9.5 多项式的因式分解(1)

合集下载

初一数学下第九章 9.5 多项式的因式分解练习题(附答案)

初一数学下第九章 9.5 多项式的因式分解练习题(附答案)

9.5 多项式的因式分解一.选择题(共18小题)1.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)2.若a,b为两质数且相差2,则ab+1之值可能为下列何者()A.392B.402C.412D.4223.如果多项式mx2﹣nx﹣2能因式分解为(3x+2)(x+p),那么下列结论正确的是()A.m=6 B.n=1 C.p=﹣2 D.mnp=34.把8m2n﹣2mn分解因式()A.2mn(4m+1)B.2m(4m﹣1)C.mn(8m﹣2)D.2mn(4m﹣1)5.已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值()A.大于零B.小于零C.等于零D.不能确定6.下列各式从左到右的变形是因式分解的是()A.x2+2x+3=(x+1)2+2 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣xy+y2=(x﹣y)2D.2x﹣2y=2(x﹣y)7.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x ﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.中华游C.爱我中华D.美我中华8.将下列多项式因式分解,结果中不含有x+2因式的是()A.x2﹣4 B.x2+2x C.x2﹣4x+4 D.(x+3)2﹣2(x+3)+1二.填空题9.若a+b=﹣2,a﹣b=4,则a2﹣b2=.10.在实数范围内分解因式:x2﹣3y2=.11.如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8=.12.若x2+mx+n分解因式的结果是(x+2)(x﹣1),则m+n的值为.13.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.14.分解因式:3ax2﹣6axy+3ay2=.15.分解因式:9﹣6y﹣x2+y2=.三.解答题16.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.17.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.18.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.19.代数基本定理告诉我们对于形如x n++…+a n﹣1x+a n=0(其中a1,a2,…a n为整数)这样的方程,如果有整数根的话,那么整数根必定是a n的约数.例如方程x3+8x2﹣11x+2=0的整数根只可能为±1,±2代入检验得x=1时等式成立.故x3+8x2﹣11x+2含有因式x﹣1,所以原方程可转化为:(x﹣1)(x2+9x ﹣2)=0,进而可求得方程的所有解.根据以上阅读材料请你解方程:x3+x2﹣11x ﹣3=0.20.已知a,b,c,d是四个不同的实数,且(b+d)(b+a)=1,(c+d)(c+a)=1,求(b+d)(c+d)的值.参考答案与解析一.选择题(共18小题)1.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)【分析】根据因式分解的意义即可求出答案.【解答】解:(A)x2+2x﹣1≠(x﹣1)2,故A不是因式分解,(B)a2﹣b2=(a+b)(a﹣b),故B不是因式分解,(D)ax2﹣a=a(x2﹣1)=a(x+1)(x﹣1),故D分解不完全,故选:C.【点评】本题考查多项式的因式分解,解题的关键是正确理解因式分解的意义,本题属于基础题型.2.若a,b为两质数且相差2,则ab+1之值可能为下列何者()A.392B.402C.412D.422【分析】根据选项的数值,得到ab+1的值,进一步根据平方差公式得到ab的乘积形式,再根据质数的定义即可求解.【解答】解:A、当ab+1=392时,ab=392﹣1=40×38,与a,b为两质数且相差2不符合,故本选项错误;B、当ab+1=402时,ab=402﹣1=41×39,与a,b为两质数且相差2不符合,故本选项错误;C、当ab+1=412时,ab=412﹣1=42×40,与a,b为两质数且相差2不符合,故本选项错误;D、当ab+1=422时,ab=422﹣1=43×41,正好与a,b为两质数且相差2符合,故本选项正确,故选:D.【点评】本题考查的是因式分解的应用,质数的定义,解答此类题目的关键是得到ab是哪两个相差为2的数的积.3.如果多项式mx2﹣nx﹣2能因式分解为(3x+2)(x+p),那么下列结论正确的是()A.m=6 B.n=1 C.p=﹣2 D.mnp=3【分析】直接利用多项式乘法运算法则得出p的值,进而得出n的值.【解答】解:∵多项式mx2﹣nx﹣2能因式分解为(3x+2)(x+p),∴(3x+2)(x+p)=3x2+(3p+2)x+2p=mx2﹣nx﹣2,∴p=﹣1,3p+2=﹣n,解得:n=1.故选:B.【点评】此题考查了因式分解的意义;关键是根据因式分解的意义求出p的值,是一道基础题.4.把8m2n﹣2mn分解因式()A.2mn(4m+1)B.2m(4m﹣1)C.mn(8m﹣2)D.2mn(4m﹣1)【分析】直接找出公因式进而提取得出答案.【解答】解:8m2n﹣2mn=2mn(4m﹣1).故选:D.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.5.已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值()A.大于零B.小于零C.等于零D.不能确定【分析】首先利用平方差公式分解因式,进而利用三角形三边关系得出即可.【解答】解:∵(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c),a,b,c是三角形的三边,∴a+c﹣b>0,a﹣b﹣c<0,∴(a﹣b)2﹣c2的值是负数.故选:B.【点评】此题主要考查了因式分解的实际运用,正确应用平方差公式是解题关键.6.下列各式从左到右的变形是因式分解的是()A.x2+2x+3=(x+1)2+2 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣xy+y2=(x﹣y)2 D.2x﹣2y=2(x﹣y)【分析】根据把多项式写成几个整式积的形式叫做分解因式对各选项分析判断后利用排除法求解.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、是多项式的乘法,不是因式分解,故本选项错误;C、应为x2﹣2xy+y2=(x﹣y)2,故本选项错误;D、2x﹣2y=2(x﹣y)是因式分解,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,熟记概念是解题的关键.7.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x ﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:华、爱、我、中、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.中华游C.爱我中华D.美我中华【分析】将原式进行因式分解即可求出答案.【解答】解:原式=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b)由条件可知,(x﹣y)(x+y)(a﹣b)(a+b)可表示为“爱我中华”故选:C.【点评】本题考查因式分解的应用,涉及平方差公式,提取公因式法,并考查学生的阅读理解能力.8.将下列多项式因式分解,结果中不含有x+2因式的是()A.x2﹣4 B.x2+2x C.x2﹣4x+4 D.(x+3)2﹣2(x+3)+1【分析】分别利用公式法以及提取公因式分解因式进而判断得出答案.【解答】解:A、x2﹣4=(x+2)(x﹣2),含有x+2因式,不合题意;B、x2+2x=x(x+2),含有x+2因式,不合题意;C、x2﹣4x+4=(x﹣2)2,不含有x+2因式,符合题意;D、(x+3)2﹣2(x+3)+1=(x+3﹣1)2=(x+2)2,含有x+2因式,不合题意;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式是解题关键.二.填空题9.若a+b=﹣2,a﹣b=4,则a2﹣b2=﹣8.【分析】原式利用平方差公式分解后,将各自的值代入计算即可求出值.【解答】解:∵a+b=﹣2,a﹣b=4,∴a2﹣b2=(a+b)(a﹣b)=﹣8.故答案为:﹣8.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.10.在实数范围内分解因式:x2﹣3y2=(x+y)(x﹣y).【分析】直接利用平方差公式分解因式得出即可.【解答】解:原式=(x+y)(x﹣y).故答案是:(x+y)(x﹣y).【点评】此题主要考查了利用公式法分解因式,熟练应用平方差公式是解题关键.11.如果1+a+a2+a3=0,代数式a+a2+a3+a4+a5+a6+a7+a8=0.【分析】4项为一组,分成2组,再进一步分解因式求得答案即可.【解答】解:∵1+a+a2+a3=0,∴a+a2+a3+a4+a5+a6+a7+a8,=a(1+a+a2+a3)+a5(1+a+a2+a3),=0+0,=0.故答案是:0.【点评】此题考查利用因式分解法求代数式的值,注意合理分组解决问题.12.若x2+mx+n分解因式的结果是(x+2)(x﹣1),则m+n的值为﹣1.【分析】先把(x+2)(x﹣1)展开,求得m,n的值,再求m+n的值即可.【解答】解:∵x2+mx+n分解因式的结果是(x+2)(x﹣1),∴x2+mx+n=x2+x﹣2,∴m=1,n=﹣2,∴m+n=1﹣2=﹣1,故答案为﹣1.【点评】本题考查了因式分解﹣十字相乘法,求得m,n的值是解题的关键.13.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=(a+1)100.【分析】原式提取公因式,计算即可得到结果.【解答】解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.14.分解因式:3ax2﹣6axy+3ay2=3a(x﹣y)2.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答】解:3ax2﹣6axy+3ay2,=3a(x2﹣2xy+y2),=3a(x﹣y)2,故答案为:3a(x﹣y)2.【点评】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.分解因式:9﹣6y﹣x2+y2=(3﹣y+x)(3﹣y﹣x).【分析】首先分组进而利用完全平方公式以及平方差公式分解因式即可.【解答】解:9﹣6y+y2﹣x2=(3﹣y)2﹣x2=(3﹣y+x)(3﹣y﹣x).故答案为:(3﹣y+x)(3﹣y﹣x).【点评】此题主要考查了利用公式法分解因式,正确分组是解题关键.三.解答题16.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.【分析】验证(1)计算(﹣1)2+02+12+22+32的结果,再将结果除以5即可;(2)用含n的代数式分别表示出其余的4个整数,再将它们的平方相加,化简得出它们的平方和,再证明是5的倍数;延伸:设三个连续整数的中间一个为n,用含n的代数式分别表示出其余的2个整数,再将它们相加,化简得出三个连续整数的平方和,再除以3得到余数.【解答】解:发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(﹣1)2+02+12+22+32的结果是5的3倍;(2)设五个连续整数的中间一个为n,则其余的4个整数分别是n﹣2,n﹣1,n+1,n+2,它们的平方和为:(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=n2﹣4n+4+n2﹣2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数;延伸设三个连续整数的中间一个为n,则其余的2个整数是n﹣1,n+1,它们的平方和为:(n﹣1)2+n2+(n+1)2=n2﹣2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.【点评】本题考查了因式分解的应用,完全平方公式,整式的加减运算,解题的关键是掌握合并同类项的法则并且能够正确运算.17.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.【点评】此题考查了因式分解的应用,弄清题中“吉祥数”的定义是解本题的关键.18.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再加22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x 为自然数),十位上的数字为y,求y与x的函数关系式.【分析】(1)根据“和谐数”的定义(把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同)写出四个“和谐数”,设任意四位“和谐数”形式为:,根据和谐数的定义得到a=d,b=c,则===91a+10b为正整数,易证得任意四位“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:,则===9x+y+为正整数.故y=2x(1≤x≤4,x为自然数).【解答】解:(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一)任意一个四位“和谐数”都能被11整除,理由如下:设任意四位“和谐数”形式为:,则满足:最高位到个位排列:a,b,c,d.个位到最高位排列:d,c,b,a.由题意,可得两组数据相同,则:a=d,b=c,则===91a+10b为正整数.∴四位“和谐数”能被11整数,又∵a,b,c,d为任意自然数,∴任意四位“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:,则满足:个位到最高位排列:x,y,z.最高位到个位排列:z,y,x.由题意,两组数据相同,则:x=z,故==101x+10y,故===9x+y+为正整数.故y=2x(1≤x≤4,x为自然数).【点评】本题考查了因式分解的应用.解题的关键是弄清楚“和谐数”的定义,从而写出符合题意的数.19.代数基本定理告诉我们对于形如x n++…+a n﹣1x+a n=0(其中a1,a2,…a n为整数)这样的方程,如果有整数根的话,那么整数根必定是a n的约数.例如方程x3+8x2﹣11x+2=0的整数根只可能为±1,±2代入检验得x=1时等式成立.故x3+8x2﹣11x+2含有因式x﹣1,所以原方程可转化为:(x﹣1)(x2+9x﹣2)=0,进而可求得方程的所有解.根据以上阅读材料请你解方程:x3+x2﹣11x﹣3=0.【分析】把x=±1,±3代入方程进行验证得到x=3符合题意,故x3+x2﹣11x﹣3=0含有因式(x﹣3),由此进行因式分解即可【解答】解:取x=±1,±3代入方程,得x=3适合方程,则原方程可以分解为:(x﹣3)(x3+4x+1)=0,解得x=3或x=﹣2+.【点评】本题考查了因式分解的意义.因式分解是恒等变形,因此可以用整式乘法来检验.20.已知a,b,c,d是四个不同的实数,且(b+d)(b+a)=1,(c+d)(c+a)=1,求(b+d)(c+d)的值.【分析】先将原式条件变形为:b2+(a+d)b+ad=1①,c2+(a+d)c+ad=1②,再由①﹣②可以得到b2﹣c2+(b﹣c)(a+d)=0,就可以求出b+c+a+d=0,得到a+b=﹣(c+d)代入(b+d)(b+a)=1就可以求出结论.【解答】解:∵(b+d)(b+a)=1,(c+d)(c+a)=1,∴b2+(a+d)b+ad=1①c2+(a+d)c+ad=1②,由①﹣②,得b2﹣c2+(b﹣c)(a+d)=0,∴(b+c)(b﹣c)+(b﹣c)(a+d)=0,∴(b﹣c)(b+c+a+d)=0,∵a,b,c,d是四个不同的实数,∵b≠c,∴b+c+a+d=0,∴a+b=﹣(c+d),∵(b+d)(b+a)=1∴(b+d)•[﹣(c+d)]=1,∴(b+d)(c+d)=﹣1【点评】本题考查了因式分解在整式的求值中的运用,本题涉及了等式的恒等变形,提公因式的法的运用及数学的整体思想.。

9.5多项式的因式分解 --平方差公式

9.5多项式的因式分解 --平方差公式

聪明的你们能算出王子 萱和她表姐的年龄吗?
今年我表姐的年龄和我
年龄的平方差是87。
小结与回顾
课堂作业
(比一比谁做得又对又快); 选做题: 已知:5m+n=2, n-m=6,
求:(m+2n)2- (4m-n)2的值
思考题: 计算: (1
整式乘法 因式分解
这种分解因式的方法称为平方差公式法。
9.5 多项式的因式分解(2) —— 平方差公式
学习目标
1.能用平方差公式进行分解因式.
2.经历把整式乘法中的平方差公式反过
来探索平方差法分解因式的过程,体会
它们之间的联系,发展逆向思维的能力.
自学指导
请看P.83~84“练一练”前面的内容.要求:
1 1 1 1 )(1 2 )(1 2 ) (1 ) 2 2 2 3 4 100
4月12日
欢迎各位领导专家
敬请指导
大同七中第七中学 初一数学备课组
比一比:看谁算的又快又准确!
2 2 32 -31
=(32+31)×(32-31)
=63×1=63 =(5.5+4.5)×(5.5-4.5) =10×1=10
2 2 5.5 -4.5
平方差公式:
(a+b)(a-b)=a2-b2 a2-b2= (a+b)(a-b)

1 4 2 p q 16
⑴思考:怎样的多项式可以用平方差公式分解因式?
多项式:①项数--2项,②符号相反,
③能写成平方的形式。
⑵动动手:请写出一个单项式M,使多项式4a2+M
能使用平方差公式分解因式。
自学检测二
练一练 比谁做的又对又快! 1.用平方差公式计算(仿照例3写出详细过程)

苏教版七下9.5多项式的因式分解(一)

苏教版七下9.5多项式的因式分解(一)

公因式
4 4a 4a2b
给就上面的填表过程,你能归纳出 找一个多项式的公因式的方法吗?
总结
找一个多项式的公因式的方法一 般分三个步骤:
一看系数:当多项式的各项系数 的绝对值都是整数时,公因式的 系数应取各项系数的最大公约数。 二看字母:公因式的字母应取多项 式中各项都含有的相同字母。 三看指数:相同字母的指数取次数 最低的。
观察上面从左到右与从右到左的变形 过程,你能说出因式分解和整式乘法 的区别和联系吗?
区别: 整式乘法: 有几个整式积的形式转化 成一个多项式的形式。 因式分解: 有一个多项式的形式转化成 几个整式的积的形式。 联系: 多项式的因式分解与整式乘法是两种 相反方向的变形,它们互为逆过程。
4a3b-8a2b2
练一练
填表
多项式 公因式
a2b+ab2
3x2-6x3 9abc-6a2b2+12ab2c
ab
3x2 3ab
填空并说说你的方法: (1)a2b+ab2=ab( a+b ) (2)3x2-6x3=3x( X-2x2 ) (3)9abc-6a2b2+12abc2=3ab(3c-2ab+4c ) 像这样,把一个多项式写成几个整 式的积的形式叫做多项式的因式分解。
例2:把 3a(x+y)-2b(x+y) 分解因式; 分析:这个多项式就整体而言可分为两大项,
即3a(x+y)与-2ab(x+y)每项中都含有(x+y)
因此,可把(x+y)作为公因式提出来。 解: 3a(x+y)-2b(x+y)
=(x+y)〃3a-(x+y)〃2b
=(x+y)(3a-2b) 总结:用提公因式法分解因式时,公因式可以 是一个单项式也可以是一个多项式。

多项式的因式分解(1)——提公因式法

多项式的因式分解(1)——提公因式法
(1) 5x3-10x2 (5x2 ) (2) 12ab2c-6ab (6ab ) (3) -2m3+8m2-12m (-2m )
(1)解:原式=5x2·x-5x2·2 =5x2(x-2)
记得写出因数“1”
(2)解:原式=6ab·2bc-6ab·1 =6ab(2bc-1)
(3)解:原式=-(2m3 -8m2 +12m) =-(2m·m2-2m·4m+2m·6) =-2m(m2-4m+6)
二.填空题 5. 多项式 2x2 y3z 4x3 y3z 6x4 yz2 各项的公因式是___________;
6. 12 x2 32 x 4x (________); 5x2 10 xy (________) (x 2y).
7. 若 x=49,y=1007,则 xy-7x=
.
8. 若 a2+a-1=0,则 a -a -a 2019 2020 2021 =___________.
解:原式=32×3198-4×3×3198+10×3198
“数”与“式”
=3198(9-12+10)
的相互变换
提公因式法
=3198×7
∵ 3198为整数, ∴ 3198×7是7的倍数, 即: 3200-4×3199+10×3198的值是7的倍数。
学以致用
3.△ABC的三边长分别为a、b、c,且a+2ab=c+2bc,请判断△ABC
=3(x-y)2·[a- 2b(x-y)]
=3(x-y)2(a-2bx+2by)
学以致用
1、已知a+b=5 , ab=3, 求a2b+ab2的值。
解:a2b+ab2=ab·a +ab·b =ab(a+b)

最新苏教版七年级下册数学《多项式的因式分解》同步检测题及答案详解(试题).docx

最新苏教版七年级下册数学《多项式的因式分解》同步检测题及答案详解(试题).docx

(新课标)苏教版2017-2018学年七年级下册9.5 多项式的因式分解一.选择题1.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣42.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1 3.已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子4.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣45.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a (2a+1)26.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b)B.b(a﹣b)2C.b(a2﹣b2) D.b(a+b)27.多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.228.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:州、爱、我、苏、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.苏州游C.爱我苏州D.美我苏州9.设681×2019﹣681×2018=a,2015×2016﹣2013×2018=b,,则a,b,c的大小关系是()A.b<c<a B.a<c<b C.b<a<c D.c<b<a10.多项式2x2﹣xy﹣15y2的一个因式为()A.2x﹣5y B.x﹣3y C.x+3y D.x﹣5y11.下列等式从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.2x2+8x﹣1=2x(x+4)﹣1C.a2﹣3a﹣4=(a+1)(a﹣4)D.12.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y) B.x2+y2=(x+y)2C.x2+xy=x(x+y)D.x2+6x+9=(x+3)213.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个14.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形15.10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,第一名胜x1局,负y1局;第二名胜x2局,负y2局;...;第十名胜x10局,负y10局,若记M=x12+x22+ (x102)N=y12+y22+…+y102,则()A.M<N B.M>NC.M=N D.M、N的大小关系不确定二.填空题16.分解因式:a3﹣4a2b+4ab2= .17.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.18.分解因式:2a(b+c)﹣3(b+c)= .19.分解因式:4x2﹣4xy+y2= .20.分解因式:(m+1)(m﹣9)+8m= .21.分解因式:(2a+b)2﹣(a+2b)2= .22.将m3(x﹣2)+m(2﹣x)分解因式的结果是.三.解答题23.分解因式(1)x3﹣6x2+9x;(2)a2(x﹣y)+4(y﹣x).24.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+7x﹣18=启发应用(2)利用因式分解法解方程:x2﹣6x+8=0;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p 的所有可能值是.25.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2﹣2xy﹣8y2.解:如图1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2﹣17xy+12y2=②2x2﹣xy﹣6y2+2x+17y﹣12=③x2﹣xy﹣6y2+2x﹣6y=(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.26.通过对《因式分解》的学习,我们知道可以用拼图来解释一些多项式的因式分解.如图1中1、2、3号卡片各若干张,如果选取1号、2号、3号卡片分别为1张、2张、3张,你能通过拼图2形象说明a2+3ab+2b2=(a+b)(a+2b)的分解结果吗?请在画出图形.27.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.28.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数.例如=213时,则:21336(23+13+33=36)243(33+63=243).数字111经过三次“F”运算得,经过四次“F”运算得,经过五次“F”运算得,经过2016次“F”运算得.(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).29.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).30.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与试题解析一.选择题1.(2017•静安区一模)下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣4【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.2.(2016•潍坊)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1【分析】先把各个多项式分解因式,即可得出结果.【解答】解:∵a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;故选:C.【点评】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.3.(2016•台湾)已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子【分析】根据a、b的最大公因子为12,a、c的最大公因子为18,得到a为12与18的公倍数,再由a的范围确定出a的值,进而表示出b,即可作出判断.【解答】解:∵(a,b)=12,(a,c)=18,∴a为12与18的公倍数,又[12,18]=36,且a介于50与100之间,∴a=36×2=72,即8是a的因子,∵(a,b)=12,∴设b=12×m,其中m为正整数,又a=72=12×6,∴m和6互质,即8不是b的因子.故选B【点评】此题考查了公因式,弄清公因式与公倍数的定义是解本题的关键.4.(2016•自贡)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4),故选:A.【点评】此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.5.(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a (2a+1)2【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.6.(2016•梅州)分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b)B.b(a﹣b)2C.b(a2﹣b2) D.b (a+b)2【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.7.(2016•台湾)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.22【分析】首先利用十字交乘法将77x2﹣13x﹣30因式分解,继而求得a,b,c的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c (a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).8.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:州、爱、我、苏、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.苏州游C.爱我苏州D.美我苏州【分析】对(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,即可得到结论.【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,苏,州,∴结果呈现的密码信息可能是“爱我苏州”,故选C.【点评】本题考查了公式法的因式分解运用,熟练掌握因式分解的方法是解本题的关键.9.(2016•厦门)设681×2019﹣681×2018=a,2015×2016﹣2013×2018=b,,则a,b,c的大小关系是()A.b<c<a B.a<c<b C.b<a<c D.c<b<a【分析】根据乘法分配律可求a,将b变形为2015×2016﹣(2015﹣2)×(2016+2),再注意整体思想进行计算,根据提取公因式、平方差公式和算术平方根可求c,再比较大小即可求解.【解答】解:∵a=681×2019﹣681×2018=681×(2019﹣2018)=681×1=681,b=2015×2016﹣2013×2018=2015×2016﹣(2015﹣2)×(2016+2)=2015×2016﹣2015×2016﹣2×2015+2×2016+2×2=﹣4030+4032+4=6,c=====<681,∴b<c<a.故选:A.【点评】本题考查了因式分解的应用,熟记乘法分配律、平方差公式的结构特点是解题的关键.注意整体思想的运用.10.多项式2x2﹣xy﹣15y2的一个因式为()A.2x﹣5y B.x﹣3y C.x+3y D.x﹣5y【分析】直接利用十字相乘法分解因式得出即可.【解答】解:2x2﹣xy﹣15y2=(2x+5y)(x﹣3y).故选:B.【点评】此题主要考查了十字相乘法分解因式,熟练应用十字相乘法分解因式是解题关键.11.下列等式从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.2x2+8x﹣1=2x(x+4)﹣1C.a2﹣3a﹣4=(a+1)(a﹣4)D.【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【解答】解:A、是单项式乘单项式的逆运算,不符合题意;B、右边结果不是积的形式,不符合题意;C、a2﹣3a﹣4=(a+1)(a﹣4),符合题意;D、右边不是几个整式的积的形式,不符合题意.故选C.【点评】本题考查了因式分解的意义.这类问题的关键在于能否正确应用分解因式的定义来判断;同时还要注意变形是否正确.12.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y) B.x2+y2=(x+y)2 C.x2+xy=x (x+y)D.x2+6x+9=(x+3)2【分析】分别利用平方差公式以及完全平方公式和提取公因式法分别分解因式进而判断即可.【解答】解:A、x2﹣y2=(x+y)(x﹣y),正确,不合题意;B、x2+y2,无法分解因式,故此选项正确;C、x2+xy=x(x+y),正确,不合题意;D、x2+6x+9=(x+3)2,正确,不合题意;故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式分解因式是解题关键.13.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个【分析】分别利用完全平方公式分解因式得出即可.【解答】解:①x2﹣10x+25=(x﹣5)2,不符合题意;②4a2+4a﹣1不能用完全平方公式分解;③x2﹣2x﹣1不能用完全平方公式分解;④=﹣(m2﹣m+)=﹣(m﹣)2,不符合题意;⑤不能用完全平方公式分解.故选:C.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.14.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【解答】解:由a2c2﹣b2c2=a4﹣b4,得a4+b2c2﹣a2c2﹣b4=(a4﹣b4)+(b2c2﹣a2c2)=(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=(a2﹣b2)(a2+b2﹣c2)=(a+b)(a﹣b)(a2+b2﹣c2)=0,∵a+b>0,∴a﹣b=0或a2+b2﹣c2=0,即a=b或a2+b2=c2,则△ABC为等腰三角形或直角三角形.故选:D.【点评】本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,第一名胜x1局,负y1局;第二名胜x2局,负y2局;...;第十名胜x10局,负y10局,若记M=x12+x22+ (x102)N=y12+y22+…+y102,则()A.M<N B.M>NC.M=N D.M、N的大小关系不确定【分析】根据题意,对M和N作差,然后与零比较大小即可解答本题.【解答】解:由题意可得,x n+y n=9,∴y n=(9﹣x n),∴M﹣N=x12+x22+…+x102﹣(y12+y22+…+y102)=x12+x22+…+x102﹣,=﹣810+18(x1+x2+…+x10),∵10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,x1+x2+…+x10=45,∴﹣810+18(x1+x2+…+x10)=﹣810+18×45=﹣810+810=0,∴M=N,故选C.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要的条件.二.填空题16.分解因式:a3﹣4a2b+4ab2= a(a﹣2b)2.【分析】首先提公因式a,然后利用完全平方公式即可分解.【解答】解:原式=a(a2﹣4ab+4b2)=a(a﹣2b)2.故答案是:a(a﹣2b)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.(2016•黔南州)若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2 .【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.18.(2016•南京)分解因式:2a(b+c)﹣3(b+c)= (b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.19.(2016•赤峰)分解因式:4x2﹣4xy+y2= (2x﹣y)2.【分析】符合完全平方公式的特点:两项平方项,另一项为两底数积的2倍,直接利用完全平方公式分解因式即可.【解答】解:4x2﹣4xy+y2,=(2x)2﹣2×2x•y+y2,=(2x﹣y)2.【点评】本题考查运用完全平方公式分解因式,熟练掌握公式结构特点是解题的关键.20.(2016•荆门)分解因式:(m+1)(m﹣9)+8m= (m+3)(m﹣3).【分析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.【解答】解:(m+1)(m﹣9)+8m,=m2﹣9m+m﹣9+8m,=m2﹣9,=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点评】本题考查了利用公式法分解因式,先利用多项式的乘法运算法则展开整理成一般多项式是解题的关键.21.(2016•威海)分解因式:(2a+b)2﹣(a+2b)2= 3(a+b)(a﹣b).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2a+b+a+2b)(2a+b﹣a﹣2b)=3(a+b)(a﹣b).故答案为:3(a+b)(a﹣b).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.22.(2016•贺州)将m3(x﹣2)+m(2﹣x)分解因式的结果是m(x﹣2)(m﹣1)(m+1).【分析】先提公因式,再利用平方差公式进行因式分解即可.【解答】解:原式=m(x﹣2)(m2﹣1)=m(x﹣2)(m﹣1)(m+1).故答案为:m(x﹣2)(m﹣1)(m+1).【点评】本题考查的是多项式的因式分解,掌握提公因式法和平方差公式是解题的关键.三.解答题23.分解因式(1)x3﹣6x2+9x;(2)a2(x﹣y)+4(y﹣x).【分析】(1)原式提取x,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=x(x2﹣6x+9)=x(x﹣3)2;(2)原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).【点评】此题考查了因式分解﹣分组分解法,以及提公因式法,熟练掌握因式分解的方法是解本题的关键.24.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+7x﹣18= (x﹣2)(x+9)启发应用(2)利用因式分解法解方程:x2﹣6x+8=0;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p 的所有可能值是7或﹣7或2或﹣2 .【分析】(1)原式利用题中的方法分解即可;(2)方程利用因式分解法求出解即可;(3)找出所求满足题意p的值即可.【解答】解:(1)原式=(x﹣2)(x+9);(2)方程分解得:(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x=2或x=4;(3)﹣8=﹣1×8;﹣8=﹣8×1;﹣8=﹣2×4;﹣8=﹣4×2,则p的可能值为﹣1+8=7;﹣8+1=﹣7;﹣2+4=2;﹣4+2=﹣2.故答案为:(1)(x﹣2)(x+9);(3)7或﹣7或2或﹣2.【点评】此题考查了因式分解﹣十字相乘法,弄清题中的分解因式方法是解本题的关键.25.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2﹣2xy﹣8y2.解:如图1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2﹣17xy+12y2= (3x﹣4y)(2x﹣3y)②2x2﹣xy﹣6y2+2x+17y﹣12= (x﹣2y+3)(2x+3y﹣4)③x2﹣xy﹣6y2+2x﹣6y= (x﹣3y)(x+2y+2)(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;③同②的方法分解;(2)用十字相乘法把能分解的集中情况全部列出求出m值.【解答】解:(1)①6x2﹣17xy+12y2=(3x﹣4y)(2x﹣3y),②2x2﹣xy﹣6y2+2x+17y﹣12=(x﹣2y+3)(2x+3y﹣4),③x2﹣xy﹣6y2+2x﹣6y=(x﹣3y)(x+2y+2),故答案为:①(3x﹣4y)(2x﹣3y),②(x﹣2y+3)(2x+3y ﹣4),③(x﹣3y)(x+2y+2),(2)如图,m=3×9+(﹣8)×(﹣2)=43或m=9×(﹣8)+3×(﹣2)=﹣78.【点评】此题是因式分解﹣十字相乘法,主要考查了二元二次多项式的分解因式的方法,解本题的关键是选好那个字母当做常数对待,再用十字相乘法分解.26.通过对《因式分解》的学习,我们知道可以用拼图来解释一些多项式的因式分解.如图1中1、2、3号卡片各若干张,如果选取1号、2号、3号卡片分别为1张、2张、3张,你能通过拼图2形象说明a2+3ab+2b2=(a+b)(a+2b)的分解结果吗?请在画出图形.【分析】根据题意可知:a2+3ab+2b2=(a+b)(a+2b),可以看作长为a+2b,宽为a+b的长方形面积,由此画出图形.【解答】解:如图所示:∵大长方形的面积=a2+3ab+2b2,大长方形的面积=(a+b)(a+2b),∴a2+3ab+2b2=(a+b)(a+2b).【点评】此题主要考查因式分解的运用,注意利用已知的等式转化为图形解决问题,这是数形结合思想的运用.27.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.【分析】(1)根据“快乐数”的定义计算即可;(2)设三位“快乐数”为100a+10b+c,根据“快乐数”的定义计算.【解答】解:(1)∵12+02=1,∴最小的两位“快乐数”10,∵19→12+92=82→82+22=68→62+82=100→12+02+02=1,∴19是快乐数;证明:∵4→37→58=68→89→125→30→9→81→65→61→37,37出现两次,所以后面将重复出现,永远不会出现1,所以任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设三位“快乐数”为100a+10b+c,由题意,经过两次运算后结果为1,所以第一次运算后结果一定是10或者100,则a2+b2+c2=10或100,∵a、b、c为整数,且a≠0,∴当a2+b2+c2=10时,12+32+02=10,①当a=1,b=3或0,c=0或3时,三位“快乐数”为130,103,②当a=2时,无解;③当a=3,b=1或0,c=0或1时,三位“快乐数”为310,301,同理当a2+b2+c2=100时,62+82+02=100,所以三位“快乐数”有680,608,806,860.综上一共有130,103,310,301,680,608,806,860八个,又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,所以只有310和860满足已知条件.【点评】本题考查的是因式分解的定义、“快乐数”的定义,正确理解“快乐数”的定义、掌握分情况讨论思想是解题的关键.28.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数.例如=213时,则:21336(23+13+33=36)243(33+63=243).数字111经过三次“F”运算得351 ,经过四次“F”运算得153 ,经过五次“F”运算得153 ,经过2016次“F”运算得153 .(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).【分析】(1)根据“F运算”的定义得到111经过三次“F运算”的结果,经过四次“F运算”的结果,经过五次“F运算”的结果,经过2016次“F运算”的结果即可;(2)首先根据题意可设a+b+c+d=3e,则此四位数1000a+100b+10c+d可表示为999a+99b+9c+a+b+c+d,即3(333a+33b+3c)+3e,所以可得这个四位数就可以被3整除.【解答】(1)解:1113(13+13+13=3)27(33=27)351(23+73=351)153(33+53+13=153)153(13+53+33=153)153(33+53+13=153).故数字111经过三次“F”运算得351,经过四次“F”运算得153,经过五次“F”运算得 153,经过2016次“F”运算得 153.(2)证明:设a+b+c+d=3e(e为整数),这个四位数可以写为:1000a+100b+10c+d,∴1000a+100b+10c+d=999a+99b+9c+a+b+c+d=3(333a+33b+3c)+3e,∴=333a+33b+3c+e,∵333a+33b+3c+e是整数,∴1000a+100b+10c+d可以被3整除.故答案为:351,153,153,153.【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想是解决这类问题的方法.同时考查了数的整除性问题.注意四位数的表示方法与整体思想的应用.29.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).【分析】(1)先分解因式得到x3﹣xy2=x(x﹣y)(x+y),然后利用题中设计密码的方法写出所有可能的密码;(2)利用勾股定理和周长得到x+y=13,x2+y2=121,再利用完全平方公式可计算出xy=24,然后与(1)小题的解决方法一样.【解答】解:(1)x3﹣xy2=x(x﹣y)(x+y),当x=15,y=5时,x﹣y=10,x+y=20,可得数字密码是151020;也可以是152010;101520;102015,201510,201015;(2)由题意得:解得xy=24,而x3y+xy3=xy(x2+y2),所以可得数字密码为24121.【点评】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题;考查了用类比的方法解决问题;(2)小题中计算出xy的值为解决问题的关键.30.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 C .A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.【解答】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4。

多项式的因式分解与解方程

多项式的因式分解与解方程

多项式的因式分解与解方程多项式是数学中一个重要的概念,通过因式分解与解方程的方法,我们能够更好地理解和处理多项式的相关问题。

本文将介绍多项式的因式分解与解方程的相关知识,并通过例子详细讲解其应用。

一、多项式的因式分解多项式的因式分解是将一个多项式表达式拆解成若干个因式的乘积。

通过因式分解,我们可以更好地理解多项式的结构,简化表达式,并更方便地进行运算。

以一个简单的一元二次多项式为例,多项式表达式为ax^2 + bx + c,其中a、b、c为常数。

常见的因式分解方法有以下几种:1. 公因式提取法:如果多项式中的各项存在着公共的因式,我们可以先将公共因式提取出来,再进行进一步因式分解。

例如:6x^2 + 9x = 3x(2x + 3)2. 因式定理:多项式的因式分解中,因式定理常常被使用。

因式定理表述了“如果a是多项式f(x)的一个因式,那么在f(x)中用x-a除以得到的商式为0。

”根据这个定理,我们可以确定多项式的因式,并进一步进行因式分解。

例如:x^2 + 3x + 2 = (x + 1)(x + 2)3. 完全平方式:对于二次多项式,我们可以利用完全平方式进行因式分解。

如果一个二次多项式能够表示成两个一次多项式的平方和差的形式,那么我们可以通过完全平方式进行因式分解。

例如:x^2 - 4 = (x + 2)(x - 2)通过以上几种常见的因式分解方法,我们可以将复杂的多项式拆解成简单的因式乘积形式,进一步化简问题,便于理解和求解。

二、多项式方程的解多项式方程是由多项式表达式构成的等式,求解多项式方程即找出使方程等式成立的变量值。

解多项式方程的过程也是寻找多项式与零的交点,通常使用因式分解的方法。

以一元一次方程为例,多项式方程表达式为ax + b = 0,其中a、b 为常数。

解一元一次方程的方法是将方程中的未知数x移到一侧,常数移到另一侧,通过求解得到x的值。

例如:3x + 2 = 0,将常数2移到一侧可得3x = -2,进一步解得x = -2/3。

苏科初中数学七下《95因式分解一》word教案2

苏科初中数学七下《95因式分解一》word教案2

自主学习是与传统的接受学习相对应的一种现代化学习方式。

在学生阶段,至关重要!!以学生作为学习的主体,学生自己做主,不受别人支配,不受外界干扰通过阅读、听讲、研究、观察、实践等手段使个体可以得到持续变化(知识与技能,方法与过程,情感与价值的改善和升华)的行为方式。

如何培养中学生的自主学习能力?01学习内容的自主性1、以一个成绩比自己好的同学作为目标,努力超过他。

2、有一个关于以后的人生设想。

3、每学期开学时,都根据自己的学习情况设立一个学期目标。

4、如果没有达到自己的目标,会分析原因,再加把劲。

5、学习目标设定之后,会自己思考或让别人帮助分析是否符合自己的情况。

6、会针对自己的弱项设定学习目标。

7、常常看一些有意义的课外书或自己找(课外题)习题做。

8、自习课上,不必老师要求,自己知道该学什么。

9、总是能很快选择好对自己有用的学习资料。

10、自己不感兴趣的学科也好好学。

11、课堂上很在意老师提出的重点、难点问题。

12、会花很多时间专攻自己的学习弱项。

02时间管理13、常常为自己制定学习计划。

14、为准备考试,会制定一个详细的计划。

15、会给假期作业制定一个完成计划,而不会临近开学才做。

16、常自己寻找没有干扰的地方学习。

17、课堂上会把精力集中到老师讲的重点内容上面。

18、做作业时,先选重要的和难一点的来完成。

19、作业总是在自己规定的时间内完成。

20、作业少时,会多自学一些课本上的知识。

03 学习策略21、预习时,先从头到尾大致浏览一遍抓住要点。

22、根据课后习题来预习,以求抓住重点。

23、预习时,发现前面知识没有掌握的,回过头去补上来。

24、常常归纳学习内容的要点并想办法记住。

25、阅读时,常做标注,并多问几个为什么。

26、读完一篇文章,会想一想它主要讲了哪几个问题。

27、常寻找同一道题的几种解法。

28、采用一些巧妙的记忆方法,帮助自己记住学习内容。

29、阅读时遇到不懂的问题,常常标记下来以便问老师。

苏教版9.5因式分解1

苏教版9.5因式分解1

荣辱榜9. 5 多项式的因式分解(1)班级姓名成绩自主学习一、创设情境1.试一试(1).你能用简便方法计算:375×2.8+375×4.9+375×2.3吗?(2).你能把多项式ab+ac+ad写成积的形式吗?请说明你的依据.2.做一做:多项式mc+中的每一项都含有一个相同的因式_________,我mbma+们称之为_________.3.试一试:下列多项式的各项是否有公因式?如果有,试着找出来.(1)4x+4y;(2)8ax+12ay;(3)16a3bx+36a2b2y二、探究新知1、_________________________________,叫做这个多项式各项的公因式。

2、公因式的构成:①系数:;②字母:;③指数: .3、练一练:下列多项式的各项是否有公因式?如果有,试着找出来.(1)a2b+ab2;(2)3x2-6x3;(3)9abc-6a2b2+12abc24、填空并说说你的方法:(1)a2b+ab2=ab( ) (2)3x2-6x3=3x2( ) (3)9abc-6a2b2+12abc2=3ab( )5、归纳:(1).因式分解的定义:. (2).因式分解与整式乘法的联系和区别:趁热打铁:下列各式从左到右的变形,是不是因式分解?(1)6x2y3=2x2y·3y;(2)ab+ac+d=a(b+c)+d(3)a2-1=(a+1)(a-1) (4)(a+1)(a-1) = a2-1(5)x2+1=x(x+1 x)例题讲解:例1:把(1)5x3-10x2分解因式;分析:1、多项式5x3-10x2各项的公因式是什么?2、你能把多项式5x3-10x2说你是如何得到另一个因式的?归纳:叫做提公因式法.把12ab2c-6ab分解因式变式练习1:把6a3b-9a2b2c+3a2b分解因式变式练习2:把-2m3+8m2-12m因式分解练习:-8a2b2+4a2b-2ab变式练习3:把3a(x+y)-2b(x+y)分解因式练习:(1)x(a-b)+y(b-a) (2)6(m-n)3-12(n-m)2变式练习4:把m(5ax+a y-1)+m(ay+1-3ax)因式分解拓展应用:(1).计算 39×37-13×81;(2)20042+2004能被2005整除吗?三、通过本节课的学习,你有哪些收获?9.5单项式乘多项式的再认识-因式分解(一)反馈练习:1. 下列式子由左到右的变形中,属于因式分解的是( )A .22244)2(y xy x y x ++=+ B.3)1(4222+-=+-x y x C. )1)(13(1232-+=--x x x x D.mc mb ma c b a m ++=++)(2.多项式-5mx 3+25mx 2-10mx 各项的公因式是A.5mx 2B.-5mx 3C. mxD.-5mx 3. 20082009)8()8(-+-能被下列数整除的是( )A .3B .5C .7D .94.把下列各式因式分解:(1)20a -15ab ; (2)m m m 216423-+-(3)10(a -b )2-5(b -a )3 (4)2m (m -7)-(7-m )(m -3)5.已知312=-y x ,2=xy ,求 43342y x y x -的值.你对本节课还有哪些问题和要求: 。

多项式的因式分解(学生版)2021-2022学年七年级数学下册同步讲义(苏科版)

多项式的因式分解(学生版)2021-2022学年七年级数学下册同步讲义(苏科版)

第9章 整式乘法与因式分解 9.5 多项式的因式分解课程标准课标解读了解公式的几何背景,并能利用公式进行因式分解。

1.理解并掌握提公因式法分解因式;2.理解并掌握公式法分解因式。

1.概念:把一个多项式化为几个整式的积的形式,像这样的式子变形叫作把这个多项式分解因式。

2.因式分解与整式乘法的关系:因式分解与整式乘法是相反方向的变形,即多项式乘以多项式或单项式乘以多项式是积化和,因式分解则是和化积。

3.因式分解的结果要以积的形式表示,否则不是因式分解;因式分解中每个括号内如有同类项要合并,因式分解的结果要求必须将每个因式分解彻底。

4.公因式:多项式的各项中都含有的公共因式叫作这个多项式的公因式。

确定公因式时,一看系数,取各项系数的最大公约数作为公因式的系数;二看字母,取各项相同的字母;三看指数,取相同字母的最低次幂;最后还要根据情况确定符号。

5.提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式。

(注意:①所提公因式必须是最大公因式;②如果多项式的首相系数是负数,应先提出“-”号;③如果多项式的某一项恰好与公因式相同,那么提公因式后此项为1,而不是0) 【即学即练1】1.分解因式:18a 3b +14a 2b ﹣2abc .2.分解因式:(x ﹣2y )(2x +3y )﹣2(2y ﹣x )(5x ﹣y ).1.用平方差公式分解因式:))((22b a b a b a -+=-(公式中的a 和b 可以是实数,也可以是单项式或多项式)2.用完全平方公式分解因式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方,即:222)(2b a b ab a +=++,222)-(2-b a b ab a =+;公式中的a 和b 可以是实数,也可以是单项式或多项式。

【微点拨】因式分解的一般步骤:一提;二套;三试;四分;五查。

单项式乘多项式的再认识-因式分解

单项式乘多项式的再认识-因式分解

找出下列多项式各项的公因式并填写下表
多项式 公因式
4x+4y -8ax+12ay 8a3bx+12a2b2y
4 -4a 4a2b
给就上面的填表过程,你能归纳出 找一个多项式的公因式的方法吗?
总结
找一个多项式的公因式的方法一 般分三个步骤: 一看系数:当多项式的各项系数 多是整数时,公因式的系数应取 各项系数的最大公约数。 二看字母:公因式的字母应取多项 式中各项都含有的相同字母 三看指数:相同字母的指数取次数 最低的。
你能把多项式ab+ac+ad写成积的形 式吗?请说明你的理由 根据乘法分配律 ab+ac+ad=a(b+c+d)
换一种看法,就是把单项式乘多项 式的法则 a(b+c+d)=ab+ac+ad 反过来,就得到 ab+ac+ad=a(b+c+d)
观察多项式ab+ac+ad的每一项,
你有什么发现吗?
a是多项式ab+ac+ad各项都含有的因式。 一个多项式各项都含有的因式,称为 这个多项式各项的公因式。 例如a就是多项式ab+ac+ad各项的 公因式
=-52.5

(2)如何找公因式?

(1)公因式与分解因式的概念;
(3)因式分解与整式乘法的区别和联系; (4)如何确定提出公因式后的另一个因式; (5)用提取公因式分解因式的一般步骤。
再见
9abc-6a2b2+12ab2c
填空并说说你的方法: (1)a2b+ab2=ab( a+b ) (2)3x2-6x3=3x( X-2x2 ) (3)9abc-6a2b2+12abc2=3ab(3c-2ab+4c ) 像这样,把一个多项式写成几个 整式的积的形式叫做多项式 的因式分解。

沪教版(上海)七年级第一学期9.5《因式分解》知识点与练习

沪教版(上海)七年级第一学期9.5《因式分解》知识点与练习

一.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

⑴因式分解与整式乘法互为逆变形:(乘积形式)()m a b c ma mb mc −−−−→++++←−−−−整式乘法因式分解(和差形式) 式中m 可以代表单项式,也可以代表多项式,它是多项式中各项都含有的因式,称为公因式⑵因式分解的常用方法:___________________________________________________。

⑶分解因式的一般步骤:如果多项式的各项有公因式,应先提公因式;如果各项没有公因式,再看能否直接运用公式;如果遇到二次三项式,则多考虑十字相乘法分解;如果项数大于等于4项,则尝试分组分解法;如果以上都搞不定,则采用添项与拆项,或者其他方法。

【注意】① 若不特别说明,分解因式的结果必须是每个因式在有理数范围内......不能再分解为止; ② 结果一定是乘积的形式;③ 每一个因式都是整式;④ 相同的因式的积要写成幂的形式。

(4)在分解因式时,结果的形式要求:①没有大括号和中括号;②每个因式中不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解; ③单项式因式写在多项式因式的前面;第二讲 因式分解Ⅰ 模块一:提取公因式法④每个因式第一项系数一般不为负数;二.提取公因式法:公因式:几个单项式中相同因式最低次幂的积叫做这几个单项式的公因式。

系数——取多项式的各项系数的最大公约数;字母——取各项都含有的字母(或多项式因式)的最低次幂;且一般公因式的符号与多项式第一项的符号相同(即保证因式的第一项系数为正数)【例1】下列等式从左到右的变形是因式分解的有( )。

① ()a x y ax ay +=+; ② ()24444x x x x -+=-+;③ ()2105521x x x x -=-; ④ ()()2163443x x x x x x -+=+-+;⑤ ()()2224a a a +-=-; ⑥ ()ax ay az a x y z -+=-+; ⑦; ⑧ 。

多项式的因式分解-第1课时(课件)七年级数学下册(苏科版)

多项式的因式分解-第1课时(课件)七年级数学下册(苏科版)

公因式、因式分解
01 知问识题精引讲入
Q1:巧算:29×7+29×2.1+29×0.9 【解答】 原式=29×(7+2.1+0.9) =29×10 =290
01 知问识题精引讲入
Q2:运用所学的知识填空 (1) m(a+b+c)=_m__a_+_m__b_+_m__c_; (4) ma+mb+mc=( m )(a+b+c) (2) x2(x+1)=____x_3_+_x_2____; (5) x3+x2=( x2)(x+1) (3) ab(x-y)=___a_b_x_-_a_b_y___. (6) abx-aby=(ab)(x-y)
课后总结
【因式分解】 像这样,把一个多项式写成几个整式的积的形式,叫做多项式的因式分解
【注意点】 ①因式分解与整式乘法是互逆运算; ②因式分解是两个或几个因式积的形式,且每个因式都是整式;整式乘法是多项式的形式; ③因式分解是恒等变形,因此可以用整式乘法来检验; ④因式分解必须分解彻底.
【提公因式法】 把多项式的公因式提到括号外,把多项式写成公因式与另一个多项式的积的形式,
【分析】 b2(x-2)+b(2-x) =b2(x-2)-b(x-2) =b(x-2)·b-b(x-2)·1 =b(x-2)(b-1).
【利用提公因式法求值】
例5、已知x2y+xy2=42,xy=7,则x+y=____6____.
【分析】 ∵x2y+xy2=42,xy=7, ∴xy(x+y)=42, ∴x+y=6.
提公因式法
02 知识精讲
提公因式法

9.5多项式的因式分解(一)

9.5多项式的因式分解(一)

9.5多项式的因式分解(一)一、基础训练1.因式分解是把一个 化成 的形式.它与 互为逆运算.2.简便计算:2.186 1.237 1.237 1.186⨯-⨯= .3.运用提公因式法分解因式:(1)ax ay -=; (2)32x x x ++= ; (3)223155a b ab -=; (4)()5()x a b a b ---= . 二、典型例题例1 分解因式3222416x y x yz +.分析:一看:系数24与16的最大公约数为8;二看:相同字母x 、y 的最低次幂是2次与1次,所以公因式为82x y .把公因式2x y 提到括号外面.例2 分解因式3223228164a b a b a b -+-.分析:多项式第一项是负数时,一般先提出符号,使括号内的第一项的系数变为正数,注意多项式中某一项恰好是公因式时,该项提出公因式后要写1.例3 分解因式2318()12()m m n n m ---.分析:本题要注意整体思想和整体的统一.可把2()m n -化为2()m n -[]2()n m =--2()n m =-;或把3()n m -化为3()n m -[]3()m n =--3()m n =--.使所给多项式有公因式.本题还要注意提出公因式后的因式要注意化简,如[]32()m m n +-=(52)m n -.三、拓展提升若210a a ++=,(1)求32221a a a +++的值.(2)求2001200220032009a a a a ++++L 的值. 分析:本题要注意整体代入思想,要把所求多项式进行变形设法出现21a a ++这个整体.四、课后作业1.下列各式从左到右变形属于因式分解的是 :①298(3)(3)8x x x x x -+=+-+,②2(3)(3)9x x x +-=-, ③2222()x xy y x y -+=-.2.利用因式分解计算:10010122- = .3.用提公因式法把293m m xx -分解因式后,括号内的代数式是 . 4.多项式2223261812ab a b a b c +-的公因式为 .5.多项式224x xy +与 2412x xy -的公因式为 . 6.把下列各式分解因式:(1)222axy y x a -; (2)c ab ab abc 249714+--;(3)223948x y xy -; (4)32213m m m x y x y x y +++-+;(5)210()5()a x y a y x --- ; (6)333(1)(1)x y x z ---;(7)2318()12()b a b b a ---; (8)()y x y x m +--2;(9)2()33a b a b --+ ; (10)2()()()()x x y y x xy x y x y +--+-.7.已知2a b +=,12ab =-,求2()()()a a b a b a a b +--+的值.答案一、基础训练1.略 2. 1.237 3 (1) ()a x y - (2) 2(1)x x x ++ (3) 25(3)ab a b - (4) ()(5)a b x -- 二、典型例题例1 28(32)xy xy z + 例2 224(241)a b a b --+ 例3 26()(52)m n m n --三、拓展提升(1)0 (2) 0四、课后作业1.③ 2. 1002- 3. 31m x - 4. 26ab 5. 2x 6 (1)()axy ax y - (2)7(217)ab c bc -+- (3) 3(23)8xy x y -(4)122()m x y x xy y +-+(5)5()(221)a x y x y --+(6)3(1)(3)x y z -+ (7)26()(2)a b a b -+(8)()(1)x y mx my ---(9)()(3)a b a b ---(10)2()()x x y y x +-7. 2。

七年级数学下册 第9章 整式乘法与因式分解 9.5 多项式的因式分解作业设计 (新版)苏科版-(新版

七年级数学下册 第9章 整式乘法与因式分解 9.5 多项式的因式分解作业设计 (新版)苏科版-(新版

9.5 多项式的因式分解一.选择题(共17小题)1.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)2.已知多项式4x2﹣(y﹣z)2的一个因式为2x﹣y+z,则另一个因式是()A.2x﹣y﹣z B.2x﹣y+z C.2x+y+z D.2x+y﹣z3.下列变形中,属因式分解的是()A.2x﹣2y=2(x﹣y)B.(x+y)2=x2+2xy+y2C.(x+2y)(x﹣2y)=x2﹣2y2D.x2﹣4x+5=(x﹣2)2+14.下列各等式从左到右的变形是因式分解的是()A.6a2b=3a2•2b B.mx+nxy﹣xy=mx+xy(n﹣1)C.am﹣a=a(m﹣1)D.(x+1)(x﹣1)=x2﹣15.下列等式从左到右的变形是因式分解的是()A.12a2b=3a•4ab B.(x+3)(x﹣3)=x2﹣9C.4x2+8x﹣1=4x(x+2)﹣1D.ax﹣ay=a(x﹣y)6.下列多项式中,没有公因式的是()A.a(x+y)和(x+y)B.32(a+b)和(﹣x+b)C.3b(x﹣y)和 2(x﹣y)D.(3a﹣3b)和6(b﹣a)7.下列各式中能用完全平方公式分解因式的有()①a2+2a+4;②a2+2a﹣1;③a2+2a+1;④﹣a2+2a+1;⑤﹣a2﹣2a﹣1;⑥a2﹣2a﹣1.A.2个B.3个C.4个D.5个8.下列各式中,可用平方差公式分解因式的是()A.a2+b2B.﹣a2﹣b2C.﹣a2+b2D.a2+(﹣b)29.下列变形是分解因式的是()A.6x2y2=3xy•2xy B.m2﹣4=(m+2)(m﹣2)C.a2﹣b2+1=(a+b)(a﹣b)+1D.(a+3)(a﹣3)=a2﹣9 10.下列从左到右的变形,其中是因式分解的是()A.(x+1)2=x2+2x+1B.x2﹣10x+25=(x﹣5)2C.(x+7)(x﹣7)=x2﹣49D.x2﹣2x+2=(x﹣1)2+111.﹣6xyz+3xy2﹣9x2y的公因式是()A.﹣3x B.3xz C.3yz D.﹣3xy12.多项式x3y2﹣2x2y3+4xy4z的公因式是()A.xy2B.4xy C.xy2z D.xyz13.把多项式p2(a﹣1)+p(1﹣a)分解因式的结果是()A.(a﹣1)(p2+p)B.(a﹣1)(p2﹣p)C.p(a﹣1)(p﹣1)D.p(a﹣1)(p+1)14.下列多项式能用完全平方公式分解的是()A.x2﹣2x﹣B.(a+b)(a﹣b)﹣4abC.a2+ab+D.y2+2y﹣115.下列多项式中,可以用平方差公式分解因式的是()A.x2+1B.﹣x2+1C.x2﹣2D.﹣x2﹣116.下列从左到右的变形:(1)3xy+6y=3y(x+2);(2)a2﹣a+1=(a﹣1)2;(3)y3﹣4y=y(y2﹣4);(4)﹣x2﹣9y2=﹣(x+3y)(x﹣3y);其中分解因式正确的有()个.A.0个B.1个C.2个D.3个17.在实数X围内分解因式x5﹣64x正确的是()A.x(x4﹣64)B.x(x2+8)(x2﹣8)C.x(x2+8)(x+2)(x﹣2)D.x(x+2)3(x﹣2)二.填空题(共12小题)18.若x2﹣ax﹣1可以分解为(x﹣2)(x+b),则a=,b=.19.因式分解:100﹣4a2=.20.因式分解的主要方法有:.21.若多项式x2﹣x﹣20分解为(x﹣a)(x﹣b),且a>b,则a=,b=.22.若x﹣3y=5,则x2﹣3xy﹣15y=.23.x(a+b)+y(a+b)=.24.因式分解:a2+a+=;1﹣9y2=.25.已知x2﹣y2=69,x+y=3,则x﹣y=.26.分解因式:a3﹣ab2=;3a2﹣3=.27.因式分解:(x﹣3)(x+4)+3x=.28.分解因式:x2﹣5xy+6y2=.29.在实数X围内分解因式:2x2+3xy﹣y2=.三.解答题(共19小题)30.已a2+b2﹣2a+6b+10=0,求的值.31.利用因式分解计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)…(1﹣)32.如图,在一块边长为a厘米的正方形纸板上,在正中央剪去一个边长为b厘米的正方形,当a=6.25,b=3.75时,请利用因式分解的知识计算阴影部分的面积.33.已知x2+x﹣1=0,求x3+2x2+3的值.34.如果一个自然数能表示为两个自然数的平方差,那么称这个自然数为智慧数,例如:16=52﹣32,16就是一个智慧数,小明和小王对自然数中的智慧数进行了如下的探索:小明的方法是一个一个找出来的:0=02﹣02,1=12﹣02,3=22﹣12,4=22﹣02,5=32﹣22,7=42﹣32,8=32﹣12,9=52﹣42,11=62﹣52,…小王认为小明的方法太麻烦,他想到:设k是自然数,由于(k+1)2﹣k2=(k+1+k)(k+1﹣k)=2k+1.所以,自然数中所有奇数都是智慧数.问题:(1)根据上述方法,自然数中第12个智慧数是;(2)他们发现0,4,8是智慧数,由此猜测4k(k≥3且k为正整数)都是智慧数,请你参考小王的办法证明4k(k≥3且k为正整数)都是智慧数;(3)他们还发现2,6,10都不是智慧数,由此猜测4k+2(k为自然数)都不是智慧数,请利用所学的知识判断26是否是智慧数,并说明理由.35.已知a﹣b=,ab=,求﹣2a2b2+ab3+a3b的值.36.分解因式(1)﹣3a2b3+6a3b2c+3a2b(2)(a+b)2+(a+b)(a﹣3b).37.分解因式:(1)5x2﹣20;(2)﹣3x2+2x﹣.38.因式分解:x2(x﹣y)+y2(y﹣x)39.分解下列因式:(1)a4﹣a2(2)1﹣4x2+4xy﹣y2.40.先阅读下列材料,并对后面的题进行解答:(x+2)(x+3)=x2+5x+6;(x﹣4)(x+1)=x2﹣3x﹣4;(y+4)(y﹣2)=y2+2y﹣8;(y﹣5)(y﹣3)=y2﹣8y+15;….(说明:本材料源于课本练习题)(1)观察积中的一次项系数、常数项与等号左边的两因式的常数项有何关系?(用语言表达或者用公式来呈现它们之间关系和规律均可)(2)巧算填空:①(m+9)(m﹣11)=;②(a﹣100)(a﹣11)=.(3)若(x+m)(x+n)=x2+ax+12(m、n、a都是整数),请根据(1)问得出的关系和规律推算出a的值.41.我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.42.4x2﹣16y2.43.把下列各式分解因式:(1)a2﹣14ab+49b2(2)a(x+y)﹣(a﹣b)(x+y);(3)121x2﹣144y2;(4)3x4﹣12x2.44.将下列各式分解因式(1)15a3+10a2;(2)y2+y+;(3)3ax2﹣3ay2.45.因式分解(1)2m(a﹣b)﹣3n(b﹣a).(2)16x2﹣64.(3)﹣4a2+24a﹣36.(4)(a﹣b)(3a+b)2+(a+3b)2(b﹣a).46.请观察以下解题过程:分解因式:x4﹣6x2+1解:x4﹣6x2+1=x4﹣2x2﹣4x2+1=(x4﹣2x2+1)﹣4x2=(x2﹣1)2﹣(2x)2=(x2﹣1+2x)(x2﹣1﹣2x)以上分解因式的方法称为拆项法,请你用拆项法分解因式:a4﹣7a2+9.47.试用两种不同的方法分解因式分解:x2+6x+5.48.已知a,b,c是三角形三边长,且b2﹣2bc+c2=ac﹣ab,试判断三角形形状.参考答案与试题解析一.选择题(共17小题)1.分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)【分析】确定公因式是b(x﹣3),然后提取公因式即可.【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.【点评】需要注意提取公因式后,第二项还剩因式1.2.已知多项式4x2﹣(y﹣z)2的一个因式为2x﹣y+z,则另一个因式是()A.2x﹣y﹣z B.2x﹣y+z C.2x+y+z D.2x+y﹣z【分析】可运用平方差公式对所给代数式进行因式分解得到所求的另一个因式.【解答】解:原式=(2x+y﹣z)(2x﹣y+z),∴另一个因式是2x+y﹣z.故选:D.【点评】本题考查了公式法分解因式,是平方差的形式,所以考虑利用平方差公式分解因式.3.下列变形中,属因式分解的是()A.2x﹣2y=2(x﹣y)B.(x+y)2=x2+2xy+y2C.(x+2y)(x﹣2y)=x2﹣2y2D.x2﹣4x+5=(x﹣2)2+1【分析】根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.【解答】解:A、2x﹣2y=2(x﹣y)是因式分解,故选项正确;B、(x+y)2=x2+2xy+y2结果不是积的形式,不是因式分解,故选项错误;C、(x+2y)(x﹣2y)=x2﹣4y2是整式的乘法,不是因式分解,故选项错误;D、x2﹣4x+5=(x﹣2)2+1,结果不是积的形式,不是因式分解,故选项错误.故选:A.【点评】本题主要考查了因式分解的意义,因式分解是整式的变形,变形前后都是整式,并且结果是积的形式.4.下列各等式从左到右的变形是因式分解的是()A.6a2b=3a2•2b B.mx+nxy﹣xy=mx+xy(n﹣1)C.am﹣a=a(m﹣1)D.(x+1)(x﹣1)=x2﹣1【分析】根据因式分解是把一个多项式转化成几个整式积形式,可得答案.【解答】解:A不是多项式转化成几个整式积形式,故A不是因式分解;B没把多项式转化成几个整式积的形式,故B不是因式分解;Cam﹣a=a(m﹣1),故C是因式分解;D是整式的乘法,故D不是因式分解;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积形式.5.下列等式从左到右的变形是因式分解的是()A.12a2b=3a•4ab B.(x+3)(x﹣3)=x2﹣9C.4x2+8x﹣1=4x(x+2)﹣1D.ax﹣ay=a(x﹣y)【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A不是多项式的转化,故A不是因式分解;B整式的乘法,故B不是因式分解;C没把一个多项式转化成几个整式积的形式,故C错误;D提取公因式a,故D是因式分解,故选:D.【点评】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.6.下列多项式中,没有公因式的是()A.a(x+y)和(x+y)B.32(a+b)和(﹣x+b)C.3b(x﹣y)和 2(x﹣y)D.(3a﹣3b)和6(b﹣a)【分析】根据公因式是多项式中每项都有的因式,可得答案.【解答】解:∵32(a+b)与(﹣x+b)没有公因式,故选:B.【点评】本题考查了公因式,公因式是多项式中每项都有的因式.7.下列各式中能用完全平方公式分解因式的有()①a2+2a+4;②a2+2a﹣1;③a2+2a+1;④﹣a2+2a+1;⑤﹣a2﹣2a﹣1;⑥a2﹣2a﹣1.A.2个B.3个C.4个D.5个【分析】根据能运用完全平方公式分解因式的多项式的特点:①必须是三项式,②其中有两项能写成两个数(或式)的平方和的形式,③另一项是这两个数(或式)的积的2倍进行分析即可.【解答】解:①a2+2a+4不是积的2倍,故不能用完全平方公式进行分解;②a2+2a﹣1不是平方和,故不能用完全平方公式进行分解;③a2+2a+1能用完全平方公式进行分解;④﹣a2+2a+1不是平方和,故不能用完全平方公式进行分解;⑤﹣a2﹣2a﹣1首先提取负号,可得a2+2a+1,能用完全平方公式进行分解;⑥a2﹣2a﹣1不是平方和,故不能用完全平方公式进行分解.故选:A.【点评】此题主要考查了能用完全平方公式分解因式的特点,关键是熟练掌握特点.8.下列各式中,可用平方差公式分解因式的是()A.a2+b2B.﹣a2﹣b2C.﹣a2+b2D.a2+(﹣b)2【分析】能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.【解答】解:A、a2+b2不符合平方差公式的特点,不能用平方差公式进行因式分解,故本选项错误;B、﹣a2﹣b2的两平方项符号相同,不能用平方差公式进行因式分解,故本选项错误;C、﹣a2+b2符合平方差公式的特点,能用平方差公式进行因式分解,故本选项正确;D、a2+(﹣b)2不符合平方差公式的特点,不能用平方差公式进行因式分解,故本选项错误.故选:C.【点评】本题考查的是应用平方差公式进行因式分解的能力,掌握平方差公式的结构特征是正确解题的关键.9.下列变形是分解因式的是()A.6x2y2=3xy•2xy B.m2﹣4=(m+2)(m﹣2)C.a2﹣b2+1=(a+b)(a﹣b)+1D.(a+3)(a﹣3)=a2﹣9【分析】根据因式分解是把多项式转化成几个整式积的形式,可得答案.【解答】解:A、左边是单项式,不是分解因式,故本选项错误;B、是分解因式,故本选项正确;C、右边不是积的形式,故本选项错误;D、是多项式乘法,不是分解因式,故本选项错误;故选:B.【点评】本题考查了因式分解,因式分解把多项式转化成几个整式积的形式.10.下列从左到右的变形,其中是因式分解的是()A.(x+1)2=x2+2x+1B.x2﹣10x+25=(x﹣5)2C.(x+7)(x﹣7)=x2﹣49D.x2﹣2x+2=(x﹣1)2+1【分析】因式分解就是把多项式转化成几个整式的积的形式,根据定义即可作出判断.【解答】解:A、是整式的乘法,故选项错误;B、正确;C、是整式的乘法,故选项错误;D、多项式结果不是整式的积的形式,故选项错误,故选:B.【点评】本题考查了因式分解的意义,属于基础题,解答本题的关键是掌握因式分解的意义.11.﹣6xyz+3xy2﹣9x2y的公因式是()A.﹣3x B.3xz C.3yz D.﹣3xy【分析】通过观察可知原式的公因式为﹣3xy,直接提取即可.【解答】解:﹣6xyz+3xy2﹣9x2y各项的公因式是﹣3xy.故选:D.【点评】此题考查的是提公因式的方法,要注意此题容易忽略公因式的系数的符号.12.多项式x3y2﹣2x2y3+4xy4z的公因式是()A.xy2B.4xy C.xy2z D.xyz【分析】分别找出系数的最大公约数,相同字母的最低指数次幂,然后即可找出公因式.【解答】解:多项式x3y2﹣2x2y3+4xy4z的公因式是xy2,故选:A.【点评】此题主要考查了找公因式,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的找出公因式即可.13.把多项式p2(a﹣1)+p(1﹣a)分解因式的结果是()A.(a﹣1)(p2+p)B.(a﹣1)(p2﹣p)C.p(a﹣1)(p﹣1)D.p(a﹣1)(p+1)【分析】先把1﹣a根据相反数的定义转化为﹣(a﹣1),然后提取公因式p(a﹣1),整理即可.【解答】解:p2(a﹣1)+p(1﹣a),=p2(a﹣1)﹣p(a﹣1),=p(a﹣1)(p﹣1).故选:C.【点评】主要考查提公因式法分解因式,把(1﹣a)转化为﹣(a﹣1)的形式是求解的关键.14.下列多项式能用完全平方公式分解的是()A.x2﹣2x﹣B.(a+b)(a﹣b)﹣4abC.a2+ab+D.y2+2y﹣1【分析】能用完全平方公式分解的式子的特点是:三项;两项平方项的符号需相同;有一项是两底数积的2倍.【解答】解:A、x2﹣2x﹣不符合完全平方公式分解的式子的特点,故错误;B、(a+b))(a﹣b)不符合﹣4ab完全平方公式分解的式子的特点,故错误;C、a2+ab+符合完全平方公式分解的式子的特点,故正确;D、y2+2y﹣1不符合完全平方公式分解的式子的特点,故错误.故选:C.【点评】本题考查能用完全平方公式分解的式子的特点.两项平方项的符号需相同;有一项是两底数积的2倍,是易错点.15.下列多项式中,可以用平方差公式分解因式的是()A.x2+1B.﹣x2+1C.x2﹣2D.﹣x2﹣1【分析】根据平方差公式的特点:两个平方项且符号相反,对各选项分析判断后利用排除法求解.【解答】解:A、两个平方项的符号相同,故本选项错误;B、两个平方项的符号相反,故本选项正确;C、2不可以写成平方项,故错误;D、两个平方项的符号相同,故本选项错误.故选:B.【点评】本题考查了公式法分解因式,平方差公式的特点是两个平方项的符号相反,符合这一特点就能运用平方差公式分解因式,与两项的排列顺序无关.16.下列从左到右的变形:(1)3xy+6y=3y(x+2);(2)a2﹣a+1=(a﹣1)2;(3)y3﹣4y=y(y2﹣4);(4)﹣x2﹣9y2=﹣(x+3y)(x﹣3y);其中分解因式正确的有()个.A.0个B.1个C.2个D.3个【分析】(1)利用提公因式法,提取公因式3y即可;(2)此题不符合完全平方公式,不能分解;(3)首先提取公因式y,再利用平方差公式分解即可;(4)注意提取负号后,可得﹣(x2+9y2),不符合平方差公式,不能分解因式.【解答】解:(1)3xy+6y=3y(x+2),故此项正确;(2)a2﹣2a+1=(a﹣1)2,故此项错误;(3)y3﹣4y=y(y2﹣4)=y(y+2)(y﹣2),故此项错误;(4)﹣x2﹣9y2=﹣(x2+9y2),﹣(x+3y)(x﹣3y)=﹣x2+9y2,故此项错误.∴分解因式正确是(1),只有1个.故选:B.【点评】此题考查了因式分解的知识.注意因式分解的步骤:先提公因式,再用公式法分解.还要注意分解要彻底.17.在实数X围内分解因式x5﹣64x正确的是()A.x(x4﹣64)B.x(x2+8)(x2﹣8)C.x(x2+8)(x+2)(x﹣2)D.x(x+2)3(x﹣2)【分析】在实数X围内分解因式一般应分解到因式中有无理数为止.【解答】解:x5﹣64x=x(x4﹣64),=x(x2+8)(x2﹣8),=x(x2+8)(x+2)(x﹣2).故选:C.【点评】本题考查了公式法分解因式,在实数X围内分解因式要遵循分解彻底的原则.二.填空题(共12小题)18.若x2﹣ax﹣1可以分解为(x﹣2)(x+b),则a=1,b=.【分析】根据因式分解的意义,把一个多项式转化成几个整式积的形式,可得答案.【解答】解:∵x2﹣ax﹣1=(x﹣2)(x+b)=x2+(b﹣2)x﹣2b,∴﹣2b=﹣1,b﹣2=﹣a,b=,a=1,故答案为:1,.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.19.因式分解:100﹣4a2=4(5﹣a)(5+a).【分析】首先提取公因式,进而利用平方差公式分解因式得出即可.【解答】解:100﹣4a2=4(25﹣a2)=4(5﹣a)(5+a).故答案为:4(5﹣a)(5+a).【点评】此题主要考查了提公因式法与公式法的综合运用,熟练应用平方差公式是解题关键.20.因式分解的主要方法有:提取公因式法、公式法、分组分解法.【分析】根据因式分解的定义进行求解.【解答】解:根据因式分解的步骤可知:因式分解的方法为:提公因式法、公式法和分组分解法,故答案为:提公因式法、公式法、分组分解法.【点评】此题要注意因式分解的一般步骤:①如果一个多项式各项有公因式,一般应先提取公因式;②如果一个多项式各项没有公因式,一般应思考运用公式、十字相乘法;如果多项式有两项应思考用平方差公式,如果多项式有三项应思考用公式法或用十字相乘法;如果多项式超过三项应思考用完全平方公式法;③分解因式时必须要分解到不能再分解为止.21.若多项式x2﹣x﹣20分解为(x﹣a)(x﹣b),且a>b,则a= 5 ,b=﹣4 .【分析】将原多项式因式分解后与(x﹣a)(x﹣b)对照,且根据a>b即可得到a、b的值.【解答】解:x2﹣x﹣20=(x﹣5)(x+4)=(x﹣a)(x﹣b),∵a>b,∴a=5,b=﹣4.故答案为5,﹣4.【点评】本题考查了因式分解的意义,解题的关键是正确的将原多项式因式分解.22.若x﹣3y=5,则x2﹣3xy﹣15y=25 .【分析】先将x2﹣3xy﹣15y变形为x(x﹣3y)﹣15y,把x﹣3y=5代入得到5x﹣15y=5(x ﹣3y),再代入即可求解.【解答】解:x2﹣3xy﹣15y=x(x﹣3y)﹣15y=5x﹣15y=5(x﹣3y)=5×5=25.故答案为:25.【点评】考查了因式分解﹣提公因式法,解决本题的关键是把所求的式子整理为含x﹣3y 的式子.23.x(a+b)+y(a+b)=(x+y)(a+b).【分析】观察原式,发现公因式为a+b;提出后,即可得出答案.【解答】解:原式=(x+y)(a+b).故答案是:(x+y)(a+b).【点评】本题考查了因式分解﹣﹣提公因式法.要明确找公因式的要点:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.24.因式分解:a2+a+=(a+)2;1﹣9y2=(1+3y)(1﹣3y).【分析】根据完全平方公式可分解(1);根据平方差公式,可分解(2).【解答】解:(1)原式=(a+)2;(2)原式=(1+3y)(1﹣3y),故答案为:(a+)2,(1+3y)(1﹣3y).【点评】本题考查了运用公式分解因式,凑成公式的形式是解题关键.25.已知x2﹣y2=69,x+y=3,则x﹣y=23 .【分析】把已知条件利用平方差公式分解因式,然后代入数据计算即可.【解答】解:∵x2﹣y2=69,x+y=3,∴x2﹣y2=(x+y)(x﹣y)=3(x﹣y)=69,解得:x﹣y=23.【点评】此题考查对平方差公式的灵活应用能力,分解因式是关键.26.分解因式:a3﹣ab2=a(a+b)(a﹣b);3a2﹣3=3(a+1)(a﹣1).【分析】先提取公因式,然后套用公式a2﹣b2=(a+b)(a﹣b),进一步分解因式即可.【解答】解:a3﹣ab2,=a(a2﹣b2),=a(a+b)(a﹣b);3a2﹣3,=3(a2﹣1),=3(a+1)(a﹣1).【点评】本题考查了用公式法进行因式分解的能力,因式分解的一般步骤是:“一提,二套,三检”.即先提取公因式,再套用公式,最后看结果是否符合要求.27.因式分解:(x﹣3)(x+4)+3x=(x+6)(x﹣2).【分析】原式变形得到x2+4x﹣12,再利用十字相乘法分解即可.【解答】解:(x﹣3)(x+4)+3x=x2+x﹣12+3x=x2+4x﹣12=(x+6)(x﹣2).故答案为:(x+6)(x﹣2).【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘法是解本题的关键.28.分解因式:x2﹣5xy+6y2=(x﹣2y)(x﹣3y).【分析】因为(﹣2)×(﹣3)=6,(﹣2)+(﹣3)=﹣5,所以利用十字相乘法分解因式即可.【解答】解:x2﹣5xy+6y2=(x﹣2y)(x﹣3y).故答案为:(x﹣2y)(x﹣3y).【点评】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.29.在实数X围内分解因式:2x2+3xy﹣y2=2(x﹣y)(x﹣y).【分析】首先求出2x2+3xy﹣y2=0的根,进而分解因式得出即可.【解答】解:令2x2+3xy﹣y2=0,则x1=y,x2=y,则2x2+3xy﹣y2=2(x﹣y)(x﹣y).故答案为:2(x﹣y)(x﹣y).【点评】本题主要考查对一个多项式进行因式分解的能力,当要求在实数X围内进行分解时,分解的结果一般要分到出现无理数为止是解答此题的关键.三.解答题(共19小题)30.已a2+b2﹣2a+6b+10=0,求的值.【分析】已知等式左边利用完全平方公式变形,利用非负数的性质求出a与b的值,代入原式计算即可得到结果.【解答】解:∵a2+b2﹣2a+6b+10=(a﹣1)2+(b+3)2=0,∴a﹣1=0,b+3=0,即a=1,b=﹣3,则原式=1+=.【点评】此题考查了因式分解﹣运用公式法,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.31.利用因式分解计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)…(1﹣)【分析】把每个括号内利用平方差分解因式,再分别求和差后进行求积即可.【解答】解:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)…(1﹣)=(1+)(1﹣)(1+)(1﹣)(1+)(1﹣)+…+(1+)(1﹣)=××××××…××=.【点评】本题主要考查因式分解的应用,正确进行因式分解是解题的关键.32.如图,在一块边长为a厘米的正方形纸板上,在正中央剪去一个边长为b厘米的正方形,当a=6.25,b=3.75时,请利用因式分解的知识计算阴影部分的面积.【分析】根据题意可知阴影部分的面积=边长为a厘米的正方形的面积﹣边长为b厘米的正方形的面积,根据平方差公式分解因式,再代入求值即可.【解答】解:设阴影部分的面积为s,依题意得:s=a2﹣b2=(a+b)(a﹣b),当a=6.25,bs﹣3.75)=10×2.5=25(平方厘米);答:阴影部分的面积为25平方厘米.【点评】本题实质上考查了应用平方差公式进行因式分解,及用代入法求代数式的值.33.已知x2+x﹣1=0,求x3+2x2+3的值.【分析】观察题意可知x2+x=1,将原式化简可得出答案.【解答】解:依题意得:x2+x=1,∴x3+2x2+3,=x3+x2+x2+3,=x(x2+x)+x2+3,=x+x2+3,=4;或者:依题意得:x2+x=1,所以,x3+2x2+3,=x3+x2+x2+3,=x(x2+x)+x2+3,=x+x2+3,=1+3,=4.【点评】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.34.如果一个自然数能表示为两个自然数的平方差,那么称这个自然数为智慧数,例如:16=52﹣32,16就是一个智慧数,小明和小王对自然数中的智慧数进行了如下的探索:小明的方法是一个一个找出来的:0=02﹣02,1=12﹣02,3=22﹣12,4=22﹣02,5=32﹣22,7=42﹣32,8=32﹣12,9=52﹣42,11=62﹣52,…小王认为小明的方法太麻烦,他想到:设k是自然数,由于(k+1)2﹣k2=(k+1+k)(k+1﹣k)=2k+1.所以,自然数中所有奇数都是智慧数.问题:(1)根据上述方法,自然数中第12个智慧数是15 ;(2)他们发现0,4,8是智慧数,由此猜测4k(k≥3且k为正整数)都是智慧数,请你参考小王的办法证明4k(k≥3且k为正整数)都是智慧数;(3)他们还发现2,6,10都不是智慧数,由此猜测4k+2(k为自然数)都不是智慧数,请利用所学的知识判断26是否是智慧数,并说明理由.【分析】(1)仿照小明的办法,继续下去,即可得出结论;(2)仿照小王的做法,将(k+2)2﹣k2用平方差公式展开即可得出结论;(3)验证26是否符合4k+2,如果符合,则得出26不是智慧数.【解答】解:(1)继续小明的方法,12=42﹣22,13=72﹣62,15=82﹣72,即第12个智慧数是15.(2)设k是自然数,由于(k+2)2﹣k2=(k+2+k)(k+2﹣k)=4k+4=4(k+1).所以,4k(k≥3且k为正整数)都是智慧数.(3)4k+2=2(2k+1)=2[(k+1)2﹣k2]=[(k+1)]2﹣(k)2∵(k+1)、k均不是自然数,∴4k+2不是智慧数,令4k+2=26,解得:k=6.故26不是智慧数故答案为:(1)15.【点评】本题考查了新定义智慧数以及平方差公式的运用,解题的关键是:(1)仿照小明的办法继续找下去;(2)将将(k+2)2﹣k2用平方差公式展开;(3)令4k+2=26,求出k 值.本题属于基础题,难度不大,题中文字较多,很多学生不喜欢这样的文字题,解决该类型题时,只要仿照文中给定的办法即可得出结论.35.已知a﹣b=,ab=,求﹣2a2b2+ab3+a3b的值.【分析】将所求式子三项提取公因式ab后,括号中三项利用完全平方公式分解因式,将ab 与a﹣b的值代入计算,即可求出值.【解答】解:∵a﹣b=,ab=,∴﹣2a2b2+ab3+a3b=ab(﹣2ab+a2+b2)=ab(a﹣b)2=×=.【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.36.分解因式(1)﹣3a2b3+6a3b2c+3a2b(2)(a+b)2+(a+b)(a﹣3b).【分析】(1)直接提公因式即可;(2)提公因式后,合并同类项,再提取公因式2.【解答】解:(1)原式=﹣3a2b(b2﹣2abc﹣1);(2)原式=(a+b)(a+b+a﹣3b)=(a+b)(2a﹣2b)=2(a+b)(a﹣b).【点评】此题主要考查了提取公因式法以及公式法分解因式,注意要分解到不能分解为止.37.分解因式:(1)5x2﹣20;(2)﹣3x2+2x﹣.【分析】(1)首先提取公因式5,再利用平方差进行二次分解即可;(2)首先提取公因式﹣3,再利用完全平方进行二次分解即可.【解答】解:(1)原式=5(x2﹣4)=5(x+2)(x﹣2);(2)原式=﹣3(x2﹣x+)=﹣3(x﹣)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.38.因式分解:x2(x﹣y)+y2(y﹣x)【分析】根据提取公因式再运用公式,可得答案.【解答】解:原式=x2(x﹣y)﹣y2(x﹣y)=(x﹣y)(x2﹣y2)=(x﹣y)(x+y)(x﹣y)=(x﹣y)2(x+y).【点评】本题考查了因式分解,先提取公因式,再运用公式法分解因式.39.分解下列因式:(1)a4﹣a2(2)1﹣4x2+4xy﹣y2.【分析】(1)先提公因式,再根据平方差公式分解第二个因式ik;(2)先分组(把后三项分成一组,括号前是负号),再把后三项分解因式,最后根据平方差公式分解因式即可.【解答】(1)解:a4﹣a2=a2(a2﹣1)=a2(a+1)(a﹣1);(2)解:1﹣4x2+4xy﹣y2=1﹣(4x2﹣4xy+y2)=1﹣(2x﹣y)2,=[1+(2x﹣y)][1﹣(2x﹣y)]=(1+2x﹣y)(1﹣2x+y).【点评】本题考查了因式分解(分组分解法、公式法、提公因式法),主要考查学生分解因式的能力,两小题都比较典型,是一道比较好的题目.40.先阅读下列材料,并对后面的题进行解答:(x+2)(x+3)=x2+5x+6;(x﹣4)(x+1)=x2﹣3x﹣4;(y+4)(y﹣2)=y2+2y﹣8;(y﹣5)(y﹣3)=y2﹣8y+15;….(说明:本材料源于课本练习题)(1)观察积中的一次项系数、常数项与等号左边的两因式的常数项有何关系?(用语言表达或者用公式来呈现它们之间关系和规律均可)(2)巧算填空:①(m+9)(m﹣11)=m2﹣2m﹣99 ;②(a﹣100)(a﹣11)=a2﹣111a+1100 .(3)若(x+m)(x+n)=x2+ax+12(m、n、a都是整数),请根据(1)问得出的关系和规律推算出a的值.【分析】(1)总结规律:积中的一次项系数是两因式中的常数项的和,积中的常数项是两因式中的常数项的积.(2)利用多项式乘以多项式的法则进行计算即可;(3)根据规律列式12=mn,根据m、n都是整数,可得m和n有6组值,分别计算其和可得a的值.【解答】(本题满分7分):解:(1)(2分)积中的一次项系数是两因式中的常数项的和,积中的常数项是两因式中的常数项的积.也可用公式表达:(x+p)(x+q)=x2+(p+q)x+pq.(写对其中之一即可给分).(2)填空:(2分)①(m+9)(m﹣11)=m2+9m﹣11m﹣99=m2﹣2m﹣99,②(a﹣100)(a﹣11)=a2﹣11a﹣100a+1100=a2﹣111a+1100,故答案为:①m2﹣2m﹣99;②a2﹣111a+1100;(3)(3分)∵积中的常数项是两因式中的常数项的积,即12=mn,又m、n、a都是整数.∴12=1×12=(﹣1)×(﹣12)=2×6=(﹣2)×(﹣6)=3×4=(﹣3)×(﹣4),∴m=1,n=12;或…或m=﹣3,n=﹣4.又∵积中的一次项系数是两因式中的常数项的和.即a=m+n,∴a1=13,a2=﹣13,a3=8,a4=﹣8,a5=7,a6=﹣7,(只要简单推算,答案正确即可每个给0.5分)【点评】本题考查了因式分解﹣十字相乘法和多项式的乘法法则,也是阅读理解问题,根据题意总结十字相乘的公式是关键.41.我们把形如:,,,的正整数叫“轴对称数”,例如:22,131,2332,40604…(1)写出一个最小的五位“轴对称数”.(2)设任意一个n(n≥3)位的“轴对称数”为,其中首位和末位数字为A,去掉首尾数字后的(n﹣2)位数表示为B,求证:该“轴对称数”与它个位数字的11倍的差能被10整除.(3)若一个三位“轴对称数”(个位数字小于或等于4)与整数k(0≤k≤5)的和能同时被5和9整除,求出所有满足条件的三位“轴对称数”.【分析】(1)写出最小的五位“轴对称数”,即首位数字和个位数字为1,其它为0的数;(2)先表示这个任意的n(n≥3)位“轴对称数”:=A×10n+B×10+A,再表示“轴对称数”与它个位数字的11倍的差,合并同类项并提公因式,可得结论;(3)设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),根据与k的和能同时被5和9整除,即能被45整除,设100a+10b+a+k=45c,化为90a+11a+10b+k=45c,所以11a+10b+k 能同时被45整除,分情况计算可得结论.【解答】(1)解:最小的五位“轴对称数”是10001;(2)证明:由题意得:A×10n+B×10+A﹣11A=A×10n+10B﹣10A=10(A×10n﹣1+B﹣A),∴该“轴对称数”与它个位数字的11倍的差能被10整除;(3)解:设这个三位“轴对称数”为(1≤a≤4,0≤b≤9),∵与整数k(0≤k≤5)的和能同时被5和9整除,∴设100a+10b+a+k=45c,101a+10b+k=45c,90a+11a+10b+k=45c,∴因为101a+10b+k能同时被5和9整除,所以11a+10b+k能同时被5和9整除,即11a+10b+k的值为0或45或90或135,又1≤a≤4,0≤b≤9,∴当a=1,b=3,k=4时,这个三位“轴对称数”是131.当a=1,b=8,k=4时,这个三位“轴对称数”是131.当a=2,b=2,k=3时,这个三位“轴对称数”是222.当a=3,b=1,k=2时,这个三位“轴对称数”是313.当a=4,b=0,k=1时,这个三位“轴对称数”是404.当a=4,b=9,k=1时,这个三位“轴对称数”是494.所有满足条件的三位“轴对称数”为:131,222,313,404,494.【点评】本题考查整式的运算,解题的关键是根据题意列出式子,本题属于中等题型.42.4x2﹣16y2.【分析】将原式化为先提公因式后再将x2﹣4y2化为x2﹣(2y)2后利用平方差公式展开即可.【解答】解:原式=4(x2﹣4y2)=4[x2﹣(2y)2]=4(x+2y)(x﹣2y).【点评】本题考查了平方差公式因式分解,解题的关键是先提取公因式4,然后利用平方差公式因式分解.43.把下列各式分解因式:(1)a2﹣14ab+49b2(2)a(x+y)﹣(a﹣b)(x+y);(3)121x2﹣144y2;(4)3x4﹣12x2.【分析】(1)直接利用完全平方公式进行因式分解即可;(2)提取公因式(x+y)即可;(3)直接利用平方差公式因式分解即可;(4)先提取公因式3x2,然后再利用平方差公式因式分解即可.【解答】解:(1)a2﹣14ab+49b2=a2﹣2×7ab+(7b)2=(a﹣7b)2(2)a(x+y)﹣(a﹣b)(x+y)=(x+y)(a﹣a+b)=b(x+y);(3)121x2﹣144y2;=(11x)2﹣(12y)2=(11x+12y)(11x﹣12y)(4)3x4﹣12x2=3x2(x2﹣4)=3x2(x+2)(x﹣2)【点评】本题考查了用公式法和提公因式法因式分解的知识,解题时候首先考虑提公因式法,然后考虑采用公式法,分解一定要彻底.44.将下列各式分解因式(1)15a3+10a2;(2)y2+y+;(3)3ax2﹣3ay2.【分析】(1)利用提公因式法因式分解;(2)利用完全平方公式因式分解;(3)先提公因式、再利用平方差公式因式分解.【解答】解:(1)15a3+10a2=5a2(3a+2);(2)y2+y+=(y+)2;(3)3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).【点评】本题考查的是多项式的因式分解,掌握提公因式法、公式法因式分解的一般步骤是解题的关键.45.因式分解(1)2m(a﹣b)﹣3n(b﹣a).(2)16x2﹣64.(3)﹣4a2+24a﹣36.(4)(a﹣b)(3a+b)2+(a+3b)2(b﹣a).【分析】(1)利用提公因式法因式分解;(2)先提公因式,再利用平方根公式因式分解;(3)先提公因式,再利用完全平方公式因式分解;(4)先提公因式,再利用平方根公式因式分解.【解答】解:(1)2m(a﹣b)﹣3n(b﹣a)=2m(a﹣b)+3n(a﹣b)=(a﹣b)(2m+3n);(2)16x2﹣64=16(x2﹣4)=16(x+2)(x﹣2);(3)﹣4a2+24a﹣36=﹣4(a2﹣6a+9)=﹣4(a﹣3)2;(4)(a﹣b)(3a+b)2+(a+3b)2(b﹣a)=(a﹣b)[(3a+b)2﹣(a+3b)2]=8(a﹣b)2(a+b).【点评】本题考查的是多项式的因式分解,掌握提公因式法、平方差公式、完全平方公式因式分解的一般步骤是解题的关键.46.请观察以下解题过程:分解因式:x4﹣6x2+1解:x4﹣6x2+1=x4﹣2x2﹣4x2+1=(x4﹣2x2+1)﹣4x2=(x2﹣1)2﹣(2x)2=(x2﹣1+2x)(x2﹣1﹣2x)以上分解因式的方法称为拆项法,请你用拆项法分解因式:a4﹣7a2+9.【分析】首先将原多项式利用拆项的方法分解为a4﹣6x2﹣a2+9,然后进一步组合为(a4﹣6a2+9)﹣a2后直接利用平方差公式分解为(a2﹣3+a)(a2﹣3﹣a)即可.。

9.5 多项式的因式分解(3)

9.5 多项式的因式分解(3)

填空:
(1)(a+3)2= a2+6a+9 (2)(a-3)2 = a2- 6a+9
(3)(a+2b) 2 = a2+4ab+4b2 (4)(a-4b)2 = a2- 8a+16b2
新知探索:
你能将多项式a2 10a 25分解因式吗?
完全平方公式
(a+b)2=a2+2ab+b2
(a-b)2=a2 - 2ab+b2
拓展提高:
2、若 x2 mx 36是一个完全平方式,
则常数m的值等于_±__1_2__.
3、已知a2 2a b2 4b 5 0, 求a、b的值。
2、把下列各式分解因式:
(1) 9a4+12a2b2+4b4
(2) 16-24(x-y)+9(x-y)2
(3) 4x2-4x(y-1)+(y-1)2 运用平方差公式、完全平方公式把 一个多项式分解因式的方法叫做运 用公式法.
拓展提高:
1、计算: (1) 3.72 23.7 2.7 2.72 (2) 9.92+9.9×0.2+0.01
反过来,就得到 a2+2ab+b2 =(a+b)2 a2- 2ab+b2 =(a- b)2
判断下列各式哪些式子可以写成一个 整式平方的形式:
(1)a2 4a 4
(2)9x2-3x+1
(3)4a2 4a 1 (4) x2 1 y2 xy
4
请同学们再自己写出一个完全平方式, 并互相交流。
例1、把下列各式分解因式:
(1)4a2-36ab+81b2 (2) 25x2+10xy+y2

多项式的因式分解提公因式法 (1)

多项式的因式分解提公因式法 (1)

多项式的因式分解提公因式法一、知识概述因式分解与整式和分式联系极为密切.因式分解是在学习有理数和整式四则运算的基础上进行的,它为今后学习分式运算、解方程和方程组及代数式和三角函数式的恒等变形提供必要的基础.1、一般地,对于两个多项式f与g,如果有多项式h使得f=gh,那么我们把g叫做f的一个因式,此时,h也是f的一个因式,2、一般地,把一个含字母的多项式表示成若干个均含字母的多项式的乘积的形式,称为把这个多项式因式分解.3、几个多项式的公共的因式称为它们的公因式.4、如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种把多项式因式分解的方法叫做提公因式法.5、提公因式的方法公因式的系数为各项系数的最大公约数,字母部分为相同字母的最低次数.如8x3y2-6x2y3+2xy4的公因式为2xy2;用提公因式法分解因式的关键是准确地出公因式,解题步骤可概括为“一找、二分、三提、四查”.二、重难点知识1、对因式分解的理解(1)因式分解是多项式的一种恒等变形,也是单项式与多项式,多项式与多项式相乘的逆向变形.(2)分解因式是对多项式而言的,且分解的结果必须是整式的积的形式.(3)分解因式都是在指定的数集内进行(如无特殊说明,一般指有理数),其结果要使每一个因式不能再分解为止.2、公因式的构成①系数:各项系数的最大公约数;②字母:各项都含有相同字母;③指数:相同字母的最低次幂.3、提公因式时要一次提尽.添加括号时如果括号前面有负号,括号内的各项要变号.三、典型例题讲解例1、(1)下列各式中从左到右的变形,是因式分解的是()A.(x+5)(x-5)=x2-25B.C.x2y-xy2=xy(x-y)D.15=3×5(2)下列各式的因式分解中正确的是()A.-a2+ab-ac=-a(a+b-c)B.9xyz-6x2y2=3xyz(3-2xy)C.3a2x-6bx+3x=3x(a2-2b)D.解析:(1)显然,A是乘法运算,不正确;B分解因式是将多项式分成几个整式的积,而右边有分式;D是常数,是单项式,不是多项式,不属于分解因式范围,所以C是正确的.(2)A.提-a后括号里面各项要变号,但第二、三项未变号.B.第二项没有公因式z.C.提3x后,括号里第三项还有因数1,掉了一项.D.是正确的.答案:(1)C;(2)D例2、分解因式:(1).(2).分析:(1)由于两项、中都有公因式,因此可提取.(2)多项式中各项字母没有相同的,因此只需提出系数公约数即可. 解:(1)=.(2)=.点评:(1)当公因式是单项式时,一定要注意取各项系数的最大公约数和相同字母的最低次幂;(2)对于数字系数,提出的系数应是多项式中各项系数的最大公约数.很多同学在分解因式时容易忽略数字系数的处理,以致于造成分解不彻底的错误.(3)提公因式后,一定要注意括号内的项数与原多项式的项数在合并同类项之前是相同的,不能漏项,尤其是将整个一项作为公因式提取后,这一项就变为1.例3、把下列各式分解因式:(1)6x4y2-12x3y+27x2y3;(2)-x4y+x3y2-x2y3;(3)x n+3x n-1+x n-2;(4)5(x-y)3+10(y-x)2;(5)m(5ax+ay-1)-m(3ax-ay-1).分析:分解因式时,首先要看多项式各项有无公因式,若有公因式,应先提取公因式,要对数字系数和字母分别进行考虑,如果系数为整数,应该提各项系数的最大公约数;字母考虑两点:一点是取各项相同的字母,一点是各项相同字母的指数取最低的;公因式提出后,剩下的因式的求法是:用公因式去除多项式的每一项,所得的商即为剩下的因式.一个多项式中的公因式,既可以是一个单项式,也可以是一个多项式,注意用整体思想去观察分析多项式,关于幂的底数的符号与指数有如下规律:解:(1) 6x4y2-12x3y+27x2y3=3x2y·2x2y-3x2y·4x+3x2y·9y2=3x2y(2x2y-4x+9y2)(2)-x4y+x3y2-x2y3=-(x4y-x3y2+x2y3)=-(x2y·x2-x2y·xy+x2y·y2)=-x2y(x2-xy+y2)(3)x n+3x n-1+x n-2=x n-2·x2+x n-2·3x+x n-2·1=x n-2(x2+3x+1)(4)5(x-y)3+10(y-x)2=5(x-y)3+10(x-y)2=5(x-y)2(x-y+2)(5)m(5ax+ay-1)-m(3ax-ay-1)=m[(5ax+ay-1)-(3ax-ay-1)]=m·(5ax+ay-1-3ax+ay+1)=m(2ax+2ay)=2ma(x+y)例4、不解方程组求7y(x-3y)2-2(3y-x)3的值.分析:先把7y(x-3y)2-2(3y-x)3进行因式分解,再将2x+y=6和x-3y=1整体代入. 解:7y(x-3y)2-2(3y-x)3=7y(x-3y)2+2(x-3y)3=(x-3y)2[7y+2(x-3y)]=(x-3y)2(2x+y)∵2x+y=6,x-3y=1,∴原式=12×6=6.点评:先化简再求值以及整体代入的思想在求值问题中经常运用.例5、求证:32000-4×31999+10×31998能被7整除.分析:先把32000-4×31999+10×31998因式分解证明:∵32000-4×31999+10×31998=31998×(32-4×3+10)=7×31998∴32000-4×31999+10×31998能被7整除.在线测试一、选择题1、在下列四个式子中,从等号左边到右边的变形是因式分解的是()A.-5x2y3=-5xy(xy2)B.x2-4-3x=(x+2)(x-2)-3xC.ab2-2ab=ab(b-2)D.(x-3)(x+3)=x2-92、49a3bc3+14a2b2c2-21ab2c2在分解因式时,应提取的公因式是()A.7abc2B.7ab2c2C.7a2b2c2D.7a3bc33、已知二次三项式x2+bx+c 可分解为(x+α)(x+β),下面说法中错误的是()A.若b>0,c>0,则α、β同取正号B.若b<0,c>0,则α、β同取负号C.若b>0,c<0,则α、β异号,且正数的绝对值小于负数的绝对值D.若b<0,c<0,则α、β异号,且负的一个数的绝对值较大4、因式分解(x-y)2-(y-x)应为()A.(x-y)(x-y-1) B.(y-x)(x-y-1)C.(y-x)(y-x-1) D.(y-x)(y-x+1)5、把多项式3m(x-y)-2(y-x)2分解因式的结果是()A.(x-y)(3m-2x-2y) B.(x-y)(3m-2x+2y)C.(x-y)(3m+2x-2y) D.(y-x)(2x-2y+3m)6、在下列各式中:①a-b=b-a;②(a-b)2=(b-a)2;③(a-b)2=-(b-a)2;④(a-b)3=(b-a)3;⑤(a-b)3=-(b-a)3;⑥(a+b)(a-b)=(-a+b)(-a-b).正确的等式有()A.1个B.2个C.3个D.4个7、在分解-5x3(3a-2b)2+(2b-3a)2时,提出公因式-(3a-2b)2后,另一个因式是()A.5x3B.5x3+1C.5x3-1 D.-5x38、下列各组代数式中没有公因式的是()A.5m(a-b)与b-a B.(a+b)2与-a-bC.mx+y与x+y D.-a2+ab与a2b-ab2 9、下列各题因式分解正确的是()A.3x2-5xy+x=x(3x-5y)B.4x3y2-6xy3z=-2xy2(2x2-yz+3)C.3ab(a-b)-6a(a-b)=3(a-b)(ab-2a)D.-56x3yz+14x2y2z-21xy2z2=-7xyz(8x2-2xy+3yz)10、把3a n+2+15a n-1-45a n分解因式是()A.3(a n+2+5a n-1-15a n)B.3a n(a2+5a-1-15)C.3a n-1(a3+5-15a-1)D.3a n-1(a3+5-15a)重 做提 示B 卷二、解答题。

因式分解提公因式法

因式分解提公因式法
公因式的负号写在括号外,使括号内第一项的系数为正。
ቤተ መጻሕፍቲ ባይዱ
记一记: 如果多项式的各项含有公因式, 那么就可以把这个公因式提取出来, 把多项式化为公因式与另一个多项式 的积的形式,这种分解因式的方法叫 做提公因式法。
<自我挑战>
1.辨析:(1)3x² y-5xy² +xy=xy(3x-5y) (2) 2x³ -4x² =x² (2x-4) (3)a6bm+a² bm+1=a² bm(a³ +b) 2.先因式分解,再计算。 (1)1.302×9.4+8.698×9.4 (2)已知a+b=3,ab=2, 求代数式 a² b+ab² +2a² b² 的值 3.用提公因式法对下面的多项式因式分解 5(a-b)³ -25(b-a)²
回归生活:

大吴镇居民用电每度0.50元,小明家今 年第一季度用电数据如下:
月份 度数 1月 32度 2月 43度 3月 25度
请你帮小明算一算,第一季度应交多 少电费?
走进物理学课:
已知电学公式为U=IR1 +IR2 +IR3
,当 R1 =25.4, R2 =39.2, R3=35.4, I=2.5时,用分解因式求出U的值


作业: P91习题 1
谢谢大家
:


如何找多项式各项的公因式?
1、若系数是整系数,则取各项 系数的最大公约数。
2、字母取各项相同的字母;相同 字母的指数取次数最低的
想一想:
3m+3n = 3 ( m+n )
多项式
<和式>
因式分解 整式乘法
整式的乘法

八年级数学知识点分类讲解1因式分解(一)

八年级数学知识点分类讲解1因式分解(一)

八年级数学知识点分类讲解第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)多项式 a2b2+ab2的公因式是 (3)多项式3x2-6x3的公因式是 (4)多项式 a2m+a5n的公因式是
4 ab2 3x2 a2

. . .
总结3:找一个多项式的公因式一般分三个步骤: 一看系数:当多项式的各项系数是整数时,公因式的系数应
取各项系数的最大公约数.
二看字母:公因式的字母应取多项式中各项都含有的相同字母. 三看指数:相同字母的指数取次数最低的.
(1)多项式 4x+4y的公因式是
(2)多项式 a2b2+ab2的公因式是 (3)多项式3x2-6x3的公因式是 (4)多项式 a2m+a5n的公因式是
思考:
4 ab2 3x2 a2

. . .
如何寻找一个多项式的公因式?
9.5 多项式的因式分解(1)
预习生疑 7、指出下列各多项式的公因式。
(1)多项式 4x+4y的公因式是
初中数学
七年级(下册)
9.5
多项式的因式分解(1)
9.5 多项式的因式分解(1)
预习生疑 1、计算:a(b+c+d) = ab+ac+ad 整式乘积 多项式 整式乘积 2、观察上面等式左右两边的形式特点。 3、把上面的等式反过来写: ab+ac+ad = a(b+c+d) 多项式 整式乘积 因式分解
总结1:
把一个多项式写成几个整式的积的形式,叫做 多项式的因式分解。
9.5 多项式的因式分解(1)
预习生疑 4、下列各式由左到右的变形哪些是因式分解,哪些不 是?为什么?
(1) ab+ac+d=a(b+c)+d
(2) a2-1=(a+1)(a-1)
不是 是 不是 不是
(3) (a+1)(a-1)=a2-1
9.5 多项式的因式分解(1)
展示析疑 1、写出下列各多项式的公因式。 ( 1 ) 3 x2 + x (3)4mb2-6nb (2)7y2-21y (4) 9abc-6a2b2+12abc2
2、填空并说说你的方法: (1)a2b+ab2=ab( a+b ) (2)3x2-6x3=3x2( 1-2x ) (3)9abc-6a2b2+12abc2=3ab( 3c-2ab+4c2 )
(4) 8a2b3c=2a2·2b3·2c
9.5 多项式的因式分解(1)
预习生疑 5、因式分解与整式乘法有什么区别和联系? 整式乘积 多项式 整式乘积 因式分解 区别: 整式乘法:有几个整式积的形式转化成一个多项式 的形式. 因式分解:有一个多项式的形式转化成几个整式的积 的形式. 联系: 多项式的因式分解与整式乘法是两种相反方向 的变形,它们互为逆过程.
9.5 多项式的因式分解(1)ห้องสมุดไป่ตู้
展示析疑
例1
因式分解:
(2)6a2-9ab+3a.
(1)5x3-10x2 ;
9.5 多项式的因式分解(1)
互动追疑
例2
因式分解:
(1)12ab2c-6ab. (2)-2m3+8m2-12m (3)3a(x-y)-2b(x- y)
总结4:
如果多项式的各项含有公因式,那么就可以把这个 公因式提到括号外,把多项式写公因式与另一个多项式 的积的形式,这种分解因式的方法叫做提公因式法。
9.5 多项式的因式分解(1)
预习生疑 6、观察多项式 ab+ac+ad 的每一项,你有什么 发现吗? 多项式ab+ac+ad各项都含有因式
总结2:
a

a就是多项式ab+ac+ad各项的公因式. 一个多项式各项都含有的因式,称为这个多项式 各项的公因式.
9.5 多项式的因式分解(1)
预习生疑 7、指出下列各多项式的公因式。
相关文档
最新文档