=AB2+BC2-2AB·BC·cos B=1+2+2=5,即AC=5,当B为锐角时,cos B=1-sin2B=2 2,利用余弦定理得AC2=AB2+BC2-2AB·BC·cos B=1+2-2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC= 5.故选B.4.在△ABC中,角A,B,C的对边分别为a,b,c.若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin A cos C+cos A sin C,则下列等式成立的是(A)A.a=2b B.b=2aC.A=2B D.B=2A5.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B ,则B =( C ) A.π6 B.π4 C.π3D.π26.(2018·衡阳联考)已知△ABC 的三边长为三个连续的自然数,且最大内角是最小内角的2倍,则最小内角的余弦值是( B ) A.23 B.34 C.56D.710解析:设三边长依次是x -1,x ,x +1,其中x 是自然数,且x ≥2, 令三角形的最小角为A ,则最大角为2A , 由正弦定理,有x -1sin A =x +1sin 2A =x +12sin A cos A , ∴cos A =x +12(x -1),由余弦定理,有cos A =x 2+(x +1)2-(x -1)22x (x +1),∴x +12(x -1)=x 2+(x +1)2-(x -1)22x (x +1),即x +1x -1=x 2+4x x 2+x =x +4x +1, 整理得(x +1)2=(x -1)(x +4), 解得x =5, 三边长为4,5,6, 则cos A =52+62-422×5×6=34.7.(2018·西安模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,且sin 2B =sin 2C ,则△ABC 的形状为( D ) A .等腰三角形 B.锐角三角形 C .直角三角形D.等腰直角三角形解析:因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A , 所以sin(B +C )=sin 2A , 所以sin A =sin 2A .因为0<A<π,所以sin A≠0,所以sin A=1.所以A=π2.因为sin2B=sin2C,所以由正弦定理得b2=c2.因为b>0,c>0,所以b=c.所以△ABC是等腰直角三角形.综上所述,故选D.8.(2016·高考北京卷)在△ABC中,∠A=2π3,a=3c,则bc=__1__.9.在△ABC中,已知sin A∶sin B=2∶1,c2=b2+2bc,则三内角A,B,C的度数依次是__45°,30°,105°__.10.在△ABC中,A=30°,AB=4,满足此条件的△ABC有两解,则BC边长度的取值范围为__(2,4)__.解析:由正弦定理可得BCsin A=AB sin C,∴BC=AB·sin Asin C=2sin C,∵△ABC有两个解,∴30°<C<150°,且C≠90°,∴12<sin C<1,∴BC=2sin C∈(2,4).11.已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连接CD,则△BDC的面积是152,cos∠BDC=104.解析:如图,取BC中点E,DC中点F,由题意知AE ⊥BC ,BF ⊥CD . 在Rt △ABE 中,cos ∠ABE =BE AB =14, ∴cos ∠DBC =-14,sin ∠DBC =1-116=154.∴S △BCD =12×BD ×BC ×sin ∠DBC =152.∵cos ∠DBC =1-2sin 2∠DBF =-14,且∠DBF 为锐角,∴sin ∠DBF =104. 在Rt △BDF 中,cos ∠BDF =sin ∠DBF =104. 综上可得,△BCD 的面积是152,cos ∠BDC =104.12.四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积. 解析:(1)由题设及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,故C =60°,BD =7. (2)四边形ABCD 的面积 S =12AB ·DA sin A +12BC ·CD sin C =⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin 60° =2 3.13.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC .(1)求sin B sin C ;(2)若∠BAC =60°,求∠B . 解析:(1)由正弦定理,得AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD . 因为AD 平分∠BAC ,BD =2DC , 所以sin B sin C =DC BD =12.(2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°, 所以sin C =sin(∠BAC +∠B )=32cos B +12sin B. 由(1)知2sin B =sin C ,所以tan B =33,即∠B =30°.B 组 能力提升练1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( A ) A.725 B.-725 C .±725D.2425解析:由C =2B ,得sin C =sin 2B =2sin B cos B ,由正弦定理及8b =5c ,得cos B =sin C 2sin B =c 2b =45, 所以cos C =cos 2B =2cos 2B -1=2×⎝ ⎛⎭⎪⎫452-1=725.故选A.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2-a 2=3bc ,且b =3a ,则下列关系一定不成立的是( B ) A .a =c B.b =c C .2a =cD.a 2+b 2=c 2解析:由余弦定理,得cos A =b 2+c 2-a 22bc =3bc 2bc =32,则A =30°.又b =3a ,由正弦定理得sin B =3sin A =3sin 30°=32,所以B =60°或120°.当B =60°时,△ABC 为直角三角形,且2a =c ,可知C ,D 成立;当B =120°时,C =30°,所以A =C ,即a =c ,可知A 成立,故选B.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若满足c =2,a cos C =c sin A 的△ABC 有两个,则边长BC 的取值范围是( D )A .(1,2) B.(1,3) C .(3,2)D.(2,2)解析:因为a cos C =c sin A ,由正弦定理得sin A cos C =sin C sin A ,易知sin A ≠0,故tan C =1,所以C =π4.过点B 作AC 边上的高BD (图略),垂足为D ,则BD =22BC ,要使满足条件的△ABC 有两个,则BC >2>22BC ,解得2<BC <2.故选D.4.在△ABC 中,已知2a cos B =c ,sin A sin B ·(2-cos C )=sin 2 C 2+12,则△ABC 为( D ) A .等边三角形 B.钝角三角形 C .锐角非等边三角形D.等腰直角三角形解析:由2a cos B =c ⇒2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2, 所以a =b .因为sin A sin B (2-cos C )=sin 2 C 2+12,所以2sin A sin B (2-cos C )-2+1-2sin 2 C2=0,所以2sin A sin B (2-cos C )-2+cos C =0,所以(2-cos C )(2sin A sin B -1)=0,因为cos C ≠2,所以sin A sin B =12,因为a =b ,所以sin 2 A =12,所以A =B =π4,所以C =π2,所以△ABC 是等腰直角三角形,故选D.5.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为3 .解析:由正弦定理得(2+b )(a -b )=(c -b )c ,即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,当且仅当b =c =2时,等号成立,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,则△ABC 面积的最大值为 3.6.(2017·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B = π3 .解析:由正弦定理可得2sin B cos B =sin A cos C +sin C cos A =sin(A +C )=sin B ⇒cos B =12⇒B =π3. 7.在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若b sin A -3a cos B =0,且b 2=ac ,则a +cb 的值为__2__.解析:由题意及正弦定理得sin B sin A -3sin A cos B =0,因为sin A ≠0,所以sin B -3cos B =0,所以tan B =3,又0<B <π,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,即b 2=(a +c )2-3ac ,又b 2=ac ,所以4b 2=(a +c )2,解得a +cb =2.8.(2018·高考北京卷)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =__60°__;ca 的取值范围是__(2,+∞)__.解析:∵S △ABC =34(a 2+c 2-b 2)=12ac sin B , ∴a 2+c 2-b 22ac =sin B 3, 即cos B =sin B 3,∴sin B cos B =3,∠B =π3, 则c a =sin C sin A =sin ⎝ ⎛⎭⎪⎫2π3-A sin A =32cos A -⎝ ⎛⎭⎪⎫-12·sin A sin A =32·1tan A +12, ∴∠C 为钝角,∠B =π3,∴0<∠A <π6,∴tan A ∈⎝ ⎛⎭⎪⎫0,33,1tan A ∈(3,+∞),故ca ∈(2,+∞).9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos 2B +cos B =1-cos A cos C . (1)求证:a ,b ,c 成等比数列; (2)若b =2,求△ABC 的面积的最大值.解析:(1)证明:在△ABC 中,cos B =-cos(A +C ). 由已知,得(1-sin 2B )-cos(A +C )=1-cos A cos C , ∴-sin 2B -(cos A cos C -sin A sin C )=-cos A cos C , 化简,得sin 2B =sin A sin C . 由正弦定理,得b 2=ac , ∴a ,b ,c 成等比数列. (2)由(1)及题设条件,得ac =4.则cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时,等号成立. ∵0<B <π,∴sin B =1-cos 2B ≤ 1-(12)2=32,∴S △ABC =12ac sin B ≤12×4×32= 3. 即△ABC 的面积的最大值为 3.10.(2018·海口调研)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知(a -3b )cos C =c (3cos B -cos A ). (1)求sin Bsin A 的值;(2)若c =7a ,求角C 的大小.解析:(1)由正弦定理,得(sin A -3sin B )cos C =sin C (3cos B -cos A ), ∴sin A cos C +cos A sin C =3sin C cos B +3cos C sin B , 即sin(A +C )=3sin(C +B ),即sin B =3sin A , ∴sin B sin A =3.(2)由(1)知b =3a ,∵c =7a ,∴cos C =a 2+b 2-c 22ab =a 2+9a 2-7a 22×a ×3a =3a 26a 2=12,又C ∈(0,π),∴C =π3.。

高考数学一轮复习第十一章计数原理、随机变量及其分布第6讲离散型随机变量的均值与方差练习理

高考数学一轮复习第十一章计数原理、随机变量及其分布第6讲离散型随机变量的均值与方差练习理

第十一章 计数原理、随机变量及其分布 第6讲 离散型随机变量的均值与方差练习 理基础巩固题组 (建议用时:40分钟)一、填空题1.(2016·茂名模拟)若离散型随机变量X 的概率分布为则X 的数学期望E (X )=解析 由概率分布的性质,a 2+a 22=1,∴a =1.故E (X )=12×0+12×1=12.答案 122.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________,________.解析 由二项分布X ~B (n ,p )及E (X )=np ,V (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n =6,p =0.4. 答案 6 0.43.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设X 为取得红球的次数,则X 的方差V (X )的值为________.解析 因为是有放回地摸球,所以每次摸球(试验)摸得红球(成功)的概率均为35,连续摸4次(做4次试验),X 为取得红球(成功)的次数,则X ~B ⎝ ⎛⎭⎪⎫4,35,∴V (X )=4×35⎝ ⎛⎭⎪⎫1-35=2425.答案24254.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X 表示取出的球的最大号码,则X 的数学期望E (X )的值是________. 解析 由题意知,X 可以取3,4,5,P (X =3)=1C 35=110,P (X =4)=C 23C 35=310,P (X =5)=C 24C 35=610=35,所以E (X )=3×110+4×310+5×35=4.5.答案 4.55.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 记“不发芽的种子数为Y ”,则Y ~B (1 000,0.1),所以E (Y )=1 000×0.1=100, 而X =2Y ,故E (X )=E (2Y )=2E (Y )=200. 答案 2006.已知X 的概率分布为设Y =2X +1,则Y 解析 由概率分布的性质,a =1-12-16=13,∴E (X )=-1×12+0×16+1×13=-16,因此E (Y )=E (2X +1)=2E (X )+1=23.答案 237.(2016·青岛模拟)设X 为随机变量,X ~B ⎝ ⎛⎭⎪⎫n ,13,若随机变量X 的数学期望E (X )=2,则P (X =2)等于________.解析 由X ~B ⎝ ⎛⎭⎪⎫n ,13,E (X )=2,得np =13n =2,∴n =6, 则P (X =2)=C 26⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-134=80243.答案 802438.(2014·浙江卷)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则V (ξ)=________.解析 设P (ξ=1)=a ,P (ξ=2)=b ,则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎪⎨⎪⎧a =35,b =15,所以V (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.答案 25二、解答题9.(2016·常州调研)某公园设有自行车租车点,租车的收费标准是每小时2元(不足一小时的部分按一小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为14,12,一小时以上且不超过两小时还车的概率分别为12,14,两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的概率分布与数学期望E (ξ). 解 (1)甲、乙两人所付车费用相同即为2,4,6元.由题意知甲、乙超过两小时还车的概率分别为1-14-12=14,1-12-14=14.都付2元的概率为P 1=14×12=18,都付4元的概率为P 2=12×14=18,都付6元的概率为P 3=14×14=116,故所付费用相同的概率为P =P 1+P 2+P 3=18+18+116=516.(2)依题意知,ξ的可能取值为4,6,8,10,12.P (ξ=4)=14×12=18, P (ξ=6)=14×14+12×12=516, P (ξ=8)=14×14+12×14+12×14=516, P (ξ=10)=14×14+12×14=316,P (ξ=12)=14×14=116.故ξ的概率分布为所求数学期望E (ξ)=4×8+6×16+8×16+10×16+12×16=2.10.(2016·南京、盐城模拟)某中学有4位学生申请A ,B ,C 三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的. (1)求恰有2人申请A 大学的概率;(2)求被申请大学的个数X 的概率分布与数学期望E (X ). 解 (1)记“恰有2人申请A 大学”为事件A , P (A )=C 24×2234=2481=827.即恰有2人申请A 大学的概率为827.(2)X 的所有可能值为1,2,3.P (X =1)=334=127,P (X =2)=C 24×A 23+C 24A 23A 2234=4281=1427, P (X =3)=C 24×A 3334=3681=49.X 的概率分布为所以X 的数学期望E (X )=1×27+2×27+3×9=27.能力提升题组 (建议用时:25分钟)11.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球数为X ,已知E (X )=3,则V (X )=________.解析 由题意,X ~B ⎝ ⎛⎭⎪⎫5,3m +3, 又E (X )=5×3m +3=3,∴m =2,则X ~B ⎝ ⎛⎭⎪⎫5,35,故V (X )=5×35×⎝ ⎛⎭⎪⎫1-35=65. 答案 6512.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a 、b 、c ∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab 的最大值为________.解析 设投篮得分为随机变量X ,则X 的分布列为依题意,E (X )=3a +2b =2,又∴2=3a +2b ≥26ab ,则ab ≤16,当且仅当3a =2b ,即a =13,b =12时上式取等号.答案 1613.(2016·青岛调研)某项游戏活动的奖励分成一、二、三等奖且相应获奖概率是以a 1为首项,公比为2的等比数列,相应资金是以700元为首项,公差为-140元的等差数列,则参与该游戏获得资金的数学期望为________元. 解析 由概率分布性质a 1+2a 1+4a 1=1, ∴a 1=17,从而2a 1=27,4a 1=47.因此获得资金ξ的概率分布为∴E (ξ)=700×17+560×7+420×7=500(元).答案 50014.(2016·苏北四市质检)某学校为了丰富学生的业余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取题目,背诵正确加10分,背诵错误减10分,只有“正确”和“错误”两种结果,其中某班级的背诵正确的概率为p =23,背诵错误的概率为q =13,现记“该班级完成n 首背诵后总得分为S n ”.(1)求S 6=20且S i ≥0(i =1,2,3)的概率; (2)记ξ=|S 5|,求ξ的概率分布及数学期望.解 (1)当S 6=20时,即背诵6首后,正确4首,错误2首,若第一首和第二首正确,则其余4首可任意背诵对2首;若第一首正确,第二首背诵错误,则第三首背诵正确,其余3首可任意背诵对2首.故所求的概率P =⎝ ⎛⎭⎪⎫232·C 24·⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫132+23·13·23·C 23·⎝ ⎛⎭⎪⎫232·13=1681.(2)因为ξ=|S 5|的取值为10,30,50. 所以P (ξ=10)=C 35⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫133=4081; P (ξ=30)=C 45⎝ ⎛⎭⎪⎫234⎝ ⎛⎭⎪⎫131+C 15⎝ ⎛⎭⎪⎫231⎝ ⎛⎭⎪⎫134=3081; P (ξ=50)=C 55⎝ ⎛⎭⎪⎫235+C 05⎝ ⎛⎭⎪⎫135=1181.所以ξ的概率分布为所以E (ξ)=10×4081+30×81+50×81=81.。

高三数学一轮专题突破训练:《统计与概率》(文)及答案

高三数学一轮专题突破训练:《统计与概率》(文)及答案

山东省2016届高三数学文一轮复习专题突破训练统计与概率一、选择、填空题1、(2015年高考)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的标号为( )(A)①③ (B) ①④ (C) ②③ (D) ②④2、(2015年高考)在区间[0,2]上随机地取一个数x,则事件“121-1log2x≤+≤()1”发生的概率为( )(A)34(B)23(C)13(D)143、(2014年高考)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为舒张压/kPa频率 / 组距0.360.240.160.08171615141312(A)6(B)8(C)12(D)184、(2013年高考)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示.则7个剩余分数的方差为( )8 7 79 4 0 1 0 x 9 1图1-4A.1169B.367C.36 D.6 775、(滨州市2015届高三一模)根据如下样本数据得到的回归方程为1212ˆ55y x=+,则m的值为()A.1 B.32C.4 D.56、(德州市2015届高三一模)某校对全校1600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量是200的样本,已知女生比男生少抽10人,则该校的女生人数是____人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知m ,n ,m +n 成等差数列,m ,n ,mn 成等比数列,则抛物线mx 2=ny 的焦点坐标是( )A .(0,12)B .(12,0)C .(0,14)D .(14,0)解析:选A.由题意知,2n =m +m +n 且n 2=m ·mn ,解得m =2,n =4,故抛物线为x 2=2y ,其焦点坐标为(0,12).2.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( )A .y 2=±22xB .y 2=±2xC .y 2=±4xD .y 2=±42x解析:选D.因为双曲线的焦点为(-2,0),(2,0).设抛物线方程为y 2=±2px (p >0),则p2=2,所以p =22,所以抛物线方程为y 2=±42x .3.(2014·高考课标全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B .6C .12D .7 3解析:选C.∵F 为抛物线C :y 2=3x 的焦点, ∴F ⎝⎛⎭⎫34,0,∴AB 的方程为y -0=tan 30°⎝⎛⎭⎫x -34,即y =33x -34. 联立⎩⎪⎨⎪⎧y 2=3x ,y =33x -34,得13x 2-72x +316=0. ∴x 1+x 2=--7213=212,即x A +x B =212.由于|AB |=x A +x B +p ,所以|AB |=212+32=12. 4.已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM |∶|MN |=( )A .2∶ 5B .1∶2C .1∶ 5D .1∶3解析:选C.直线F A :y =-12x +1,与x 2=4y 联立,得x M =5-1,直线F A :y =-12x+1,与y =-1联立,得N (4,-1),由三角形相似知|FM ||MN |=x M 4-x M =15. 5.(2015·衡水中学调研)已知等边△ABF 的顶点F 是抛物线C 1:y 2=2px (p >0)的焦点,顶点B 在抛物线的准线l 上且AB ⊥l ,则点A 的位置( )A .在C 1开口内B .在C 1上 C .在C 1开口外D .与p 值有关解析:选B.设B (-p 2,m ),由已知有AB 中点的横坐标为p 2,则A (3p2,m ),△ABF 是边长|AB |=2p 的等边三角形,即|AF |=(3p 2-p2)2+m 2=2p ,∴p 2+m 2=4p 2,∴m =±3p ,∴A (3p2,±3p ),代入y 2=2px 中,得点A 在抛物线上,故选B.6.(2015·四川资阳模拟)顶点在原点,对称轴是y 轴,并且经过点P (-4,-2)的抛物线方程是________.解析:设抛物线方程为x 2=my ,将点P (-4,-2)代入x 2=my ,得m =-8. 所以抛物线方程是x 2=-8y .答案:x 2=-8y 7.(2015·厦门质检)已知点P 在抛物线y 2=4x 上,且点P 到y 轴的距离与其到焦点的距离之比为12,则点P 到x 轴的距离为________.解析:设点P 的坐标为(x P ,y P ),抛物线y 2=4x 的准线方程为x =-1,根据抛物线的定义,点P 到焦点的距离等于点P 到准线的距离,故x P x P -(-1)=12,解得x P =1,∴y 2P =4,∴|y P |=2.答案:2 8. (2015·兰州市、张掖市联考)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是________.解析:分别过点A 、B 作准线的垂线AE 、BD ,分别交准线于点E 、D ,则|BF |=|BD |,∵|BC |=2|BF |,∴|BC |=2|BD |,∴∠BCD =30°,又∵|AE |=|AF |=3,∴|AC |=6,即点F 是AC 的中点,根据题意得p =32,∴抛物线的方程是y 2=3x .答案:y 2=3x9.抛物线顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为(32,6),求抛物线与双曲线的方程.解:由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点, ∴p =2c .设抛物线方程为y 2=4c ·x , ∵抛物线过点(32,6),∴6=4c ·32,∴c =1,故抛物线方程为y 2=4x .又双曲线x 2a 2-y 2b 2=1过点(32,6),∴94a 2-6b 2=1.又a 2+b 2=c 2=1, ∴94a 2-61-a 2=1. ∴a 2=14或a 2=9(舍去).∴b 2=34,故双曲线方程为4x 2-4y 23=1.10.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.解:(1)抛物线y 2=2px 的准线为x =-p2,于是4+p2=5,∴p =2.∴抛物线方程为y 2=4x . (2)∵点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又∵F (1,0),∴k F A =43,∵MN ⊥F A ,∴k MN =-34.又F A 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,∴N 的坐标为⎝⎛⎭⎫85,45.1.(2015·河南郑州模拟)已知抛物线y 2=2px (p >0),过其焦点且斜率为-1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为-2,则该抛物线的准线方程为( )A .x =1B .x =2C .x =-1D .x =-2解析:选C.由题意可设直线方程为y =-(x -p 2),设A (x 1,y 1),B (x 2,y 2), 联立方程⎩⎪⎨⎪⎧y =-(x -p 2),y 2=2px ,整理得y 2+2py -p 2=0, ∴y 1+y 2=-2p .∵线段AB 的中点的纵坐标为-2, ∴-2p 2=-2.∴p =2. ∴抛物线的准线方程为x =-1.2.(2015·江西上饶模拟)过抛物线x 2=4y 的焦点F 作直线AB ,CD 与抛物线交于A ,B ,C ,D 四点,且AB ⊥CD ,则F A →·FB →+FC →·FD →的最大值等于( )A .-4B .-16C .4D .-8解析:选B.依题意可得,F A →·FB →=-(|F A →|·|FB →|). 又因为|F A →|=y A +1,|FB →|=y B +1, 所以F A →·FB →=-(y A y B +y A +y B +1). 设直线AB 的方程为y =kx +1(k ≠0), 联立x 2=4y ,可得x 2-4kx -4=0, 所以x A +x B =4k ,x A x B =-4. 所以y A y B =1,y A +y B =4k 2+2. 所以F A →·FB →=-(4k 2+4). 同理FC →·FD →=-(4k2+4).所以F A →·FB →+FC →·FD →=-(4k 2+4k 2+8)≤-16.当且仅当k =±1时等号成立.3.(2015·山西省忻州市联考)已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是________.解析:由题意知,圆x 2+(y -4)2=1的圆心为C (0,4),半径为1,抛物线的焦点为F (1,0),根据抛物线的定义,点P 到点Q 的距离与点P 到抛物线准线的距离之和即点P 到点Q 的距离与点P 到抛物线焦点的距离之和,因此|PQ |+|PF |≥|PC |+|PF |-1≥|CF |-1=17-1.答案:17-14.已知抛物线x 2=2y ,过抛物线的焦点F 的直线l 交抛物线于P ,Q 两点,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:由x 2=2y ,得y =12x 2,∴y ′=x .设P (x 1,y 1),Q (x 2,y 2),∴抛物线在P ,Q 两点处的切线的斜率分别为x 1,x 2,∴过点P 的抛物线的切线方程为y -y 1=x 1(x -x 1),又x 21=2y 1,∴切线方程为y =x 1x -x 212,同理可得过点Q 的切线方程为y =x 2x -x 222,两切线方程联立解得⎩⎪⎨⎪⎧x A =x 1+x22y A=x 1x 22. 又抛物线焦点F 的坐标为(0,12),易知直线l 的斜率存在,可设直线l 的方程为y =mx+12,由⎩⎪⎨⎪⎧y =mx +12x 2=2y ,得x 2-2mx -1=0,所以x 1x 2=-1,所以y A =-12. 答案:-125.(2015·厦门模拟) 如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0).∵点P (1,2)在抛物线上,∴22=2p ×1,解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)设直线P A 的斜率为k P A ,直线PB 的斜率为k PB ,则k P A =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1),∵P A 与PB 的斜率存在且倾斜角互补,∴k P A =-k PB . 由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得y 21=4x 1,① y 22=4x 2,②∴y 1-214y 21-1=-y 2-214y 22-1, ∴y 1+2=-(y 2+2). ∴y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2),∴k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1.6.(选做题)(2015·吉林长春调研)已知抛物线C :y 2=2px (p >0)的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于M ,N 两点,且|MN |=8. (1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM →·PN →的最小值. 解:(1)由题可知F (p2,0),则该直线方程为y =x -p2,代入y 2=2px (p >0),得x 2-3px +p 24=0.设M (x 1,y 1),N (x 2,y 2), 则有x 1+x 2=3p . ∵|MN |=8,∴x 1+x 2+p =8,即3p +p =8,解得p =2, ∴抛物线的方程为y 2=4x .(2)设直线l 的方程为y =x +b ,代入y 2=4x ,得x 2+(2b -4)x +b 2=0. ∵l 为抛物线C 的切线,∴Δ=0,解得b =1. ∴l 的方程为y =x +1.设P (m ,m +1),则PM →=(x 1-m ,y 1-(m +1)),PN →=(x 2-m ,y 2-(m +1)), ∴PM →·PN →=(x 1-m )(x 2-m )+[y 1-(m +1)][y 2-(m +1)] =x 1x 2-m (x 1+x 2)+m 2+y 1y 2-(m +1)(y 1+y 2)+(m +1)2. 由(1)可知:x 1+x 2=6,x 1x 2=1, ∴(y 1y 2)2=16x 1x 2=16,y 1y 2=-4.∵y 21-y 22=4(x 1-x 2),∴y 1+y 2=4x 1-x 2y 1-y 2=4,∴PM →·PN →=1-6m +m 2-4-4(m +1)+(m +1)2 =2(m 2-4m -3)=2[(m -2)2-7]≥-14,当且仅当m =2,即点P 的坐标为(2,3)时,PM →·PN →的最小值为-14.。

相关文档
最新文档