ANALYSIS OF FIRST TRANSIENT PRESSURE OSCILLATION FOR LEAK DETECTION IN A SINGLE PIPELINE

合集下载

Effects_of_Pressure_during_Preform_Densification_o

Effects_of_Pressure_during_Preform_Densification_o

Open Journal of Inorganic Non-metallic Materials, 2013, 3, 10-13doi:10.4236/ojinm.2013.31003 Published Online January 2013 (/journal/ojinm)Effects of Pressure during Preform Densification onSiC/SiC CompositesNaofumi Nakazato1, Akira Kohyama2, Yutaka Kohno31Graduate School of Chemical and Materials Engineering, Muroran Institute of Technology, Muroran, Japan2Organization of Advanced Sustainability Initiative for Energy System/Materials (OASIS),Muroran Institute of Technology, Muroran, Japan3College of Design and Manufacturing Technology, Muroran Institute of Technology, Muroran, JapanReceived September 5, 2012; revised September 25, 2012; accepted October 22,2012ABSTRACTThe nano-infiltration and transient eutectic-phase (NITE) method is one of the most attractive methods for fabrication of SiC and SiC/SiC composites. In the NITE method, preform densification is essential option for damage less near-net shaping technique. However, optimization of preform densification is insufficient yet. The objective of this study is to evaluate the effects of pressure during preform densification on SiC/SiC composites. The preform before preform den-sification has many pores in the inter-prepreg sheets. These pores were disappeared by preform densification. As the effects of pressure on preform, densification in the intra-fiber-bundle was improved due to increasing pressure. Flexural strength of the preforms with 1 MPa and 17 MPa indicated almost same value. The result suggested that increasing of pressure did not cause any change in fiber properties. In the effects of pressure on the composites, the composites with 17 MPa was exhibited improvement in bulk density and mechanical property, compared with that with 1 MPa. Keywords: SiC/SiC Composites; NITE Method; Near-Net Shaping; Preform Densification1. IntroductionSiC/SiC composites are promising high-temperature structural materials for advanced nuclear and aero-space applications. The advantage of SiC/SiC composites comes from their low specific mass, superior thermo- mechanical properties and low activation [1-3]. As fab- rication processes of SiC/SiC composites, there are three common processes, such as chemical vapor infiltration (CVI) [4], polymer infiltration and pyrolysis (PIP) [5] and reaction sintering/melting infiltration (RS/MI) proc- esses [6]. However, total performances of these compos- ites are still not satisfied for going of industrial stage. Nano-infiltration and transient eutectic-phase (NITE) method is one of the most attractive processes for SiC/ SiC composites fabrication to provide high performance on thermo-mechanical properties, size and shape flexibi- lity and acceptable cost [7-9]. In order to produce the complex shape components of SiC/SiC composites by NITE method, the near-net shaping technique is neces- sary. In general, large volumetric shrinkage (−50 vol%) occurs during ceramic matrix composites fabrication by hot-pressing like NITE method. This volumetric shrink- age is caused due to infiltration and densification process of powder for matrix formation, resulting in unfortu- nately significant fiber-architecture and strength damage. Therefore, the method development for suppression of large volumetric shrinkage during hot-pressing is essen- tial to fabricate the production of complex shape by the damage-less near-net shaping, and one of method for that is preform densification before hot-pressing. In fact, the preform densification demonstrated the maintainability of fiber-architecture in composites due to suppression of large volumetric shrinkage and the improvement of compo- sites’ density and mechanical properties [10]. However, optimization of conditions (temperature, holding time and applied pressure) during preform densification is insuffi-cient.2. ObjectiveThe objective of this study is to clarify the effects of conditions of preform densification on SiC/SiC compos- ites. In particular, the effects of pressure during preform densification were investigated on microstructure and mechanical property of preforms and SiC/SiC composites. 3. Experimental ProcedurePyrocarbon (PyC) coated-Tyranno TM SA fibers (Ube In- dustrials Ltd., Japan) were used as reinforcement for SiC/SiC composites fabrications. The PyC coating wasN. NAKAZATO ET AL.11appropriately chosen at the thickness of 0.5 μm by che- mical vapour deposition (CVD) process. β-SiC nano- powder (IEST, Japan, mean grain size of 32 nm) and sintering additives with Al2O3 (Kojundo Chemical Labo- ratory Co. Ltd., Japan, mean grain size of 0.3 µm, 99.99%) and Y2O3 (Kojundo Chemical Laboratory Co. Ltd., Japan, mean grain size of 0.4 µm, 99.99%) were used for matrix formation. For the fabrication of prepreg sheets, PyC-coated Tyranno-SA fibers were impregnated in “nano”-slurry, which consisted of the mixture of SiC nano-powders and sintering additives. Prepreg sheets were stacked for preparation of UD preforms, which is followed by preform densification. The preform densifi- cation is performed during heating under isostatic pres- sures of 1 - 17 MPa. The preforms prepared were hot- pressed at 1870˚C for 1.5 h in Ar under a pressure of 20 MPa. The bulk density and open porosity of the pre- forms and the composites fabricated were measured by the Archimedes’ principle. Mechanical property evalua- tion was performed by three point bending test with the crosshead speed of 0.5 mm/min and a support span of 16 mm at room temperature. The specimens were straight bar type, which measured 26L⨯ 3W⨯ 1.2T mm3. Micro- structural evaluation was inspected by a JEOL JSM- 6700 F field emission scanning electron microscope (FE- SEM).4. Results and Discussions4.1. Effects of Pressure on PreformFigure 1 shows optical microscopic image taken on the cross-sectional samples of the preforms before and after preform densification. Table 1 shows density of pre- forms after preform densification with different pressure. In the preform before preform densification, pores in the inter-prepreg sheets were observed at many parts. These many pores are possible to affect formation of defects in products. By preform densification, there were disap- peared and preform’ density also was improved. In the previous study, deformation of fiber and damage of PyC interphase due to preform densification were not seen [11]. The change in microstructure in optical microscopeFigure 1. Microstructure of preforms before and after pre-form densification with different pressure.observation and improvement in density are not clearly depended on pressure. Figure 2 shows scanning electron images of the cross-sectional samples of preforms in the intra-fiber-bundle with different pressure. Noticeable pores were not conformed in the all preforms. Matrix slurry seems to be effectively infiltrated by the preform densi- fication. Fiber deformation and damage of PyC inter- phase were not conformed due to increasing pressure. Contacts between fibers were partially slightly observed. As SEM image analysis, the number of fibers in 50 µm diameter circumference was measured and densification in the intra-fiber-bundle was evaluated. Figure 3 shows change in number of fibers on the circumference due to pressure. With increasing pressure, the number of fibers on the circumference was increased and tends to saturate with more than 5 MPa. The increasing of number of fi- bers means disappearance of pores and decreasing of dis- tance between fibers. These results suggest that increas- ing of pressure might be effective to densification in the intra-fiber-bundles. Figure 4 shows stress-strain curves of the preforms during the three-point bending test. Both preforms are indicated a pseudo-ductility fracture behav- ior. The flexural strength of the preform with 1 MPa and 17 MPa are 172 MPa and 173 MPa, which are almost same value. The preform can be defined as fiber-rein- forced plastic (FRP), which is consisted of polymer resin matrix. So, the flexural strength of the preform is consid-ered strength of reinforced fibers. Thus, since both of preforms have almost same strength, no influence on fiber properties is suggested due to increasing of pre- ssure. However, these trends due to increasing of pres- sure are presumed to change by difference in stacking di- rection of sheets, content and type of binder.4.2. Effects of Pressure on SiC/SiC Composites Table 2 lists fiber volume fraction, density and mecha- nical properties of the composites fabricated in this study. The bulk density is almost same value regardless of the increasing of pressure during preform densification. Table 1. Density of preform after preform densification with different pressure.Pressure 1 MPa 5 MPa 10 MPa 17 MPa Density (g/cm3) 1.87 1.90 1.89 1.94Table 2. Characterizations of the SiC/SiC composites fab-ricated in this study.Pressureduring preformdensificationFiber volume(%)Density(g/cm3)ED/TD a(%)Open porosity(%)1 MPa 43 2.64 85 10.917 MPa 40 2.74 88 7.9a ED: experimental density, TD: theoretical density.N. NAKAZATO ET AL. 12Figure 2. FE-SEM images of preform in the intra-fiber- bundle with different pressure.Figure 3. Change in number of fibers due to pressure.Figure 4. Flexural stress-flexural strain curves of preform with different pressure.When the pressure is increased during preform densifica- g/cm3 to 2.74 g/cm3 and the open porosity simultane- ously decreased from 10.9 % to 7.9 %. FE-SEM images of polished cross-sectional samples of the composites with different pressure during preform densification are shown Figure 5. The cross-sectional areas can be classi- fied into intra-fiber-bundle regions and inter-fiber-bundle regions. Large pores could not be identified at in- ter-fiber-bundle regions. Pores are mainly distributed in the intra-fiber-bundle regions. In the intra-fiber-bundles, pores of the composites with 17 MPa are slightly de- creased than that of the composites with 1 MPa. This result is considered contribution of densification in the intra-fiber-bundles due to increasing of pressure during preform densification. In the backscattered electron im- ages, the bright contrast phase indicates remnants of the oxide additives with high Z elemental compositions (Figures 5(c) and (d)). Shimoda et al. have reported that this phase is mainly consisted of Al, Y and O elemental compositions by the energy-dispersive X-ray spectros-copy (EDS) analysis [12]. This phase was agglomerated in the inter-fiber-bundle regions and around intra-fiber- bundle regions. The difference in scatteration of rem-nants of the oxide additives due to pressure during pre-form densification was not clear. The fiber deformation is slightly observed in both the composites. Fiber defor- mation ratio of composites with 1 MPa and 17 MPa, de-fined as a fiber aspect ratio of longer dimension to shor- ter dimension, is 1.2 and 1.2, which is consistent. The PyC interephase of both composites is maintained re-gardless of pressure during preform densification. Figure 6 shows stress-strain curves of the composites during the three-point bending test. The sample number for each composite was five. Both of the composites displayed a pseudo-ductility fracture behavior. The average flexural strength of the composites with 17 MPa is 471 MPa, which is slightly higher than that of the composites with 1 MPa. The difference of flexural strength might be due totion, the bulk density is slightly increased from 2.641 MPa17 MPaFigure 5. FE-SEM images taken on the polished cross-sec- tional samples of the composites: (a),(b) Scanning electron image; (b), (c) Backscattered electron image.N. NAKAZATO ET AL .13Figure 6. Flexural stress-flexural strain curves of the composites with different pressure during preform densificationnhanced densification in the intra-fiber-bundles.5. Conclusionssure during preform densificatio REFERENCES[1] C. R. Naslain, Properties of Non-atoh, A. Ko-. L. Snead, C. H. Henager Jr., A. Hasegawa,and T.567-571.rix Composites,” Composites : Part A , Vol. 30, tion-Sintered Silicon Carbide o-Infiltration and Transient .e n onNo. 4, 1999, pp. 569-575. [6] A. Sayano, C. Sutoh, S. Suyama, Y. Itoh and S. Nakaga-wa, “Development of a Reac The effects of pre microstructure and mechanical properties of preforms and SiC/SiC composites were evaluated. The preform before preform densification had many pores in the in-ter-prepreg sheets. These pores were disappeared by pre- form densification. As the effects of pressure on preform, densification in the intra-fiber-bundle is improved due to increasing of pressure. Flexural strength of the preforms with 1 MPa and 17 MPa is indicated almost same value. The result suggested that increasing of pressure did not cause any change in fiber properties. In the effects of pressure on the composites, the composites with 17 MPa was exhibited improvement in bulk density and mecha- nical property, compared with that with 1 MPa.“Design, Preparation andOxide CMCs for Application in Engines and Nuclear Reactors: An Overview,” Composites Science and Tech- nology , Vol. 64, No. 2, 2004, pp. 155-170. [2] B. Riccardi, L. Giancarli, A. Hasegawa, Y. K hyama, R. H. Jones and L. L. Snead, “Issue and Advances in SiC/SiC Composites Development for Fusion Reac- tors,” Journal of Nuclear Materials , Vol. 329-333, 2004, pp. 56-65. [3] Y. Katoh, L A. Kohyama, B. Riccardi and H. Hegeman, “Current Sta- tus and Critical Issues for Development of SiC Compos- ites for Fusion Applications,” Journal of Nuclear Materi- als , Vol. 467-370, No. Part A, 2007, pp. 659-671. [4] H. Araki, W. Yang, H. Suzuki, Q. Hu, C. BusabokNoda, “Fabrication and Flexural Properties of Tyranno- SA/SiC Composites with Carbon Interlayer by CVI,” Journal of Nuclear Materials , Vol. 329-333, 2004, pp. [5] R. Jones, A. Szweda and D. Petrak, “Polymer Derived Ce-ramic Mat Matrix Composite,” Journal of Nuclear Materials , Vol. 271-272, 1999, pp. 467-471. [7] A. Kohyama, S. M. Dong and Y. Katoh, “Development ofSiC/SiC Composites by Nan Eutectoid (NITE) Process,” Ceramic Engineering and Science Proceedings , Vol. 23, No. 3, 2002, pp. 311-318. doi:10.1002/9780470294741.ch36 [8] Y. Katoh, S. M. Dong and A. Kohyama, “Thermo-Me-chanical Properties and Microstructure of Silicon Carbide Composites by NITE Process orm Den- Composites Fabricated by Nano-Infiltrated Transient Eu- tectoid Process,” Fusion Engineering and Design , Vol. 61-62, 2002, pp. 723-731. [9] K. Shimoda, A. Kohyama and T. Hinoki, “High Mecha-nical Performance SiC/SiC with Tailoring of Appropriate Fabrication Temperature to Fiber Volume Fraction,” Composites Science and Tech-nology , Vol. 69, No. 10, 2009, pp. 1623-1628. [10] N. Nakazato, H. Kishimoto, K. Shimoda, J. S. Park, H. C.Jung, Y. Kohno and A. Kohyama, “Effects of Pref sification on Near-Net Shaping of NITE-SiC/SiC Compo- sites,” IOP Conference Series : Materials Science and En- gineering , Vol. 18, No. 20, 2011. doi:10.1088/1757-899X/18/20/202011 [11] N. Nakazato, H. Kishimoto, K. Shimod Jung, Y. Kohno and A. Kohyama, “Effec a, J. S. Park, H. C.ts of Preform Den- sification on Microstructure and Mechanical Properties of SiC/SiC Composites,” Journal of the Japan Institute of Metals , Vol. 75, No. 3, 2011, pp. 146-151. doi:10.2320/jinstmet.75.146 [12] K. Shimoda, T. Hinoki and A. Kohyama, “E ditive Content on Transient L ffect of Ad-iquid Phase Sintering in SiC Nanopowder Infiltrated SiC f /SiC Composites,” Compos-ites Science and Technology , Vol. 71, No. 5, 2011, pp. 609-615.。

Analysis of Pressure Relief Valve Dynamics During Opening

Analysis of Pressure Relief Valve Dynamics During Opening

Analysis of Pressure Relief Valve Dynamics During OpeningJohn BossardBSRD, LLCHuntsville, AL johnbossard@Alton ReichStreamline Automation, LLCHuntsville, ALAlton.Reich@Alex DiMeoCurtiss-Wright Flow ControlEast Farmingdale, NYadimeo@ABSTRACTIn nuclear power plants power actuated pressure relief valves serve several purposes. They act as safety valves and open automatically in response to unusually high pressures in the primary system. They also act as power operated valves and are used to relieve steam in response to automatic or manually initiated control signals. These valves are required to lift completely over a short duration from the time that they receive an actuation signal, or the system pressure exceeds the set point. This short lift time results in the valve disk moving at high velocities, and can result in high impact forces on the piston and stem when the valve fully opens.To quantitatively evaluate the dynamic performance of the Target Rocket Pressure Relief Valve, an analysis effort was undertaken which would accommodate both the fluid dynamic features of the valve operation, as well as the kinematic characteristics of the valve,during pressure relief valve operation.To execute the analysis,the Generalized Fluid System Simulation Program (GFSSP) was used. GFSSP is a network flow solver CFD code developed by NASA that has the ability to analyze transient,multi-phase flows,and conjugate heat transfer,along with the inclusion of custom user subroutines developed by the user which can accommodate other simulation requirements.In this paper we present the GFSSP model developed, and the computed results that could be compared with corresponding parameters as measured from experimental testing for the pressure relief valve.Adjustments to GFSSP input parameters allow the anchoring of the GFSSP valve model to test data. This makes it possible to use the GFSSP model as a predictive tool for understanding valve dynamics,as well as evaluating proposed pressure relief valve modifications for performance improvements.INTRODUCTIONTo quantitatively evaluate the dynamic performance of the Target Rock Pressure Relief Valve, Model number 0867F-001 Main Steam Relief Valve, a 6 x 10 angle relief valve,an analysis effort was undertaken which would accommodate both the fluid dynamic features of the valve operation, as well as the kinematic characteristics of the valve, during pressure relief valve operation.Given the valve geometry for the model 0867F-001 Pressure Relief valve and its operation with steam as the working fluid at a given set of pressure and temperature starting conditions,the focus of the analysis was to numerically determine the opening time, as well as the position and speed of the moving internal components of the valve as a function of time.To execute the analysis,the Generalized Fluid System Simulation Program (GFSSP) was used. GFSSP is a network flow solver CFD code developed by NASA MSFC [Ref.1]. The code has been well validated on numerous flow systems and components, and possesses a number of advanced analysis capabilities, including the ability to analyze transient, multi-phase flows, conjugateProceedings of the ASME 2016 Pressure Vessels and Piping ConferencePVP2016 July 17-21, 2016, Vancouver, British Columbia, CanadaPVP2016-63261heat transfer, et al. In addition, custom user subroutines can be developed by the user, which can accommodate other simulation requirements.Given these attributes, GFSSP was considered a suitable CFD code for the analysis effort.With a functional GFSSP model, computed results could then be compared with corresponding parameters as measured from experimental testing of the pressure relief valve.Adjustments to GFSSP input parameters could then be made to anchor the GFSSP valve model. With an anchored model in hand, the GFSSP model could be used as a predictive tool for understanding valve dynamics, as well as evaluating proposed pressure relief valve modifications for performance improvements. ANALYSISGFSSP is a1-D,network-flow solver CFD code, originally designed to solve internal fluid flow networks. Internal fluid flow systems can be represented in GFSSP as a set of 1-D fluid flow branches and nodes. Boundary nodes are applied to the system, the fluid is selected from many available within the GFSSP fluid library, and the user then selects various constraints and solution options. Fluids may be modeled as incompressible liquids, ideal gasses,or real gasses using properties from GFSSP's libraries.For the analysis conducted here, the pressure relief valve was modeled in GFSSP as a network of pipe and resistance element branches.In Figure1,a graphical representation of the GFSSP model of the pressure relief valve is superimposed over a simplified schematic of thevalve.Figure 1: The GFSSP model of the pressure relief valve.As can be seen in Figure1,the GFSSP model is graphically represented as a series of nodes and branches. The nodes are the numbered white squares,and the branches,or flow passages,are the red icons. A pipe branch element is shown as a red cylinder, and a general flow resistance branch element is shown as the two red triangles and the letter“R.”Each node is numbered sequentially. The final node, node 15, is a boundary node, and is depicted as the double square. System pressures and temperatures(and other flow parameters)are computed at the nodes,while flow rates and pressure drops (and other flow parameters) are computed at the branches.The basic internal flow passages of the pressure relief valve are represented by various GFSSP branches, whereas the internal volumes within the valve are represented by the nodes.In Figure2,the various branches and nodes that represent corresponding flowpassages and volumes within the valve are depicted.Figure 2: Pressure relief valve flow passage and volume representations within the GFSSP model.GFSSP MODEL SETUPTo initiate a model run, the user specifies the fluid to be used. In this case, water was specified. The phase state and quality of the water is computed automatically within GFSSP using standard saturation and phase state data for water. This data was obtained from the National Institute of Standards and Technology(NIST)fluid reference property code REFPROP [Ref. 2].Target Rock provided boundary conditions for the pressure relief valve. These conditions are:Start Temperature (nodes 1-8):560 FStart Pressure: (nodes 1-8):1170 psiaAmbient Temperature (Nodes 9-15):120 F Ambient Pressure (Nodes 9-15):30.0 psiaBranches and nodes within the GFSSP model were set at values corresponding to the information provided about the pressure relief valve as provided by Target Rock. Data provided by Target Rock and used to set up the model include:∙Equivalent diameter of small flow passages within the valve, such as the small orifice through the piston.∙Characteristic flow coefficient (C D ) of orifices or other similar flow restrictions.∙Diameter or cross sectional area of larger flow volumes within the valve, such as the diameter of the stem guide where the main disk piston travels.∙Initial volumes of the regions above and below the main disk piston.∙Stroke length of the main disk piston.∙Flow characteristics of the gag and test loop.The GFSSP model requires flow coefficients (Cl) for the resistance branch elements. These were computed from discharge coefficients (Cd) supplied by Target Rock, using the relationships found in Crane [Ref. 3].GFSSP KINETICS MODELWithin the pressure relief valve, several moving elements are mechanically connected and move together as part of the pressure-relief valve operation. The moving elements consist of the main valve disk, valve stem, and piston components. The kinetics of the moving elements within the valve were modeled as a 1-D, second-order system, in which the acceleration, velocity, and displacement of the piston, stem, and main valve elements could be computed from:∑F =ma(1)Where ΣF is the sum of the forces acting on the moving elements, m is the mass of the piston, stem, and main valve, and a is the resultant acceleration.The forces acting on the moving elements were assumed to consist of six major forces: the seat closing force F_SEAT , the seat back pressure force F_BACK ,the pressure force from the high pressure side of the piston (V2) F_HP , the pressure force from the low pressure side of the piston (V3) F_LP , the spring force F_SPRING , and a viscous damping force F_VISC .These forces are depicted in Figure 3.Figure 3: Kinetics model.Thus, the sum of the forces acting on the moving element is:∑F =F SEAT +F BACK +F HP +F LP +F SPRING −F VISC (2)The pressure forces on the piston assembly, F_SEAT,F_BACK, F_HP, and F_LP result from internal pressures within the valve assembly acting over a corresponding area. The spring constant for the spring force was determined from spring performance data provided by Target Rock. The viscous damping force is equal to a damping constant, DC, multiplied by the velocity of the piston assembly, and is always in the direction opposite to the direction of motion. To determine the viscous force, F_VISC, a damping coefficient value is required.The determination of the damping coefficient was made by selecting the value that provided the best representation of the available experimental data. The piston starts at a displacement, X, of zero,velocity equals zero, and acceleration of zero. At each time step, the forces are computed, and applied to the piston assembly mass subject to the following constraints:1.If X is less than or equal to zero and the sum ofthe forces is less than zero, then the acceleration is zero. This accounts for the valve being in the fully closed position, with forces holding the piston assembly against the main valve seat.2.If X is greater than or equal to 2.86 inches andthe sum of the forces is greater than zero, then the acceleration is zero. This accounts for the valve being in the fully open position, with forces holding the piston assembly against the aft end of the allowable piston assembly travel.3.If X is greater than zero and less than 2.86inches, then the acceleration is given by equation1 as shown above.With the acceleration determined, the velocity and displacement can then be computed for that time step. With the displacement known, the volumes of the low pressure (node 7) and high pressure (node 6) sides of the piston, and the areas of the main valve seat (branch 412) and flow area of the passage between the high pressure and low pressure volumes(branch67)can be re-computed, and updated for the subsequent time step. The internal pressures are then recomputed at the next time step for the updated volumes and areas.The relief valve is initially closed. The simulation begins from the start of the blow-down process, which corresponds to the pilot valve opening. As the pressures within the internal volumes of the valve begin to decrease, the net force on the piston assembly begins to change in magnitude and direction. Eventually it reaches a point in time such that the net force changes from holding the piston assembly in a closed position (ΣF less than zero),to accelerating the piston assembly as the valve starts to open ((ΣF greater than zero). Eventually the piston assembly contacts the stops at its full-open position and is held there for the remaining duration of the simulation. In between the start of opening and the piston assembly remaining in the full open position, the piston assembly may move in both positive and negative directions, depending on the direction and magnitude of the net force.As mentioned previously, GFSSP has the capability to accommodate custom user subroutines. Thus, a custom user subroutine was written to compute the accelerations, velocities,displacements,volumes,and areas,as previously described. The pressures, flow rates, and other fluid properties are computed by the main GFSSP code. This user subroutine was written in FORTRAN90, and compiled with the main GFSSP code to create a custom GFSSP executable program.RESULTSUsing GFSSP and the associated user subroutine, the displacement, velocity, and acceleration of the pressure relief valve’s translating piston assembly could be computed as a function of time,given the boundary conditions, and branch and node specifications.For the simulation, the start time t = 0 corresponded to the start of the transient de-pressurization process for the internal nodes (nodes 1 through 8). For the pressure relief valve, this would correspond to the time at which the outflow valve, D0, opens and steam begins to flow out of the valve through the outflow valve.The elapsed time for the main valve to open was computed within the simulation as the time step at which the sum of the forces acting on the piston assembly first becomes a net positive value. At this time step, the piston assembly could begin to translate and the main valve begins to open.For the pressure relief valve modeled using the previously described boundary conditions and branch and node settings,the time step at which the forces first achieve a net positive value occurs at the 0.360 second time step.The computed piston displacement as a function of time given the above conditions is shown in Figure 4 as the red curve. Measured displacement data for the valveis shown in the blue curve.Figure 4: Piston assembly displacement as a function oftime.For the measured results,it was not possible to identify a t=0 time which would correspond with the t=0 time for the simulation. In Figure 4, the t=0 was taken as the time at which a displacement of the piston assembly could be measured. For the computed data, this would correspond to start of the valve opening which,as described previously, is the time step in which the net force first becomes positive.For this simulation, a damping coefficient of 465.0 lbf-sec/ft.was used,which represented the best representation of the LVDT data.An interesting observation in both the measured data and the simulation is the fact that the piston assembly experiences several transient reversals in displacement, velocity, and acceleration before reaching the full openposition. This is seen as the “humps” in the displacement results shown in Figure 4.The computed piston velocity as a function of time given the above conditions is shown below in Figure 5. In these results, the piston assembly achieves a peak velocity of 56.1 ft./sec (17.1 m/sec). The piston assembly’s pre-impact velocity, the highest velocity in the time step just prior to contact at the end of travel at 2.86inches, is 22.06 ft./sec (6.72 m/sec). This occurs at the0.377-second time step.Figure 5: Piston assembly velocity as a function of time.ANALYSIS RESULTS FOR SUBSEQUENT VALVE CONFIGURATIONSWith the baseline GFSSP model in hand, it could then be used to evaluate other configurations of the Target Rocket Pressure Relief Valve by updating the model inputs. The configuration was a modification of the flow passage area into the high pressure side of the piston, D2. This was designated the “D2” configuration.The D2 ConfigurationOnly a few changes were necessary to configure the baseline GFSSP model to represent the D2 configuration.These consisted of changing the D2 flow passage area from the original value to a value approximately 10 times less. The D2 flow passage consists of the openings in the stem guide that allow steam to flow between the valve body and the main disk piston. In all other respects including pressure and temperature settings, the configuration was identical to the original configuration.D2 Configuration ResultsUsing the in-plant configuration and boundary conditions, the main valve opening kinematics could be computed. These results showed that for the D2configuration, the valve opening time was increased from 0.384 seconds in the baseline configuration to about 0.414 seconds. The resulting main valve displacement as a function of time for the D2 configuration is shown in Figure 6 below, as the green curve. The baselinedisplacement is the red curve.Figure 6: Piston Displacement as a Function of Time forthe D2 ConfigurationFor the D2 configuration, the pre-impact valve piston velocity was reduced by about 80% relative to the baseline configuration, going from a pre-impact velocity of 20.11 ft/sec (6.12 m/sec) for the baseline configuration, to a pre-impact velocity of 4.39 ft/sec (1.34 m/sec) for the D2 configuration. The resulting main piston velocity as a function of time for the D2configuration is shown in Figure 7 as the green curve. For comparison, the velocity of the baseline configuration isshown as the red curve.Figure 7: Piston Velocity as a Function of Time for the D2ConfigurationCONCLUSIONThe NASA-developed GFSSP network flow solver was used to analyze the flow internal to a power-operated relief valve during opening. A user subroutine was used to tightly couple the movement of the main disk piston to the computed flows and pressures within the valve.Existing test data was used to validate the methodology and provide confidence in the predictive power of the model.REFERENCES1.GFSSP Users Manual; Version 6; A. Majumdar, A. LeClair, R. Moore, NASA MSFC, and P. Schallhorn, NASA KSC; October, 20122. REFPROP, NIST code.3. Flow of Fluids through Valves, Fittings, and Pipe; Technical Paper No. 410, Crane Co.; 1981.。

武汉理工大学 研究生导师副教授名录

武汉理工大学 研究生导师副教授名录
7.液化气体类危险品运输安全预警系统的研究,交通部重点科技项目,2000.5~2002.12
8.液化气热响应特性仿真与事故预防,湖北省自然科学基金项目,1999.1~2000.12
刘杰
基本信息:
男,湖北公安县人.热能工程系教师,副教授.硕士生导师.
1993年入读武汉交通科技大学轮机管理专业。
1997年9月-2000年4月,攻读硕士学位,2000年5月留校工作。
徐立
个人简介:
徐立,副教授,博士,1992年~1996年,武汉理工大学(原武汉交通科技大学)热能动力机械及装置专业毕业,获学士学位;1996年~1999年,攻读硕士学位,专业方向为轮机工程,武汉理工大学;1999年硕士毕业后留校任教。2008年12月获博士学位,近3年主持、参与纵向、横向科研及教研项目10余项,发表学术论文共计9篇,其中2篇英文,EI核心收录1篇,主要从事新能源技术、混合动力技术等方面的研究工作,目前正在进行的研究主要有风能及太阳能在大型远洋船舶上的应用、新船能效设计指数(EEDI)、船舶能效营运指数(EEOI)的研究等。
论文著作
z主要论文:
1. Qi-zhi Yin, Xin-ping Yan, Xiu-minChu, Xing Sun, Yi-qi Chen, Yong Wu. The design of real-time oil spill monitoring
system for inland waterway based on AIS navigation marks[C]. 2010 3rd International Conference on Environmental and
Computer Science, (ICECS 2010). 2010.10,Kunming, china. V4:111~114

油藏数值模拟 chapter1

油藏数值模拟 chapter1
Reservoir Justification of Stimulation Treatments
Michael J. Economides
Dowel1 Schlumberger
l-l INTRQDUCTION Well and reservoir evaluationsare of particular importancein thejustification of stimulation treatments.Pressure transient and well performance analyses are the obvious available tools. This chapter will include two parts: (1) an outline of the fundamentals pressuretranof sient analysis, and (2) skin characterization,idiosyncrasiesof tight reservoirs,and recommended methodologies applicableto wells and reservoirs that are candidatesfor stimulation. l-2 FUNDAMENTALS OF PRESSURE TRANSIENT ANALYSIS Pressuretransient analysis, long establishedin groundwater hydrology, has becomea major tool in petroleum reservoir engineeringduring the last 40 years. van Everdingen and Hurst (1949) introduced what is believed to be one of the first major works in modem pressuretransient analysis.In their paper, they usedLaplacetransformations in formulating analytical mathematicalsolutions to fluid flow problems in porous media. Their work extended and transferred to the petroleum literature much of the analytical work done in the heat conduction area. Homer (1951) presenteda practical methodologywhich has becomethe mainstay in pressurebuildup analysis. Homer, using the principle of superposition, developed a simpleinterpretation graphingtechnique allowed and that the calculation of the permeability, skin effect, and average reservoir pressure. It was not until 1970 that Agarwal, Al-Hussainy, and Rameypresenteda major work that usheredin a new era in the field. Type-curve matching and well responsediagnostics became widely usedapproach pressuretrana to sient analysis. Since 1970, numerous publications on different reservoir and well geometries, effects of dual porosity, fractures,two-phaseflow, and multilayer reservoirs have been written.

Fluent噪声中文教程000_noise

Fluent噪声中文教程000_noise

已经发布了气动噪声模块SPL (dB):0 20 30 40 50 60 70 80 90 100 110 120Source AcousticSource Intensity, IFarfieldSurfaceSound Power = ∫IdAAcousticPressure, p(t)Pap prms µ20,log2=Frequency range (20 Hz ~ 20,000 Hz)Temporal resolution for acoustics is often orders ofTo radiate the acoustic pressure to the farfieldanalogy)Solve the flow using NS equation to capture soundAdvantages of the two step procedure Separate length scales. NS equation deals ONLY with shortSound is induced by fluid flow with its fluctuatingInclude solid surfaces and density fluctuationV i=0)Lighthill-Curle’s solution for acoustic pressureused this formulation for a rotatingThe Sears function provides a description of the unsteady aerodynamic response of a body due toCorrelate the flow parameters to noise levels.showed relations for acoustic power:CFD Acoustic Modeling OptionsOutput PhenomenaGenerate LES SolutionAirflow over a flat-plate with30 mmn Plate PlatePerform transient LES turbulent 2D analysis inAcoustic Pressure andAcoustic pressure variation with timeFor the present flow, SPL = 108 (dB))/()(2m W f p Φ)()(dB f p ΦPeak at f = 3434 HzPower Spectral DensitySurface Dipole Strengthmeasures local contribution)Local contribution to acoustic pressure can beTransient simulations can be used with Lighthill-L = 1m, D = 0.267m (L/D = 3.75)Cavity Flow MethodologyAcoustic calculationAcoustic Pressure TracesCavity Acoustic PressureSummaryUnsteady flow predicted with FLUENT is used as the source termMuffler Frequency ResponseA. J. Torregrosa, & A. Gil, Dept. of ThermalEngines, Polytechnic University of ValenciaMuffler Acoustics Methodology2D Axisymmetric, 10,000 cells3D w/ 1 Plane of Symmetry, 60,000 cellsincident wave3D Muffler Pressure IsosurfacesPressure IsoSurfaces at several frequencies f=95.15 Hz f=266.42 Hz f=342.54 Hzf=685.08 Hzf=1046.65 HzTransmission Loss CalculationsTL de TT2110016TL de TT2110016Response ConclusionsCalculation Method has been defined toWind Noise = Pressure fluctuations caused byPrimary sources of Wind Noise are•Leakage wave propagation simulated with FLUENTExamples: Door gap cavities, wiper well, cavities inPossible to qualitatively characterize source strength average flow pressure fluctuation magnitude inFlow pressure fluctuations on a solid surface in the flow cause acoustic pressure fluctuations to be radiated outTurn on UDF after transient simulation。

力学,流体力学,固体力学词汇英语翻译

力学,流体力学,固体力学词汇英语翻译

力学,流体力学,固体力学英语词汇翻译牛顿力学Newtonian mechanics经典力学classical mechanics静力学statics运动学kinematics动力学dynamics动理学kinetics宏观力学macroscopic mechanics,macromechanics细观力学mesomechanics微观力学microscopic mechanics,micromechanics一般力学general mechanics固体力学solid mechanics流体力学fluid mechanics理论力学theoretical mechanics应用力学applied mechanics工程力学engineering mechanics实验力学experimental mechanics计算力学computational mechanics理性力学rational mechanics物理力学physical mechanics地球动力学geodynamics力force作用点point of action作用线line of action力系system of forces力系的简化reduction of force system等效力系equivalent force system刚体rigid body力的可传性transmissibility of force平行四边形定则parallelogram rule力三角形force triangle力多边形force polygon零力系null-force system平衡equilibrium力的平衡equilibrium of forces平衡条件equilibrium condition平衡位置equilibrium position平衡态equilibrium state分析力学analytical mechanics拉格朗日乘子Lagrange multiplier拉格朗日[量] Lagrangian拉格朗日括号Lagrange bracket循环坐标cyclic coordinate循环积分cyclic integral哈密顿[量] Hamiltonian哈密顿函数Hamiltonian function正则方程canonical equation正则摄动canonical perturbation正则变换canonical transformation正则变量canonical variable哈密顿原理Hamilton principle作用量积分action integral哈密顿--雅可比方程Hamilton-Jacobi equation 作用--角度变量action-angle variables阿佩尔方程Appell equation劳斯方程Routh equation拉格朗日函数Lagrangian function诺特定理Noether theorem泊松括号poisson bracket边界积分法boundary integral method并矢dyad运动稳定性stability of motion轨道稳定性orbital stability李雅普诺夫函数Lyapunov function渐近稳定性asymptotic stability结构稳定性structural stability久期不稳定性secular instability弗洛凯定理Floquet theorem倾覆力矩capsizing moment自由振动free vibration固有振动natural vibration暂态transient state环境振动ambient vibration反共振anti-resonance衰减attenuation库仑阻尼Coulomb damping同相分量in-phase component非同相分量out-of-phase component超调量overshoot参量[激励]振动parametric vibration模糊振动fuzzy vibration临界转速critical speed of rotation阻尼器damper半峰宽度half-peak width集总参量系统lumped parameter system相平面法phase plane method相轨迹phase trajectory等倾线法isocline method跳跃现象jump phenomenon负阻尼negative damping达芬方程Duffing equation希尔方程Hill equationKBM方法KBM method, Krylov-Bogoliu-bov-Mitropol'skii method 马蒂厄方程Mathieu equation平均法averaging method组合音调combination tone解谐detuning耗散函数dissipative function硬激励hard excitation硬弹簧hard spring, hardening spring谐波平衡法harmonic balance method久期项secular term自激振动self-excited vibration分界线separatrix亚谐波subharmonic软弹簧soft spring ,softening spring软激励soft excitation邓克利公式Dunkerley formula瑞利定理Rayleigh theorem分布参量系统distributed parameter system优势频率dominant frequency模态分析modal analysis固有模态natural mode of vibration同步synchronization超谐波ultraharmonic范德波尔方程van der pol equation频谱frequency spectrum基频fundamental frequencyWKB方法WKB method, Wentzel-Kramers-Brillouin method缓冲器buffer风激振动aeolian vibration嗡鸣buzz倒谱cepstrum颤动chatter蛇行hunting阻抗匹配impedance matching机械导纳mechanical admittance机械效率mechanical efficiency机械阻抗mechanical impedance随机振动stochastic vibration, random vibration隔振vibration isolation减振vibration reduction应力过冲stress overshoot喘振surge摆振shimmy起伏运动phugoid motion起伏振荡phugoid oscillation驰振galloping陀螺动力学gyrodynamics陀螺摆gyropendulum陀螺平台gyroplatform陀螺力矩gyroscoopic torque陀螺稳定器gyrostabilizer陀螺体gyrostat惯性导航inertial guidance姿态角attitude angle方位角azimuthal angle舒勒周期Schuler period机器人动力学robot dynamics多体系统multibody system多刚体系统multi-rigid-body system机动性maneuverability凯恩方法Kane method转子[系统]动力学rotor dynamics转子[一支承一基础]系统rotor-support-foundation system 静平衡static balancing动平衡dynamic balancing静不平衡static unbalance动不平衡dynamic unbalance现场平衡field balancing不平衡unbalance不平衡量unbalance互耦力cross force挠性转子flexible rotor分频进动fractional frequency precession半频进动half frequency precession油膜振荡oil whip转子临界转速rotor critical speed自动定心self-alignment亚临界转速subcritical speed涡动whirl连续过程continuous process碰撞截面collision cross section通用气体常数conventional gas constant燃烧不稳定性combustion instability稀释度dilution完全离解complete dissociation火焰传播flame propagation组份constituent碰撞反应速率collision reaction rate燃烧理论combustion theory浓度梯度concentration gradient阴极腐蚀cathodic corrosion火焰速度flame speed火焰驻定flame stabilization火焰结构flame structure着火ignition湍流火焰turbulent flame层流火焰laminar flame燃烧带burning zone渗流flow in porous media, seepage达西定律Darcy law赫尔-肖流Hele-Shaw flow毛[细]管流capillary flow过滤filtration爪进fingering不互溶驱替immiscible displacement不互溶流体immiscible fluid互溶驱替miscible displacement互溶流体miscible fluid迁移率mobility流度比mobility ratio渗透率permeability孔隙度porosity多孔介质porous medium比面specific surface迂曲度tortuosity空隙void空隙分数void fraction注水water flooding可湿性wettability地球物理流体动力学geophysical fluid dynamics 物理海洋学physical oceanography大气环流atmospheric circulation海洋环流ocean circulation海洋流ocean current旋转流rotating flow平流advection埃克曼流Ekman flow埃克曼边界层Ekman boundary layer大气边界层atmospheric boundary layer大气-海洋相互作用atmosphere-ocean interaction埃克曼数Ekman number罗斯贝数Rossby unmber罗斯贝波Rossby wave斜压性baroclinicity正压性barotropy内磨擦internal friction海洋波ocean wave盐度salinity环境流体力学environmental fluid mechanics斯托克斯流Stokes flow羽流plume理查森数Richardson number污染源pollutant source污染物扩散pollutant diffusion噪声noise噪声级noise level噪声污染noise pollution排放物effulent工业流体力学industrical fluid mechanics流控技术fluidics轴向流axial flow并向流co-current flow对向流counter current flow横向流cross flow螺旋流spiral flow旋拧流swirling flow滞后流after flow混合层mixing layer抖振buffeting风压wind pressure附壁效应wall attachment effect, Coanda effect简约频率reduced frequency爆炸力学mechanics of explosion终点弹道学terminal ballistics动态超高压技术dynamic ultrahigh pressure technique 流体弹塑性体hydro-elastoplastic medium热塑不稳定性thermoplastic instability空中爆炸explosion in air地下爆炸underground explosion水下爆炸underwater explosion电爆炸discharge-induced explosion激光爆炸laser-induced explosion核爆炸nuclear explosion点爆炸point-source explosion殉爆sympathatic detonation强爆炸intense explosion粒子束爆炸explosion by beam radiation 聚爆implosion起爆initiation of explosion爆破blasting霍普金森杆Hopkinson bar电炮electric gun电磁炮electromagnetic gun爆炸洞explosion chamber轻气炮light gas gun马赫反射Mach reflection基浪base surge成坑cratering能量沉积energy deposition爆心explosion center爆炸当量explosion equivalent火球fire ball爆高height of burst蘑菇云mushroom侵彻penetration规则反射regular reflection崩落spallation应变率史strain rate history流变学rheology聚合物减阻drag reduction by polymers挤出[物]胀大extrusion swell, die swell无管虹吸tubeless siphon剪胀效应dilatancy effect孔压[误差]效应hole-pressure[error]effect 剪切致稠shear thickening剪切致稀shear thinning触变性thixotropy反触变性anti-thixotropy超塑性superplasticity粘弹塑性材料viscoelasto-plastic material 滞弹性材料anelastic material本构关系constitutive relation麦克斯韦模型Maxwell model沃伊特-开尔文模型Voigt-Kelvin model宾厄姆模型Bingham model奥伊洛特模型Oldroyd model幂律模型power law model应力松驰stress relaxation应变史strain history应力史stress history记忆函数memory function衰退记忆fading memory应力增长stress growing粘度函数voscosity function相对粘度relative viscosity复态粘度complex viscosity拉伸粘度elongational viscosity拉伸流动elongational flow第一法向应力差first normal-stress difference第二法向应力差second normal-stress difference 德博拉数Deborah number魏森贝格数Weissenberg number动态模量dynamic modulus振荡剪切流oscillatory shear flow宇宙气体动力学cosmic gas dynamics等离[子]体动力学plasma dynamics电离气体ionized gas行星边界层planetary boundary layer阿尔文波Alfven wave泊肃叶-哈特曼流] Poiseuille-Hartman flow哈特曼数Hartman number生物流变学biorheology生物流体biofluid生物屈服点bioyield point生物屈服应力bioyield stress电气体力学electro-gas dynamics铁流体力学ferro-hydrodynamics血液流变学hemorheology, blood rheology血液动力学hemodynamics磁流体力学magneto fluid mechanics磁流体动力学magnetohydrodynamics, MHD磁流体动力波magnetohydrodynamic wave磁流体流magnetohydrodynamic flow磁流体动力稳定性magnetohydrodynamic stability 生物力学biomechanics生物流体力学biological fluid mechanics生物固体力学biological solid mechanics宾厄姆塑性流Bingham plastic flow开尔文体Kelvin body沃伊特体Voigt body可贴变形applicable deformation可贴曲面applicable surface边界润滑boundary lubrication液膜润滑fluid film lubrication向心收缩功concentric work离心收缩功eccentric work关节反作用力joint reaction force微循环力学microcyclic mechanics微纤维microfibril渗透性permeability生理横截面积physiological cross-sectional area 农业生物力学agrobiomechanics纤维度fibrousness硬皮度rustiness胶粘度gumminess粘稠度stickiness嫩度tenderness渗透流osmotic flow易位流translocation flow蒸腾流transpirational flow过滤阻力filtration resistance压扁wafering风雪流snow-driving wind停滞堆积accretion遇阻堆积encroachment沙漠地面desert floor流沙固定fixation of shifting sand流动阈值fluid threshold连续介质力学mechanics of continuous media 介质medium流体质点fluid particle无粘性流体nonviscous fluid, inviscid fluid连续介质假设continuous medium hypothesis流体运动学fluid kinematics水静力学hydrostatics液体静力学hydrostatics支配方程governing equation伯努利方程Bernoulli equation伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem开尔文定理Kelvin theorem涡片vortex sheet库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number施特鲁哈尔数Strouhal number随体导数material derivative不可压缩流体incompressible fluid质量守恒conservation of mass动量守恒conservation of momentum能量守恒conservation of energy动量方程momentum equation能量方程energy equation控制体积control volume液体静压hydrostatic pressure涡量拟能enstrophy压差differential pressure流[动] flow流线stream line流面stream surface流管stream tube迹线path, path line流场flow field流态flow regime流动参量flow parameter流量flow rate, flow discharge涡旋vortex涡量vorticity涡丝vortex filament涡线vortex line涡面vortex surface涡层vortex layer涡环vortex ring涡对vortex pair涡管vortex tube涡街vortex street卡门涡街Karman vortex street马蹄涡horseshoe vortex对流涡胞convective cell卷筒涡胞roll cell涡eddy涡粘性eddy viscosity环流circulation环量circulation速度环量velocity circulation偶极子doublet, dipole驻点stagnation point总压[力] total pressure总压头total head静压头static head总焓total enthalpy能量输运energy transport速度剖面velocity profile库埃特流Couette flow单相流single phase flow单组份流single-component flow均匀流uniform flow非均匀流nonuniform flow二维流two-dimensional flow三维流three-dimensional flow准定常流quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow周期流periodic flow振荡流oscillatory flow分层流stratified flow无旋流irrotational flow有旋流rotational flow轴对称流axisymmetric flow不可压缩性incompressibility不可压缩流[动] incompressible flow浮体floating body定倾中心metacenter阻力drag, resistance减阻drag reduction表面力surface force表面张力surface tension毛细[管]作用capillarity来流incoming flow自由流free stream自由流线free stream line外流external flow进口entrance, inlet出口exit, outlet扰动disturbance, perturbation分布distribution传播propagation色散dispersion弥散dispersion附加质量added mass ,associated mass 收缩contraction镜象法image method无量纲参数dimensionless parameter几何相似geometric similarity运动相似kinematic similarity动力相似[性] dynamic similarity平面流plane flow势potential势流potential flow速度势velocity potential复势complex potential复速度complex velocity流函数stream function源source汇sink速度[水]头velocity head拐角流corner flow空泡流cavity flow超空泡supercavity超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics 气动热力学aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流conical flow楔流wedge flow叶栅流cascade flow非平衡流[动] non-equilibrium flow细长体slender body细长度slenderness钝头体bluff body钝体blunt body翼型airfoil翼弦chord薄翼理论thin-airfoil theory构型configuration后缘trailing edge迎角angle of attack失速stall脱体激波detached shock wave波阻wave drag诱导阻力induced drag诱导速度induced velocity临界雷诺数critical Reynolds number前缘涡leading edge vortex附着涡bound vortex约束涡confined vortex气动中心aerodynamic center气动力aerodynamic force气动噪声aerodynamic noise气动加热aerodynamic heating离解dissociation地面效应ground effect气体动力学gas dynamics稀疏波rarefaction wave热状态方程thermal equation of state喷管Nozzle普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow可压缩流[动] compressible flow可压缩流体compressible fluid绝热流adiabatic flow非绝热流diabatic flow未扰动流undisturbed flow等熵流isentropic flow匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state完全气体perfect gas拉瓦尔喷管Laval nozzle马赫角Mach angle马赫锥Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数local Mach number冲击波shock wave激波shock wave正激波normal shock wave斜激波oblique shock wave头波bow wave附体激波attached shock wave激波阵面shock front激波层shock layer压缩波compression wave反射reflection折射refraction散射scattering衍射diffraction绕射diffraction出口压力exit pressure超压[强] over pressure反压back pressure爆炸explosion爆轰detonation缓燃deflagration水动力学hydrodynamics液体动力学hydrodynamics泰勒不稳定性Taylor instability盖斯特纳波Gerstner wave斯托克斯波Stokes wave瑞利数Rayleigh number自由面free surface波速wave speed, wave velocity 波高wave height波列wave train波群wave group波能wave energy表面波surface wave表面张力波capillary wave规则波regular wave不规则波irregular wave浅水波shallow water wave深水波deep water wave重力波gravity wave椭圆余弦波cnoidal wave潮波tidal wave涌波surge wave破碎波breaking wave船波ship wave非线性波nonlinear wave孤立子soliton水动[力]噪声hydrodynamic noise 水击water hammer空化cavitation空化数cavitation number空蚀cavitation damage超空化流supercavitating flow水翼hydrofoil水力学hydraulics洪水波flood wave涟漪ripple消能energy dissipation海洋水动力学marine hydrodynamics谢齐公式Chezy formula欧拉数Euler number弗劳德数Froude number水力半径hydraulic radius水力坡度hvdraulic slope高度水头elevating head水头损失head loss水位water level水跃hydraulic jump含水层aquifer排水drainage排放量discharge壅水曲线back water curve压[强水]头pressure head过水断面flow cross-section明槽流open channel flow孔流orifice flow无压流free surface flow有压流pressure flow缓流subcritical flow急流supercritical flow渐变流gradually varied flow急变流rapidly varied flow临界流critical flow异重流density current, gravity flow堰流weir flow掺气流aerated flow含沙流sediment-laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation, deposition沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔-索末菲方程Orr-Sommerfeld equation涡量方程vorticity equation泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动] viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure 猝发过程bursting process表观粘度apparent viscosity 运动粘性kinematic viscosity 动力粘性dynamic viscosity泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation 湍流分离turbulent separation 分离点separation point附着点attachment point再附reattachment再层流化relaminarization起动涡starting vortex驻涡standing vortex涡旋破碎vortex breakdown涡旋脱落vortex shedding压[力]降pressure drop压差阻力pressure drag压力能pressure energy型阻profile drag滑移速度slip velocity无滑移条件non-slip condition壁剪应力skin friction, frictional drag壁剪切速度friction velocity磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity气体润滑gas lubrication液体动力润滑hydrodynamic lubrication浆体slurry泰勒数Taylor number纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid边界层理论boundary later theory边界层方程boundary layer equation边界层boundary layer附面层boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation边界层厚度boundary layer thickness位移厚度displacement thickness能量厚度energy thickness焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, Buckingham theorem静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot- static tube激光多普勒测速计laser Doppler anemometer, laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU方程KDV equation修正微分方程modified differential equation拉克斯等价定理Lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件Dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition近似因子分解法approximate factorization method人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method, FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method伽辽金法Galerkin method积分方法integral method标记网格法marker and cell method, MAC method特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, PIC method质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式Lax-Wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving difference scheme穆曼-科尔格式Murman-Cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition维数分解dimensional split物理解physical solution弱解weak solution黎曼解算子Riemann solver守恒型conservation form弱守恒型weak conservation form强守恒型strong conservation form散度型divergence form贴体曲线坐标body- fitted curvilinear coordi-nates[自]适应网格[self-] adaptive mesh适应网格生成adaptive grid generation自动网格生成automatic grid generation数值网格生成numerical grid generation交错网格staggered mesh网格雷诺数cell Reynolds number数植扩散numerical diffusion数值耗散numerical dissipation数值色散numerical dispersion数值通量numerical flux放大因子amplification factor放大矩阵amplification matrix阻尼误差damping error离散涡discrete vortex熵通量entropy flux熵函数entropy function分步法fractional step method广义连续统力学generalized continuum mechanics简单物质simple material纯力学物质purely mechanical material微分型物质material of differential type积分型物质material of integral type混合物组份constituents of a mixture非协调理论incompatibility theory微极理论micropolar theory决定性原理principle of determinism等存在原理principle of equipresence局部作用原理principle of objectivity客观性原理principle of objectivity电磁连续统理论theory of electromagnetic continuum 内时理论endochronic theory非局部理论nonlocal theory混合物理论theory of mixtures里夫林-矣里克森张量Rivlin-Ericksen tensor声张量acoustic tensor半向同性张量hemitropic tensor各向同性张量isotropic tensor应变张量strain tensor伸缩张量stretch tensor连续旋错continuous dislination连续位错continuous dislocation动量矩平衡angular momentum balance余本构关系complementary constitutive relations共旋导数co-rotational derivative, Jaumann derivative 非完整分量anholonomic component爬升效应climbing effect协调条件compatibility condition错综度complexity当时构形current configuration能量平衡energy balance变形梯度deformation gradient有限弹性finite elasticity熵增entropy production标架无差异性frame indifference弹性势elastic potential熵不等式entropy inequality极分解polar decomposition低弹性hypoelasticity参考构形reference configuration响应泛函response functional动量平衡momentum balance奇异面singular surface贮能函数stored-energy function内部约束internal constraint物理分量physical components本原元primitive element普适变形universal deformation速度梯度velocity gradient测粘流动viscometric flow当地导数local derivative岩石力学rock mechanics原始岩体应力virgin rock stress构造应力tectonic stress三轴压缩试验three-axial compression test 三轴拉伸试验three-axial tensile test三轴试验triaxial test岩层静态应力lithostatic stress吕荣lugeon地压强geostatic pressure水力劈裂hydraulic fracture咬合[作用] interlocking内禀抗剪强度intrinsic shear strength循环抗剪强度cyclic shear strength残余抗剪强度residual shear strength土力学soil mechanics孔隙比void ratio内磨擦角angle of internal friction休止角angle of repose孔隙率porosity围压ambient pressure渗透系数coefficient of permeability [抗]剪切角angle of shear resistance渗流力seepage force表观粘聚力apparent cohesion粘聚力cohesion稠度consistency固结consolidation主固结primary consolidation次固结secondary consolidation固结仪consolidometer浮升力uplift扩容dilatancy有效应力effective stress絮凝[作用] flocculation主动土压力active earth pressure 被动土压力passive earth pressure 土动力学soil dynamics应力解除stress relief次时间效应secondary time effect 贯入阻力penetration resistance沙土液化liquefaction of sand泥流mud flow多相流multiphase flow马格努斯效应Magnus effect韦伯数Weber number环状流annular flow泡状流bubble flow层状流stratified flow平衡流equilibrium flow二组份流two-component flow冻结流frozen flow均质流homogeneous flow二相流two-phase flow气-液流gas-liquid flow气-固流gas-solid flow液-气流liquid-gas flow液-固流liquid-solid flow液体-蒸气流liquid-vapor flow浓相dense phase稀相dilute phase连续相continuous phase离散相dispersed phase悬浮suspension气力输运pneumatic transport气泡形成bubble formation体密度bulk density壅塞choking微滴droplet挟带entrainment流型flow pattern流[态]化fluidization界面interface跃动速度saltation velocity非牛顿流体力学non-Newtonian fluid mechanics非牛顿流体non-Newtonian fluid幂律流体power law fluid拟塑性流体pseudoplastic fluid触稠流体rheopectic fluid触变流体thixotropic fluid粘弹性流体viscoelastic fluid流变测量学rheometry震凝性rheopexy体[积]粘性bulk viscosity魏森贝格效应Weissenberg effect流变仪rheometer稀薄气体动力学rarefied gas dynamics物理化学流体力学physico-chemical hydrodynamics 空气热化学aerothermochemistry绝对压强absolute pressure绝对反应速率absolute reaction rate绝对温度absolute temperature吸收系数absorption coefficient活化分子activated molecule活化能activation energy绝热压缩adiabatic compression绝热膨胀adiabatic expansion绝热火焰温度adiabatic flame temperature电弧风洞arc tunnel原子热atomic heat雾化atomization自燃auto-ignition自动氧化auto-oxidation可用能量available energy缓冲作用buffer action松密度bulk density燃烧率burning rate燃烧速度burning velocity接触面contact surface烧蚀ablation弹性力学elasticity弹性理论theory of elasticity均匀应力状态homogeneous state of stress应力不变量stress invariant应变不变量strain invariant应变椭球strain ellipsoid均匀应变状态homogeneous state of strain应变协调方程equation of strain compatibility拉梅常量Lame constants各向同性弹性isotropic elasticity旋转圆盘rotating circular disk楔wedge开尔文问题Kelvin problem布西内斯克问题Boussinesq problem艾里应力函数Airy stress function克罗索夫-穆斯赫利什维利法Kolosoff-Muskhelishvili method 基尔霍夫假设Kirchhoff hypothesis板Plate矩形板Rectangular plate圆板Circular plate环板Annular plate波纹板Corrugated plate加劲板Stiffened plate,reinforced Plate中厚板Plate of moderate thickness弯[曲]应力函数Stress function of bending壳Shell扁壳Shallow shell旋转壳Revolutionary shell球壳Spherical shell[圆]柱壳Cylindrical shell锥壳Conical shell环壳Toroidal shell封闭壳Closed shell波纹壳Corrugated shell扭[转]应力函数Stress function of torsion翘曲函数Warping function半逆解法semi-inverse method瑞利--里茨法Rayleigh-Ritz method松弛法Relaxation method莱维法Levy method松弛Relaxation量纲分析Dimensional analysis自相似[性] self-similarity影响面Influence surface接触应力Contact stress赫兹理论Hertz theory协调接触Conforming contact滑动接触Sliding contact滚动接触Rolling contact压入Indentation各向异性弹性Anisotropic elasticity颗粒材料Granular material散体力学Mechanics of granular media 热弹性Thermoelasticity超弹性Hyperelasticity粘弹性Viscoelasticity对应原理Correspondence principle褶皱Wrinkle塑性全量理论Total theory of plasticity 滑动Sliding微滑Microslip粗糙度Roughness非线性弹性Nonlinear elasticity大挠度Large deflection突弹跳变snap-through有限变形Finite deformation格林应变Green strain阿尔曼西应变Almansi strain弹性动力学Dynamic elasticity运动方程Equation of motion准静态的Quasi-static气动弹性Aeroelasticity水弹性Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波Cylindrical wave水平剪切波Horizontal shear wave竖直剪切波Vertical shear wave体波body wave无旋波Irrotational wave畸变波Distortion wave膨胀波Dilatation wave瑞利波Rayleigh wave等容波Equivoluminal wave勒夫波Love wave界面波Interfacial wave边缘效应edge effect塑性力学Plasticity可成形性Formability金属成形Metal forming。

沸腾液体扩展蒸汽爆炸初期演化过程的数值模拟

沸腾液体扩展蒸汽爆炸初期演化过程的数值模拟

沸腾液体扩展蒸汽爆炸初期演化过程的数值模拟尚拓强;陈思凝;张东胜;杨剑锋;陈东梁;刘娅【摘要】The early progress of a boiling liquid expanding vapor explosion has been simulated by computational fluid dynamics (CFD). A two-dimensional physical model of a pressure vessel was established and a suitable mathematical model was selected. Water and saturated steam were chosen as service fluids. The early evolution of the flow field and variations in the characteristic parameters were explored. In order to analyze the influences of the initial conditions on the progress of the explosion, simulations under different conditions were performed with different temperatures, liquid levels and sizes of the opening adopted as initial conditions.%对沸腾液体扩展蒸汽爆炸发生初期,容器顶部突然出现开口,压力快速泄放导致容器内介质过热沸腾的过程进行了模拟研究.选取过热水及饱和水蒸气为容器内介质,分析了该过程中气液两相的变化过程.探讨了初始温度(初始压力)、初始充装量及开口大小等因素对前述物理过程及容器内压力、温度的影响.结果表明:容器内过热沸腾的过程中,温度逐渐下降,压力响应会出现两次压力峰和一个压力平台期,两个压力峰值都会随初始温度的增加而增加,压力平台持续时间随初始温度先增大后减小;第一个压力峰值随初始充装量的增加先增大后减小,第二个压力峰值则随初始充装量的增加而增大,压力平台的持续时间和液体充装量成正比关系;开口越大两个压力峰值也越大,压力平台持续时间越短.【期刊名称】《北京化工大学学报(自然科学版)》【年(卷),期】2012(039)004【总页数】5页(P101-105)【关键词】沸腾液体扩展蒸汽爆炸;过热沸腾;压力响应;数值模拟【作者】尚拓强;陈思凝;张东胜;杨剑锋;陈东梁;刘娅【作者单位】北京化工大学机电工程学院,北京100029;中国安全生产科学研究院,北京100029;北京化工大学机电工程学院,北京100029;北京化工大学机电工程学院,北京100029;北京化工大学机电工程学院,北京100029;河南省驻马店供电公司,河南驻马店463000【正文语种】中文【中图分类】X9沸腾液体扩展蒸汽爆炸(BLEVE)是一类常见的爆炸事故,是由介质相变引起的一种危害性极大的物理爆炸,通常会造成重大的人员伤亡和财产损失[1]。

专业英语词汇大全

专业英语词汇大全

英文专业词汇大全英文翻译常用词汇短语具有:have (has), possess, take on表示为:present (提供、给出), denote, is, express by, figure, show,提出、提议:propose、put forward, bring forward明显地、显然地:evidently, obviously, appearently, distinctly, drastically提高、增加:increase, improve, enhance, heighten, elevate (elevation)减少:decrease, reduce, lessen,减小:minish输入、代入:import(进口), input, introduce, substitute((数)代入,vt代替、取代), substituteA by(with) B(依B代A), substitute for出现、发生:happen(vi), appear(vi), occur(vi), generate, take place, arise, come forth因为、由于:as, because, for, since, because of , by reason of , on account of, due to根据、依照:in terms of, according to,计算、求解:compute, calculate, solve推导:derive, derivation, deduce, deducibility,由:by, from因此:so, thus, hence, therefore, thereby并且:also, and , besides而且:and that, furthermore, moreover,随着:along with, with, accompany一致,与……一致:coincident with, consistent with, in accord with推导:derive, deduce列举:enumerate, list专攻,致力于:specialize, apply oneself to完成,达到:achieve, accomplish, realize描述,描绘:represent,describe加强:intensify, enhance, reinforce, strengthen预见,预估:anticipate, estimate受到,承受:experience, endure, superimpose研究,探索:explore, exploration, investigate, investigation,相当的,比的上的:comparable, equivalent,做...实验, 对...做实验:make (carry out, do, perform, try) an experiment on (upon, in, with)固定,安装:mount, fixed, install, set影响:have(has) an impact on (upon)取决于:depend on, depend upon, have a dependence upon称为,把…称作,叫做:be termed以…为标题,称为:intitule vt求积分:Taking integration与…相反:contrary on , 与…对比:contrast with/to分别的respective,分别地apart respectivelyCompare vt. 比较,对照(with)把...比作;比喻(to)接着next, follow, in succession随后later subsequently whereafter总之anyhow anyway in a word in conclusion on all accounts to sum up 金属切削加工圆周铣削:peripheral milling,端铣削:end milling,(端)面铣(削):face milling,顺铣:Down milling, climb milling逆铣:conventional milling, up milling,平面铣削:slab milling切屑横截面积:chip cross sectional area, area of chip section,单位切削力,比切削力:specific cutting pressure切向力:tangential cutting force径向力:radial cutting force声发射:acoustic emission signal与….联合、与…协作:in conjunction with振动方面的专业英语及词汇参见《工程振动名词术语》1 振动信号的时域、频域描述振动过程(Vibration Process)简谐振动(Harmonic Vibration)周期振动(Periodic Vibration)准周期振动(Ouasi-periodic Vibration)瞬态过程(Transient Process)随机振动过程(Random Vibration Process)各态历经过程(Ergodic Process)确定性过程(Deterministic Process)振幅(Amplitude)相位(Phase)初相位(Initial Phase)频率(Frequency)角频率(Angular Frequency)周期(Period)复数振动(Complex Vibration)复数振幅(Complex Amplitude)峰值(Peak-value)平均绝对值(Average Absolute Value)有效值(Effective Value,RMS Value)均值(Mean Value,Average Value)傅里叶级数(FS,Fourier Series)傅里叶变换(FT,Fourier Transform)傅里叶逆变换(IFT,Inverse Fourier Transform) 离散谱(Discrete Spectrum)连续谱(Continuous Spectrum)傅里叶谱(Fourier Spectrum)线性谱(Linear Spectrum)幅值谱(Amplitude Spectrum)相位谱(Phase Spectrum)均方值(Mean Square Value)方差(Variance)协方差(Covariance)自协方差函数(Auto-covariance Function)互协方差函数(Cross-covariance Function)自相关函数(Auto-correlation Function)互相关函数(Cross-correlation Function)标准偏差(Standard Deviation)相对标准偏差(Relative Standard Deviation)概率(Probability)概率分布(Probability Distribution)高斯概率分布(Gaussian Probability Distribution) 概率密度(Probability Density)集合平均(Ensemble Average)时间平均(Time Average)功率谱密度(PSD,Power Spectrum Density)自功率谱密度(Auto-spectral Density)互功率谱密度(Cross-spectral Density)均方根谱密度(RMS Spectral Density)能量谱密度(ESD,Energy Spectrum Density)相干函数(Coherence Function)帕斯瓦尔定理(Parseval''''s Theorem)维纳,辛钦公式(Wiener-Khinchin Formula)多阶谐振频率multi-mode resonance frequency多阶频率multiple natural frequnency等效一阶频率equvilent fundamental frequency主振频率main vibration frequency一阶弯曲振动频率First-order Bending Vibration Freguency 低阶固有频率LOW-V ALUE NATURAL FREQUENCY振型分解法Mode Analysis Method振型叠加法Method of Superposition of Vibration Mode2 振动系统的固有特性、激励与响应振动系统(Vibration System)激励(Excitation)响应(Response)单自由度系统(Single Degree-Of-Freedom System)多自由度系统(Multi-Degree-Of- Freedom System)离散化系统(Discrete System)连续体系统(Continuous System)刚度系数(Stiffness Coefficient)自由振动(Free Vibration)自由响应(Free Response)强迫振动(Forced Vibration)强迫响应(Forced Response)初始条件(Initial Condition)固有频率(Natural Frequency)阻尼比(Damping Ratio)衰减指数(Damping Exponent)阻尼固有频率(Damped Natural Frequency)对数减幅系数(Logarithmic Decrement)主频率(Principal Frequency)无阻尼模态频率(Undamped Modal Frequency)模态(Mode)主振动(Principal Vibration)振型(Mode Shape)振型矢量(Vector Of Mode Shape)模态矢量(Modal Vector)正交性(Orthogonality)展开定理(Expansion Theorem)主质量(Principal Mass)模态质量(Modal Mass)主刚度(Principal Stiffness)模态刚度(Modal Stiffness)正则化(Normalization)振型矩阵(Matrix Of Modal Shape)模态矩阵(Modal Matrix)主坐标(Principal Coordinates)模态坐标(Modal Coordinates)模态分析(Modal Analysis)模态阻尼比(Modal Damping Ratio)频响函数(Frequency Response Function)幅频特性(Amplitude-frequency Characteristics)相频特性(Phase frequency Characteristics)共振(Resonance)半功率点(Half power Points)波德图(Bodé Plot)动力放大系数(Dynamical Magnification Factor)单位脉冲(Unit Impulse)冲激响应函数(Impulse Response Function)杜哈美积分(Duhamel‟s Integral)卷积积分(Convolution Integral)卷积定理(Convolution Theorem)特征矩阵(Characteristic Matrix)阻抗矩阵(Impedance Matrix)频响函数矩阵(Matrix Of Frequency Response Function) 导纳矩阵(Mobility Matrix)冲击响应谱(Shock Response Spectrum)冲击激励(Shock Excitation)冲击响应(Shock Response)冲击初始响应谱(Initial Shock Response Spectrum)冲击剩余响应谱(Residual Shock Response Spectrum) 冲击最大响应谱(Maximum Shock Response Spectrum) 冲击响应谱分析(Shock Response Spectrum Analysis)3 模态试验分析模态试验(Modal Testing)机械阻抗(Mechanical Impedance)位移阻抗(Displacement Impedance)速度阻抗(Velocity Impedance)加速度阻抗(Acceleration Impedance)机械导纳(Mechanical Mobility)位移导纳(Displacement Mobility)速度导纳(Velocity Mobility)加速度导纳(Acceleration Mobility)驱动点导纳(Driving Point Mobility)跨点导纳(Cross Mobility)传递函数(Transfer Function)拉普拉斯变换(Laplace Transform)传递函数矩阵(Matrix Of Transfer Function)频响函数(FRF,Frequency Response Function)频响函数矩阵(Matrix Of FRF)实模态(Normal Mode)复模态(Complex Mode)模态参数(Modal Parameter)模态频率(Modal Frequency)模态阻尼比(Modal Damping Ratio)模态振型(Modal Shape)模态质量(Modal Mass)模态刚度(Modal Stiffness)模态阻力系数(Modal Damping Coefficient)模态阻抗(Modal Impedance)模态导纳(Modal Mobility)模态损耗因子(Modal Loss Factor)比例粘性阻尼(Proportional Viscous Damping)非比例粘性阻尼(Non-proportional Viscous Damping) 结构阻尼(Structural Damping,Hysteretic Damping) 复频率(Complex Frequency)复振型(Complex Modal Shape)留数(Residue)极点(Pole)零点(Zero)复留数(Complex Residue)随机激励(Random Excitation)伪随机激励(Pseudo Random Excitation)猝发随机激励(Burst Random Excitation)稳态正弦激励(Steady State Sine Excitation)正弦扫描激励(Sweeping Sine Excitation)锤击激励(Impact Excitation)频响函数的H1 估计(FRF Estimate by H1)频响函数的H2 估计(FRF Estimate by H2)频响函数的H3 估计(FRF Estimate by H3)单模态曲线拟合法(Single-mode Curve Fitting Method) 多模态曲线拟合法(Multi-mode Curve Fitting Method) 模态圆(Mode Circle)剩余模态(Residual Mode)幅频峰值法(Peak Value Method)实频-虚频峰值法(Peak Real/Imaginary Method)圆拟合法(Circle Fitting Method)加权最小二乘拟合法(Weighting Least Squares Fitting method) 复指数拟合法(Complex Exponential Fitting method)1.2 振动测试的名词术语1 传感器测量系统传感器测量系统(Transducer Measuring System)传感器(Transducer)振动传感器(Vibration Transducer)机械接收(Mechanical Reception)机电变换(Electro-mechanical Conversion)测量电路(Measuring Circuit)惯性式传感器(Inertial Transducer,Seismic Transducer)相对式传感器(Relative Transducer)电感式传感器(Inductive Transducer)应变式传感器(Strain Gauge Transducer)电动力传感器(Electro-dynamic Transducer)压电式传感器(Piezoelectric Transducer)压阻式传感器(Piezoresistive Transducer)电涡流式传感器(Eddy Current Transducer)伺服式传感器(Servo Transducer)灵敏度(Sensitivity)复数灵敏度(Complex Sensitivity)分辨率(Resolution)频率范围(Frequency Range)线性范围(Linear Range)频率上限(Upper Limit Frequency)频率下限(Lower Limit Frequency)静态响应(Static Response)零频率响应(Zero Frequency Response)动态范围(Dynamic Range)幅值上限Upper Limit Amplitude)幅值下限(Lower Limit Amplitude)最大可测振级(Max.Detectable Vibration Level)最小可测振级(Min.Detectable Vibration Level)信噪比(S/N Ratio)振动诺模图(Vibration Nomogram)相移(Phase Shift)波形畸变(Wave-shape Distortion)比例相移(Proportional Phase Shift)惯性传感器的稳态响应(Steady Response Of Inertial Transducer) 惯性传感器的稳击响应(Shock Response Of Inertial Transducer)位移计型的频响特性(Frequency Response Characteristics Vibrometer)加速度计型的频响特性(Frequency Response Characteristics Accelerometer) 幅频特性曲线(Amplitude-frequency Curve)相频特性曲线(Phase-frequency Curve)固定安装共振频率(Mounted Resonance Frequency)安装刚度(Mounted Stiffness)有限高频效应(Effect Of Limited High Frequency)有限低频效应(Effect Of Limited Low Frequency)电动式变换(Electro-dynamic Conversion)磁感应强度(Magnetic Induction,Magnetic Flux Density)磁通(Magnetic Flux)磁隙(Magnetic Gap)电磁力(Electro-magnetic Force)相对式速度传(Relative Velocity Transducer)惯性式速度传感器(Inertial Velocity Transducer)速度灵敏度(Velocity Sensitivity)电涡流阻尼(Eddy-current Damping)无源微(积)分电路(Passive Differential (Integrate) Circuit)有源微(积)分电路(Active Differential (Integrate) Circuit)运算放大器(Operational Amplifier)时间常数(Time Constant)比例运算(Scaling)积分运算(Integration)微分运算(Differentiation)高通滤波电路(High-pass Filter Circuit)低通滤波电路(Low-pass Filter Circuit)截止频率(Cut-off Frequency)压电效应(Piezoelectric Effect)压电陶瓷(Piezoelectric Ceramic)压电常数(Piezoelectric Constant)极化(Polarization)压电式加速度传感器(Piezoelectric Acceleration Transducer)中心压缩式(Center Compression Accelerometer)三角剪切式(Delta Shear Accelerometer)压电方程(Piezoelectric Equation)压电石英(Piezoelectric Quartz)电荷等效电路(Charge Equivalent Circuit)电压等效电路(Voltage Equivalent Circuit)电荷灵敏度(Charge Sensitivity)电压灵敏度(Voltage Sensitivity)电荷放大器(Charge Amplifier)适调放大环节(Conditional Amplifier Section)归一化(Uniformization)电荷放大器增益(Gain Of Charge Amplifier)测量系统灵敏度(Sensitivity Of Measuring System)底部应变灵敏度(Base Strain Sensitivity)横向灵敏度(Transverse Sensitivity)地回路(Ground Loop)力传感器(Force Transducer)力传感器灵敏度(Sensitivity Of Force Transducer)电涡流(Eddy Current)前置器(Proximitor)间隙-电压曲线(Voltage vs Gap Curve)间隙-电压灵敏度(Voltage vs Gap Sensitivity)压阻效应(Piezoresistive Effect)轴向压阻系数(Axial Piezoresistive Coefficient)横向压阻系数(Transverse Piezoresistive Coefficient)压阻常数(Piezoresistive Constant)单晶硅(Monocrystalline Silicon)应变灵敏度(Strain Sensitivity)固态压阻式加速度传感器(Solid State Piezoresistive Accelerometer) 体型压阻式加速度传感器(Bulk Type Piezoresistive Accelerometer) 力平衡式传感器(Force Balance Transducer)电动力常数(Electro-dynamic Constant)机电耦合系统(Electro-mechanical Coupling System)2 检测仪表、激励设备及校准装置时间基准信号(Time Base Signal)李萨茹图(Lissojous Curve)数字频率计(Digital Frequency Meter)便携式测振表(Portable Vibrometer)有效值电压表(RMS Value Voltmeter)峰值电压表(Peak-value Voltmeter)平均绝对值检波电路(Average Absolute Value Detector)峰值检波电路(Peak-value Detector)准有效值检波电路(Quasi RMS Value Detector)真有效值检波电路(True RMS Value Detector)直流数字电压表(DVM,DC Digital Voltmeter)数字式测振表(Digital Vibrometer)A/D 转换器(A/D Converter)D/A 转换器(D/A Converter)相位计(Phase Meter)电子记录仪(Lever Recorder)光线示波器(Oscillograph)振子(Galvonometer)磁带记录仪(Magnetic Tape Recorder)DR 方式(直接记录式) (Direct Recorder)FM 方式(频率调制式) (Frequency Modulation)失真度(Distortion)机械式激振器(Mechanical Exciter)机械式振动台(Mechanical Shaker)离心式激振器(Centrifugal Exciter)电动力式振动台(Electro-dynamic Shaker)电动力式激振器(Electro-dynamic Exciter)液压式振动台(Hydraulic Shaker)液压式激振器(Hydraulic Exciter)电液放大器(Electro-hydraulic Amplifier)磁吸式激振器(Magnetic Pulling Exciter)涡流式激振器(Eddy Current Exciter)压电激振片(Piezoelectric Exciting Elements)冲击力锤(Impact Hammer)冲击试验台(Shock Testing Machine)激振控制技术(Excitation Control Technique)波形再现(Wave Reproduction)压缩技术(Compression Technique)均衡技术(Equalization Technique)交越频率(Crossover Frequency)综合技术(Synthesis Technique)校准(Calibration)分部校准(Calibration for Components in system)系统校准(Calibration for Over-all System)模拟传感器(Simulated Transducer)静态校准(Static Calibration)简谐激励校准(Harmonic Excitation Calibration)绝对校准(Absolute Calibration)相对校准(Relative Calibration)比较校准(Comparison Calibration)标准振动台(Standard Vibration Exciter)读数显微镜法(Microscope-streak Method)光栅板法(Ronchi Ruling Method)光学干涉条纹计数法(Optical Interferometer Fringe Counting Method)光学干涉条纹消失法(Optical Interferometer Fringe Disappearance Method) 背靠背安装(Back-to-back Mounting)互易校准法(Reciprocity Calibration)共振梁(Resonant Bar)冲击校准(Impact Exciting Calibration)摆锤冲击校准(Ballistic Pendulum Calibration)落锤冲击校准(Drop Test Calibration)振动和冲击标准(Vibration and Shock Standard)迈克尔逊干涉仪(Michelson Interferometer)摩尔干涉图象(Moire Fringe)参考传感器(Reference Transducer)3 频率分析及数字信号处理带通滤波器(Band-pass Filter)半功率带宽(Half-power Bandwidth)3 dB 带宽(3 dB Bandwidth)等效噪声带宽(Effective Noise Bandwidth)恒带宽(Constant Bandwidth)恒百分比带宽(Constant Percentage Bandwidth)1/N 倍频程滤波器(1/N Octave Filter)形状因子(Shape Factor)截止频率(Cut-off Frequency)中心频率(Centre Frequency)模拟滤波器(Analog Filter)数字滤波器(Digital Filter)跟踪滤波器(Tracking Filter)外差式频率分析仪(Heterodyne Frequency Analyzer) 逐级式频率分析仪(Stepped Frequency Analyzer)扫描式频率分析仪(Sweeping Filter Analyzer)混频器(Mixer)RC 平均(RC Averaging)平均时间(Averaging Time)扫描速度(Sweeping Speed)滤波器响应时间(Filter Response Time)离散傅里叶变换(DFT,Discrete Fourier Transform) 快速傅里叶变换(FFT,Fast Fourier Transform)抽样频率(Sampling Frequency)抽样间隔(Sampling Interval)抽样定理(Sampling Theorem)抗混滤波(Anti-aliasing Filter)泄漏(Leakage)加窗(Windowing)窗函数(Window Function)截断(Truncation)频率混淆(Frequency Aliasing)乃奎斯特频率(Nyquist Frequency)矩形窗(Rectangular Window)汉宁窗(Hanning Window)凯塞-贝塞尔窗(Kaiser-Bessel Window)平顶窗(Flat-top Window)平均(Averaging)线性平均(Linear Averaging)指数平均(Exponential Averaging)峰值保持平均(Peak-hold Averaging)时域平均(Time-domain Averaging)谱平均(Spectrum Averaging)重叠平均(Overlap Averaging)栅栏效应(Picket Fence Effect)吉卜斯效应(Gibbs Effect)基带频谱分析(Base-band Spectral Analysis)选带频谱分析(Band Selectable Sp4ctralAnalysis)细化(Zoom)数字移频(Digital Frequency Shift)抽样率缩减(Sampling Rate Reduction)功率谱估计(Power Spectrum Estimate)相关函数估计(Correlation Estimate)频响函数估计(Frequency Response Function Estimate) 相干函数估计(Coherence Function Estimate)冲激响应函数估计(Impulse Response Function Estimate) 倒频谱(Cepstrum)功率倒频谱(Power Cepstrum)幅值倒频谱(Amplitude Cepstrum)倒频率(Quefrency)4 旋转机械的振动测试及状态监测状态监测(Condition Monitoring)故障诊断(Fault Diagnosis)转子(Rotor)转手支承系统(Rotor-Support System)振动故障(Vibration Fault)轴振动(Shaft Vibration)径向振动(Radial Vibration)基频振动(Fundamental Frequency Vibration)基频检测(Fundamental Frequency Component Detecting) 键相信号(Key-phase Signal)正峰相位(+Peak Phase)高点(High Spot)光电传感器(Optical Transducer)同相分量(In-phase Component)正交分量(Quadrature Component)跟踪滤波(Tracking Filter)波德图(Bode Plot)极坐标图(Polar Plot)临界转速(Critical Speed)不平衡响应(Unbalance Response)残余振幅(Residual Amplitude)方位角(Attitude Angle)轴心轨迹(Shaft Centerline Orbit)正进动(Forward Precession)同步正进动(Synchronous Forward Precession)反进动(Backward Precession)正向涡动(Forward Whirl)反向涡动(Backward Whirl)油膜涡动(Oil Whirl)油膜振荡(Oil Whip)轴心平均位置(Average Shaft Centerline Position) 复合探头(Dual Probe)振摆信号(Runout Signal)电学振摆(Electrical Runout)机械振摆(Mechanical Runout)慢滚动向量(Slow Roll Vector)振摆补偿(Runout Compensation)故障频率特征(Frequency Characteristics Of Fault) 重力临界(Gravity Critical)对中(Alignment)双刚度转子(Dual Stiffness Rotor)啮合频率(Gear-mesh Frequency)间入简谐分量(Interharmonic Component)边带振动(Side-band Vibration)三维频谱图(Three Dimensional Spectral Plot)瀑布图(Waterfall Plot)级联图(Cascade Plot)阶次跟踪(Order Tracking)阶次跟踪倍乘器(Order Tracking Multiplier)监测系统(Monitoring System)适调放大器(Conditional Amplifier)趋势分析(Trend Analysis)倒频谱分析(Cepstrum Analysis)直方图(Histogram)确认矩阵(Confirmation Matrix)通频幅值(Over-all Amplitude)幅值谱(Amplitude Spectrum)相位谱(Phase Spectrum)报警限(Alarm Level)机械相关专业词汇集锦阿基米德蜗杆 Archimedes worm 安全系数 safety factor; factor of safety安全载荷 safe load 凹面、凹度 concavity扳手 wrench 板簧 flat leaf spring半圆键 woodruff key 变形 deformation摆杆 oscillating bar 摆动从动件 oscillating follower摆动从动件凸轮机构 cam with oscillating follower 摆动导杆机构 oscillating guide-bar mechanism摆线齿轮 cycloidal gear 摆线齿形 cycloidal tooth profile摆线运动规律 cycloidal motion 摆线针轮 cycloidal-pin wheel包角 angle of contact 保持架 cage背对背安装 back-to-back arrangement 背锥 back cone ;normal cone背锥角 back angle 背锥距 back cone distance比例尺 scale 比热容 specific heat capacity闭式链 closed kinematic chain 闭链机构 closed chain mechanism臂部 arm 变频器 frequency converters变频调速 frequency control of motor speed 变速 speed change变速齿轮 change gear ; change wheel 变位齿轮 modified gear变位系数 modification coefficient 标准齿轮 standard gear标准直齿轮 standard spur gear 表面质量系数 superficial mass factor表面传热系数 surface coefficient of heat transfer 表面粗糙度 surface roughness并联式组合 combination in parallel 并联机构 parallel mechanism并联组合机构 parallel combined mechanism 并行工程 concurrent engineering并行设计 concurred design, CD 不平衡相位 phase angle of unbalance不平衡 imbalance (or unbalance) 不平衡量 amount of unbalance不完全齿轮机构 intermittent gearing 波发生器 wave generator波数 number of waves 补偿 compensation参数化设计 parameterization design, PD 残余应力 residual stress操纵及控制装置 operation control device 槽轮 Geneva wheel槽轮机构 Geneva mechanism ;Maltese cross 槽数 Geneva numerate槽凸轮 groove cam 侧隙 backlash差动轮系 differential gear train 差动螺旋机构 differential screw mechanism差速器 differential 常用机构 conventional mechanism; mechanism in common use车床 lathe 承载量系数 bearing capacity factor承载能力 bearing capacity 成对安装 paired mounting尺寸系列 dimension series 齿槽 tooth space齿槽宽 spacewidth 齿侧间隙 backlash齿顶高 addendum 齿顶圆 addendum circle齿根高 dedendum 齿根圆 dedendum circle齿厚 tooth thickness 齿距 circular pitch齿宽 face width 齿廓 tooth profile齿廓曲线 tooth curve 齿轮 gear齿轮变速箱 speed-changing gear boxes 齿轮齿条机构 pinion and rack齿轮插刀 pinion cutter; pinion-shaped shaper cutter 齿轮滚刀 hob ,hobbing cutter齿轮机构 gear 齿轮轮坯 blank齿轮传动系 pinion unit 齿轮联轴器 gear coupling齿条传动 rack gear 齿数 tooth number齿数比 gear ratio 齿条 rack齿条插刀 rack cutter; rack-shaped shaper cutter 齿形链、无声链 silent chain齿形系数 form factor 齿式棘轮机构 tooth ratchet mechanism插齿机 gear shaper 重合点 coincident points重合度 contact ratio 冲床 punch传动比 transmission ratio, speed ratio 传动装置 gearing; transmission gear 传动系统 driven system 传动角 transmission angle传动轴 transmission shaft 串联式组合 combination in series串联式组合机构 series combined mechanism 串级调速 cascade speed control创新 innovation ; creation 创新设计 creation design垂直载荷、法向载荷 normal load 唇形橡胶密封 lip rubber seal磁流体轴承 magnetic fluid bearing 从动带轮 driven pulley从动件 driven link, follower 从动件平底宽度 width of flat-face从动件停歇 follower dwell 从动件运动规律 follower motion从动轮 driven gear 粗线 bold line粗牙螺纹 coarse thread 大齿轮 gear wheel打包机 packer 打滑 slipping带传动 belt driving 带轮 belt pulley带式制动器 band brake 单列轴承 single row bearing单向推力轴承 single-direction thrust bearing 单万向联轴节 single universal joint 单位矢量 unit vector 当量齿轮 equivalent spur gear; virtual gear当量齿数 equivalent teeth number; virtual number of teeth当量摩擦系数 equivalent coefficient of friction当量载荷 equivalent load 刀具 cutter导数 derivative 倒角 chamfer导热性 conduction of heat 导程 lead导程角 lead angle 等加等减速运动规律 parabolic motion; constant acceleration and deceleration motion等速运动规律 uniform motion; constant velocity motion 等径凸轮 conjugate yoke radial cam等宽凸轮 constant-breadth cam 等效构件 equivalent link等效力 equivalent force 等效力矩 equivalent moment of force 等效量 equivalent 等效质量 equivalent mass等效转动惯量 equivalent moment of inertia 等效动力学模型 dynamically equivalent model底座 chassis 低副 lower pair点划线 chain dotted line (疲劳)点蚀 pitting垫圈 gasket 垫片密封 gasket seal碟形弹簧 belleville spring 动力学 dynamics顶隙 bottom clearance 定轴轮系 ordinary gear train; gear train with fixed axes动密封 kinematical seal 动能 dynamic energy动力粘度 dynamic viscosity 动力润滑 dynamic lubrication动平衡 dynamic balance 动平衡机 dynamic balancing machine 动态特性 dynamic characteristics 动态分析设计 dynamic analysis design 动压力 dynamic reaction 动载荷 dynamic load端面 transverse plane 端面参数 transverse parameters端面齿距 transverse circular pitch 端面齿廓 transverse tooth profile端面重合度 transverse contact ratio 端面模数 transverse module端面压力角 transverse pressure angle 锻造 forge对称循环应力 symmetry circulating stress 对心滚子从动件 radial (or in-line ) roller follower对心直动从动件 radial (or in-line ) translating follower对心移动从动件 radial reciprocating follower对心曲柄滑块机构 in-line slider-crank (or crank-slider) mechanism多列轴承 multi-row bearing 多楔带 poly V-belt 多项式运动规律 polynomial motion多质量转子 rotor with several masses 惰轮 idle gear额定寿命 rating life 额定载荷 load ratingII 级杆组 dyad 发生线 generating line发生面 generating plane 法面 normal plane法面参数 normal parameters 法面齿距 normal circular pitch法面模数 normal module 法面压力角 normal pressure angle法向齿距 normal pitch 法向齿廓 normal tooth profile法向直廓蜗杆 straight sided normal worm 法向力 normal force反馈式组合 feedback combining 反向运动学 inverse ( or backward) kinematics反转法 kinematic inversion 反正切 Arctan范成法 generating cutting 仿形法 form cutting方案设计、概念设计 concept design, CD 防振装置 shockproof device飞轮 flywheel 飞轮矩 moment of flywheel非标准齿轮 nonstandard gear 非接触式密封 non-contact seal非周期性速度波动 aperiodic speed fluctuation 非圆齿轮 non-circular gear粉末合金 powder metallurgy 分度线 reference line; standard pitch line分度圆 reference circle; standard (cutting) pitch circle分度圆柱导程角 lead angle at reference cylinder分度圆柱螺旋角 helix angle at reference cylinder 分母 denominator分子 numerator 分度圆锥 reference cone; standard pitch cone分析法 analytical method 封闭差动轮系 planetary differential复合铰链 compound hinge 复合式组合 compound combining复合轮系 compound (or combined) gear train 复合平带 compound flat belt复合应力 combined stress 复式螺旋机构 Compound screw mechanism 复杂机构 complex mechanism 杆组 Assur group干涉 interference 刚度系数 stiffness coefficient刚轮 rigid circular spline 钢丝软轴 wire soft shaft刚体导引机构 body guidance mechanism 刚性冲击 rigid impulse (shock)刚性转子 rigid rotor 刚性轴承 rigid bearing刚性联轴器 rigid coupling 高度系列 height series高速带 high speed belt 高副 higher pair格拉晓夫定理 Grashoff`s law 根切 undercutting公称直径 nominal diameter 高度系列 height series功 work 工况系数 application factor工艺设计 technological design 工作循环图 working cycle diagram工作机构 operation mechanism 工作载荷 external loads工作空间 working space 工作应力 working stress工作阻力 effective resistance 工作阻力矩 effective resistance moment公法线 common normal line 公共约束 general constraint公制齿轮 metric gears 功率 power功能分析设计 function analyses design 共轭齿廓 conjugate profiles共轭凸轮 conjugate cam 构件 link鼓风机 blower 固定构件 fixed link; frame固体润滑剂 solid lubricant 关节型操作器 jointed manipulator惯性力 inertia force 惯性力矩 moment of inertia ,shaking moment惯性力平衡 balance of shaking force 惯性力完全平衡 full balance of shaking force惯性力部分平衡 partial balance of shaking force 惯性主矩 resultant moment of inertia 惯性主失 resultant vector of inertia 冠轮 crown gear广义机构 generation mechanism 广义坐标 generalized coordinate轨迹生成 path generation 轨迹发生器 path generator滚刀 hob 滚道 raceway滚动体 rolling element 滚动轴承 rolling bearing滚动轴承代号 rolling bearing identification code 滚针 needle roller滚针轴承 needle roller bearing 滚子 roller滚子轴承 roller bearing 滚子半径 radius of roller滚子从动件 roller follower 滚子链 roller chain滚子链联轴器 double roller chain coupling 滚珠丝杆 ball screw滚柱式单向超越离合器 roller clutch 过度切割 undercutting函数发生器 function generator 函数生成 function generation含油轴承 oil bearing 耗油量 oil consumption耗油量系数 oil consumption factor 赫兹公式 H. Hertz equation合成弯矩 resultant bending moment 合力 resultant force合力矩 resultant moment of force 黑箱 black box横坐标 abscissa 互换性齿轮 interchangeable gears花键 spline 滑键、导键 feather key滑动轴承 sliding bearing 滑动率 sliding ratio滑块 slider 环面蜗杆 toroid helicoids worm环形弹簧 annular spring 缓冲装置 shocks; shock-absorber灰铸铁 grey cast iron 回程 return回转体平衡 balance of rotors 混合轮系 compound gear train积分 integrate 机电一体化系统设计 mechanical-electrical integration system design机构 mechanism 机构分析 analysis of mechanism机构平衡 balance of mechanism 机构学 mechanism机构运动设计 kinematic design of mechanism 机构运动简图 kinematic sketch of mechanism机构综合 synthesis of mechanism 机构组成 constitution of mechanism机架 frame, fixed link 机架变换 kinematic inversion机器 machine 机器人 robot机器人操作器 manipulator 机器人学 robotics技术过程 technique process 技术经济评价 technical and economic evaluation技术系统 technique system 机械 machinery机械创新设计 mechanical creation design, MCD 机械系统设计 mechanical system design, MSD机械动力分析 dynamic analysis of machinery 机械动力设计 dynamic design of machinery机械动力学 dynamics of machinery 机械的现代设计 modern machine design 机械系统 mechanical system 机械利益 mechanical advantage机械平衡 balance of machinery 机械手 manipulator机械设计 machine design; mechanical design 机械特性 mechanical behavior机械调速 mechanical speed governors 机械效率 mechanical efficiency机械原理 theory of machines and mechanisms 机械运转不均匀系数 coefficient of speed fluctuation机械无级变速 mechanical stepless speed changes 基础机构 fundamental mechanism基本额定寿命 basic rating life 基于实例设计 case-based design,CBD基圆 base circle 基圆半径 radius of base circle基圆齿距 base pitch 基圆压力角 pressure angle of base circle基圆柱 base cylinder 基圆锥 base cone急回机构 quick-return mechanism 急回特性 quick-return characteristics急回系数 advance-to return-time ratio 急回运动 quick-return motion棘轮 ratchet 棘轮机构 ratchet mechanism棘爪 pawl 极限位置 extreme (or limiting) position极位夹角 crank angle between extreme (or limiting) positions计算机辅助设计 computer aided design, CAD计算机辅助制造 computer aided manufacturing, CAM计算机集成制造系统 computer integrated manufacturing system, CIMS计算力矩 factored moment; calculation moment 计算弯矩 calculated bending moment加权系数 weighting efficient 加速度 acceleration加速度分析 acceleration analysis 加速度曲线 acceleration diagram尖点 pointing; cusp 尖底从动件 knife-edge follower间隙 backlash 间歇运动机构 intermittent motion mechanism减速比 reduction ratio 减速齿轮、减速装置 reduction gear减速器 speed reducer 减摩性 anti-friction quality渐开螺旋面 involute helicoids 渐开线 involute渐开线齿廓 involute profile 渐开线齿轮 involute gear渐开线发生线 generating line of involute 渐开线方程 involute equation渐开线函数 involute function 渐开线蜗杆 involute worm渐开线压力角 pressure angle of involute 渐开线花键 involute spline简谐运动 simple harmonic motion 键 key键槽 keyway 交变应力 repeated stress交变载荷 repeated fluctuating load 交叉带传动 cross-belt drive交错轴斜齿轮 crossed helical gears 胶合 scoring角加速度 angular acceleration 角速度 angular velocity角速比 angular velocity ratio 角接触球轴承 angular contact ball bearing 角接触推力轴承 angular contact thrust bearing 角接触向心轴承 angular contact radial bearing角接触轴承 angular contact bearing 铰链、枢纽 hinge校正平面 correcting plane 接触应力 contact stress接触式密封 contact seal 阶梯轴 multi-diameter shaft结构 structure 结构设计 structural design截面 section 节点 pitch point节距 circular pitch; pitch of teeth 节线 pitch line节圆 pitch circle 节圆齿厚 thickness on pitch circle节圆直径 pitch diameter 节圆锥 pitch cone节圆锥角 pitch cone angle 解析设计 analytical design紧边 tight-side 紧固件 fastener径节 diametral pitch 径向 radial direction径向当量动载荷 dynamic equivalent radial load 径向当量静载荷 static equivalent radial load 径向基本额定动载荷 basic dynamic radial load rating径向基本额定静载荷 basic static radial load tating径向接触轴承 radial contact bearing 径向平面 radial plane径向游隙 radial internal clearance 径向载荷 radial load径向载荷系数 radial load factor 径向间隙 clearance静力 static force 静平衡 static balance静载荷 static load 静密封 static seal局部自由度 passive degree of freedom 矩形螺纹 square threaded form锯齿形螺纹 buttress thread form 矩形牙嵌式离合器 square-jaw positive-contact clutch绝对尺寸系数 absolute dimensional factor 绝对运动 absolute motion绝对速度 absolute velocity 均衡装置 load balancing mechanism抗压强度 compression strength 开口传动 open-belt drive开式链 open kinematic chain 开链机构 open chain mechanism可靠度 degree of reliability 可靠性 reliability可靠性设计 reliability design, RD 空气弹簧 air spring空间机构 spatial mechanism 空间连杆机构 spatial linkage空间凸轮机构 spatial cam 空间运动副 spatial kinematic pair空间运动链 spatial kinematic chain 框图 block diagram空转 idle 宽度系列 width series雷诺方程Reynolds…s equation 离心力 centrifugal force离心应力 centrifugal stress 理论廓线 pitch curve离合器 clutch 离心密封 centrifugal seal理论啮合线 theoretical line of action 隶属度 membership 力 force力多边形 force polygon 力封闭型凸轮机构 force-drive (or force-closed) cam mechanism力矩 moment 力平衡 equilibrium力偶 couple 力偶矩 moment of couple连杆 connecting rod, coupler 连杆机构 linkage连杆曲线 coupler-curve 连心线 line of centers链 chain 链传动装置 chain gearing链轮 sprocket ; sprocket-wheel ; sprocket gear ; chain wheel 联组V 带 tight-up V belt联轴器 coupling ; shaft coupling 两维凸轮 two-dimensional cam临界转速 critical speed 六杆机构 six-bar linkage龙门刨床 double Haas planer 轮坯 blank轮系 gear train 螺杆 screw螺距 thread pitch 螺母 screw nut螺旋锥齿轮 helical bevel gear 螺钉 screws螺栓 bolts 螺纹导程 lead螺纹效率 screw efficiency 螺旋传动 power screw螺旋密封 spiral seal 螺纹 thread (of a screw)。

机械专业毕业论文中英文翻译--在全接触条件下,盘式制动器摩擦激发瞬态热弹性不稳定的研究

机械专业毕业论文中英文翻译--在全接触条件下,盘式制动器摩擦激发瞬态热弹性不稳定的研究

Frictionally excited thermoelastic instability in disc brakes—Transientproblem in the full contact regimeAbstractExceeding the critical sliding velocity in disc brakes can cause unwanted forming of hot spots, non-uniform distribution of contact pressure, vibration, and also, in many cases, permanent damage of the disc. Consequently, in the last decade, a great deal of consideration has been given to modeling methods of thermo elastic instability (TEI), which leads to these effects. Models based on the finite element method are also being developed in addition to the analytical approach. The analytical model of TEI development described in the paper by Lee and Barber [Frictionally excited thermo elastic instability in automotive disk brakes. ASME Journal of Tribology 1993;115:607–14] has been expanded in the presented work. Specific attention was given to the modification of their model, to catch the fact that the arc length of pads is less than the circumference of the disc, and to the development of temperature perturbation amplitude in the early stage of breaking, when pads are in the full contact with the disc. A way is proposed how to take into account both of the initial non-flatness of the disc friction surface and change of the perturbation shape inside the disc in the course of braking.Keywords: Thermo elastic instability; TEI; Disc brake; Hot spots1. IntroductionFormation of hot spots as well as non-uniform distribution of the contact pressure is an unwanted effect emerging in disc brakes in the course of braking or during engagement of a transmission clutch. If the sliding velocity is high enough, this effect can become unstable and can result in disc material damage, frictional vibration, wear, etc. Therefore, a lot of experimental effort is being spent to understand better this effect (cf. Refs.) or to model it in the most feasible fashion. Barber described the thermo elastic instability (TEI)as the cause of the phenomenon. Later Dow and Burton and Burton et al.introduced a mathematical model to establish critical sliding velocity for instability, where two thermo elastic half-planes are considered in contact along their common interface. It is in a work by Lee and Barber that the effect of the thickness was considered and that a model applicable for disc brakes was proposed. Lee and Barber’s model is made up with a metallic layer sliding between twohalf-planes of frictional material. Only recently a parametric analysis of TEI in disc brakes was made or TEI in multi-disc clutches and brakes was modeled. The evolution of hot spots amplitudes has been addressed in Refs. Using analytical approach or the effect of intermittent contact was considered. Finally, the finite element method was also applied to render the onset of TEI (see Ref.).The analysis of nonlinear transient behavior in the mode, when separated contact regions occur, is even accomplished in Ref. As in the case of other engineering problems of instability, it turns out that a more accurate prediction by mathematical modeling is often questionable. This is mainly imparted by neglecting various imperfections and random fluctuations or by the impossibility to describe all possible influences appropriately. Therefore, some effort aroused to interpret results of certain experiments in addition to classical TEI (see, e.g.Ref).This paper is related to the work by Lee and Barber [7].Using an analytical approach, it treats the inception of TEI and the development of hot spots during the full contact regime in the disc brakes. The model proposed in Section 2 enables to cover finite thickness of both friction pads and the ribbed portion of the disc. Section 3 is devoted to the problems of modeling of partial disc surface contact with the pads. Section 4 introduces the term of ‘‘thermal capacity of perturbation’’ emphasizing its association with the value of growth rate, or the sliding velocity magnitude. An analysis of the disc friction surfaces non-flatness and its influence on initial amplitude of perturbations is put forward in the Section 5. Finally, the Section 6 offers a model of temperature perturbation development initiated by the mentioned initial discnon-flatness in the course of braking. The model being in use here comes from a differential equation that covers the variation of the‘‘thermal capacity’’ during the full contact regime of the braking.2. Elaboration of Lee and Barber modelThe brake disc is represented by three layers. The middle one of thickness 2a3 stands for the ribbed portion of the disc with full sidewalls of thickness a2 connected to it. The pads are represented by layers of thickness a1, which are immovable and pressed to each other by a uniform pressure p. The brake disc slips in between these pads at a constant velocity V.We will investigate the conditions under which a spatially sinusoidal perturbation in the temperature and stress fields can grow exponentially with respect to the time in a similar manner to that adopted by Lee and Barber. It is evidenced in their work [7] that it is sufficient to handle only the antisymmetric problem. The perturbations that are symmetric with respect to the midplane of the disc can grow at a velocity well above the sliding velocity V thus being made uninteresting.Let us introduce a coordinate system (x1; y1)fixed to one of the pads (see Fig. 1) thepoints of contact surface between the pad and disc having y1 = 0. Furthermore, let acoordinate system (x2; y2)be fixed to the disc with y2=0 for the points of the midplane. We suppose the perturbation to have a relative velocity ci with respect to the layer i, and the coordinate system (x; y)to move together with the perturbated field. Then we can writeV = c1 -c2; c2 = c3; x = x1 -c1t = x2 -c2t,x2 = x3; y = y2 =y3 =y1 + a2 + a3.We will search the perturbation of the uniform temperature field in the formand the perturbation of the contact pressure in the formwhere t is the time, b denotes a growth rate, subscript I refers to a layer in the model, and j =-1½is the imaginary unit. The parameter m=m(n)=2pin/cir =2pi/L, where n is the number of hot spots on the circumference of the disc cir and L is wavelength of perturbations. The symbols T0m and p0m in the above formulae denote the amplitudes of initial non-uniformities (e.g. fluctuations). Both perturbations (2) and (3) will be searched as complex functions their real part describing the actual perturbation of temperature or pressure field.Obviously, if the growth rate b<0, the initial fluctuations are damped. On the other hand, instability develops ifB〉0.2.1. Temperature field perturbationHeat flux in the direction of the x-axis is zero when the ribbed portion of the disc is considered. Next, let us denote ki = Ki/Qicpi coefficient of the layer i temperature diffusion. Parameters Ki, Qi, cpi are, respectively, the thermal conductivity, density and specific heat of the material for i =1,2. They have been re-calculated to the entire volume of the layer (i = 3) when the ribbed portion of the disc is considered. The perturbation of the temperature field is the solution of the equationsWith and it will meet the following conditions:1,The layers 1 and 2 will have the same temperature at the contact surface2,The layers 2 and 3 will reach the same temperature and the same heat flux in the direction y,3,Antisymmetric condition at the midplaneThe perturbations will be zero at the external surface of a friction pad(If, instead, zero heat flux through external surface has been specified, we obtain practically identical numerical solution for current pads).If we write the temperature development in individual layers in a suitable formwe obtainwhereand2.2. Thermo elastic stresses and displacementsFor the sake of simplicity, let us consider the ribbed portion of the disc to be isotropic environment with corrected modulus of elasticity though, actually, the stiffness of this layer in the direction x differs from that in the direction y. Such simplification is, however, admissible as the yielding central layer 3 practically does not take effect on the disc flexural rigidity unlike full sidewalls (layer 2). Given a thermal field perturbation, we can express the stress state and displacements caused by this perturbation for any layer. The thermo elastic problem can be solved by superimposing a particular solution on the general isothermal solution. We look for the particular solution of a layer in form of a strain potential. The general isothermal solution is given by means of the harmonic potentials after Green and Zerna (see Ref.[18]) and contains four coefficients A, B, C, D for every layer. The relateddisplacement and stress field components are written out in the Appendix A.在全接触条件下,盘式制动器摩擦激发瞬态热弹性不稳定的研究摘要超过临界滑动盘式制动器速度可能会导致形成局部过热,不统一的接触压力,振动分布,而且,在多数情况下,会造成盘式制动闸永久性损坏。

ANSYS动力学分析-瞬态分析

ANSYS动力学分析-瞬态分析

ANSYS动⼒学分析-瞬态分析三种求解⽅法瞬态动⼒学分析可采⽤三种⽅法:完全(Full)法、缩减(Reduced)法及模态叠加法。

ANSYS/Professional产品中只允许⽤模态叠加法。

在研究如何实现这些⽅法之前,让我们先探讨⼀下各种⽅法的优点和缺点。

完全法完全法采⽤完整的系统矩阵计算瞬态响应(没有矩阵缩减)。

它是三种⽅法中功能最强的,允许包括各类⾮线性特性(塑性、⼤变形、⼤应变等)。

注─如果并不想包括任何⾮线性,应当考虑使⽤另外两种⽅法中的⼀种。

这是因为完全法是三种⽅法中开销最⼤的⼀种。

完全法的优点是:·容易使⽤,不必关⼼选择主⾃由度或振型。

·允许各种类型的⾮线性特性。

·采⽤完整矩阵,不涉及质量矩阵近似。

·在⼀次分析就能得到所有的位移和应⼒。

·允许施加所有类型的载荷:节点⼒、外加的(⾮零)位移(不建议采⽤)和单元载荷(压⼒和温度),还允许通过TABLE数组参数指定表边界条件。

·允许在实体模型上施加的载荷。

完全法的主要缺点是它⽐其它⽅法开销⼤。

模态叠加法通过对模态分析得到的振型(特征值)乘上因⼦并求和来计算结构的响应。

此法是ANSYS/Professional程序中唯⼀可⽤的瞬态动⼒学分析法。

模态叠加法的优点是:·对于许多问题,它⽐缩减法或完全法更快开销更⼩;·只要模态分析不采⽤PowerDynamics⽅法,通过命令将模态分析中施加的单元载荷引⼊到瞬态分析中;·允许考虑模态阻尼(阻尼⽐作为振型号的函数)。

模态叠加法的缺点是:·整个瞬态分析过程中时间步长必须保持恒定,不允许采⽤⾃动时间步长;·唯⼀允许的⾮线性是简单的点点接触(间隙条件);·不能施加强制位移(⾮零)位移。

缩减法通过采⽤主⾃由度及缩减矩阵压缩问题规模。

在主⾃由度处的位移被计算出来后,ANSYS可将解扩展到原有的完整⾃由度集上。

幂律流体在多孔介质中球向渗流的分形模型

幂律流体在多孔介质中球向渗流的分形模型

2021年2月第38卷第2期湖北第二师范学院学报JoumvC of Hubei University of EducationFeb.2021Vol. 38 Na 2幕律流体在多孔介质中球向渗流的分形模型王世芳1,吴涛2,苏怡1(1.湖北第二师范学院理论物理研究所,武汉430205;2.武汉工程大学光学信息与模式识别湖北省重点实验室,武汉430205)摘 要:本文基于分形理论,首先研究了幕律流体在多孔介质中球向流动的特性,建立了分形 多孔介质中幕律流体球向流动的渗透率分形模型,并把无量 率与已有模型进行比较,验证了本模型的正确性。

研究结果表明幕律流体球向渗透率随孔隙率和幕指数n 的增加而增加,随迂曲度分形维数和径向半径r 的增加而减小。

关键词:幕律流体;多孔介质;分形理论;渗透率中图分类号:O35 文献标识码:A 文章编号:1674-344X ( 2021) 2-0032-041引言自2060年代以来,在油田开发过程中来的使用聚合物溶液、 液和 液等非 体作为 ,因此 非 体的规律具用重要的意义。

非 体的显征是流量和 梯度不满足线性关系。

目,了各 体在多孔介质中的传质特性,取 了较大的 进展"门-⑹。

文⑷ 了律体在多孔介质作的 率,得到了需律流体有效渗透率随需律指数n 的加 加的 $ "6#了需律流体在 络中的有 率和相对 率的解析表达式。

尽管有助于理解需律流体在多孔介质中的流动机理,但是 律流体在多孔介质中作球向流动的研有报道。

2 Z 律流体在多孔介质中球向渗流的渗透率分形模型球向 设 管沿球径向 ,该是石油开采中的一个重要$ 在 有完全射开的开,球向符合实气等储,流体从 外部向 中心(即井中心)流动,其中r 为区域的 ,r 为,图1为多孔介质中需律流体球向 的示意图。

孔介质的孔隙大小足分形分布,在一个多孔介质 性单元体内,孔隙 大于 于入的累计孔隙数目为"8#(N& L (0 =(令)N(1)A对上式微分,于是得到:dN 二N 0mt 入「(N + 1)d 0(2)其中N 与入…^分别代表孔隙面积分形维数收稿日期:2020-12-02作者简介:王世芳(1978 -),女,湖北荆州人,教授,研究方向多孔介质的输运特性及分形理论的应用。

力学名词英文翻译

力学名词英文翻译

力学通类名词力学 mechanics牛顿力学 Newtonian mechanics经典力学 classical mechanics静力学 statics运动学 kinematics动力学 dynamics动理学 kinetics宏观力学 macroscopic mechanics,macromechanics 细观力学 mesomechanics微观力学 microscopic mechanics,micromechanics 一般力学 general mechanics固体力学 solid mechanics流体力学 fluid mechanics理论力学 theoretical mechanics应用力学 applied mechanics工程力学 engineering mechanics实验力学 experimental mechanics计算力学 computational mechanics理性力学 rational mechanics物理力学 physical mechanics地球动力学 geodynamics力 force作用点 point of action作用线 line of action力系 system of forces力系的简化 reduction of force system 等效力系 equivalent force system刚体 rigid body力的可传性 transmissibility of force 平行四边形定则 parallelogram rule力三角形 force triangle力多边形 force polygon零力系 null-force system平衡 equilibrium力的平衡 equilibrium of forces平衡条件 equilibrium condition平衡位置 equilibrium position平衡态 equilibrium state分析力学 analytical mechanics拉格朗日乘子 Lagrange multiplier拉格朗日[量] Lagrangian拉格朗日括号 Lagrange bracket循环坐标 cyclic coordinate循环积分 cyclic integral哈密顿[量] Hamiltonian哈密顿函数 Hamiltonian function正则方程 canonical equation正则摄动 canonical perturbation正则变换 canonical transformation正则变量 canonical variable哈密顿原理 Hamilton principle作用量积分 action integral哈密顿--雅可比方程 Hamilton-Jacobi equation 作用--角度变量 action-angle variables阿佩尔方程 Appell equation劳斯方程 Routh equation拉格朗日函数 Lagrangian function诺特定理 Noether theorem泊松括号 poisson bracket边界积分法 boundary integral method并矢 dyad运动稳定性 stability of motion轨道稳定性 orbital stability李雅普诺夫函数 Lyapunov function渐近稳定性 asymptotic stability结构稳定性 structural stability久期不稳定性 secular instability弗洛凯定理 Floquet theorem倾覆力矩 capsizing moment自由振动 free vibration固有振动 natural vibration暂态 transient state环境振动 ambient vibration反共振 anti-resonance衰减 attenuation库仑阻尼 Coulomb damping同相分量 in-phase component非同相分量 out-of-phase component超调量 overshoot参量[激励]振动 parametric vibration模糊振动 fuzzy vibration临界转速 critical speed of rotation阻尼器 damper半峰宽度 half-peak width集总参量系统 lumped parameter system相平面法 phase plane method相轨迹 phase trajectory等倾线法 isocline method跳跃现象 jump phenomenon负阻尼 negative damping达芬方程 Duffing equation希尔方程 Hill equationKBM方法 KBM method, Krylov-Bogoliu-bov-Mitropol'skii method 马蒂厄方程 Mathieu equation平均法 averaging method组合音调 combination tone解谐 detuning耗散函数 dissipative function硬激励 hard excitation硬弹簧 hard spring, hardening spring谐波平衡法 harmonic balance method久期项 secular term自激振动 self-excited vibration分界线 separatrix亚谐波 subharmonic软弹簧 soft spring ,softening spring软激励 soft excitation邓克利公式 Dunkerley formula瑞利定理 Rayleigh theorem分布参量系统 distributed parameter system 优势频率 dominant frequency模态分析 modal analysis固有模态 natural mode of vibration同步 synchronization超谐波 ultraharmonic范德波尔方程 van der pol equation频谱 frequency spectrum基频 fundamental frequencyWKB方法 WKB method, Wentzel-Kramers-Brillouin method 缓冲器 buffer风激振动 aeolian vibration嗡鸣 buzz倒谱 cepstrum颤动 chatter蛇行 hunting阻抗匹配 impedance matching机械导纳 mechanical admittance机械效率 mechanical efficiency机械阻抗 mechanical impedance随机振动 stochastic vibration, random vibration隔振 vibration isolation减振 vibration reduction应力过冲 stress overshoot喘振 surge摆振 shimmy起伏运动 phugoid motion起伏振荡 phugoid oscillation驰振 galloping陀螺动力学 gyrodynamics陀螺摆 gyropendulum陀螺平台 gyroplatform陀螺力矩 gyroscoopic torque陀螺稳定器 gyrostabilizer陀螺体 gyrostat惯性导航 inertial guidance姿态角 attitude angle方位角 azimuthal angle舒勒周期 Schuler period机器人动力学 robot dynamics多体系统 multibody system多刚体系统 multi-rigid-body system机动性 maneuverability凯恩方法 Kane method转子[系统]动力学 rotor dynamics转子[一支承一基础]系统 rotor-support-foundation system 静平衡 static balancing动平衡 dynamic balancing静不平衡 static unbalance动不平衡 dynamic unbalance现场平衡 field balancing不平衡 unbalance不平衡量 unbalance互耦力 cross force挠性转子 flexible rotor分频进动 fractional frequency precession半频进动 half frequency precession油膜振荡 oil whip转子临界转速 rotor critical speed自动定心 self-alignment亚临界转速 subcritical speed涡动 whirl连续过程 continuous process碰撞截面 collision cross section通用气体常数 conventional gas constant 燃烧不稳定性 combustion instability稀释度 dilution完全离解 complete dissociation火焰传播 flame propagation组份 constituent碰撞反应速率 collision reaction rate 燃烧理论 combustion theory浓度梯度 concentration gradient阴极腐蚀 cathodic corrosion火焰速度 flame speed火焰驻定 flame stabilization火焰结构 flame structure着火 ignition湍流火焰 turbulent flame层流火焰 laminar flame燃烧带 burning zone渗流 flow in porous media, seepage达西定律 Darcy law赫尔-肖流 Hele-Shaw flow毛[细]管流 capillary flow过滤 filtration爪进 fingering不互溶驱替 immiscible displacement不互溶流体 immiscible fluid互溶驱替 miscible displacement互溶流体 miscible fluid迁移率 mobility流度比 mobility ratio渗透率 permeability孔隙度 porosity多孔介质 porous medium比面 specific surface迂曲度 tortuosity空隙 void空隙分数 void fraction注水 water flooding可湿性 wettability地球物理流体动力学 geophysical fluid dynamics 物理海洋学 physical oceanography大气环流 atmospheric circulation海洋环流 ocean circulation海洋流 ocean current旋转流 rotating flow平流 advection埃克曼流 Ekman flow埃克曼边界层 Ekman boundary layer大气边界层 atmospheric boundary layer大气-海洋相互作用 atmosphere-ocean interaction 埃克曼数 Ekman number罗斯贝数 Rossby unmber罗斯贝波 Rossby wave斜压性 baroclinicity正压性 barotropy内磨擦 internal friction海洋波 ocean wave盐度 salinity环境流体力学 environmental fluid mechanics斯托克斯流 Stokes flow羽流 plume理查森数 Richardson number污染源 pollutant source污染物扩散 pollutant diffusion噪声 noise噪声级 noise level噪声污染 noise pollution排放物 effulent工业流体力学 industrical fluid mechanics流控技术 fluidics轴向流 axial flow并向流 co-current flow对向流 counter current flow横向流 cross flow螺旋流 spiral flow旋拧流 swirling flow滞后流 after flow混合层 mixing layer抖振 buffeting风压 wind pressure附壁效应 wall attachment effect, Coanda effect简约频率 reduced frequency爆炸力学 mechanics of explosion终点弹道学 terminal ballistics动态超高压技术 dynamic ultrahigh pressure technique 流体弹塑性体 hydro-elastoplastic medium热塑不稳定性 thermoplastic instability空中爆炸 explosion in air地下爆炸 underground explosion水下爆炸 underwater explosion电爆炸 discharge-induced explosion激光爆炸 laser-induced explosion核爆炸 nuclear explosion点爆炸 point-source explosion殉爆 sympathatic detonation强爆炸 intense explosion粒子束爆炸 explosion by beam radiation 聚爆 implosion起爆 initiation of explosion爆破 blasting霍普金森杆 Hopkinson bar电炮 electric gun电磁炮 electromagnetic gun爆炸洞 explosion chamber轻气炮 light gas gun马赫反射 Mach reflection基浪 base surge成坑 cratering能量沉积 energy deposition爆心 explosion center爆炸当量 explosion equivalent火球 fire ball爆高 height of burst蘑菇云 mushroom侵彻 penetration规则反射 regular reflection崩落 spallation应变率史 strain rate history流变学 rheology聚合物减阻 drag reduction by polymers挤出[物]胀大 extrusion swell, die swell 无管虹吸 tubeless siphon剪胀效应 dilatancy effect孔压[误差]效应 hole-pressure[error]effect 剪切致稠 shear thickening剪切致稀 shear thinning触变性 thixotropy反触变性 anti-thixotropy超塑性 superplasticity粘弹塑性材料 viscoelasto-plastic material 滞弹性材料 anelastic material本构关系 constitutive relation麦克斯韦模型 Maxwell model沃伊特-开尔文模型 Voigt-Kelvin model宾厄姆模型 Bingham model奥伊洛特模型 Oldroyd model幂律模型 power law model应力松驰 stress relaxation应变史 strain history应力史 stress history记忆函数 memory function衰退记忆 fading memory应力增长 stress growing粘度函数 voscosity function相对粘度 relative viscosity复态粘度 complex viscosity拉伸粘度 elongational viscosity拉伸流动 elongational flow第一法向应力差 first normal-stress difference 第二法向应力差 second normal-stress difference 德博拉数 Deborah number魏森贝格数 Weissenberg number动态模量 dynamic modulus振荡剪切流 oscillatory shear flow宇宙气体动力学 cosmic gas dynamics等离[子]体动力学 plasma dynamics电离气体 ionized gas行星边界层 planetary boundary layer阿尔文波 Alfven wave泊肃叶-哈特曼流] Poiseuille-Hartman flow哈特曼数 Hartman number生物流变学 biorheology生物流体 biofluid生物屈服点 bioyield point生物屈服应力 bioyield stress电气体力学 electro-gas dynamics铁流体力学 ferro-hydrodynamics血液流变学 hemorheology, blood rheology血液动力学 hemodynamics磁流体力学 magneto fluid mechanics磁流体动力学 magnetohydrodynamics, MHD磁流体动力波 magnetohydrodynamic wave磁流体流 magnetohydrodynamic flow磁流体动力稳定性 magnetohydrodynamic stability 生物力学 biomechanics生物流体力学 biological fluid mechanics生物固体力学 biological solid mechanics宾厄姆塑性流 Bingham plastic flow开尔文体 Kelvin body沃伊特体 Voigt body可贴变形 applicable deformation可贴曲面 applicable surface边界润滑 boundary lubrication液膜润滑 fluid film lubrication向心收缩功 concentric work离心收缩功 eccentric work关节反作用力 joint reaction force微循环力学 microcyclic mechanics微纤维 microfibril渗透性 permeability生理横截面积 physiological cross-sectional area 农业生物力学 agrobiomechanics纤维度 fibrousness硬皮度 rustiness胶粘度 gumminess粘稠度 stickiness嫩度 tenderness渗透流 osmotic flow易位流 translocation flow蒸腾流 transpirational flow过滤阻力 filtration resistance压扁 wafering风雪流 snow-driving wind停滞堆积 accretion遇阻堆积 encroachment沙漠地面 desert floor流沙固定 fixation of shifting sand流动阈值 fluid threshold固体力学弹性力学 elasticity弹性理论 theory of elasticity均匀应力状态 homogeneous state of stress应力不变量 stress invariant应变不变量 strain invariant应变椭球 strain ellipsoid均匀应变状态 homogeneous state of strain应变协调方程 equation of strain compatibility拉梅常量 Lame constants各向同性弹性 isotropic elasticity旋转圆盘 rotating circular disk楔 wedge开尔文问题 Kelvin problem布西内斯克问题 Boussinesq problem艾里应力函数 Airy stress function克罗索夫--穆斯赫利什维利法 Kolosoff-Muskhelishvili method 基尔霍夫假设 Kirchhoff hypothesis板 Plate矩形板 Rectangular plate圆板 Circular plate环板 Annular plate波纹板 Corrugated plate加劲板 Stiffened plate,reinforced Plate中厚板 Plate of moderate thickness弯[曲]应力函数 Stress function of bending 壳 Shell扁壳 Shallow shell旋转壳 Revolutionary shell球壳 Spherical shell[圆]柱壳 Cylindrical shell锥壳 Conical shell环壳 Toroidal shell封闭壳 Closed shell波纹壳 Corrugated shell扭[转]应力函数 Stress function of torsion 翘曲函数 Warping function半逆解法 semi-inverse method瑞利--里茨法 Rayleigh-Ritz method松弛法 Relaxation method莱维法 Levy method松弛 Relaxation量纲分析 Dimensional analysis自相似[性] self-similarity影响面 Influence surface接触应力 Contact stress赫兹理论 Hertz theory协调接触 Conforming contact滑动接触 Sliding contact滚动接触 Rolling contact压入 Indentation各向异性弹性 Anisotropic elasticity颗粒材料 Granular material散体力学 Mechanics of granular media热弹性 Thermoelasticity超弹性 Hyperelasticity粘弹性 Viscoelasticity对应原理 Correspondence principle褶皱 Wrinkle塑性全量理论 Total theory of plasticity 滑动 Sliding微滑 Microslip粗糙度 Roughness非线性弹性 Nonlinear elasticity大挠度 Large deflection突弹跳变 snap-through有限变形 Finite deformation格林应变 Green strain阿尔曼西应变 Almansi strain弹性动力学 Dynamic elasticity运动方程 Equation of motion准静态的 Quasi-static气动弹性 Aeroelasticity水弹性 Hydroelasticity颤振 Flutter弹性波 Elastic wave简单波 Simple wave柱面波 Cylindrical wave水平剪切波 Horizontal shear wave竖直剪切波 Vertical shear wave体波 body wave无旋波 Irrotational wave畸变波 Distortion wave膨胀波 Dilatation wave瑞利波 Rayleigh wave等容波 Equivoluminal wave勒夫波 Love wave界面波 Interfacial wave边缘效应 edge effect塑性力学 Plasticity可成形性 Formability金属成形 Metal forming耐撞性 Crashworthiness结构抗撞毁性 Structural crashworthiness 拉拔 Drawing破坏机构 Collapse mechanism回弹 Springback挤压 Extrusion冲压 Stamping穿透 Perforation层裂 Spalling塑性理论 Theory of plasticity安定[性]理论 Shake-down theory运动安定定理 kinematic shake-down theorem 静力安定定理 Static shake-down theorem率相关理论 rate dependent theorem载荷因子 load factor加载准则 Loading criterion加载函数 Loading function加载面 Loading surface塑性加载 Plastic loading塑性加载波 Plastic loading wave简单加载 Simple loading比例加载 Proportional loading卸载 Unloading卸载波 Unloading wave冲击载荷 Impulsive load阶跃载荷 step load脉冲载荷 pulse load极限载荷 limit load中性变载 nentral loading拉抻失稳 instability in tension加速度波 acceleration wave本构方程 constitutive equation完全解 complete solution名义应力 nominal stress过应力 over-stress真应力 true stress等效应力 equivalent stress流动应力 flow stress应力间断 stress discontinuity应力空间 stress space主应力空间 principal stress space静水应力状态 hydrostatic state of stress 对数应变 logarithmic strain工程应变 engineering strain等效应变 equivalent strain应变局部化 strain localization应变率 strain rate应变率敏感性 strain rate sensitivity应变空间 strain space有限应变 finite strain塑性应变增量 plastic strain increment累积塑性应变 accumulated plastic strain 永久变形 permanent deformation内变量 internal variable应变软化 strain-softening理想刚塑性材料 rigid-perfectly plastic Material 刚塑性材料 rigid-plastic material理想塑性材料 perfectl plastic material材料稳定性 stability of material应变偏张量 deviatoric tensor of strain应力偏张量 deviatori tensor of stress应变球张量 spherical tensor of strain应力球张量 spherical tensor of stress路径相关性 path-dependency线性强化 linear strain-hardening应变强化 strain-hardening随动强化 kinematic hardening各向同性强化 isotropic hardening强化模量 strain-hardening modulus幂强化 power hardening塑性极限弯矩 plastic limit bending Moment塑性极限扭矩 plastic limit torque弹塑性弯曲 elastic-plastic bending弹塑性交界面 elastic-plastic interface弹塑性扭转 elastic-plastic torsion粘塑性 Viscoplasticity非弹性 Inelasticity理想弹塑性材料 elastic-perfectly plastic Material 极限分析 limit analysis极限设计 limit design极限面 limit surface上限定理 upper bound theorem上屈服点 upper yield point下限定理 lower bound theorem下屈服点 lower yield point界限定理 bound theorem初始屈服面 initial yield surface后继屈服面 subsequent yield surface屈服面[的]外凸性 convexity of yield surface截面形状因子 shape factor of cross-section沙堆比拟 sand heap analogy屈服 Yield屈服条件 yield condition屈服准则 yield criterion屈服函数 yield function屈服面 yield surface塑性势 plastic potential能量吸收装置 energy absorbing device能量耗散率 energy absorbing device塑性动力学 dynamic plasticity塑性动力屈曲 dynamic plastic buckling塑性动力响应 dynamic plastic response塑性波 plastic wave运动容许场 kinematically admissible Field静力容许场 statically admissible Field流动法则 flow rule速度间断 velocity discontinuity滑移线 slip-lines滑移线场 slip-lines field移行塑性铰 travelling plastic hinge塑性增量理论 incremental theory of Plasticity米泽斯屈服准则 Mises yield criterion普朗特--罗伊斯关系 prandtl- Reuss relation特雷斯卡屈服准则 Tresca yield criterion洛德应力参数 Lode stress parameter莱维--米泽斯关系 Levy-Mises relation亨基应力方程 Hencky stress equation赫艾--韦斯特加德应力空间 Haigh-Westergaard stress space 洛德应变参数 Lode strain parameter德鲁克公设 Drucker postulate盖林格速度方程 Geiringer velocity Equation结构力学 structural mechanics结构分析 structural analysis结构动力学 structural dynamics拱 Arch三铰拱 three-hinged arch抛物线拱 parabolic arch圆拱 circular arch穹顶 Dome空间结构 space structure空间桁架 space truss雪载[荷] snow load风载[荷] wind load土压力 earth pressure地震载荷 earthquake loading弹簧支座 spring support支座位移 support displacement支座沉降 support settlement超静定次数 degree of indeterminacy 机动分析 kinematic analysis结点法 method of joints截面法 method of sections结点力 joint forces共轭位移 conjugate displacement影响线 influence line三弯矩方程 three-moment equation 单位虚力 unit virtual force刚度系数 stiffness coefficient柔度系数 flexibility coefficient力矩分配 moment distribution力矩分配法 moment distribution method力矩再分配 moment redistribution分配系数 distribution factor矩阵位移法 matri displacement method单元刚度矩阵 element stiffness matrix单元应变矩阵 element strain matrix总体坐标 global coordinates贝蒂定理 Betti theorem高斯--若尔当消去法 Gauss-Jordan elimination Method 屈曲模态 buckling mode复合材料力学 mechanics of composites复合材料 composite material纤维复合材料 fibrous composite单向复合材料 unidirectional composite泡沫复合材料 foamed composite颗粒复合材料 particulate composite层板 Laminate夹层板 sandwich panel正交层板 cross-ply laminate斜交层板 angle-ply laminate层片 Ply多胞固体 cellular solid膨胀 Expansion压实 Debulk劣化 Degradation脱层 Delamination脱粘 Debond纤维应力 fiber stress层应力 ply stress层应变 ply strain层间应力 interlaminar stress比强度 specific strength强度折减系数 strength reduction factor 强度应力比 strength -stress ratio横向剪切模量 transverse shear modulus 横观各向同性 transverse isotropy正交各向异 Orthotropy剪滞分析 shear lag analysis短纤维 chopped fiber长纤维 continuous fiber纤维方向 fiber direction纤维断裂 fiber break纤维拔脱 fiber pull-out纤维增强 fiber reinforcement致密化 Densification最小重量设计 optimum weight design网格分析法 netting analysis混合律 rule of mixture失效准则 failure criterion蔡--吴失效准则 Tsai-W u failure criterion达格代尔模型 Dugdale model断裂力学 fracture mechanics概率断裂力学 probabilistic fracture Mechanics格里菲思理论 Griffith theory线弹性断裂力学 linear elastic fracture mechanics, LEFM 弹塑性断裂力学 elastic-plastic fracture mecha-nics, EPFM 断裂 Fracture脆性断裂 brittle fracture解理断裂 cleavage fracture蠕变断裂 creep fracture延性断裂 ductile fracture晶间断裂 inter-granular fracture准解理断裂 quasi-cleavage fracture穿晶断裂 trans-granular fracture裂纹 Crack裂缝 Flaw缺陷 Defect割缝 Slit微裂纹 Microcrack折裂 Kink椭圆裂纹 elliptical crack深埋裂纹 embedded crack[钱]币状裂纹 penny-shape crack预制裂纹 Precrack短裂纹 short crack表面裂纹 surface crack裂纹钝化 crack blunting裂纹分叉 crack branching裂纹闭合 crack closure裂纹前缘 crack front裂纹嘴 crack mouth裂纹张开角 crack opening angle,COA裂纹张开位移 crack opening displacement, COD裂纹阻力 crack resistance裂纹面 crack surface裂纹尖端 crack tip裂尖张角 crack tip opening angle, CTOA裂尖张开位移 crack tip opening displacement, CTOD 裂尖奇异场 crack tip singularity Field裂纹扩展速率 crack growth rate稳定裂纹扩展 stable crack growth定常裂纹扩展 steady crack growth亚临界裂纹扩展 subcritical crack growth裂纹[扩展]减速 crack retardation止裂 crack arrest止裂韧度 arrest toughness断裂类型 fracture mode滑开型 sliding mode张开型 opening mode撕开型 tearing mode复合型 mixed mode撕裂 Tearing撕裂模量 tearing modulus断裂准则 fracture criterionJ积分 J-integralJ阻力曲线 J-resistance curve断裂韧度 fracture toughness应力强度因子 stress intensity factorHRR场 Hutchinson-Rice-Rosengren Field守恒积分 conservation integral有效应力张量 effective stress tensor应变能密度 strain energy density能量释放率 energy release rate内聚区 cohesive zone塑性区 plastic zone张拉区 stretched zone热影响区 heat affected zone, HAZ延脆转变温度 brittle-ductile transition temperature 剪切带 shear band剪切唇 shear lip无损检测 non-destructive inspection双边缺口试件 double edge notched specimen, DEN specimen单边缺口试件 single edge notched specimen, SEN specimen三点弯曲试件 three point bending specimen, TPB specimen中心裂纹拉伸试件 center cracked tension specimen, CCT specimen 中心裂纹板试件 center cracked panel specimen, CCP specimen紧凑拉伸试件 compact tension specimen, CT specimen大范围屈服 large scale yielding小范围攻屈服 small scale yielding韦布尔分布 Weibull distribution帕里斯公式 paris formula空穴化 Cavitation应力腐蚀 stress corrosion概率风险判定 probabilistic risk assessment, PRA损伤力学 damage mechanics损伤 Damage连续介质损伤力学 continuum damage mechanics细观损伤力学 microscopic damage mechanics累积损伤 accumulated damage脆性损伤 brittle damage延性损伤 ductile damage宏观损伤 macroscopic damage细观损伤 microscopic damage微观损伤 microscopic damage损伤准则 damage criterion损伤演化方程 damage evolution equation 损伤软化 damage softening损伤强化 damage strengthening损伤张量 damage tensor损伤阈值 damage threshold损伤变量 damage variable损伤矢量 damage vector损伤区 damage zone疲劳 Fatigue低周疲劳 low cycle fatigue应力疲劳 stress fatigue随机疲劳 random fatigue蠕变疲劳 creep fatigue腐蚀疲劳 corrosion fatigue疲劳损伤 fatigue damage疲劳失效 fatigue failure疲劳断裂 fatigue fracture疲劳裂纹 fatigue crack疲劳寿命 fatigue life疲劳破坏 fatigue rupture疲劳强度 fatigue strength疲劳辉纹 fatigue striations疲劳阈值 fatigue threshold交变载荷 alternating load交变应力 alternating stress应力幅值 stress amplitude应变疲劳 strain fatigue应力循环 stress cycle应力比 stress ratio安全寿命 safe life过载效应 overloading effect循环硬化 cyclic hardening循环软化 cyclic softening环境效应 environmental effect裂纹片 crack gage裂纹扩展 crack growth, crack Propagation 裂纹萌生 crack initiation循环比 cycle ratio实验应力分析 experimental stress Analysis 工作[应变]片 active[strain] gage基底材料 backing material应力计 stress gage零[点]飘移 zero shift, zero drift应变测量 strain measurement应变计 strain gage应变指示器 strain indicator应变花 strain rosette应变灵敏度 strain sensitivity机械式应变仪 mechanical strain gage直角应变花 rectangular rosette引伸仪 Extensometer应变遥测 telemetering of strain横向灵敏系数 transverse gage factor横向灵敏度 transverse sensitivity焊接式应变计 weldable strain gage平衡电桥 balanced bridge粘贴式应变计 bonded strain gage粘贴箔式应变计 bonded foiled gage粘贴丝式应变计 bonded wire gage桥路平衡 bridge balancing电容应变计 capacitance strain gage补偿片 compensation technique补偿技术 compensation technique基准电桥 reference bridge电阻应变计 resistance strain gage温度自补偿应变计 self-temperature compensating gage 半导体应变计 semiconductor strain Gage集流器 slip ring应变放大镜 strain amplifier疲劳寿命计 fatigue life gage电感应变计 inductance [strain] gage光[测]力学 Photomechanics光弹性 Photoelasticity光塑性 Photoplasticity杨氏条纹 Young fringe双折射效应 birefrigent effect等位移线 contour of equal Displacement暗条纹 dark fringe条纹倍增 fringe multiplication干涉条纹 interference fringe等差线 Isochromatic等倾线 Isoclinic等和线 isopachic应力光学定律 stress- optic law主应力迹线 Isostatic亮条纹 light fringe光程差 optical path difference热光弹性 photo-thermo -elasticity光弹性贴片法 photoelastic coating Method 光弹性夹片法 photoelastic sandwich Method 动态光弹性 dynamic photo-elasticity空间滤波 spatial filtering空间频率 spatial frequency起偏镜 Polarizer反射式光弹性仪 reflection polariscope残余双折射效应 residual birefringent Effect应变条纹值 strain fringe value应变光学灵敏度 strain-optic sensitivity应力冻结效应 stress freezing effect应力条纹值 stress fringe value应力光图 stress-optic pattern暂时双折射效应 temporary birefringent Effect脉冲全息法 pulsed holography透射式光弹性仪 transmission polariscope实时全息干涉法 real-time holographic interferometry网格法 grid method全息光弹性法 holo-photoelasticity全息图 Hologram全息照相 Holograph全息干涉法 holographic interferometry全息云纹法 holographic moire technique全息术 Holography全场分析法 whole-field analysis散斑干涉法 speckle interferometry散斑 Speckle错位散斑干涉法 speckle-shearing interferometry, shearography 散斑图 Specklegram白光散斑法 white-light speckle method云纹干涉法 moire interferometry[叠栅]云纹 moire fringe[叠栅]云纹法 moire method云纹图 moire pattern离面云纹法 off-plane moire method参考栅 reference grating试件栅 specimen grating分析栅 analyzer grating面内云纹法 in-plane moire method脆性涂层法 brittle-coating method条带法 strip coating method坐标变换 transformation of Coordinates计算结构力学 computational structural mechanics 加权残量法 weighted residual method有限差分法 finite difference method有限[单]元法 finite element method配点法 point collocation里茨法 Ritz method广义变分原理 generalized variational Principle 最小二乘法 least square method胡[海昌]一鹫津原理 Hu-Washizu principle赫林格-赖斯纳原理 Hellinger-Reissner Principle 修正变分原理 modified variational Principle约束变分原理 constrained variational Principle混合法 mixed method杂交法 hybrid method边界解法 boundary solution method有限条法 finite strip method半解析法 semi-analytical method协调元 conforming element非协调元 non-conforming element混合元 mixed element杂交元 hybrid element边界元 boundary element强迫边界条件 forced boundary condition 自然边界条件 natural boundary condition 离散化 Discretization离散系统 discrete system连续问题 continuous problem广义位移 generalized displacement广义载荷 generalized load广义应变 generalized strain广义应力 generalized stress界面变量 interface variable节点 node, nodal point[单]元 Element角节点 corner node边节点 mid-side node内节点 internal node无节点变量 nodeless variable杆元 bar element桁架杆元 truss element梁元 beam element二维元 two-dimensional element一维元 one-dimensional element三维元 three-dimensional element轴对称元 axisymmetric element板元 plate element壳元 shell element厚板元 thick plate element三角形元 triangular element四边形元 quadrilateral element四面体元 tetrahedral element曲线元 curved element二次元 quadratic element线性元 linear element三次元 cubic element四次元 quartic element等参[数]元 isoparametric element超参数元 super-parametric element亚参数元 sub-parametric element节点数可变元 variable-number-node element拉格朗日元 Lagrange element拉格朗日族 Lagrange family巧凑边点元 serendipity element巧凑边点族 serendipity family无限元 infinite element单元分析 element analysis单元特性 element characteristics刚度矩阵 stiffness matrix几何矩阵 geometric matrix等效节点力 equivalent nodal force节点位移 nodal displacement节点载荷 nodal load位移矢量 displacement vector载荷矢量 load vector质量矩阵 mass matrix集总质量矩阵 lumped mass matrix相容质量矩阵 consistent mass matrix阻尼矩阵 damping matrix瑞利阻尼 Rayleigh damping刚度矩阵的组集 assembly of stiffness Matrices 载荷矢量的组集 consistent mass matrix质量矩阵的组集 assembly of mass matrices单元的组集 assembly of elements局部坐标系 local coordinate system局部坐标 local coordinate面积坐标 area coordinates体积坐标 volume coordinates曲线坐标 curvilinear coordinates静凝聚 static condensation合同变换 contragradient transformation 形状函数 shape function试探函数 trial function检验函数 test function权函数 weight function样条函数 spline function代用函数 substitute function降阶积分 reduced integration零能模式 zero-energy modeP收敛 p-convergenceH收敛 h-convergence掺混插值 blended interpolation等参数映射 isoparametric mapping双线性插值 bilinear interpolation小块检验 patch test非协调模式 incompatible mode节点号 node number单元号 element number带宽 band width带状矩阵 banded matrix变带状矩阵 profile matrix带宽最小化 minimization of band width波前法 frontal method子空间迭代法 subspace iteration method 行列式搜索法 determinant search method 逐步法 step-by-step method纽马克法 Newmark威尔逊法 Wilson拟牛顿法 quasi-Newton method牛顿-拉弗森法 Newton-Raphson method增量法 incremental method初应变 initial strain初应力 initial stress切线刚度矩阵 tangent stiffness matrix割线刚度矩阵 secant stiffness matrix模态叠加法 mode superposition method平衡迭代 equilibrium iteration子结构 Substructure子结构法 substructure technique超单元 super-element网格生成 mesh generation结构分析程序 structural analysis program 前处理 pre-processing后处理 post-processing网格细化 mesh refinement应力光顺 stress smoothing组合结构 composite structure流体力学流体动力学 fluid dynamics连续介质力学 mechanics of continuous media介质 medium流体质点 fluid particle无粘性流体 nonviscous fluid, inviscid fluid连续介质假设 continuous medium hypothesis流体运动学 fluid kinematics水静力学 hydrostatics液体静力学 hydrostatics支配方程 governing equation伯努利方程 Bernoulli equation伯努利定理 Bernonlli theorem毕奥-萨伐尔定律 Biot-Savart law欧拉方程 Euler equation亥姆霍兹定理 Helmholtz theorem开尔文定理 Kelvin theorem涡片 vortex sheet库塔-茹可夫斯基条件 Kutta-Zhoukowski condition布拉休斯解 Blasius solution达朗贝尔佯廖 d'Alembert paradox 雷诺数 Reynolds number施特鲁哈尔数 Strouhal number随体导数 material derivative不可压缩流体 incompressible fluid 质量守恒 conservation of mass动量守恒 conservation of momentum 能量守恒 conservation of energy 动量方程 momentum equation能量方程 energy equation控制体积 control volume液体静压 hydrostatic pressure涡量拟能 enstrophy压差 differential pressure流[动] flow流线 stream line流面 stream surface流管 stream tube迹线 path, path line流场 flow field流态 flow regime流动参量 flow parameter流量 flow rate, flow discharge。

初始温度和压力对乙炔分解爆炸参数影响的实验研究

初始温度和压力对乙炔分解爆炸参数影响的实验研究

第50卷第2期2021年4月爆破器材Explosive MaterialsVol. 50 No. 2Apr. 2021doi ;10.3969/j. issn. 1001-8352.2021.02.002初始温度和压力对乙炔分解爆炸参数影响的实验研究**收稿日期:2020-08-16基金项目:江苏省研究生科研与实践创新计划项目(KYCX19_0256)第一作者:高凯(1995 - ),女,硕士研究生,主要从事气体爆炸相关研究。

E-mail : michelle1995jun@ 163. com通信作者:李斌(1984 -),男,博士,副研究员,主要从事多相爆轰相关研究。

E-mail :libin@ njusL. edu. cn高凯熊新宇凤文桢解立峰韩志伟李斌南京理工大学化工学院(江苏南京,210094)[摘 要]为研究乙炔气体的分解爆炸参数,以电石法制备的乙炔为对象,采用20L 圆柱形爆炸罐,以熔断丝(20 J )作为点火源,通过实验研究了初始温度、初始压力对乙炔分解爆炸相关参数的影响规律。

结果表明:初始压力为0.095 - 0. 200 MPa 时,乙炔最大分解爆炸压力及最大分解爆炸压力上升速率随初始压力的增大而增大,且初始压力超过0.140 MPa 后,增幅变大;初始温度在40〜80兀范围内,乙炔临界分解爆炸压力、最大分解爆炸压力及最大分解爆炸压力上升速率随初始温度的升高而减小。

[关键词]乙炔;初始温度;初始压力;分解爆炸[分类号]X932Experimental Study on Effect of Initial Temperature and Pressure onDecomposition Explosion Parameters of AcetyleneGAO Kai, XIONG Xinyu, FENG Wenzhen, XIE Lifeng, HAN Zhiwei, LI BinSchool of Chemical Engineering , Nanjing University of Science and Technology ( Jiangsu Nanjing, 210094)[ABSTRACT ] In order to study decomposition explosion parameters of acetylene gas , the acetylene gas produced byindustrial calcium carbide method was taken as the research object, a 20 L cylindrical tank was used as the explosion ves ­sel ,and the fusing wire (20 J) was used as the ignition source. Effects of initial temperature and initial pressure on the relevant decomposing explosion properties of acetylene gas were studied by experiments. The results show that when theinitial pressure is in the range of 0. 095-0. 200 MPa, the maximum decomposition explosion pressure and the maximum rise rate of decomposition explosion pressure increase with the increase of initial pressure, and when initial pressure exceeds 0. 140 MPa, the rise amplitude of the curve becomes larger. Critical decomposition explosion pressure, the maximumdecomposition explosion pressure, and the rising rate of the maximum decomposition explosion pressure of acetylene decrease with the increase of initial temperature under the initial temperature changing from 40 七 to 80 七.[KEYWORDS ] acetylene ; initial temperature ; initial pressure ; decomposing explosion引言乙烘(C 2H 2)又称电石气,在有机化学工业中有 着重要的作用。

传感器英文翻译

传感器英文翻译

1、Accelerometer Principles67 ratings | 4.01 out of 5| Print DocumentOverviewThis tutorial is part of the National Instruments Measurement Fundamentals series. Each tutorial in this series will teach you a specific topic of common measurement applications by explaining theoretical concepts and providing practical examples. There are several physical processes that can be used to develop a sensor to measure acceleration. In applications that involve flight, such as aircraft and satellites, accelerometers are based on properties of rotating masses. In the industrial world, however, the most common design is based on a combination of Newton's law of mass acceleration and Hooke's law of spring action.Table of Contents1.Spring-Mass System2.Natural Frequency and Damping3.Vibration Effects4.Relevant NI Products5.Buy the BookSpring-Mass SystemNewton's law simply states that if a mass, m, is undergoing an acceleration, a, then there must be a force F acting on the mass and given by F = ma. Hooke's law states that if a spring of spring constant k is stretched (extended) from its equilibrium position for a distance D x, then there must be a force acting on the spring given by F = kDx.FIGURE 5.23 The basic spring-mass system accelerometer.In Figure 5.23a we have a mass that is free to slide on a base. The mass is connected to the base by a spring that is in its unextended state and exerts no force on the mass. In Figure 5.23b, the whole assembly is accelerated to the left, as shown. Now the spring extends in order to provide the force necessary to accelerate the mass. This condition is described by equating Newton's and Hooke's laws:ma = kDx(5.25)where k = spring constant in N/mDx = spring extension in mm = mass in kga= acceleration in m/s2Equation (5.25) allows the measurement of acceleration to be reduced to a measurement of spring extension (linear displacement) becauseIf the acceleration is reversed, the same physical argument would apply, except that the spring is compressed instead of extended. Equation (5.26) still describes the relationship between spring displacement and acceleration.The spring-mass principle applies to many common accelerometer designs. The mass that converts the acceleration to spring displacement is referred to as the test mass or seismic mass. We see, then, that acceleration measurement reduces to linear displacement measurement; most designs differ in how this displacement measurement is made.Natural Frequency and DampingOn closer examination of the simple principle just described, we findanother characteristic of spring-mass systems that complicates the analysis. In particular, a system consisting of a spring and attached mass always exhibits oscillations at some characteristic natural frequency. Experience tells us that if we pull a mass back and then release it (in the absence of acceleration), it will be pulled back by the spring, overshoot the equilibrium, and oscillate back and forth. Only friction associated with the mass and base eventually brings the mass to rest. Any displacement measuring system will respond to this oscillation as if an actual acceleration occurs. This natural frequency is given bywhere f N= natural frequency in Hzk = spring constant in N/mm = seismic mass in kgThe friction that eventually brings the mass to rest is defined by a damping coefficient , which has the units of s-1. In general, the effect of oscillation is called transient response, described by a periodic damped signal, as shown in Figure 5.24, whose equation isX T (t) = Xoe-µt sin(2p f N t) (5.28)where Xr(t) = transient mass positionXo= peak position, initiallyµ = damping coefficientfN= natural frequencyThe parameters, natural frequency, and damping coefficient in Equation (5.28) have a profound effect on the application of accelerometers.Vibration EffectsThe effect of natural frequency and damping on the behavior of spring-mass accelerometers is best described in terms of an applied vibration. If the spring-mass system is exposed to a vibration, then the resultant acceleration of the base is given by Equation (5.23)a(t) = -w2xosin wtIf this is used in Equation (5.25), we can show that the mass motion is given bywhere all terms were previously denned and w= 2p f, with/the applied frequency.FIGURE 5.24 A spring-mass system exhibits a natural oscillation with damping as response to an impulse input.FIGURE 5.25 A spring-mass accelerometer has been attached to a table which is exhibiting vibration. The table peak motion is xand the mass motionois D x.To make the predictions of Equation (5.29) clear, consider the situation presented in Figure 5.25. Our model spring-mass accelerometer has been fixed to a table that is vibrating. The x o in Equation (5.29) is the peak amplitude of the table vibration, and Dx is the vibration of the seismic mass within the accelerometer. Thus, Equation (5.29) predicts that the seismic-mass vibration peak amplitude varies as the vibration frequency squared, but linearly with the table-vibration amplitude. However, this result was obtained without consideration of the spring-mass system natural vibration. When this is taken into account, something quite different occurs.Figure 5.26a shows the actual seismic-mass vibration peak amplitude versus table-vibration frequency compared with the simple frequency squared prediction.You can see that there is a resonance effect when the table frequency equals the natural frequency of the accelerometer, that is, the value of Dx goes through a peak. The amplitude of the resonant peak is determined by the amount of damping. The seismic-mass vibration is described by Equation (5.29) only up to about f N/2.5.Figure 5.26b shows two effects. The first is that the actual seismic-mass motion is limited by the physical size of the accelerometer. It will hit"stops" built into the assembly that limit its motion during resonance. The figure also shows that for frequencies well above the natural frequency, the motion of the mass is proportional to the table peak motion, , but not to the frequency. Thus, it has become a displacement sensor. xoTo summarize:1. f < f N- For an applied frequency less than the natural frequency, the natural frequency has little effect on the basic spring-mass response given by Equations (5.25) and (5.29). A rule of thumb states that a safe maximum applied frequency is f < 1/2.5f N.-For an applied frequency much larger than the natural frequency, 2. f > fNthe accelerometer output is independent of the applied frequency. As shown in Figure 5.26b, the accelerometer becomes a measure of vibration displacement xof Equation (5.20) under these circumstances. It isointeresting to note that the seismic mass is stationary in space in this case, and the housing, which is driven by the vibration, moves about the mass. A general rule sets f > 2.5 f N for this case.Generally, accelerometers are not used near the resonance at their natural frequency because of high nonlinearities in output.FIGURE 5.26 In (a) the actual response of a spring-mass system to vibration is compared to the simple w2prediction In (b) the effect of various table peak motion is shownEXAMPLE 5.14An accelerometer has a seismic mass of 0.05 kg and a spring constant of 3.0 X 103N/m Maximum mass displacement is ±0 02 m (before the mass hits the stops). Calculate (a) the maximum measurable acceleration in g, and (b) the natural frequency.SolutionWe find the maximum acceleration when the maximum displacement occurs, from Equation (5.26).a.or becauseb. The natural frequency is given by Equation (5.27).2、Measuring Pressure with Pressure Sensors79 ratings | 4.00 out of 5| Print DocumentOverviewThis tutorial is part of the National Instruments Measurement Fundamentals series. Each tutorial in this series will teach you a specific topic of common measurement applications by explaining theoretical concepts and providing practical examples. This tutorial introduces and explains the concepts and techniques of measuring pressure with pressure sensors.For more information, return to the NI Measurement Fundamentals Main Page. Table of Contents1.What is Pressure?2.The Pressure Sensor3.Pressure Measurement4.Signal Conditioning for Pressure Sensors5.DAQ Systems for Pressure Measurements6.ReferencesWhat is Pressure?Pressure is defined as force per unit area that a fluid exerts on its surroundings.[1] For example, pressure, P, is a function of force, F, and area, A.P = F/AA container full of gas contains innumerable atoms and molecules that are constantly bouncing of its walls. The pressure would be the average force of these atoms and molecules on its walls per unit of area of the container. Moreover, pressure does not have to be measured along the wall of a container but rather can be measured as the force per unit area along any plane. Air pressure, for example, is a function of the weight of the air pushing down on Earth. Thus, as the altitude increases, pressure decreases. Similarly, as a scuba diver or submarine dives deeper into the ocean, the pressure increases.The SI unit for pressure is the Pascal (N/m2), but other common units of pressure include pounds per square inch (PSI), atmospheres (atm), bars, inches of mercury (in Hg), and millimeters of mercury (mm Hg).A pressure measurement can be described as either static or dynamic. The pressure in cases where no motion is occurring is referred to as static pressure. Examples of static pressure include the pressure of the air inside a balloon or water inside a basin. Often times, the motion of a fluid changes the force applied to its surroundings. Such a pressure measurement is known as dynamic pressure measurement. For example, the pressure inside a balloon or at the bottom of a water basin would change as air is let out of the balloon or as water is poured out of the basin.Head pressure(or pressure head) measures the static pressure of a liquid in a tank or a pipe. Head pressure, P, is a function solely on the height, h, of the liquid and weight density, w, of the liquid being measured as shown in Figure 1 below.Figure 1. Head Pressure MeasurementThe pressure on a scuba diver swimming in the ocean would be the diver's depth multiplied by weight of the ocean (64 pounds per cubic foot). A scuba diver diving 33 feet into the ocean would have 2112 pounds of water on every square foot of his body. The translates to 14.7 PSI. Interestingly enough, the atmospheric pressure of the air at sea level is also 14.7 PSI or 1 atm. Thus, 33 feet of water create as much pressure as 5 miles of air! The total pressure on a scuba diver 33 feet deep ocean would be the combined pressure caused by the weight of the air and the water and would be 29.4 PSI or 2 atm.A pressure measurement can further be described by the type of measurement being performed. There are three types of pressure measurements: absolute, gauge, and differential. Absolute pressure measurement is measured relative to a vacuum as showing in Figure 2 below. Often times, the abbreviations PAA (Pascals Absolute) or PSIA (Pounds per Square Inch Absolute) are use to describe absolute pressure.Figure 2. Absolute Pressure Sensor[3]Gauge pressure is measured relative to ambient atmospheric pressure asshown in Figure 3. Similar to absolute pressure, the abbreviations PAG (Pascals Gauge) or PSIA (Pounds per Square Inch Gauge) are use to describe gauge pressure.Figure 3.Gauge Pressure Sensor[3]Differential pressure is similar to gauge pressure, but instead of measuring relative to ambient atmospheric pressure, differential measurements are taken with respect to a specific reference pressure as shown in Figure 4. Also, the abbreviations PAD (Pascals Differential) or PSID (Pounds per Square Inch Differential) are use to describe differential pressure.Figure 4. Differential Pressure Sensor[3]The Pressure SensorBecause of the great variety of conditions, ranges, and materials for which pressure must be measured, there are many different types of pressure sensor designs. Often pressure can be converted to some intermediate form, such as displacement. The sensor then converts thisdisplacement into an electrical output such as voltage or current. The three most universal types of pressure transducers of this form are the strain gage, variable capacitance, and piezoelectric.Of all the pressure sensors, Wheatstone bridge (strain based) sensors are the most common, offering solutions that meet varying accuracy, size, ruggedness, and cost constraints. Bridge sensors are used for high and low pressure applications, and can measure absolute, gauge, or differential pressure. All bridge sensors make use of a strain gage and a diaphragm as seen in Figure 4.Figure 4. Cross Section of a Typical Strain Gage Pressure Sensor [3]When a change in pressure causes the diaphragm to deflect, a corresponding change in resistance is induced on the strain gauge, which can be measured by a Data Acquisition (DAQ) System. These strain gauge pressure transducers come in several different varieties: the bonded strain gauge, the sputtered strain gauge, and the semiconductor strain gauge.In the bonded strain gauge pressure sensor, a metal foil strain gauge is actually glued or bonded to the surface where strain is being measured. These bonded foil strain gauges (BFSG) have been the industry standard for years and are continually used because of their quick 1000 Hz responsetimes to changes in pressure as well as their large -452°F to -525°F operating temperature.Sputtered strain gauge manufacturers sputter deposit a layer of glass onto the diaphragm and then deposit a thing metal film strain gauge on to the transd ucer’s diaphragm. Sputtered strain gauge sensors actually from a molecular bond between the strain gauge element, the insulating later, and the sensing diaphragm. These gauges are most suitable for long-term use and harsh measurement conditions.Integrated circuit manufacturers have developed composite pressure sensors that are particularly easy to use. These devices commonly employ a semiconductor diaphragm onto which a semiconductor strain gauge and temperature-compensation sensor have been grown. Appropriate signal conditioning is included in integrated circuit form, providing a dc voltage or current linearly proportional to pressure over a specified range.The capacitance between two metals plates changes if the distance between these two plates changes. A variable capacitance pressure transducer, seen in Figure 5 below, measures the change in capacitance between a metal diaphragm and a fixed metal plate. These pressure transducers are generally very stable and linear, but are sensitive to high temperatures and are more complicated to setup than most pressure sensors.Figure 5. Capacitance Pressure Transducer [4]Piezoelectric pressure transducer, as shown in Figure 6, take advantage of the electrical properties of naturally occurring crystals such as quartz. These crystals generate an electrical charge when they are strained. Piezoelectric pressure sensors do not require an externalexcitation source and are very rugged. The sensors however, do require charge amplification circuitry and very susceptible to shock and vibration.Figure 6. Piezoelectric Pressure Transducer [4]A common cause of sensor failure in pressure measurement applications is dynamic impact, which results in sensor overload. A classic example of overloading a pressure sensor is known as the water hammer phenomenon. This occurs when a fast moving fluid is suddenly stopped by the closing of a valve. The fluid has momentum that is suddenly arrested, which causes a minute stretching of the vessel in which the fluid is constrained. This stretching generates a pressure spike that can damage a pressure sensor. To reduce the effects of “water hammer”, sensors are often mounted with a snubber between the sensor and the pressure line. A snubber is usually a mesh filter or sintered material that allows pressurized fluid through but does not allow large volumes of fluid through and therefore prevents pressure spikes in the event of water hammer. A snubber is a good choice to protect your sensor in certain applications, but in many tests the peak impact pressure is the region of interest. In such a case you would want to select a pressure sensor that does not include overprotection. [3]Pressure MeasurementAs described above, the natural output of a pressure transducer is a voltage. Most strain based pressure transducers will output a small mV voltage. This small signal requires several signal conditioning considerations that are discussed in the next section. Additionally, many pressure transducers will output a conditioned 0-5V signal or 4-20 mA current. Both of these outputs are linear across the working range of thetransducer. For example both 0 V and 4 mA correspond to a 0 pressure measurement. Similarly, 5 volts and 20 mA correspond to the Full Scale Capacity or the maximum pressure the transducer can measure. The 0-5V and 4-20 mA signals can easily be measured by National InstrumentsMulti-function Data Acquisition (DAQ) hardware.See Also:Data Acquistion (DAQ) HardwareSignal Conditioning for Pressure SensorsAs with any other bridge based sensor, there are several signal conditioning considerations. To ensure accurate bridge measurements, it is important to consider the following:∙Bridge completion∙Excitation∙Remote sensing∙Amplification∙Filtering∙Offset∙Shunt CalibrationEach of these considerations are addressed thoroughly in the Measuring Strain with Strain Gauges tutorial linked below.Once you have obtained a measurable voltage signal, that signal must be converted to actual units of pressure. Pressure sensors generally produce a linear response across their range of operation, so linearization is often unnecessary, but you will need some hardware or software to convert the voltage output of the sensor into a pressure measurement. The conversion formula you will use depends on the type of sensor you are using, and will be provided by the sensor manufacturer. A typical conversion formula will be a function of the excitation voltage, full scale capacity of the sensor, and a calibration factor.[+] Enlarge ImageFor example, a pressure trandsducer with a full scale capacity of 10,000 PSI and a calibration factor of 3mv/V and given an excitation voltage of 10V DC produces a measured voltage of 15 mV, the measured pressure would be 5000 PSI.After you have properly scaled your signal, it is necessary to obtain a proper rest position. Pressure sensors (whether absolute or gauge) have a certain level that is identified as the rest position, or reference position. The strain gauge should produce 0 volts at this position. Offset nulling circuitry adds or removes resistance from one of the legs of the strain gauge to achieve this "balanced" position. Offset nulling is critical to ensure the accuracy of your measurement and for best results should be performed in hardware rather than software.See Also:Measuring Strain with Strain GaugesDAQ Systems for Pressure MeasurementsUsing SCXI with Pressure MeasurementsNational Instruments SCXI is a signal conditioning system for PC-based data acquisition systems as shown in Figure 7. An SCXI system consists of a shielded chassis that houses a combination of signal conditioning input and output modules, which perform a variety of signal conditioning functions. You can connect many different types of sensors, including absolute and gauge pressure sensors, directly to SCXI modules. The SCXI system can operate as a front-end signal conditioning system for PC plug-in data acquisition (DAQ) devices (PCI and PCMCIA) or PXI DAQ modules.[+] Enlarge ImageFigure 7. A Typical National Instruments SCXI SystemSCXI offers an excellent solution for measuring pressure. The SCXI-1520 universal strain-gauge module is ideal for taking strain based pressure measurements. It provides 8 simultaneous sampled analog input channels each with bridge completion, programmable excitation (0-10 V), remote excitation sensing, programmable gain amplification (1-1000), a programmable 4-pole Butterworth filter (10 Hz, 100 Hz, 1 kHz, 10kHz), offset nulling, and shunt calibration. The SCXI-1314 terminal block provides screw terminals for easy connections to your sensors. Additionally, the SCXI-1314T includes a built-in TEDS reader for Class II bridge-based smart TEDS sensors.Recommended starter kit for Pressure SCXI DAQ System:1.SCXI-1600 DAQ module2.SCXI chassis3.SCXI-1520 modules and SCXI-1314/SCXI-1314T terminal blocks4.Refer to /sensors for recommended sensor vendorsFor a customized solution, see the SCXI Advisor linked below.Using SC Series DAQ with Strain Based Pressure SensorsFor high performance integrated DAQ and signal conditioning, the National Instruments PXI-4220 shown in Figure 8, part of the SC Series, provides an excellent measurement solution. SC Series DAQ offers up to 333 kS/s measurements with 16-bit resolution, and combines data acquisition and signal conditioning into one plug in board. The PXI-4220 is a 200 kS/s, 16 bit DAQ board with programmable excitation, gain, and 4-pole Butterworth filter. Each input channel of the PXI-4220 also includes a 9-pin D-Sub connector for easy connection to bridge sensors, and programmable shunt and null calibration circuitry. The PXI-4220 provides the perfect solution for dynamic pressure measurements with low channel counts.Figure 8. National Instruments PXI-4220Recommended starter kit for Pressure SC Series DAQ System:1.PXI chassis2.PXI embedded controller3.PXI-4220 modules4.Refer to /sensors for recommended sensor vendorsFor a customized solution, see the PXI advisor linked below.Using SCC with Strain Based Pressure SensorsNational Instruments SCC provides portable, modular signal conditioning for DAQ system as seen in Figure 9 below. The SCC series provides a great low channel count and low cost solution that directly interfaces to National Instruments M Series DAQ boards. SCC modules can condition a variety of analog I/O and digital I/O signals, including bridge sensors. SCC DAQ systems include an SC Series shielded carrier such as the SC-2345 or the SC-2350, SCC modules, a cable, and a DAQ device. The SC-2350 shielded carrier provides additional support for TEDS sensors.[+] Enlarge ImageFigure 9. National Instruments SCC Carrier and ModulesThe SCC-SG24 Load Cell Input module accepts up to two full-bridge inputs from load cells or pressure sensors. Each channel of the module includes an instrumentation amplifier, a 1.6 kHz lowpass filter, and a potentiometer for bridge offset nulling. Each SCC-SG24 module also includes a single 10 V excitation source.Recommended Starter Kit for Pressure SCC DAQ System:1.M Series DAQ board2.SC-2345/SC-2350 module carrier3.SCC-SG24 modules (1 per 2 pressure sensors)4.Refer to /sensors for recommended sensor vendorsSee Also:Sensors - Affiliated Product AdvisorsSCXI Product AdvisorPXI Product AdvisorReferences[1] Johnson, Curtis D, “Pressure Principles” Process Control Instrumentation Technology, Prentice Hall PTB.[2] , “Strain Gauge Pressure Transducers”,/products/trans/t-presstrans.htm (current November 2003).[3] , “Honeywell Sensotec Frequently Asked Questions”, /pdf/FAQ_092003.pdf (current November 2003). [4] , "Pressure Measurement: Principles and Practice", /articles/0103/19/main.shtm l (current January 2003).3、Measuring Strain with Strain Gauges896 ratings | 4.27 out of 5| Print DocumentOverviewThis tutorial is part of the National Instruments Measurement Fundamentals series. Each tutorial in this series will teach you a specific topic of common measurement applications by explaining theoretical concepts and providing practical examples.This tutorial introduces and explains the concepts and techniques of measuring strain with strain gauges.You can also view an on demand webcast on strain gauge measurements. For more information, return to the NI Measurement Fundamentals Main Page. Table of Contents1.What Is Strain?2.The Strain Gauge3.Strain Gauge Measurement4.Signal Conditioning for Strain Gauges5.DAQ Systems for Strain Gauge Measurements6.Relevant NI ProductsWhat Is Strain?Strain is the amount of deformation of a body due to an applied force. More specifically, strain (e) is defined as the fractional change in length, as shown in Figure 1 below.Figure 1. Definition of StrainStrain can be positive (tensile) or negative (compressive). Although dimensionless, strain is sometimes expressed in units such as in./in. or mm/mm. In practice, the magnitude of measured strain is very small. Therefore, strain is often expressed as microstrain (me), which is e x 10-6.When a bar is strained with a uniaxial force, as in Figure 1, a phenomenon known as Poisson Strain causes the girth of the bar, D, to contract in the transverse, or perpendicular, direction. The magnitude of this transverse contraction is a material property indicated by its Poisson's Ratio. The Poisson's Ratio n of a material is defined as the negative ratio of the strain in the transverse direction (perpendicular to the force)/e. to the strain in the axial direction (parallel to the force), or n = eT Poisson's Ratio for steel, for example, ranges from 0.25 to 0.3.The Strain GaugeWhile there are several methods of measuring strain, the most common is with a strain gauge, a device whose electrical resistance varies in proportion to the amount of strain in the device. The most widely used gauge is the bonded metallic strain gauge.The metallic strain gauge consists of a very fine wire or, more commonly, metallic foil arranged in a grid pattern. The grid pattern maximizes the amount of metallic wire or foil subject to strain in the parallel direction (Figure 2). The cross sectional area of the grid is minimized to reduce the effect of shear strain and Poisson Strain. The grid is bonded to a thin backing, called the carrier, which is attached directly to the test specimen. Therefore, the strain experienced by the test specimen is transferred directly to the strain gauge, which responds with a linear change in electrical resistance. Strain gauges are available commercially with nominal resistance values from 30 to 3000 Ω, with 120, 350, and 1000 Ω being the most common values.Figure 2. Bonded Metallic Strain GaugeIt is very important that the strain gauge be properly mounted onto the test specimen so that the strain is accurately transferred from the test specimen, through the adhesive and strain gauge backing, to the foil itself.A fundamental parameter of the strain gauge is its sensitivity to strain, expressed quantitatively as the gauge factor (GF). Gauge factor is defined as the ratio of fractional change in electrical resistance to the fractional change in length (strain):The Gauge Factor for metallic strain gauges is typically around 2. Strain Gauge MeasurementIn practice, the strain measurements rarely involve quantities larger than a few millistrain(e x 10-3). Therefore, to measure the strain requires accurate measurement of very small changes in resistance. For example, suppose a test specimen undergoes a strain of 500 me. A strain gauge witha gauge factor of 2 will exhibit a change in electrical resistance of only2 (500 x 10-6) = 0.1%. For a 120 W gauge, this is a change of only 0.12 W.To measure such small changes in resistance, strain gauges are almost always used in a bridge configuration with a voltage excitation source. The general Wheatstone bridge, illustrated below, consists of four resistive arms with an excitation voltage, VEX, that is applied across the bridge.Figure 3. Wheatstone BridgeThe output voltage of the bridge, VO, will be equal to:From this equation, it is apparent that when R1/R2= R4/R3, the voltageoutput VOwill be zero. Under these conditions, the bridge is said to be balanced. Any change in resistance in any arm of the bridge will result in a nonzero output voltage.Therefore, if we replace R4in Figure 3 with an active strain gauge, any changes in the strain gauge resistance will unbalance the bridge and produce a nonzero output voltage. If the nominal resistance of the strain。

正常青年人瞬态诱发性耳声发射测试

正常青年人瞬态诱发性耳声发射测试

正常青年人瞬态诱发性耳声发射测试.一,滨州医学院2000年第23卷第3期URFv".couEG正常青年人瞬态诱发性耳声发射测试L/塑黾皇竺蒋东英马秀芳刘震(1附属医院耳鼻咽喉科;2家庭病床科滨卅I市256603)手.摘要目的:确定瞬态诱发性耳声发射(TEOAE)的正常值,探索TEOAE各剖值的临束应用价值.方法:用ILO一96型耳声发射仪对20倒(40耳)正常青年人进行TEOAE测试.短声声刺激强度为80dBSPL,刺激方式为非线性模式.结果:A8毋,A—B,总反应幅值,重复率分别为5.6~22…22.1~5.5,4.5~18.9dBSPL,66,7~i00.1000t1500,2000,3000,4000Hz的频率带重复率分别为40.1~i00,7O.4~100,58.9~100,59.7~100,41.5~100,其频率带估噪比测值分别为0.0~20.8,2.2~2622.3~2252,1~23.1,.3.8~20.2dBSPL.TEOAE能量分析半倍频幅值分别为一20.8~.2.4,.10.5~一356.3~12.1,一4.4~14.4,一6.9~1278,8~14…68.2~12.6,一26.5~一5.3293~一10.9dBSPL.结论:总反应幅值和重复率对判断整个耳蜗状态有临床意义频率带重复率,频率带信噪比和TEOAE能量分析值对判断耳蜗各频段的生理病理状态有临床意义.吲MEASURINGoF'rRANSIEN'rEV oKEDoToACoUSTICEMISSIoNS oFNoRMALHEARINGY oUNGPEOPLEWangHaitao,LdLizhentJiangDongylng,etal (Departmentofotolary"gology,Affiliatedhospital,BinzhouMedicalCollege,Shandong,2 56603)ABSTRACTObjective:Toexploreclinicusingvalueoftransientevokedotoacousticemissi ons(TEOAE)bymeasuringnormalvaluesofTEOAE.Methods:40earsofyoungsubjectswithno rmalhearweremeasuredbyusingILO一96otodynamicanalyzersystem.Theclickstimulilevelis8OdBSPLandthe stimulipatternisnon—linearmode1.Result:A&amp;Bmean,A.Bdifference,responseamplitude,waverepro—ducibilityare5.6~22.2,一 2.1~ 5.5,4.5~18.9dBSPL,and66.7~i00respectively.Bandreprodu—cililitlesandSNRof1000,1500,2000,3000,4000Hzare40.1~i00,7O.4~100,59.8~100, 59.7~100,41.5~100and0.0~20.8,2.2~26.2,一 2.3~22.5,一 2.1~23.1,一 3.8~20.2dBSPLrespectively.TEOAEpowenanalysishalfoctavevaluesare一20.8~一2.4,一10.5~一3.5.一6.3~12.1,一4.4~14.4,一6.9~12.7,一8.8~14.6,一8.2~12.6,一26.5~一5.3,一29.3~一10.9dBSPLre—spectively.Conclusion:Measuringdataofresponseamplitudeandwavereproducibilitycanr eflectthelivingsateofcochlea.Measuringdataofbandreproducibility.bandSNR,andTEOAEpoweranalys iscanreflectthelivingstateofeverypartofcochlea. KEYWORDtransientevokedotoacoustlcemissions;hearingtests自1978年Kemp首次报道瞬态诱发性耳声发现将结果报告如下.射(transientevokedototacousticemissions,1资料和方法TEOAE)以来,由于其对内耳疾病的诊断具有快1.1测试对象正常青年人20例(40耳),年龄18速,无创,客观,灵敏等特点,故在临床上逐渐受到人~25岁,平均年龄(21.4--+1.5)岁.均无耳疾病史,们的重视¨1].目前,利用TEOAE测试评估人们的听中毒性药物史,噪声接触史,纯音气导听阈250~功能,特别是对新生儿,婴幼儿,高危人群的听力进8000Hz倍频,平均&lt;20dBSPL,鼓室导纳图A行监测和评价,已得到广泛的认同.为探索TEOAE型,声反射闻正常.各测值的临床应用价值,给临床诊断提供参考依据,1.2测试法采用OtodynamlcILO一96型声发射特对2o例(40耳)正常青年人进行TEOAE测试,分析仪,声刺激强度为8OdBSPL,刺激方式为非线225?..翳臻3期ⅢRN..昌∽眦LEGE性模式,叠加平均次数为260次.测试前先行探头校准,除去外耳道内耵聍等.选择大小合适的耳塞,将探头放入外耳道内密封,噪声排斥级为47.3dB.2结果TEOAE各测值见表1~4.表1A&amp;B,A—B,总反应幅值,重复率测值表2频率带重复率测值()表3频率带信噪比测值(dBSPL)表4TEOAE能量分析半倍频测值(dBSPL)莅:TEOAE售邑量分析半倍顿值固有部分不能I出.故来统计到上述正常值内.未引出率:500Hz为21.06.5657Hz为44.44.8 000Hz为4444.3讨论TEOAE主要反映耳蜗外毛细胞功能.对TEOAE测试结果的分析,除了要确定TEOAE是否引出外,寻找能反映病变程度的最敏感测试对象或参数是极为重要的.A8出(A&amp;Bmean)为A和B两次记录曲线的226?平均强度值,单位为dBSPL,包含了有效的TEOAE信号和无用的环境噪声.其测值的大小,TEOAE信号和环境噪声的强度呈正比.因为其中包含了噪声成分,故其I括床应用受到限制,特别是环境噪声较大时.A—B(A—Bdifference)为A和B两次记录曲线的平均强度值之差,单位为dBSPL.因其相减后把绝大部分有效的TEOAE信号和小部分身体,环境噪声相互抵消掉,故其代表的主要成分仅为A和B麦克风所接受到的全部噪声之差.总反应幅值(responseamplitude)是指刺激声刺激耳蜗后的TEOAE的总反应幅值,单位为dBSPL.因TEOAE是通过内外淋巴液,听骨链,鼓膜逆行传导到外耳道的,所以外耳道,中耳和内耳的各种病变等均可影响其大小.因其反映的主要是TEOAE的总反应强度幅值,故其临床诊断价值最大.我们测试值为4.5~18.9dBSPL,与郭亿莲等的测试值基本一致.重复率(wavereproducibility)为A,B两通道曲线渡形的相关性,或称交叉相关系数.正常耳理想的记录结果应该为i00,但实际测试时,由于环境噪声的影响,其重复率多数达不到该值.此外,当外耳和中耳病变及耳蜗功能减退时,由于TEOAE的引出率和传出率均降低,故其重复率也会降低.本试验的测试结果显示,正常年轻人为i00~66.7,这与大于5O%的标准值相差不大"].频率带重复率(bandreproducibility)为各测试频率区A,B两通道曲线波形的交叉相关系数,其正常值较少有人论及口】.从本试验结果看,1000Ha和4000Hz频区的部分测值的下限接近4O,而1500,2000,3000Hz频区的测值的下限则均高于5O.在实际I括床应用时要注意这一现象,忽视这一现象则易造成诊断上的偏差.频率带信噪比(bandSNR)为各测试频率区的相应反应幅值(A&amp;B)与噪声(A—B)强度的差值,其单位为dBSPL,主要反映的是各测试频率区内的TEOAE反应幅值.从测试结果来看,1500Hz处的信噪比数值最大,4000Hz处的信噪比数值最小,其它各频区的信噪比数值多在O~2OdBSPL左右.TEOAE半倍频能量分析值为500,707,1000,1414,2000,2828,4000,5657,8000Ha处的TEOAE能量值,其单位为dBSPL.从测试结果来习L/2000翳3期舢KNALoFV ol2ZH3oUNo.ME3眦2000,"EG年第23卷第期.. 彩色多普勒超声对下肢深静脉血栓的诊断价值齐春英刘灿杨旭东高岩冰-'(附属医院B超室滨州市256603)摘要目的:探讨彩色多普勒超声(CDU)对下肢深静脉血栓(DVT)的诊断价值.方法:对38例下肢DVT患者进行CDU检查.结果下肢DVT左侧明显多于右侧,主要表现为静脉腔内血栓回声,探头加压时静脉不被压瘪或部分压瘪,血栓部位无血流信号等.结论CDU是诊断下肢DVT无创,实时而又敏感的方法.关键词彩色多普勒超声;●——.'-.—_——'-.-一中图分类号R445.i下肢深静脉血栓≥斤THEV ALUEoFCOLORDOPPLERULTRASOUND INDIAGNoSoFLoWERLIMBDEEPVENOUSTHROMBOSISCuiGuanghe,ZhangY onggui,QiChunying,etal(DepartmentofUltrasound,AffiliatedHospitalofBinzhouMedicalCollege,256603) ABSTRACTObjective:T0explorethevalueofcolordopplerultrasound(CDU)indiagnosis oflowerlimbdeepvenousthrombosis(DVT).Method:38caseswithlowerlimbDVTwereexamined byCDU.Re—suit:LeftlowerlimbDVTwasmorethanrightoneapparentlyandthemainmanifestationswer eechoofDVT.incompressibilityoftheveinwithprobepressure,absenceofflowsignal,andSOon.Co nclnsion:CDUisanon—invasive.reahime.andsensitivemethodindiagnosisoflowerlimbDVT. KEYWORDScolordopplerultrasound;lowerlimbdeepvenousthrombosis.下肢深静脉血栓形成(DVT)是血管系统常见1.1临床资料1998年1O月至1999年5月,我疾病,以往只靠临床症状,体征及x线血管造影诊院临床疑诊下肢DVT,并经CDU 确诊的38例下肢断].近年来,彩色多普勒超声(CDU)逐渐成为下DVT患者.其中男性27例,女性l1例{年龄l4至肢DVT的重要诊断方法.笔者结合38例下肢DVT75岁,平均年龄51.2岁;病程1d 至3年不等.的CDU表现,探讨下肢DVT的二维图像和彩色多1.2仪器美国GE公司生产的LOGIQ500MR3普勒血流图(CDFI)的特点,以及不同时期DVT的型彩色多普勒超声诊断仪,线阵探头频率为6~13动态变化.MHz,凸阵探头频率为2~5MHz.1资料和方法1.3方法检查髂总,髂外,股总,股浅静脉和大隐看,TEOAE的能量主要分布在1000~4000Hz的范围内,其原因可能是非线性click的刺激声所致.因为其能量也是分布在1000~4000Hz的范围内,500,5657,8000Hz频区的能量分析值临床意义不大,因有部分正常耳不能引出.频率带重复率,频率带信噪比和TEOAE半倍频能量分析值均能不同程度的反映相应频区的耳蜗功能状态,故有临床实际应用价值.参考文献1.SuckfuIIM,SchnnewelBS.DreherA,etat.EvaluationofTEOAEandDP0AEmeasureMeDtsforthe~88essmeDtofauditorythresholdin$ensorlneuralhearingloss.ActaOt0laryngol,1996i16l5282.郭亿莲.钟乃川,李擎天.瞬吝诱发性耳声发谢测试结果分析.临床耳鼻咽喉科杂志,1999I13:3003.LichtensteinVtStapallsDR.Frequency—specificidentificationof neaninglossusingtransient—evokedotoacoustieemissionsto clicksandtones.HearRes,1996;98}1254ProveBA,GorgaMP,SchmidtHta1.Analysistransient—e—yokedotoacoustieemissionsinnormal—hearingandhearing-im—paired.JAcoustlcSocAM.1993I93:3303(收穑日期:1999—10一O6)227?。

采用MATLAB+Simulink的液压管路瞬态压力脉动分析

采用MATLAB+Simulink的液压管路瞬态压力脉动分析
p 向量的后 n − 1 个元素 q = q0 p = p0
图3
选择算子 常数
分别加上两个边界条件
p2 p3 Μ p′ = p n p0
则构成两个新的向量
q0 q q′ = 1 Μ qn −1
∂p 在 Simulink 中的表达方式 ∂x ∂p Fig.3 Simulink diagram of ∂x
整个管路动态压力脉动特性分析的 Simulink 仿 真块图如图 4 所示 其中子系统 subsystem 为包括 稳态项和瞬态项的摩擦力项
常数 2
积分器 1 选择算子 2
选择算子 1 常数 1 积分器 2
子系统
图4 Fig.4
Simulink 仿真块图
Simulink simulating module 表2 Table 2 仿真参数
q ðr02
=
其中系数 ni 和 mi 采用日本研究人员 KAGAWA 给 出的数值[5] 如表 1 所示
表1 Table 1 系数 ni 和 mi 值
Coefficients ni and mi
t
1 2 3 4 5 6 7 8 9 10
ni
2.63744×101 7.28033×101 1.87424×102 5.36626×102 1.57060×103 4.61813×103 1.36011 ×104 4.00825×104 1.18153×105 3.48316×105
Abstract: The mathematical model of fluid transients inside hydraulic pipelines is introduced including the unsteady friction item. A new method using SELECTOR block in MATLAB Simulink is developed to handle the integration in spatial domain when solving the partial differential equations. Using this method, the pressure transients inside hydraulic pipelines can be predicted both in time and spatial domains. A straight pipeline with a hydraulic valve on one side and a reservoir on the other side is studied as an example. The pressure pulsations inside the pipeline after the valve is shut off are simulated using the new method. The simulation results are given and compared with the predictions from characteristics method and finite element method published previously. The high frequency oscillation problem created by the numerical analysis is also discussed. Key words: pressure pulsations; pipeline transients; MATLAB Simulink; hydraulic pipeline; partial differential equation 在石油输送管网系统 航空航天燃油供给系统 以及液压传动系统中 由于阀门的突然开关 泵的 失效以及执行元件止动等原因 管道中将产生沿管 路传播的压力脉动波 这种现象会导致传输 传动 及控制系统性能的下降 例如泵效率的降低 系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档