立方体和分数乘法奥数题

合集下载

人教版6年级数学上册--奥数题

人教版6年级数学上册--奥数题

第一单元 分数乘法【例1】看图写算式.解析:本题考查的知识点是利用“数形结合”思想来理解分数乘分数的意义和计算方法.解答时,先根据左图得出阴影部分表示单位“1”的31,右图表示求31的43是多少,它相当于把单位“1”平均分成了(3×4=12)份,取了其中的3份,也就是相当于单位“1”的41. 解答:31×43=129 31的43是多少 41【例2】一桶油净重100千克,用去这桶油的101以后,又买来这时桶里油的101,现在桶里还有( )千克的油. A.100 B.101 C.99D.80解析:本题考查的知识点是解决实际问题中单位“1”的理解.通过读题发现:第一次用去时的单位“1”与第二次买来时的单位“1”是不同的.第一次用去这桶油的101以后,桶里还有100×(1-101)=90(千克),所以买来的油是90×101=9(千克),因此现在桶里有油90+9=99(千克),所以选C.答案:C【例3】根据以下信息完成统计表.联系实际想一想,这样的天气情况说明了什么?解析:从已知信息中我们发现:6月份的天数是30天,其中阴天占51,根据求一个数的几分之几是多少用乘法计算,可以列式计算出阴天的天数是30×51=6(天),再结合晴天比阴天多占总天数的31,可以求出晴天的天数是 6×(1+31)=8(天),这样可以得出雨天的天数是 30-6-8=16(天),由此填写统计表并得出结论:雨天的天数大约占这个月的一半,其余天数约占一半.解答:( )×( )=( )这个算式表示求( )是多少,结果是( ).结合统计表说明,这个月以晴天为主,阴天和雨天的天数和大约占这个月的一半.【例4】已知a 、b 是均不为0的整数,如果20172016×a=20182016×b,则a 与b 相比,哪个数大?解析:本题考查的知识点是分数乘法积的大小比较.解答时,读已知信息发现:a 、b 是均不为0的整数,且20172016×a=20182016×b,所以要比较a 与b 的大小,可以通过比较20172016与20182016的大小来比较.根据乘积相等的乘法等式中,已知因数越小,那么与它相乘的另一个因数就越大,据此解答即可. 解答:因为20171>20181,所以1-20171<1-20181,即20172016<20182016,所以a >b. 【例5】计算:(1)(2)解析:(1)本题考查的知识点是采用拆数法解答分数乘法问题.解答时结合每个乘法算式的特征,把把每个分数拆成两个分数相减的形式,然后通过加减相互抵消求得结果.(2)本题考查的知识点是利用“交换因数与分子的方法”结合乘法分配律进行分数乘法的简算.解答时,先把24和51的位置交换,这样出现相同的因数51,然后利用乘法分配律进行简算.解答:(2)=51×4324+51×4319 =51×(4324+4319) =51×1=51 【例6】一位老人养了17只羊,临终前立下遗嘱:大儿子分21,二儿子分31,三儿子分91,并且分羊时不许宰杀.老人临终后,三个儿子犯了愁,这怎么分呢?亲爱的同学,你能帮帮他们吗?解析:本题考查的知识点是通过“借数法”来解答分数乘法简单的实际问题.解答时,我们会发现已知信息中,单位“1”的21、31和91都不是整数只,但21+31+91=1817,所以先借1只羊,这样变成18只,通过计算18的21、31和91来求解. 解答:先借一只羊,17+1=18(只) 18×21=9(只) 18×31=6(只) 18×91=2(只) 9+6+2=17(只)答:老大分9只,老二分6只,老三分2只.【例7】老妇卖鸡蛋,有趣又大方,见人卖一半,还送半盒蛋,见了4个人,卖光箱中蛋,请问箱中蛋几盒?解析:本题考查的知识点是用“逆推法”来解答分数乘法问题.解答时,先从遇到最后一个人,卖了一半,送了半盒,刚好卖完,分析得出,最后一个人得到的是:21×2=1(盒)蛋;遇到第三个人,卖了一半,送了半盒,这时有:(1+21)×2=3(盒);遇到第二个人,卖了一半,送了半盒,这时有:(3+21)×2=7(盒); 遇到第一个人,卖了一半,送了半盒,一共有:(7+21)×2=15(盒). 解答:21×2=1(盒) (1+21)×2=3(盒)(3+21)×2=7(盒)(7+21)×2=15(盒) 答:箱中有鸡蛋15盒.【例8】亮亮在计算13+21×M 时,错误地计算成了13+21,结果比正确的结果少4,则M 是多少?解析:本题考查的知识点是利用“方程的方法”解答“错中求解”问题,解答时,先根据给出的已知信息:比正确的结果少4得出方程为13+21×M-(13+21)=4,然后解这个方程,最后求出M=4.解答:由题意得:13+21×M-(13+21)=4 13+21×M-13-21=4 21×M-21=4 M-1=8M=9答:M 是9.【例9】2017减去它的21,再减去余下的31、又减去余下的41、以后每次都减去余下的51、61、……,以后以此类推,一直减到最后余下的20171,那么最后得多少?解析:本题考查的知识点是用类推法解答“连续余问题”,解答时,先从2017减去它的21开始分析,还剩下2017×(1-21),再减去余下的31,还剩下余下的(1-31),即2017×(1-21)×(1-31),依次类推,一直减到最后余下的20171,最后剩下的是2017×(1-21)×(1-31)×(1-41)×……×(1-20171),然后找规律计算出结果即可.解答:2017×(1-21)×(1-31)×(1-41)×……×(1-20171) =2017×21×32×43×……×20172016 =2017×20171 =1【例10】修一条路,第一天修了全长的41,第二天修了余下的31,第二天修了全长的几分之几?解析:本题考查的知识点是不同的单位“1”的理解.解答时,先找出41的单位“1”是全长,31的单位“1”是第一天修后余下的,也就是(1-41)的31,求第二天修了全长的几分之几,就是求(1-41)的31是多少,根据求一个数的几分之几是多少用乘法列式计算为(1-41)×31=43×31=41.解答:(1-41)×31=43×31=41 答:第二天修了全长的41. 【例11】看图写算式并计算.(1) (2)解析:本题考查的知识点是利用“数形结合思想和图示法”来解答分数乘法问题.解答时,先读懂线段图中给出的已知信息和所求的问题,然后利用数形结合思想分析已知信息和所求的问题之间的关系并找到问题的解答方法.(1)从图中读出:这条路400米是单位“1”,已经修了53,问题是求剩下的米数,求还剩下的米数就是求400米的(1-53)是多少,根据求一个数的几分之几是多少用乘法计算,列式计算为400×(1-53)=160(米). (2)从图中读出,已知白菜有168吨,土豆比白菜多72,求土豆有多少吨,就是求比168多72的数是多少,根据求比一个数多几分之几的数是多少用乘法计算,列式计算为168×(1+72)=168×79=216(吨). 解答:(1)400×(1-53)=160(米) (2)168×(1+72)=168×79=216(吨) 【例11】有甲乙两个仓库,甲仓存粮30吨,如果从甲仓中取出101放入乙仓,则两仓存粮数相等.两仓一共存粮多少千克?解析:本题考查的知识点是“移多补少”的方法来解答分数乘法简单的实际问题.解答时,先求出甲仓剩下的吨数30×(1-101)=27(吨),这个吨数就是乙仓现在的吨数,接着再求出乙仓原来的吨数27-30×101=24(吨),最后求出两仓一共的吨数. 解答:30×(1-101)=27(吨) 27-30×101=24(吨) 24+27=51(吨) 答:两仓一共存量51吨.【例12】两堆一样重的煤,第一堆烧掉了54吨,第二堆烧了54,哪堆煤烧掉的多一些?解析:本题考查的知识点是用“分类讨论思想、图表方法来”解答“烧煤多少问题”.解答时,可以通过列表法来帮助分析和解答.解答此类问题的关键是分三种【例13】黄沙包有多少克?解析:本题考查的知识点是利用数形结合思想解答连续求一个数的几分之几问题.解答时,先找到97的单位“1”是绿沙包,43的单位“1”是红沙包;然后结合“红沙包有60克,绿沙包占红沙包的43”这两个已知信息,根据求一个数的几分之几是多少用乘法计算,列式求出绿沙包的克数是60×43=45(克);再结合已知信息黄沙包占绿沙包的97,根据求一个数的几分之几是多少,列式计算出黄沙包的克数是45×97=35(克).解答:60×43=45(克)45×97=35(克) 答:黄沙包有45克.第二单元 位置与方向(二)【例1】小林是石家庄人,学习了《位置与方向》(二)后,他在院子里立了一根竹竿,中午时影子与竹竿在一条直线上,下午某一时刻影子向右移动了30°,这时的太阳在( )方向.A.南偏东30°B.南偏西30°C.北偏东30°D.北偏西30°解析:本题考查的知识点是联系实际解答方向与位置问题.解答时,先明确小林身处北半球,中午时太阳在正南方,影子与太阳的方向相反,影子在正北方;下午某一时刻影子向右移动了30°,就是向东方移动了30°,那么太阳就是向西移动了30°.解答:B【例2】图书馆在剧院的东偏南30°方向500米处,那么剧院在图书馆的( ).A.东偏南30°方向500米处B.南偏东60°方向500米处C.北偏西30°方向500米处D.西偏北30°方向500米处解析:本题考查的知识点是“相对位置”理解.解答时可归纳解决这类题目的一般方法:即相对位置所具有的方向相反,角度和距离相等是不变的.从图中读出:图书馆在剧院的东偏南30°方向500米处,是以剧院为观测点,图书馆 在剧院的方向是东偏南30°,距离是500米 处,所以站在图书馆看剧院,剧院应在图书馆的西偏北30°方向,距离是不变的,还是500米.解答:D【例3】丫丫上学:(1)看图描述丫丫从家到学校的路线;(2)如果丫丫每分钟走60米,丫丫从家到学校需要多少分钟?(3)学校14:00开始上课.一天中午,丫丫13:30从家出发走到商场时,发现没带数学课本.于是她赶回家取了课本后继续上学.如果丫丫每分钟走60米,她会迟到吗?解析:本题考查的知识点是利用方向与路线知识解答“丫丫上学问题”.解答时先找到图中的方向“上北下南、左西右东”,然后再描述丫丫上学的路线,描述路线时,先说方向再说距离,确定方向时,描述哪个位置哪个位置是标准;最后再根据数量关系“路程÷速度=时间”解答第(2)和(3)小题.(1)丫丫从家到学校,先向正东方向走300米到商场,再向东南方向走150米到公园,接着从公园向北偏东30°方向走200米到医院,再向正东方向走310米到广场,最后从广场向东偏北20°方向走180米到学校.(2)先求出从家到学校的总路程列式为300+150+200+310+180,然后用总路程除以速度就是行驶的时间,列式计算为(300+150+200+310+180)÷60=19(分钟). (3)先求出丫丫从家到商场的往返时间列式为300×2÷60,再加上丫丫从家到学校的时间19分钟,求出这次丫丫上学需要的时间,列式计算为300×2÷60+19=29(分钟),然后和30分钟比较,最后得出是否迟到.解答:(1)丫丫每天从家到学校,先向正东方向走300米到商场,再向东南方向走150米到公园,接着从公园向北偏东30°方向走200米到医院,再向正东方向走310米到广场,最后从广场向东偏北20°方向走180米到学校.(2)(300+150+200+310+180)÷60=19(分钟)答:丫丫从家到学校需要19分钟.(3)300×2÷60+19=29(分钟) 29分钟<30分钟答:丫丫不会迟到.【例4】根据描述,把公共汽车行驶的路线图画完.(1厘米长的线段表示1千米)“8路公共汽车从起点站向北偏西30°方向行驶3千米后,向正西方向行驶5千米,最后向西偏南45°方向行驶4千米到达终点站”解析:本题考查的知识点是根据给出的已知信息方向(角度)和距离判定物体位置并画出路线图.因为图上距离1厘米表示实际距离1千米,则3千米÷1千米=3(厘米),5千米÷1千米=5(厘米),4千米÷1千米=4(厘米),又由电车行驶的方向是从起点站向北偏西30°方向行驶3千米后,向正西方向行驶5千米,最后向西偏南45°方向行驶4千米到达终点站.解答:【例5】学校教学楼在花坛的北偏东60°方向的50米处,实验楼在教学楼的北偏西30°方向的30米处,图书馆在实验楼的南偏西60°方向的50米处,问图书馆在花坛的什么方向多少米处?解析:本题考查的知识点是利用“数形结合思想”,根据方向和距离确定物体的位置.解答此题的关键是确定观察的中心点,然后再根据“上北、下南、左西、右东”的方法进行确定方向和位置即可.解答时,先画出花坛、教学楼、实验楼和图书馆的位置,然后将教学楼与实验楼、实验楼与图书馆、图书馆与花坛、花坛与教学楼相连接,连接后可知:花坛、教学楼、实验楼、图书馆围成了一个长为50米,宽为30米的长方形,根据长方形的性质可知图书馆与花坛的距离为30米,阴影图书馆、花坛、教学楼围成了一个直角,教学楼再花坛的北偏东60度上,所以图书馆就在花坛北偏西30°方向上. 解答:图书馆在花坛的北偏西30°方向的30米处.【例6】某海域一艘轮船发生故障,船上雷达搜索附近显示:1、请你根据雷达搜索显示,在平面图上画出它们的位置.2、如果商船以每小时50千米的速度赶往出事地点,需要几小时?军舰想与商船同时赶到,每小时至少行驶多少千米?解析:本题考查的知识点是线段比例尺的意义以及依据方向(角度)和距离判定物体位置.解答时,依据线段比例尺的意义求出军舰,货船,商船与出事船只之间的图上距离,再据它们之间的方向关系在图上标出它们的位置.最后根据已知条件求出商船的形式时间和军舰的速度.解答:1、因为图上距离1厘米表示实际距离100千米,则军舰,货船,商船的图上距离分别为:300÷100=3(厘米),300÷100=3(厘米),250÷100=2.5(厘米),再据它们的方向关系,标注如下:2、250÷50=5(小时) 300÷5=60(千米)答:商船以每小时50千米的速度赶往出事点,需要5小时,军舰想与商船同时赶到,每小时至少行驶60千米.【例7】某市有一东西走向的路与另一南北走向的路交汇于路口A.李智聪在路口A南面240来的B点处,陈晓慧在路口A北面120米的C点处.李以每分钟80米的速度匀速行走,陈以每分钟60米的速度匀速行走,两人都是先朝着A点走去,到达A后立即转向往东面继续走.他俩在某一点D第一次相遇,D点距A点多少米?解析:本题考查的知识点是根据方向和距离确定物体的位置.解答此题的关键是根据路程÷速度=时间计算出两个人到达A点时分别用了多长时间,然后再根据两人从A点出发的时间推算出相遇时地点距A点的距离即可.解答时可利用:路程÷速度=时间,计算出李智聪、陈晓慧分别到达A点时所用的时间,由计算得知陈晓慧比李智聪提前1分钟到达A点,那么当陈晓慧从A 点向东行驶1分钟即行驶了60米的路程时,李智聪到达A点,当陈晓慧从A点行驶2分钟即120米时,李智聪行驶了1分钟即80米,当陈晓慧从A点向东行驶3分钟时即180米,李智聪行驶2分钟即160米,当陈晓慧从A点向东行驶了4分钟即240米时,李智聪向东行驶了3分钟即240米,此时是两人的第一次相遇,那么从A 点到D 点的距离就为240米.解答:李智聪到达A 点所用的时间为:240÷80=3(分钟),陈晓慧到达A 点所用的时间为:120÷60=2(分钟),所以李智聪到达A 点时,陈晓慧已经向东行驶了60米,当陈晓慧从A 点向东行驶2分钟即120米时,李智聪行驶了1分钟即80米,当陈晓慧从A 点向东行驶3分钟时即180米,李智聪行驶2分钟即160米,当陈晓慧从A 点向东行驶了4分钟即240米时,李智聪向东行驶了3分钟即240米,所以A 点到D 点的距离为240米.第三单元 分数除法【例1】对错我来判.(对的打“∨”,错的打上“×”)(1)因为31+32=1,所以31的倒数是32.( ) (2)一个数的倒数一定比这个数小.( )(3)43是倒数,34也是倒数.( ) 解析:本题考查的知识点是倒数的意义.解答时,要明确的是乘积是1的两个数叫做互为倒数,也就是说倒数不是单独存在的,是指两个数的积是1时,我们说其中的一个数是另一个数的倒数.(1)因为31+32=1,它们的积31×32=92≠1,所以31和32不是互为倒数. (2)一个非0自然数的倒数比这个数小,如2的倒数是21,但是一个数的倒数不一定比这个数小,如31的倒数是3,3就比31大. (3)互为倒数的两个数的积是1,也就是说乘积是1的两个数互为倒数,单独的一个数不能说倒 数,所以43是倒数,34也是倒数都是错误的. 解答:1、×2、×3、×【例2】一个自然数与它的倒数的差是212221,这个自然数是多少? 解析:本题考查的知识点是运用转化法解答倒数差问题.解答时,先把212221转化为21+2221,它等于22-221的差,22和221互为倒数,212221正好是22与221的差,所以得出这个数是22.解答:22【例3】请根据图列式.( ) ( )解析:本题考查的知识点是利用数形结合思想来根据图形列算式.解答时先读懂图意,然后根据图中隐含的数量关系列出算式.左图把单位“1”先平均分成了4份,取其中的一份,然后再求其一半是多少,列式为41÷2;右图是把单位“1”平均分成3份,取其中的2份,再求其43是多少,所以列式为32×43. 解答:41÷2 32×43 【例4】丫丫在计算一除法算式时,把除以6看成了乘6,结果得54,你知道正确的结果是多少吗?解析:本题考查的知识点是运用逆推法来解答“错中求解”问题.解答时,先用结合错中求解利用“逆推法”求出被除数是54÷6=54×61=152,然后再求出正确的商是152÷6=152×61=451. 解答:54÷6=54×61=152 152÷6=152×61=451 答:正确的结果是451. 【例5】计算2017÷201720182017 解析:本题考查的知识点是用转化法解答特殊数的分数除法.解答时,先观察给出的算式,除数是一个带分数,它的整数部分和分数部分的分子都和被除数相同,都是2017,所以可以利用商不变的规律被除数和除数都除以2017,转化为比较简单的分数计算.解答:2017÷201720182017 =(2017÷2017)÷(201720182017÷2017) =1÷20182017 =20172018 【例6】如果,且均不等于0.这四个数中最大的是( ),最小的是( ).A.aB.bC.cD.d 解析:本题考查的知识点用假设法来解答分数乘除法中的分数大小比较问题. 解答时,可以先设=1,这样我们根据分数乘法或除法的计算方法得出a=34、b=54、c=56、d=23,因为,所以解答:D,B【例7】体育课上,同学们站成一列,梁玲数了数,排在她前面的人数是这列总人数的32,排在她后面的人数是这列总人数的41,从前面数,梁玲排第几? 解析:本题考查的知识点是用“方程的方法”来解答分数除法问题.解答时,先设给出的分数的单位“1”为x,也就是这列队伍有x 人.然后根据“这列队伍的人数-梁玲前面的人数-梁玲后面的人数=1”列出方程x- 32x-41x=1,接着求出方程的解是x=12,最后再根据梁玲前面的人数是这列队伍总人数的32,求出梁玲排第几,列式为12×32+1=9. 解答:解:设这列队伍一共有x 人. x- 32x-41x=1 (1-32-41)x=1 121x=1 X=1212×32+1=9 答:梁玲排第9.【例8】六一班男生的一半和女生的41共16人,女生的一半和男生的41共14人.这个班共有学生多少人?解析:本题考查的知识点是合并单位“1”.解答时,要明确的是男生的一半和女生的41+女生的一半和男生的41=男生的43+女生的43=全班的43.所以设全班有x 人,可以得方程21x+41x=16+14,解这个方程得x=40,从而求出全班有40人. 解答:解:设全班有x 人.21x+41x=16+14 43x=30 X=40 答:全班有40人.【例9】科技书和文体书共450本,其中科技书占92,元旦期间又买来一些科技书,这时科技书占72,买了科技书多少本?解析:本题考查的知识点是利用“抓不变量的”方法来解答购买的科技书问题.解答时先根据求一个数的百分之几是多少用乘法计算求出文艺书的本数是450×(1-92)=350(本),再利用量率对应的方法“部分量÷部分量对应的分率=单位“1””求出现在的书的本数是350÷(1-72)=490(本),最后求出新购买的科技书的本数是490-350=140(本).解答:450×(1-92)=350(本) 350÷(1-72)=490(本) 490-350=140(本)答:买了科技书140本.【例10】搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.现有同样的仓库2个,甲在A 仓库,乙在B 仓库搬运货物,丙开始搬运时,帮助甲搬,中途又帮着乙搬运,最后同时搬运完2个仓库的货物,问丙帮甲搬运了几小时? 解析:本题考的知识点是“工程问题”.解答时,先不考虑丙是怎么帮甲和乙的,因为3人搬运了两个仓库的货物,所以可以把工作总量看成单位“2”,也就是说3人合作完成单位“2”,这样根据工作总量÷工效和=工作时间,求出工作时间是2÷(101+121+151)=2÷41=8(小时),这样可以得出甲8小时完成的工作总量是101×8,其余的工作总量是丙完成是1-101×8=51,所以丙帮甲搬运的时间是51÷151=3(小时). 解答:2÷(101+121+151)=2÷41=8(小时) 1-101×8=51 51÷151=3(小时) 答:丙帮甲搬运了3小时.【例11】一家服装店卖出两件不同的衣服,售价都是240元,按成本价计算,其中一件赚了51,另一件亏了51,售出衣服后,商店是赚了还是亏了?差额是多少? 解析:本题考查的知识点是利用求单位“1”的方法来解答“购买衣服的盈亏问题”.解答时,先找到一件赚51中51的单位“1”是这件衣服的进价,另一件亏了51中的51的单位“1”是另一件衣服的进价,两件衣服的进价都不知道,所以根据量率对应的方法,用除法计算出两件衣服的进价分别是240÷(1+51)=200(元),240÷(1-51)=300(元);然后用两件衣服的进价和减去售价和就可以求出两件衣服亏的钱数是200+300-240×2=20(元).解答:两件衣服的成本分别是240÷(1+51)=200(元),240÷(1-51)=300(元),200+300-240×2=20(元)答:商店亏了,差额是20元.【例12】同学们参加野营活动.一个同学到负责后勤的教师那是去领碗.教师问他领多少,他说领55个,教师又问:“多少人吃饭?”这个学生说:“一人一个饭碗,两人一个菜碗,三个人一个汤碗.”请你帮忙算一算参加野营活动的共有多少学生?解析:本题考查的知识点是用量率对应的方法解答“领碗问题”.解答时,先根据题意,先求一人用多少个碗,即1+21+31=611(个);再求共有多少人即55÷ 611=30(人),列出综合算式是55÷(1+21+31)=55÷611=30(人). 解答:55÷(1+21+31)=55÷611=30(人) 答:参加野营活动的共有30学生.【例13】有红黄两种颜色的小球共140个,拿出红球的41,再拿出7个黄球,剩下的红球和黄球正好一样多,原来红球和黄球各有多少个?解析:本题考查的知识点是利用“方程的方法”解答较复杂的分数问题.解答时,读懂题意,找到题中隐含的数量关系:红球和黄球的数量和是140,如果设红球有x 个,则黄球有(140-x )个,这样根据拿出红球的41,再拿出7个黄球,剩下的红球和黄球正好一样多,可以列方程为(1-41)x=(140-x )-7,解这个方程得,x=76, 则黄球有:140-76=64(个).解答:解:设红球有x 个,那么黄球就有(140-x )个.(1-41)x=(140-x )-7 43x=133-x 43x+x=133 47x=133 x=76则黄球有:140-76=64(个)答:原来红球有76个,黄球有64个.【例14】一个蓄水池,有一个进水管和一个出水管,单开进水管3分钟能放满全池,单开出水管5分钟能放完全池的水,两个水管同时开放,多长时间能放满全池?解析:本题考查的知识点利用工效差来解答“工程问题.”解答时,先把进水管和出水管同时打开灌满水池看成单位“1”,还知道单开进水管3分钟灌满全池,则每分钟放满水池的31,单开出水管,5分钟放完全池的水,则每分钟放全池水的51,两个水管同时打开,则每分钟注入全池水的(31-51),所以灌满水池需要 1÷(31-51)=1÷152=7.5(分钟). 解答:1÷(31-51)=1÷152=7.5(分钟) 答:两个水管同时开放,7.5分钟能放满全池.【例14】一根绳子,如果3折量一口井,余出31米;如果4折量又不足41米.求绳长、井深各是多少米?解析:本题考查的知识点是利用量率对应的方法解答绳子长度和井的深度问题.解答时,先明确的是3折量一口井,余出31米;如果4折量又不足41米,说明绳子的31比它的41多(31+41)米,因此,根据量率对应的思想方法,可以求出绳子的长度是(31+41)÷(31-41)=7(米),井的深度是31×7-31=2(米). 解答:绳子的长度:(31+41)÷(31-41)=7(米) 井的深度:31×7-31=2(米) 答:绳子的长是7米,井的深度是2米.第四单元 比【例1】甲、乙、丙三位同学分别调制了一杯蜂蜜水.甲调制时用了40毫升的蜂蜜,200毫升水;乙调制时用了5小杯蜂蜜,20小杯水;丙调制时用的水是蜂蜜的7倍.( )调制的蜂蜜水最甜.A.甲B.乙C.丙D.无法判断 解析:本题考查的知识点是利用比的意义解决实际问题.甲调制的蜂蜜水中,蜂蜜与水的比是40:200=1:5=51;乙调制的蜂蜜水中,蜂蜜与水的比是5:20=1:4=41;丙调制的蜂蜜水中,蜂蜜与水的比是1:7=71.41>51>71,所以,乙调制的蜂蜜水最甜.解答:B【例2】已知甲:乙=3:4,乙:丙=3:2,那么甲、乙、丙三个数的大小关系是( ).A.甲>乙>丙B.丙>乙>甲C.乙>甲>丙D.甲=乙=丙解析:本题考查的知识点是比的基本性质解答连比问题.解答时,需将两个不同的比中共有的量转化为同一个数.甲:乙=3:4=9:12;乙:丙=3:2=12:8,则甲:乙:丙=9:12:8,所以,乙>甲>丙,选C.解答:C【例3】成年人的足长与身高的比大约是1:7.某小区发生了一起盗窃事件,在犯罪现场留下了一个长26厘米的足印.经过周密侦察,锁定了四名犯罪嫌疑人,下表是这四名犯罪嫌疑人的身高记录.请你根据以上信息计算说明:这四人中,谁的嫌疑最大?解析:本题考查的知识点是利用比的知识解决实际问题.解答时,先根据“成年人的足长与身高的比大约是1:7”,可以看作成年人的身高是足长的7倍来推算出犯罪嫌疑人的身高.该题具备探索性和趣味性,同时运用了估算的知识. 解答:26×7=182(cm ),四人中王某的身高最接近182cm.答:王某的嫌疑最大.【例4】骆驼体重250千克,能搬运质量为300千克的货物;蚂蚁体重0.05克,能搬运质量为2克的虫子.写出它们各自搬运的质量与体重的比,并求出比值.相对于自身体重,你觉得谁的力气大?为什么?解析:本题考查的知识点是比和求比值的方法,解答时需要明确的是:比值越大,力气就越大.依据比的意义,用它们各自搬运的质量比体重;再用比的前项除以后项,就可求比值,最后根据比较比值的大小,从而得出结论.解答:300:250=6:5=1.2 2:0.05=40:1=40 40>1.2答:相对于自身体重,虫子的力气大,因为它每千克的体重承受的重量大.【例5】盒子里有三种颜色的球,黄球个数与红球个数的比是2:3,红球个数与白球个数的比是4:5.已知三种颜色的球共175个,红球有多少个?解析:本题考查的知识点是用按比例分配的方法来解答三种颜色的球问题.解答时,先通过建立连比得出红球份数与总份数之间的关系.黄球:红球=2:3=8:12,红球:白球=4:5=12:15,所以,黄球:红球:白球=8:12:15,这样可以看作把三种球平均分成8+12+15=35份,红球占其中的12份,最后利用按比例分配的知识计算得出结果.解答:175×3512=60(个) 答:红球有60个.【例6】丫丫读一本书,已读的和未读的页数之比是5:4,如果再读18页,这时已读的和未读的页数比是2:1,这本书有多少页?解析:本题考查的知识点是利用转化法来解答比的问题.解答时,把整本书的页数看成单位“1”,先根据给出的两次已读的页数和未读的页数比转化为分数:第一次已读的页数占全书的545+,第二次已读的页数占全书的122+,这充分说明,两次读的分率差是122+-545+,页数差是18,这样根据“数量差÷该数量差对应的分率差=单位“1””求出这本书的页数,列式为18÷(122+-545+),计算结果是。

5升6奥数拓展:分数乘除法-数学六年级上册人教版

5升6奥数拓展:分数乘除法-数学六年级上册人教版

5升6奥数拓展:分数乘除法-数学六年级上册人教版
一、选择题
人数()。

a b a b
A.a+b>c B.a+b=c C.a+b<c
A.第一车多B.第二车多C.一样多D.无法比较
5.小华去学校,去时的速度是每小时m千米,回来时的速度是每小时n千米,来、回的平均速度是()。

二、填空题
三、计算题
有多少本?
参考答案:
【分析】如图,先将第一次用后余下长度看
作单位“1”,剩下的15米减去1米刚好是第一次用后余下长度的(1-1
3
),根据部分数量÷对应分率=整体
数量,求出第一次用后余下长度;再将铁丝原来长度看作单位“1”,第一次用后余下长度加上1米,刚好是
铁丝原来长度的(1-1
2
),再根据部分数量÷对应分率=整体数量,即可求出铁丝原来长度。

小学五年级奥数题及答案:立方体

小学五年级奥数题及答案:立方体

以下是⽆忧考为⼤家整理的关于⼩学五年级奥数题及答案:⽴⽅体的⽂章,供⼤家学习参考!
有⼀个正⽅体,棱长是13,它是由13×13×13=2197 个单位⼩⽴⽅体粘在⼀起构成的。

从正⽅体的⼀个顶点望去,最多能看到多少个单位⽴⽅体?
答案:
从正⽅体的⼀个顶点最多能看到正⽅体相邻的三个⾯,每个⾯含有13×13=169 个⼩⽴⽅体的⾯。

三个⾯共看到169×3=507 个⼩⽴⽅体的⾯。

三个⾯相交成三条棱,三条棱上共有13×3-2=37 个⼩⽴⽅体,其中有⼀个⼩⽴⽅体在顶点上。

显然,顶点上的这个⼩⽴⽅体,我们能看到它的三个⾯;其余36 个棱上的⼩⽴⽅体,我们能看到它们每个两个⾯;⾄于其他能看到的⼩⽴⽅体。

我们只能看到它们每个⼀个⾯。

由此不难推出,能看到的⼩⽴⽅体的个数为507-2-36=
469(个)。

小学六年级奥数试题详解 长方体和正方体

小学六年级奥数试题详解 长方体和正方体

第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱。

在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab+bc+ac);长方体的体积:V长方体=abc.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a,那么:S正方体=62a,V正方体=3a例1 有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为22a平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+22a=240,可知,2a=25,故a=5(厘米).又因为22a+4ah=190,解得19022545h-⨯=⨯=7(厘米)所以,原来长方体的体积为:V=2a h=25×7=175(立方厘米).例2 如下图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长。

解:原来正方体的表面积为:6×3a×3a=6×92a(平方厘米).六个边长为a的小正方形的面积为:6×a×a=62a(平方厘米);挖成的每个长方体空洞的侧面积为:3a×a×4=122a(平方厘米);三个长方体空洞重叠部分的校长为a的小正方体空洞的表面积为:a×a×4=42a(平方厘米).根据题意:6×92a-62a+3(122a-42a)=2592,化简得:542a-62a+242a=2592,解得2a=36(平方厘米),故a=6厘米.即正方形截口的边长为6厘米.例3 有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍。

5升6奥数拓展:分数乘法综合(试题)-小学数学六年级上册人教版

5升6奥数拓展:分数乘法综合(试题)-小学数学六年级上册人教版
3.一根绳子长 米。剪去它的 后,剩下的绳子长()米。
A. B. C.
4.一桶油重4千克,倒去 后,再倒进 千克,现在桶里的油()。
A.比原来轻B.比原来重C.和原来一样D.无法判断
5.如果2.4乘 积小于2.4,且 是分数,那么 是()。
A.真分数B.假分数C.带分数
6.下面图形中,能正确表示 × 的是()。
11.鸵鸟是现在世界上最大的鸟,身高可达2.5米。一只成年的帝企鹅身高是鸵鸟的 。成年帝企鹅的身高是( )米。
12.把一块蛋糕的一部分平均分成4份,每份是 ,那么平均分了这块蛋糕的( );一根绳子长3米,它的 是( )米。
13.在括号里填上“>”“<”或“=”。
×4( ) 9× ( ) ×9 ( ) ( )
【点睛】本题考查因数与积的关系,熟练掌握它们的关系是解题的关键。
14. 9
【分析】用冰上项目获得奖牌数除以奖牌总数,求出第一空;
将奖牌总数看作单位“1”,将它平均分成5份,用除法求出一份是多少,再用乘法求出3份是多少,求出第二空。
【详解】6÷15=
15÷5×3=9(枚)
冰上项目获得的6枚奖牌,占奖牌总数的 ;雪上项目的奖牌数量占奖牌总数的 ,共获得9枚雪上项目奖牌。
5升6奥数拓展:分数乘法综合(试题)-小学数学六年级上册人教版
一、选择题
1.在班级“趣味阅读”行动中,奇思选择了300页的《稻草人》这本书,他第一天看了全书的 ,第二天应从第()页看起。
A.49B.50C.51D.40
2.两根2米长的铁丝,第一根截去 米,第二根截去它的 ,余下部分()。
A.长度相等B.第一根长C.第二根长D.无法确定
【点睛】求一个数是另一个数的几分之几,用除法计算;可以用除法求一个数的几分之几是多少。

五年级奥数几何长方体和正方体经典例题详解

五年级奥数几何长方体和正方体经典例题详解

五年级奥数几何长方体和正方体经典例题详解有关五年级奥数几何长方体和正方体经典例题详解五年级奥数几何长方体和正方体经典例题详解1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?【思路导航】(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80+80=160(立方厘米)。

10×4×2+10×(6-2)×2=160(立方厘米)(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。

因此,此零件的表面积就是:(10×6+10×4+4×2×2)×2=232(平方厘米)练习(1)一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图),剩下部分的表面积和体积各是多少?练习(2)把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。

练习(3)有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?2、有一个长方体形状的零件。

中间挖去一个正方体的孔(如下图)。

你能算出它的体积和表面积吗?(单位:厘米)【思路导航】(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去一个孔,所以体积减少2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米)(2)长方体完整的表面积是(8×5+8×6+5×6)×2=236(平方厘米),但由于挖去一个孔,它的表面积减少了一个(2×2)平方厘米的面积,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+(2×2)×4=252(平方厘米).练习(1)有一个形状如下图的零件,求它的体积和表面积。

(word完整版)奥数五年级立方体习题

(word完整版)奥数五年级立方体习题

长方体与正方体表面积知识框架一、基础知识本讲内容从我们熟悉的平面扩展到了三维立体空间,教学目标是培养学生的空间想象能力,对于长方体和正方体的表面积和体积的计算我们在学校的课本上都已经学习过,都是相对比较简单的,今天我们一起将这部分内容进行拓展和研究.我们主要研究的对象是复杂的立方体的体积和表面积计算方法.同学生要记住知识是有限的,但想象力是无限的.①长方体表面积:若长方体的长、宽、高分别为a、b、c,那么可得:长方体的表面积:S长方体=2(ab+bc+ac);如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.在六个面中,两个对面是全等的,即三组对面两两全等.(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).②正方体的表面积:我们也可以称其为立方体,它是一种特殊的长方体,它的六个面都是正方形.如果它的棱长为a,那么可得:正方体的表面积:S正方体=6a2;如右图,正方体共有六个面(每个面都是全等的正方形),八个顶点,十二条棱.二、立体图形的表面积计算常用公式:立体图形示例表面积公式相关要素长方体S = 2(ab+bc+ac)三要素:a、b、c正方体S = 6a2 一要素:a重难点重点:长方体与正方体的表面积和体积的计算公式的理解性记忆与运用难点:三视图法求表面积例题精讲【例1】如果一个边长为2厘米的正方体的表面积增加192平方厘米后仍是正方体,则边长增加______厘米.【巩固】一小桶油漆恰好可以漆一个边长为0.5米的正方体,要漆一个边长为一米的立方体,则需要______小桶同样油漆.【例2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【例3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【巩固】如图,有一个边长是10的立方体,如果它的左上方截去一个边分别是10,5,3的长方体,那么它的表面积减少了百分之几?【例4】如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.【巩固】如图,在一个棱长为8厘米的正方体上放一个棱长为5厘米的小正方体,求这个立体图形的表面积.【例5】如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?【巩固】如图,棱长分别为1厘米、2厘米、3厘米的三个正方体紧贴在一起,则所得到的立体图形的表面积是_ 平方厘米.【例6】如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的倍.【巩固】有三个大小一样的正方体,将接触的面用胶粘接在一起成图示的形状,表面积比原来减少了16平方厘米.求所成形体的体积.【例7】小华用相同的若干个小正方体摆成一个立体(如图2).从上体上面看这个立方体,看到的图形是图①~③中的____ .(填序号)③①②【巩固】用一些棱长是1的小正方体码放成一个立体如下图,请画出从上面和正面看到的图形【例8】由六个棱长为1的小正方体拼成如图所示立体,它的表面积是.【巩固】将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开.涂上红色的部分,面积是()平方厘米【例9】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.【巩固】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?【例10】有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色(底面不涂).求被涂成红色的表面积.【巩固】边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?课堂检测1.一个正方体的棱长为3厘米,在它的前、后、左、右、上、下各面中心各挖去一个棱长为1厘米的正方体做成一种玩具,求这个玩具的表面积.2.一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体的棱长分别为5厘米、2厘米、1厘米.那么,这个立体图形的表面积是________平方厘米.3.下图是用若干个棱长为1的小正方体铁块焊接成的几何体,请画出从正面,侧面,上面看到的视图家庭作业1.右图是一个边长为5厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)2.如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?3.有八个大小一样的正方体,用胶粘接成如下的大正方体,表面积比原来减少了24平方厘米.求所成形体的表面积..4.把五块相同的立方体木块拼成如图所示的形体,表面积比原来减少了96平方厘米.所成形体的表面积是_______平方厘米.5.用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?6.将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开.涂上红色的部分,面积是()平方厘米MSDC模块化分级讲义体系五年级奥数.几何.长方体与正方体的表面积(A级).学生版Page 11 of 11学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:教学反馈。

六年级上册数学分数乘法奥数题

六年级上册数学分数乘法奥数题

六年级上册数学分数乘法奥数题一、分数乘法奥数题。

1. 题目。

计算:(1)/(2)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(30)+(1)/(42)+(1)/(56)+(1)/(72)+(1)/(90)。

解析。

我们先对每个分数进行分析,(1)/(2)=1 (1)/(2),(1)/(6)=(1)/(2)-(1)/(3),(1)/(12)=(1)/(3)-(1)/(4),(1)/(20)=(1)/(4)-(1)/(5),(1)/(30)=(1)/(5)-(1)/(6),(1)/(42)=(1)/(6)-(1)/(7),(1)/(56)=(1)/(7)-(1)/(8),(1)/(72)=(1)/(8)-(1)/(9),(1)/(90)=(1)/(9)-(1)/(10)。

原式可转化为:(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+((1)/(4)-(1)/(5))+((1)/(5)-(1)/(6))+((1)/(6)-(1)/(7))+((1)/(7)-(1)/(8))+((1)/(8)-(1)/(9))+((1)/(9)-(1)/(10))可以发现从第二项起,每一项的分母与后一项的分子相同,去括号后可以相互抵消。

最后得到:1-(1)/(10)=(9)/(10)。

2. 题目。

有一个分数,分子加上1可约简为(1)/(4),分母减去1可约简为(1)/(5),求这个分数。

解析。

设这个分数为(x)/(y)。

根据“分子加上1可约简为(1)/(4)”,可得(x + 1)/(y)=(1)/(4),即4(x +1)=y,4x+4=y。

根据“分母减去1可约简为(1)/(5)”,可得(x)/(y 1)=(1)/(5),即5x=y 1。

将y = 4x + 4代入5x=y 1中,得到5x=(4x + 4)-1。

展开式子得5x=4x+3,解得x = 3。

把x = 3代入y = 4x+4,得y=4×3 + 4=16。

小学六年级分数奥数题100道及答案(完整版)

小学六年级分数奥数题100道及答案(完整版)

小学六年级分数奥数题100道及答案(完整版)1. 一个分数,分母比分子大25,分子、分母同时除以一个相同的数后得4/9,原来的分数是多少?答案:20/45。

思路:9-4=5,25÷5=5,分子是4×5=20,分母是9×5=45。

2. 把一根绳子平均分成5 段,每段长6 米,这根绳子长多少米?答案:30 米。

思路:5×6=30(米)。

3. 有一堆煤,第一天用去1/4,第二天用去余下的1/3,还剩下12 吨,这堆煤原有多少吨?答案:24 吨。

思路:第二天用去总数的(1-1/4)×1/3=1/4,剩下总数的1-1/4-1/4=1/2,所以总数为12÷1/2=24 吨。

4. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩下22 千克,这桶油原来有多少千克?答案:50 千克。

思路:设这桶油原来有x 千克,x-1/5x-(1/5x+20)=22,解得x=50。

5. 某班男生人数是女生人数的4/5,女生比男生多5 人,这个班共有多少人?答案:45 人。

思路:设女生人数为x,x-4/5x=5,解得x=25,男生人数为20,全班人数为45 人。

6. 一本书,第一天看了全书的1/3,第二天看了余下的1/2,还剩下40 页没看,这本书共有多少页?答案:120 页。

思路:第二天看了全书的(1-1/3)×1/2=1/3,剩下全书的1-1/3-1/3=1/3,所以全书有40÷1/3=120 页。

7. 一条公路,已经修了全长的2/5,再修60 米,就正好修了全长的一半,这条公路长多少米?答案:300 米。

思路:设公路长x 米,1/2x-2/5x=60,解得x=300。

8. 小明看一本书,第一天看了全书的1/5,第二天看了25 页,两天共看了全书的3/10,这本书共有多少页?答案:125 页。

思路:设全书有x 页,1/5x+25=3/10x,解得x=125。

六年级分数简便运算奥数题及答案

六年级分数简便运算奥数题及答案

六年级分数简便运算奥数题及答案(1)1/1*3+1/2*4+1/3*5+1/4*6+1/5*7......1/98*100+1/99*101=(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+……+1/98-1/100+1/99-1/101)÷2=(1+1/2-1/100-1/101)÷2=15049/10100÷2=15049/20200(2)6分之1+12分之1+24分之1+48分之1+96分之1+192分之1=1/6×(1+1/2+1/4+1/8+1/16+1/32)=1/6×(1-1/32)=1/6-1/192=31/192(3)1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+4/(1×2×3×4×5)+5/(1×2×3×4×5×6)+6/(1×2×3×4×5×6×7)= 1-1/(1×2)+1/(1×2)-1/(1×2×3)+1/(1×2×3)-1/(1×2×3×4)+1/(1×2×3×4)-1/(1×2×3×4×5)+1/(1×2×3×4×5)-1/(1×2×3×4×5×6)+1/(1×2×3×4×5×6)-1/(1×2×3×4×5×6×7)=1-1/(1×2×3×4×5×6×7)=1-1/5040=5039/5040(4)6360/39)/(1600/39)=6360/1600=3.975一、工程问题甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时开启甲乙两水管,5小时后,再开启排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

长方体 正方体 和 分数乘除法综合练习题集

长方体 正方体 和 分数乘除法综合练习题集

长方体 正方体 和 分数乘除法综合练习题集一、填一填。

姓名 分数1、在○里填上>、<或=56 ×4○ 56 9×23 ○23 ×9 38 × 12 ○ 38 2、边长 12分米的正方形的周长是( )分米。

3、六(1)班有50人,女生占全班人数的 25 ,女生有( )人,男生有( )。

4、看一本书,每天看全书的 19 ,3天看了全书的( )。

5、一袋大米25kg,已经吃了它的25 ,吃了( )kg,还剩( )kg 。

6、比30米少 16 米是( )米;比30米少 16 是( )米。

二、对号入座。

1、“小羊只数是大羊只数的 38 ”,( )是单位“1”。

A 、小羊B 、大羊C 、无法确定 2、今年的产量比去年少110,今年的产量就相当于去年的( )。

A 、110 B 、910 C 、11103、12×(14 + 13 )=3+4=7,这是根据( )计算的。

A 、乘法交换律B 、乘法分配律C 、乘法结合律 4、比35的 27多9的数是( )。

A 、19B 、14C 、1 三、解决问题。

1、比一比,练一练(1)甲乙两地相距420千米,一辆汽车行驶了全程的 57 ,行驶了多少千米?(2)甲乙两地相距420千米,一辆汽车行驶了全程的 57 ,还剩多少千米?2、先画图分析,再列式解答(1)一件西服原价180元,现在的价格比原来降低了15 ,现价比原价便宜多少元?(2)一件西服原价180元,现在的价格比原来降低了15,现在的价格是多少元?(3)3、一个果园占地20公顷,其中的 25 种苹果树,14 种梨树,苹果树和梨树各种了多少公顷?4、六年级同学给灾区的小朋友捐款。

六(1)班捐了500元,六(2)班捐的是六(1)班的45 ,六(3)班捐的是六(2)班的 98 。

六(3)班捐款多少元?1、A 、B 两城的公路长400千米,一辆汽车从A 城开往B 城,第一小时行了全程的18 ,第二小时行了全程的310 ,还剩下多少千米?2、一根电线长5米,第一次剪下全长的15 ,第二次剪下剩下的14 。

小学奥数教程下册最完美12648

小学奥数教程下册最完美12648

小学奥数教程下册最完美12648目录第一讲分数乘法(乘法中的简算) (2)练习卷 (5)第二讲长方体和正方体(巧算表面积) (6)练习卷 (10)第三讲分数除法应用题 (11)练习卷 (15)第四讲长方体和正方体(巧算体积) (16)练习卷 (20)第五讲较复杂的分数应用题(寻找不变量) (21)练习卷 (24)第六讲百分数(浓度问题) (25)练习卷 (28)综合演习(1) (29)综合演习(2) (31)第一讲分数乘法例题讲学例1 (1)1514×19 (2)27×2611 【思路点拨】观察这两道题中数的特点,第(1)题中的1514比1少151,可以把1514看作1-151,然后和19相乘,利用乘法分配律使计算简便;同样,第(2)题中27及2611中的分母26相差1,可以把27看作(26+1),然后和2611相乘,再运用乘法分配律使计算简便。

或拆成及1有关的两数之差或和;或者把一个数拆分成及分数分母相关的和或差,最后用乘法分配律使计算简便。

同步精练1. 3613×35 2. 2322×103. 8×15144. 253×126 5. 17×1211 6. 262524例2 120001999199820001999-??+【思路点拨】仔细观察分子、分母中各数的特点,我们就会发现,分子1999+2000×1998=1999+2000×(1999-1)=1999+2000×1999-2000=2000×1999-1,这样就把分子转化成及分母完全相同的式子,结果自然就好计算了,试试吧!特点一般都能化成分子、分母能约分的情况,然后使计算简便。

同步精练1. 186548362361548362-??+2. 120112010200920112010-??+例3651541431321211?+?+?+?+? 【思路点拨】在这道题中,每个分数的分子都是1,分母是两个连续的自然数的乘积。

【小学五年级数学】六年级奥数题立体图形(A)共(6页)

【小学五年级数学】六年级奥数题立体图形(A)共(6页)

十三、立体图形(1) 年级 班 姓名 得分一、填空题1.一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是 .2.如图,在一块平坦的水泥地上,用砖和水泥砌成一个长方体的水泥池,墙厚为10厘米(底面利用原有的水泥地).这个水泥池的体积是 .3.一个边长为4分米的正方形,以它的一条边为轴,把正方形旋转一周后,得到一个 ,这个形体的体积是 .4.把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立方体的表面积是 平方厘米.5.图中是一个圆柱和一个圆锥(尺寸如图).问:柱锥V V 等于 .6.一个长方体的表面积是67.92平方分米.底面的面积是19平方分米.底面2 单位:米周长是17.6分米,这个长方体的体积是 .7.一块长方体木块长2.7米,宽1.8分米,高1.5分米.要把它裁成大小相等的正方体小木块,不许有剩余,小正方体的棱长最大是 分米.8.王师傅将木方刨成横截面如右图(单位:厘米)那样高40厘米的一根棱柱.虚线把横截面分成大小两部分,较大的那部分的面积占整个底面的60%.这个棱柱的体积是 立方厘米.9.小玲有两种不同形状的纸板.一种是正方形的,一种是长方形的(如下图).正方形纸板的总数与长方形纸板的总数之比是1:2.她用这些纸板做成一些竖式和横式的无盖纸盒,正好将纸板用完.在小玲所做的纸盒中,坚式纸盒的总数与横式纸盒的总数之比是 .10.在桌面上摆有一些大小一样的正方体木块,从正南方向看如下图(1),从正东方向看如下图(2),要摆出这样的图形至多能用 块正方体木块,至少需要 块正方体木块.二、解答题11.一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米.原来水深10厘米,放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘米?12.如图表示一个正方体,它的棱长为4厘米,在它的上下、前后、左右的正中位置各挖去一个棱长为1厘米的正方体,问此图的表面积是多少?8 28 2412 (图1)(图2)13.下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.14.雨哗哗地不停地下着,如在雨地里放一个如图1那样的长方形的容器,雨水将它下满要用1小时.有下列(A )-(E )不同的容器(图2),雨水下满各需多少时间(注面是朝上的敞口部分.)P2cm 2cm (A ) (B ) (C ) (D ) (E ) 雨———————————————答 案——————————————————————1. 96分米.正方体的底面积为384÷6=64(平方分米).故它的棱长为512÷64=8(分米),棱长的总和为8×12=96(分米).2. 8.96立方米.(3-0.1×2)×(1.8-0.1×2)×2=8.96(立米米).3. 圆柱体,200.96立方分米.(3.14×42)×4=200.96(立方分米).4. 216.这个立方体的表面由3×3×2+8×2+10×2=54个小正方形组成,故表面积为4×54=216(平方厘米).5. 241. ππππ816828,3164243122⨯=⨯⎪⎭⎫ ⎝⎛⨯==⨯⎪⎭⎫ ⎝⎛⨯⨯=柱锥V V ,故241=柱锥V V .6. 32.3立方分米.长方体的侧面积是67.92-19×2=29.92(平方分米),长方体的高为29.92÷17.6=1.7(分米),故长方体的体积为19×1.7=32.3(立方分米).7. 0.3长、宽、高分别是270厘米、18厘米和15厘米,而270、18和15的最大公约数为3(厘米),这就是小正方体棱长的最大值.8. 17200.设较大部分梯形高为x 厘米,则较小部分高为(28- x )厘米.依题意有: 4:6)28()824(21:)2412(21=⎥⎦⎤⎢⎣⎡-⨯+⨯⎥⎦⎤⎢⎣⎡+⨯x x 解得x =16,故这棱柱的体积为 1920040)1628()824(2116)2412(21=⨯⎥⎦⎤⎢⎣⎡-⨯+⨯+⨯+⨯(立方厘米).9. 3:1.一个竖式的无盖纸盒要用一个正方形纸板和4个长方形纸板,一个横式的无盖纸盒要用2个正方形纸板和3个长方形纸板.设小玲做的纸盒中,有x 个竖式的, y 个横式的,则共用正方形纸板(x +2 y )个,用长方形纸板(4 x +3 y )个,依题意有: (x +2 y ):(4 x +3 y )=1:3.解得x : y =3:1.10. 20,6.至多要20块(左下图),至少需要6块(右下图).11. 若铁块完全浸入水中,则水面将提高326)3040(203=⨯÷(厘米).此时水面的高小于20厘米,与铁块完全浸入水中矛盾,所以铁块顶面仍然高于水面.设放入铁块后,水深为x 厘米.因水深与容器底面积的乘积应等于原有水体积与铁块浸入水中体积之和,故有:x x 20201030403040⨯+⨯⨯=⨯解得x =15,即放进铁块后,水深15厘米.12. 大正方体的表面还剩的面积为()9014622=-⨯(厘米2),六个小孔的表面积为()305162=⨯⨯(厘米2),因此所求的表面积为90+30=120(厘米2).13. 截面的线在展开图中如右图的A -C -Q -P -A .14. 在例图所示的容器中,容积:按水面积=(10×10×30):(10×30)=10:1,需1小时接满,所以容器(A):容积:接水面积=(10×10×10):(10×10)=10:1,需1小时接满; 2 1 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 2 1 1A容器(B):容积:接水面积=(10×10×30):(10×10)=30:1,需3小时接满;容器(C):容积:接水面积=(20×20×10-10×10×10):(10×10)=30:1,需3小时接满;容器(D):容积:接水面积=(20×20×10-10×10×10):(20×10)=15:1,需1.5小时接满;容器(E):容积:接水面积=20×S:S=20:1(S为底面积),接水时间为2小时.五年级数学教学计划一、指导思想义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐的发展。

六年级奥数题及答案-分数乘法

六年级奥数题及答案-分数乘法
解答:根据题意可得:
一个数乘分数的意义是:求这个数的几分之几是多少;
所以一个数乘分数,就是求这个数的几分之几是多少是正确的.
故答案为:正确
小学教育,5068小学教育推荐:
六年级奥数题及答案-求数
六年级奥数题及答案-平路的速度
五年级奥数题及答案-行程问题
二年级奥数题及答案-计算
四年级奥数题及答案-个位数字
四年级奥数题及答案-四位数
三年级奥数题及答案-兰花数量
苏教版二年级语文上册期末测试卷在线看
四年级奥数题及答案-圆锥形的麦堆
以下这道六年级分数乘法题主要考查一个数乘分数的意义然后再进一步解答即可
六年级奥数题及答案-分数乘法
六年级奥数题及答案:分数乘法。以下这道六年级分数乘法题主要考查一个数乘分数的意义,然后再进一步解答即可.
判断题:一个数乘分数,就是求这个数的几分之几是多少.
考点:分数乘法.
分析:根据题意,由分数的乘法的意义进行判断即可.

五年级下册数学长方体与正方体奥数练习题

五年级下册数学长方体与正方体奥数练习题

五年级下册数学长方体与正方体奥数练习题第一篇:五年级下册数学长方体与正方体奥数练习题长方体和正方体(一)一、知识要点在数学竞赛中,有许多有关长方体、正方体的问题。

解答稍复杂的立体图形问题要注意几点:1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3.求一些不规则的物体体积时,可以通过变形的方法来解决。

二、精讲精练【例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)练习1:1.把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。

【例题2】有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)练习2:1.有一个形状如下图的零件,求它的体积和表面积。

(单位:厘米)。

2.有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少?体积为4^3-1^3=64-1=63立方厘米表面积不变,大小为6×4²=96平方厘米【例题3】一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。

原正方体的表面积是多少平方厘米?练习3:1.一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?2.把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方分米?【例题4】一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。

这个长方体的体积和表面积各是多少?练习4:1.有一个长方体,它的前面和上面的面积和是88平方厘米,且长、宽、高都是质数,那么这个长方体的体积是多少?依题意长*宽+长*高=88 即长*(宽+高)=88 而长宽高都是质数,长*(宽+高)=11*(5+3)可知长宽高分别为11,5,3 长方体的体积是11*5*3=165立方厘米。

奥数分数乘法应用题附答案

奥数分数乘法应用题附答案

分数乘法应用题1、某村要修一条4500米的公路,已修了1020米,还要修多少米正好修这条路的32?4500×2/3-10202、一条水渠长85千米,第一次修了全长的53,第二次修了81千米,两次共修了多少千米?5/8×3/5+1/83、一本书共120页,天天第一天看了51,第二天看了总页数的31,第三天从哪一页看起?120×1/5+120×1/3=64,从65开始4、甲乙两列火车从相距500千米的两地同时相对开出,甲车每小时行80千米,2小时后两车还相距全程的52,乙车每小时行多少千米?500×(1-2/5)÷2-80=705、学校食堂有800千克大米,已经吃了300千克,还要吃多少千克正好是总数的54?800×4/5-300=3406、小红看一本124页的书,已经看了全书的41,再看多少页就正好看了这本书的一半?124×1/2-124×1/4=317、幼儿园有3吨煤,第一次运走了21,第二次又运走了41吨,这时还剩下多少吨?3-3×1/2-1/4=1.258、一筐梨重45千克,上去卖出53,下午卖出剩下的32,还剩下多少千克梨没卖?45×(1-3/5)=18 18×(1-2/3)=69、服装厂八月份计划生产西装2400套,结果上半月完成了计划的85,下半月完成了计划的52,八月份超产西装多少套?2400×(5/8+5/8-1)=60010、小明第一天看了一本书的114,第二天看的相当于第一天的23,小明两天有没有看完这本书?4/11+4/11×3/2=10/11 没看完11、甲乙两船同时从相距240千米的A,B 两地相对开出,6小时后,甲船行驶了全程的43,乙船行驶了全程的32,这时两船相距多少千米?240×(3/4+2/3-1)=10012、农场计划耕地480亩,第一天耕了41,第二天比第一天多耕了81,第二天耕多少亩?480×1/4×(1+1/8)=13513、一种物品原价100元,先涨价101后,再降价101,现价多少元? 100×(1+1/10)×(1-1/10)=9914、家具厂要加工2000套桌椅,12天加工了这批桌椅的53,离交货日期还有一周,照这样计算,能按期交付吗?12÷3/5=20,还需要20-12-8天一周不够15、六年级三个班学生共同植树,一班植树80棵,二班植树的棵数是一班的89,三班植树的棵数是二班的97还多7棵,三班植树多少棵?80×9/8×7/9+7=7716、一本书,第一天读了总页数的51,第二天读了余下的41,那么哪天看的多,为什么?(1-1/5)×1/4=1/5两天一样多17、乒乓球从20米的高空落下,大约能弹起的高度是落下的高度的52,这个乒乓球第二次下落后又弹起多少米?至少弹几次后它的高度不足0.5米?20×2/5×2/518、冰箱厂计划每天生产300台冰箱,8天完成任务,实际5天完成了总任务的65,照这样计算,提前几天完成任务? 5÷5/6=6 8-6=219、一个正方体的棱长是4厘米,若棱长延长41,表面积是原来的几倍?体积呢?4×(1+1/4)=5 ( 5×5×6)÷(4×4×6)=25/16 125/6420、一根绳子2014米,第一次剪去它的21,第二次剪去余下的31,第三次剪去余下的41,一次类推,一直到第2013次剪去余下的20141,剩几米?2014×(1-1/2)×(1-1/3)×(1-1/4)×…×(1-1/2014)=2014×1/2×2/3×3/4×…×2013/2014=121、有一堆桃共160个,先将这堆桃的43分给小猴子们;又放了40个桃到这堆中,后又分给小猴子们43;又放进40个桃,再分给小猴子。

奥数题长正方体)

奥数题长正方体)
10、号码分别为37、57、77、和97的四名运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和除以3的余数,那么打球盘数最多的运动员是几号?他打了多少盘?
11.一部书,甲、乙两个打字员需要10天完成,两人合打8天后,余下的由乙单独打,若这部书由甲单独打需要28天完成。问乙又干了几天完成?
12.在300米长的环形跑道上,甲、乙两人同时同向并排起跑,甲平均每秒跑5米,乙平均每秒跑4.4米。两人起跑后的第一次相遇在起跑线前多少米?
8、一个整数除以84的余数是46,那么他分别除以3、4、7所得的三个余数之和是多少?
9、甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。现在要把四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观旅游。已知甲、乙、丙三个团分成每组A人的若干组后,所剩下的人数相同,问丁旅行团分成每组A人的若干组后还剩下几人?
洗葱,切葱花
打蛋
搅拌蛋液和葱花
洗锅
烧热锅
烧热油
烧菜
1分钟
半分钟
1分钟
半分钟
半分钟
半分钟
2分钟
小晴做好这道菜至少需要分钟。
9、一项特殊的工作必须日夜有人值守,如果安排8人轮流值班,当值班人员为3人,那么,平均每人每天工作小时。
10、甲、乙两商店中某种商品的定价相同。甲商店按定价销售这种商品。销售额是7200
9、有一个棱长为9厘米的正方体,在每两个对面的中央钻一个边长为2厘米的正方形孔,且穿透,所得立体的体积是多少?
10、有甲、乙、丙三个正方体水池,它们内边长分别是5米、3米、1米,把两堆碎石分别沉没在乙、丙两个水池的水里,它们的水面分别升高了4厘米和2厘米。如果将这两堆碎石都沉没在甲水池的水里,甲水池的水面升高了多少厘米?

五年级上册数学奥数

五年级上册数学奥数

必考奥数题型在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体(下图),求这个立体图形的表面积。

【答案】这个立体图形的表面积为214平方分米。

分析:我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面:5×5×2=50(平方分米)侧面:小正方体的四个侧面和大正方体的四个侧面5×5×4=100(平方分米)4×4×4=64(平方分米)这个立体图形的表面积为:50+100+64=214(平方分米)一项工程,由甲先做,再由甲乙两队合作,又做了16天完成。

已知甲乙两队的工效比是2:3,甲乙两队独立完成这项工程各需多少天?解:甲乙的工作效率和=(1-)÷16=÷16=甲的工作效率=÷(2+3)×2=乙的工作效率=-=那么甲单独完成需要1÷=50天乙单独完成需要1÷=天=33天一项工程甲独完成要10天,乙独做需15天,丙队要20天,3队一起干,甲队因事走了,结果共用了六天,甲队实际干了多少天?解:乙丙的工作效率和=乙丙都做6天,完成甲完成全部的那么甲实际干了天一项工程,甲队单独做20天完成,乙队单独做30天完成,现在乙队先做5天后,剩下的由甲、乙两队合作,还需要多少天完成?解:乙5天完成5×甲乙合作的工作效率=那么还需要(1-)÷=5天一批零件,甲乙两人合做5.5天可以超额完成这批零件的0.1,现在先由甲做2天,后由甲乙合作两天,最后再由乙接着做4天完成任务,这批零件如果由乙单独做几天可以完成?解:将全部零件看作单位1那么甲乙的工作效率和=(1+0.1)÷5.5=整个过程是甲工作2+2=4天乙工作2+4=6天相当于甲乙合作4天,完成×4=那么乙单独做6-4=2天完成1-=所以乙单独完成需要2÷=10天一个工程项目,乙单独完成工程的时间是甲队的2倍;甲乙两队合作完成工程需要20天;甲队每天工作费用为1000元,乙每天为550元,从以上信息,从节约资金角度,公司应选择哪个?应付工程队费用多少?解:甲乙的工作效率和=甲乙的工作时间比=1:2那么甲乙的工作效率比=2:1所以甲的工作效率=乙的工作效率=甲单独完成需要1÷=30天乙单独完成需要1÷=60天甲单独完成需要1000×30=30000元乙单独完成需要550×60=33000元甲乙合作完成需要(1000+550)×20=31000元很明显,甲单独完成需要的钱数最少选择甲,需要付30000元工程费。

长方体与正方体奥数题及答案

长方体与正方体奥数题及答案

长方体与正方体奥数题及答案1、一个长方体的棱长之和为80厘米。

将其平均截成两段后,得到两个大小相等的正方体。

求这个长方体的表面积和体积。

解:每个正方体的棱长为80÷2÷8=5厘米。

因此,这个长方体的表面积为5×5×5×2=250平方厘米,体积为5×5×5=125立方厘米。

2、将3个完全相等的正方体拼成一个长方体,这个长方体的表面积为350平方厘米。

每个正方体的表面积是多少平方厘米?解:这个长方体的长、宽、高分别为a、b、c,且有2(ab+bc+ac)=350,即___将长方体分成3个正方体之后,得到2(a²+b²+c²)=3(ab+bc+ac)=525,即a²+b²+c²=262.5.因此,每个正方体的表面积为262.5÷6=150平方厘米。

3、将一个长方体的木块截成两段,得到两个完全相等的正方体。

这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米。

原来那个长方体的体积是多少立方厘米?解:设原来长方体的长、宽、高分别为a、b、c,且有a+b+c=2x,其中x为每个正方体的棱长。

则有x=(a+b+c)÷4+10.因此,原来那个长方体的体积为a×b×c=(2x-b-c)×b×c=(a+b+c)×(a+b+c-2x)×x÷8=250立方厘米。

4、将一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体的表面积之和最大。

这时表面积之和是多少平方厘米?解:设第一个长方体的长、宽、高分别为x、y、z,第二个长方体的长、宽、高分别为7-x、6-y、5-z。

则这两个长方体的表面积之和为2(xy+xz+yz)+2((7-x)(6-y)+(7-x)(5-z)+(6-y)(5-z))=298平方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数题1
班级姓名号数
1、一个长方体各条棱长和是96厘米,并且它的长是宽的2倍,宽与高相等,那么这个长方体的体积是多少?
2、将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色没有涂的小立方体只有3块。

原来长方体的体积是()立方厘米。

3、一个长方体,前面和上面的面积和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。

这个长方体的体积和表面积各是多少?
4、一个方体的长、宽、高是三个连续偶数,体积是960立方厘米,求它的表面积()。

5、在棱长为3cm的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1cm的正方形(见右图)。

求挖洞后木块的体积。

6、一个5×6×7正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小长方体各有
多少块?
7、如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4
米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多
少平方米?
8、一个正方体的棱长为4厘米,在它的前、后、左、右、上、下各面中心各挖去一个棱长为1厘米的正方体做成一种玩具,求这个玩具的表面积.
- 2 - 9、计算:
1)、
515151
515151343434343434++++
2)、121+261+3121+4201+5301+6421+7561+8721+990
1
10、教室里有甲、乙两盒粉笔,甲盒有40根,如果拿出它的
101放入乙盒中,这时乙盒还比甲盒少91,乙盒原来有粉笔多少根?
11、五(1)班有40个学生,其中85的人参加数学小组,23人参加科技小组,有5
2的人两个小组都参加了。

那么,有多少人两个小组都没有参加?
12、某校选出60名学生参加区作文比赛和数学比赛,结果3人两项比赛都获奖了,有
52的人两项比赛都没有获奖。

已知作文比赛获奖的有
30
11人,问数学比赛获奖的有多少人?。

相关文档
最新文档