2017-2018学年北京市西城区初一第一学期期末数学试卷含答案

合集下载

2018-2019学年北京市西城区七年级(下)期末数学试卷

2018-2019学年北京市西城区七年级(下)期末数学试卷

2018-2019学年北京市西城区七年级(下)期末数学试卷一.选择题(木题共30分,每小题3分)第1~10题均有四个选项,符合题意的选项只有一个.1.(3分)点P(﹣6,6)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列各数中的无理数是()A.6.2B.C.D.π﹣3.14 3.(3分)不等式组的解集是()A.x<2B.x≥﹣5C.﹣5<x<2D.﹣5≤x<2 4.(3分)下列计算正确的是()A.a2•a3=a6B.a8÷a2=a4C.(a2)3=a6D.(﹣2ab)3=﹣8a3b5.(3分)若a<b,则下列结论不正确的是()A.a+4<b+4B.a﹣3<b﹣3C.﹣2a>﹣2b D.6.(3分)如图,在△ABC中,E为AC边上一点,若∠1=20°,∠C=60°,则∠AEB等于()A.90°B.80°C.60°D.50°7.(3分)下列命题正确的是()A.相等的两个角一定是对顶角B.两条平行线被第三条直线所截,内错角互补C.过直线外一点有且只有一条直线与己知直线平行D.在同一平而内,垂直于同一条直线的两条直线互相垂直8.(3分)某超市开展“六一节”促销活动,一次购买的商品超过200元时,就可享受打折优惠.小红同学准备为班级购买奖品,需买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,她至少买多少支钢笔才能享受打折优惠?设买x支钢笔才能享受打折优惠,那么以下正确的是()A.15×6+8x>200B.15×6+8x=200C.15×8+6x>200D.15×6+8x≥2009.(3分)小何所在年级准备开展参观北京故宫博物院的实践活动,他和他选修的“博物馆课程”小组成员共同为同学们推荐了一条“古建之美”线路:行走在对公众开放的古老城墙之上,观“营造之道﹣﹣紫禁城建筑艺术展”,赏数字影视作品《角楼》,品“古建中的数学之美”.在故宫导览图中建立如图所示的平面直角坐标系xOy,午门的坐标为(0,﹣3),那么以下关于古建馆的这条参观线路“从午门途经东南角楼到达东华门展厅”的说法中,正确的是()A.沿(0,﹣3)→(﹣3,﹣3)→(﹣3,﹣2)到达东华门展厅B.沿(0,﹣3)→(2,﹣3)→(2,﹣2)→(3,﹣2)到达东华门展厅C.沿(0,﹣3)→(0,﹣2)→(3,﹣2)到达东华门展厅需要走4个单位长度D.沿(0,﹣3)→(3,﹣3)→(3,﹣2)到达东华门展厅需要走4个单位长度10.(3分)如图,在平面直角坐标系xOy中,A(1,1),B(﹣1,2),C(2,3),D(﹣2,4),E(3,5),F(﹣3,6).按照A→B→C→D→E→F的顺序,分别将这六个点的横、纵坐标依次循环排列下去,形成一组数1,1,﹣1,2,2,3,﹣2,4,3,5,﹣3,6,1,1,﹣1,2,…,第一个数记为a1,第二个数记为a2,…,第n个数记为a n(n为正整数),那么a9+a11和a2022的值分别为()A.0,3B.0,2C.6,3D.6,2二.填空题(本题共18分,第11~14题每小题2分,第15、16题每小题2分,第17、18题每小题2分)11.(2分)49的平方根是.12.(2分)计算:=.13.(2分)计算:3a(2a﹣1)+2ab3÷b3=.14.(2分)下列各组数:①2,3,4;②2,3,5;③2,3,7;④3,3,3,其中能作为三角形的三边长的是(填写所有符合题意的序号).15.(4分)在平面直角坐标系xOy中,A,B,C三点的坐标如图所示,那么点A到BC边的距离等于,△ABC的面积等于.16.(4分)图中的四边形均为矩形,根据图中提供的信息填空:(1)①,②;(2)(x+p)(x+)=x2+.17.(2分)若关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,则实数a满足的条件是.18.(2分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是(填写序号).三.解答题(本题共52分,第19~23题每小题6分,第24、25题每小题6分,第26题8分)19.(6分)解不等式,并把解集表示在数轴上.20.(6分)先化简,再求值:(2a+b)2+(a+b)(a﹣b)﹣3ab,其中a=2,b=.21.(6分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=100°,求∠1的度数.22.(6分)小明的作业中出现了如下解题过程解答下列问题:(1)以上解题过程中,从第几步开始出现了错误?(2)比较与3的大小,并写出你的判断过程.23.(6分)如图,在平面直角坐标系xOy中,A,B两点的坐标分别为A(4,1),B(2,﹣2).(1)过点B作x轴的垂线,垂足为M,在BM的延长线上截取MC=2BM,平移线段AB 使点A移动到点C,画出平移后的线段CD;(2)直接写出C,D两点的坐标;(3)画出以线段AD为斜边的等腰直角三角形ADE,并使点E与点B分别位于AD边所在直线的两侧.若点P在△ADE的三边上运动,直接写出线段PM长的最大值,以及相应点P的坐标.24.(7分)(1)2019年4月,中国新闻出版研究院发布了《第十六次全国国民阅读调查报告》,以下是小明根据该报告提供的数据制作的“2017﹣2018年我国未成年人图书阅读率统计图”的一部分.报告中提到,2018年9﹣13周岁少年儿童图书阅读率比2017年提高了3.1个百分点,2017年我国0﹣17周岁未成年人图书阅读率为84.8%.根据以上信息解决下列问题:①写出图1中a的值;②补全图1;(2)读书社的小明在搜集资料的过程中,发现了《人民日报》曾经介绍过多种阋读法,他在班上给同学们介绍了其中6种,并调查了全班40名同学对这6种阅读法的认可程度,制作了如下的统计表和统计图:最愿意使用的阅读方法人数统计表阅读方法类型划记人数1.读书不二法4B.比较品读法正5C.字斟句酌法8D.精华提炼法E.多维研读法6F.角色扮演法7合计4040根据以上信息解决下列问题:①补全统计表及图2;②根据调査结果估计全年级500名同学最愿意使用“D.精华提炼法”的人数.25.(7分)阅读下面材料:2019年4月底,“百年器象﹣﹣清华大学科学博物馆筹备展”上展出了一件清华校友捐赠的历史文物“Husun型六分仪”(图①),它见证了中国人民解放军海军的发展历程.六分仪是测量天体高度的手提式光学仪器,它的主要原理是几何光学中的反射定律.观测者手持六分仪(图②)按照一定的观测步骤(图③显示的是其中第6步)读出六分仪圆弧标尺上的刻度,再经过一定计算得出观测点的地理坐标.请大家证明在使用六分仪测量时用到的一个重要结论(两次反射原理).已知:在图④所示的“六分仪原理图”中,所观测星体记为S,两个反射镜面位于A,B 两处,B处的镜面所在直线FBC自动与0°刻度线AE保持平行(即BC∥AE),并与A 处的镜面所在直线NA交于点C,SA所在直线与水平线MB交于点D六分仪上刻度线AC 与0°刻度线的夹角∠EAC=ω,观测角为∠SDM.(请注意小贴士中的信息)求证:∠SDM=2ω.请在答题卡上完成对此结论的以下填空及后续证明过程(后续证明无需标注理由).证明:∵BC∥AE,∴∠C=∠EAC().∵∠EAC=ω,∴∠C=ω().∵∠SAN=∠CAD(),又∵∠BAC=∠SAN=α(小贴士已知),∴∠BAD=∠BAC+∠CAD=2α.∵∠FBA是△的外角,∴∠FBA=∠BAC+∠C().即β=α+ω.补全证明过程:(请在答题卡上完成)26.(6分)已知:△ABC,点M是平面上一点,射线BM与直线AC交于点D,射线CM 与直线AB交于点E.过点A作AF∥CE,AF与BC所在的直线交于点F.(1)如图1,当BD⊥AC,CE⊥AB时,写出∠BAD的一个余角,并证明∠ABD=∠CAF;(2)若∠BAC=80°,∠BMC=120°.①如图2,当点M在△ABC内部时,用等式表示∠ABD与∠CAF之间的数量关系,并加以证明;②如图3,当点M在△ABC外部时,依题意补全图形,并直接写出用等式表示的∠ABD与∠CAF之间的数量关系.2018-2019学年北京市西城区七年级(下)期末数学试卷一.选择题(木题共30分,每小题3分)第1~10题均有四个选项,符合题意的选项只有一个.1.(3分)点P(﹣6,6)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣6,6)所在的象限是第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列各数中的无理数是()A.6.2B.C.D.π﹣3.14【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、6.2是有限小数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、=3是整数,是有理数,选项错误;D、π﹣3.14是无限不循环小数,是无理数,选项正确.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.(3分)不等式组的解集是()A.x<2B.x≥﹣5C.﹣5<x<2D.﹣5≤x<2【分析】不等式组的解集是组成不等式组的两个不等式解集的交集.【解答】解:不等式组的解集是﹣5≤x<2.故选:D.【点评】考查了不等式的解集.不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.不等式的每一个解都在它的解集的范围内.4.(3分)下列计算正确的是()A.a2•a3=a6B.a8÷a2=a4C.(a2)3=a6D.(﹣2ab)3=﹣8a3b【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、a8÷a2=a6,故此选项错误;C、(a2)3=a6,正确;D、(﹣2ab)3=﹣8a3b3,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.5.(3分)若a<b,则下列结论不正确的是()A.a+4<b+4B.a﹣3<b﹣3C.﹣2a>﹣2b D.【分析】由不等式的性质解答即可.【解答】解:A、∵a<b,∴a+4<b+4,故本选项不符合题意;B、∵a<b,∴a﹣3<b﹣3,故本选项不符合题意;C、∵a<b,∴﹣2a>﹣2b,故本选项不符合题意;D、∵a<b,∴a<b,故本选项符合题意;故选:D.【点评】本题考查了不等式的基本性质,不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.6.(3分)如图,在△ABC中,E为AC边上一点,若∠1=20°,∠C=60°,则∠AEB等于()A.90°B.80°C.60°D.50°【分析】根据三角形的外角性质计算,得到答案.【解答】解:由三角形的外角性质可知,∠AEB=∠1+∠C=80°,故选:B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.7.(3分)下列命题正确的是()A.相等的两个角一定是对顶角B.两条平行线被第三条直线所截,内错角互补C.过直线外一点有且只有一条直线与己知直线平行D.在同一平而内,垂直于同一条直线的两条直线互相垂直【分析】利用对顶角的定义、平行线的性质等知识分别判断后即可确定正确的选项.【解答】解:A、相等的两个角不一定是对顶角,故错误;B、两条平行线被第三条直线所截,内错角相等,故错误;C、过直线外一点有且只有一条直线与己知直线平行,正确;D、在同一平而内,垂直于同一条直线的两条直线互相垂直,错误,故选:C.【点评】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、平行线的性质等知识,难度不大.8.(3分)某超市开展“六一节”促销活动,一次购买的商品超过200元时,就可享受打折优惠.小红同学准备为班级购买奖品,需买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,她至少买多少支钢笔才能享受打折优惠?设买x支钢笔才能享受打折优惠,那么以下正确的是()A.15×6+8x>200B.15×6+8x=200C.15×8+6x>200D.15×6+8x≥200【分析】根据题意表示出购买6本影集和若干支钢笔的总钱数大于200进而得出答案.【解答】解:设买x支钢笔才能享受打折优惠,根据题意可得:15×6+8x>200.故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,正确表示出总钱数是解题关键.9.(3分)小何所在年级准备开展参观北京故宫博物院的实践活动,他和他选修的“博物馆课程”小组成员共同为同学们推荐了一条“古建之美”线路:行走在对公众开放的古老城墙之上,观“营造之道﹣﹣紫禁城建筑艺术展”,赏数字影视作品《角楼》,品“古建中的数学之美”.在故宫导览图中建立如图所示的平面直角坐标系xOy,午门的坐标为(0,﹣3),那么以下关于古建馆的这条参观线路“从午门途经东南角楼到达东华门展厅”的说法中,正确的是()A.沿(0,﹣3)→(﹣3,﹣3)→(﹣3,﹣2)到达东华门展厅B.沿(0,﹣3)→(2,﹣3)→(2,﹣2)→(3,﹣2)到达东华门展厅C.沿(0,﹣3)→(0,﹣2)→(3,﹣2)到达东华门展厅需要走4个单位长度D.沿(0,﹣3)→(3,﹣3)→(3,﹣2)到达东华门展厅需要走4个单位长度【分析】由午门(0,﹣3)到东南角楼(3,﹣3)需要走3个单位长度,东南角楼(3,﹣3)到达东华门展厅(3,﹣2)需要走1个单位长度可得答案.【解答】解:根据题意知从午门(0,﹣3)到东南角楼(3,﹣3)需要走3个单位长度,从东南角楼(3,﹣3)到达东华门展厅(3,﹣2)需要走1个单位长度,∴沿(0,﹣3)→(3,﹣3)→(3,﹣2)到达东华门展厅需要走4个单位长度,故选:D.【点评】本题主要考查坐标确定位置,解题的关键是掌握平面直角坐标系中点的坐标的概念和表示.10.(3分)如图,在平面直角坐标系xOy中,A(1,1),B(﹣1,2),C(2,3),D(﹣2,4),E(3,5),F(﹣3,6).按照A→B→C→D→E→F的顺序,分别将这六个点的横、纵坐标依次循环排列下去,形成一组数1,1,﹣1,2,2,3,﹣2,4,3,5,﹣3,6,1,1,﹣1,2,…,第一个数记为a1,第二个数记为a2,…,第n个数记为a n(n为正整数),那么a9+a11和a2022的值分别为()A.0,3B.0,2C.6,3D.6,2【分析】这一组数每12个一循环,只需找出2022整除12的余数就可知道其值.【解答】解:由题可知,a9=3,a11=﹣3,∴a9+a11=0∵2022=12×168+6∴a2022=a6=3;故选:A.【点评】本题主要考查找规律的能力,熟练掌握找规律的能力是解答本题的关键.二.填空题(本题共18分,第11~14题每小题2分,第15、16题每小题2分,第17、18题每小题2分)11.(2分)49的平方根是±7.【分析】根据平方根的定义解答.【解答】解:49的平方根是±7.故答案为:±7.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.(2分)计算:=5.【分析】首先计算乘方、开方,然后计算加法,求出算式的值是多少即可.【解答】解:=2+3=5故答案为:5.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.13.(2分)计算:3a(2a﹣1)+2ab3÷b3=6a2﹣a.【分析】单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.关注:从法则可以看出,单项式除以单项式分为三个步骤:①系数相除;②同底数幂相除;③对被除式里含有的字母直接作为商的一个因式.【解答】解:3a(2a﹣1)+2ab3÷b3=6a2﹣3a+2a=6a2﹣a.故答案为6a2﹣a.【点评】本题考查了整式乘除,熟练运算整式乘除法则进行运算是解题的关键.14.(2分)下列各组数:①2,3,4;②2,3,5;③2,3,7;④3,3,3,其中能作为三角形的三边长的是①④(填写所有符合题意的序号).【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:①3+2>4,能构成三角形.②2+3=5,不能构成三角形.③2+3<7,不能构成三角形.④3+3>3,能构成三角形.故答案为①④.【点评】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.15.(4分)在平面直角坐标系xOy中,A,B,C三点的坐标如图所示,那么点A到BC边的距离等于3,△ABC的面积等于6.【分析】由A(2,4),B(﹣1,1),C(3,1),得出BC∥x轴,BC=4,得出点A到BC边的距离=3,由三角形面积公式即可求出△ABC的面积.【解答】解:由题意得:A(2,4),B(﹣1,1),C(3,1),∴BC∥x轴,BC=1+3=4,∴点A到BC边的距离=4﹣1=3,∴△ABC的面积=×4×3=6;故答案为:3,6.【点评】本题考查了三角形的面积、坐标与图形性质;熟练掌握三角形面积的计算,由点的坐标得出BC∥x轴,BC=4是解题的关键.16.(4分)图中的四边形均为矩形,根据图中提供的信息填空:(1)①q,②x;(2)(x+p)(x+q)=x2+(p+q)x+pq.【分析】(1)根据题意表示出所求即可;(2)利用多项式乘以多项式法则判断即可.【解答】解:(1)①q;②x;(2)(x+p)(x+q)=x2+(p+q)x+pq.故答案为:(1)①q;②x;(2)q,(p+q)x+pq【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.(2分)若关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,则实数a满足的条件是﹣4<a≤﹣3.【分析】根据关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,即可求出实数a满足的条件.【解答】解:∵关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3,∴实数a满足的条件是﹣4<a≤﹣3.故答案为﹣4<a≤﹣3.【点评】本题考查了一元一次不等式的整数解,理解关于x的不等式x≥a的负整数解是﹣1,﹣2,﹣3是解题的关键.18.(2分)某机店今年1~4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;③音乐手机4月份的销售额比3月份有所下降;④今年1~4月中,音乐手机销售额最低的是3月;其中正确的结论是④(填写序号).【分析】根据图象信息一一判断即可.【解答】解:①从1月到4月,手机销售总额连续下降;错误,3月到4月是增长的.②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降;错误,2月到3月是增长的.③音乐手机4月份的销售额比3月份有所下降;错误,是增加长的.④今年1~4月中,音乐手机销售额最低的是3月;正确.故答案为④【点评】本题考查折线统计图,条形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三.解答题(本题共52分,第19~23题每小题6分,第24、25题每小题6分,第26题8分)19.(6分)解不等式,并把解集表示在数轴上.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:2(x+2)﹣5(x﹣2)≥20,2x+4﹣5x+10≥20,2x﹣5x≥20﹣4﹣10,﹣3x≥6,x≤﹣2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.20.(6分)先化简,再求值:(2a+b)2+(a+b)(a﹣b)﹣3ab,其中a=2,b=.【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把a与b 的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2+a2﹣b2﹣3ab=5a2+ab,当a=2,b=﹣时,原式=20﹣1=19.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.(6分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若FG⊥BC于点H,BC平分∠ABD,∠D=100°,求∠1的度数.【分析】(1)欲证明AB∥CD,只要证明∠1=∠3即可.(2)根据∠1+∠4=90°,想办法求出∠4即可解决问题.【解答】(1)证明:∵FG∥AE,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥CD.(2)解:∵AB∥CD,∴∠ABD+∠D=180°,∵∠D=100°,∴∠ABD=180°﹣∠D=80°,∵BC平分∠ABD,∴∠4=∠ABD=40°,∵FG⊥BC,∴∠1+∠4=90°,∴∠1=90°﹣40°=50°.【点评】本题考查三角形内角和定理,平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(6分)小明的作业中出现了如下解题过程解答下列问题:(1)以上解题过程中,从第几步开始出现了错误?(2)比较与3的大小,并写出你的判断过程.【分析】(1)由于≠+(a≥0,b≥0),故从第二步开始出现了错误;(2)先比较与的大小,再根据两个正数,被开方数较大,相应的算术平方根也较大即可求解.【解答】解:(1)以上解题过程中,从第二步开始出现了错误;(2)结论:<3.∵<,∴<,∴<3.【点评】本题考查了实数大小比较,算术平方根,掌握实数大小比较的法则以及算术平方根的定义是解题的关键.23.(6分)如图,在平面直角坐标系xOy中,A,B两点的坐标分别为A(4,1),B(2,﹣2).(1)过点B作x轴的垂线,垂足为M,在BM的延长线上截取MC=2BM,平移线段AB 使点A移动到点C,画出平移后的线段CD;(2)直接写出C,D两点的坐标;(3)画出以线段AD为斜边的等腰直角三角形ADE,并使点E与点B分别位于AD边所在直线的两侧.若点P在△ADE的三边上运动,直接写出线段PM长的最大值,以及相应点P的坐标.【分析】(1)先利用几何语言画出点M、点C,再利用点A和C点的坐标关系确定平移的方向与距离,然后根据此平移规律写出B点的对应点D的坐标,从而描点得到线段CD;(2)由(2)确定两点坐标;(3)根据等腰直角三角形的判定方法,利用E点在AD的垂直平分线上且到AD的距离等于AD的一半可确定E点位置,利用几何图形可确定线段PM长的最大值,从而得到P 点坐标.【解答】解:(1)如图,CD为所作;(2)C点坐标为(2,4),D点坐标为(0,1);(3)如图,等腰直角三角形ADE为所作,线段PM长的最大值为3,此时点P的坐标为(2,3).【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.也考查了等腰直角三角形的判定.24.(7分)(1)2019年4月,中国新闻出版研究院发布了《第十六次全国国民阅读调查报告》,以下是小明根据该报告提供的数据制作的“2017﹣2018年我国未成年人图书阅读率统计图”的一部分.报告中提到,2018年9﹣13周岁少年儿童图书阅读率比2017年提高了3.1个百分点,2017年我国0﹣17周岁未成年人图书阅读率为84.8%.根据以上信息解决下列问题:①写出图1中a的值;②补全图1;(2)读书社的小明在搜集资料的过程中,发现了《人民日报》曾经介绍过多种阋读法,他在班上给同学们介绍了其中6种,并调查了全班40名同学对这6种阅读法的认可程度,制作了如下的统计表和统计图:最愿意使用的阅读方法人数统计表阅读方法类型划记人数1.读书不二法4B.比较品读法正5C.字斟句酌法8D.精华提炼法E.多维研读法6F.角色扮演法7合计4040根据以上信息解决下列问题:①补全统计表及图2;②根据调査结果估计全年级500名同学最愿意使用“D.精华提炼法”的人数.【分析】(1)求出a的值即可补全条形统计图,(2)求出表格中D组的人数,划记“正”字,表格补充完整,计算出C组、D组所占的百分比,即可补全扇形统计图,(3)样本估计总体,样本中D组占25%,因此根据500人的25%就是“精华提炼法”人数.【解答】解:(1)①a=93.2%+3.1%=96.3%,故a的值为96.3%.②补全的条形统计图如图所示:(2)①40﹣4﹣5﹣8﹣6﹣7=10人,划两个“正”字,补全统计表如下:C组占8÷40=20%,D组占10÷40=25%,补全的扇形统计图如图所示:②500×25%=125人,答:全年级500名同学最愿意使用“D.精华提炼法”的人数为125人.【点评】考查条形统计图、扇形统计图、频数统计表的制作方法,理解图表中的各个数据之间的关系是解决问题的关键,几个图表联系在一起分析数量关系是常用的方法.25.(7分)阅读下面材料:2019年4月底,“百年器象﹣﹣清华大学科学博物馆筹备展”上展出了一件清华校友捐赠的历史文物“Husun型六分仪”(图①),它见证了中国人民解放军海军的发展历程.六分仪是测量天体高度的手提式光学仪器,它的主要原理是几何光学中的反射定律.观测者手持六分仪(图②)按照一定的观测步骤(图③显示的是其中第6步)读出六分仪圆弧标尺上的刻度,再经过一定计算得出观测点的地理坐标.请大家证明在使用六分仪测量时用到的一个重要结论(两次反射原理).已知:在图④所示的“六分仪原理图”中,所观测星体记为S,两个反射镜面位于A,B 两处,B处的镜面所在直线FBC自动与0°刻度线AE保持平行(即BC∥AE),并与A 处的镜面所在直线NA交于点C,SA所在直线与水平线MB交于点D六分仪上刻度线AC 与0°刻度线的夹角∠EAC=ω,观测角为∠SDM.(请注意小贴士中的信息)求证:∠SDM=2ω.请在答题卡上完成对此结论的以下填空及后续证明过程(后续证明无需标注理由).证明:∵BC∥AE,∴∠C=∠EAC(两直线平行内错角相等).∵∠EAC=ω,∴∠C=ω(等量代换).∵∠SAN=∠CAD(对顶角相等),又∵∠BAC=∠SAN=α(小贴士已知),∴∠BAD=∠BAC+∠CAD=2α.∵∠FBA是△ABC的外角,∴∠FBA=∠BAC+∠C(三角形的一个外角等于和它不相邻的两个内角的和).即β=α+ω.补全证明过程:(请在答题卡上完成)【分析】根据平行线的性质,三角形的外角的性质一一判断即可.【解答】证明:∵BC∥AE,∴∠C=∠EAC(两直线平行内错角相等).∵∠EAC=ω,∴∠C=ω(等量代换).∵∠SAN=∠CAD(对顶角相等),又∵∠BAC=∠SAN=α(小贴士已知),∴∠BAD=∠BAC+∠CAD=2α.∵∠FBA是△ABC的外角,∴∠FBA=∠BAC+∠C(三角形的一个外角等于和它不相邻的两个内角的和).即β=α+ω.故答案为:两直线平行内错角相等,等量代换,对顶角相等,ABC,三角形的一个外角等于和它不相邻的两个内角的和.【点评】本题考查三角形的外角的性质,坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.26.(6分)已知:△ABC,点M是平面上一点,射线BM与直线AC交于点D,射线CM 与直线AB交于点E.过点A作AF∥CE,AF与BC所在的直线交于点F.。

2017-2018学年北京市西城区初一第二学期期末数学试卷(含答案)

2017-2018学年北京市西城区初一第二学期期末数学试卷(含答案)

北京市西城区2017— 2018学年度第二学期期末试卷七年级数学 2018.7试卷满分:100分,考试时间:100分钟一、选择题(本题30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 8的立方根等于( ).A. -2B. 2C. -4D. 4 2. 已知a b <,下列不等式中,正确的的是( ). A .44a b +>+ B .33->-b a C .b a 2121< D .22a b -<- 3. 下列计算中,正确的是( ).A. 246m m m +=B. 248m m m ⋅=C. 22(3)3m m = D. 42222m m m ÷=4. 如图,直线a ∥b ,三角板的直角顶点放在直线b 上, 两直角边与直线a 相交,如果∠1=60°,那么∠2等于( ). A. 30° B .40° C .50° D .60°5. 如果点P (5,y )在第四象限,那么y 的取值范围是( ).A. y ≤0B. y ≥0C. y <0D. y >06. 为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游; 方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客; 方案四:在上述四个景区各随机调查400名游客. 在这四种调查方案中,最合理的是( ).A. 方案一B. 方案二C. 方案三D. 方案四 7. 下列运算中,正确的是( ).A. 222()a b a b +=+B. 2211()24a a a -=-+C. 222()2a b a ab b -=+-D. 222(2)22a b a ab b +=++ 8. 下列命题中,是假命题的是( ).A. 在同一平面内,过一点有且只有一条直线与已知直线垂直B. 同旁内角互补,两直线平行C. 两条直线被第三条直线所截,同位角相等D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行9. 某品牌电脑的成本为2 400元,售价为2 800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x 折销售,则下列不等式中能正确表示该商店的促销 方式的是( ). A.280024005%x ≥⨯ B .2800240024005%x -≥⨯C .280024005%10x ⨯≥⨯ D .2800240024005%10x⨯-≥⨯ 10.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80%,15%和5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20 000户居民6月份的用电量(单位:kw .h ),并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据以上信息,下面有四个推断:① 抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平② 在调查的20 000户居民中,6月份的用电量的最大值与最小值的差小于500③ 月用电量小于160kw .h 的该市居民家庭按第一档电价交费,月用电量不小于310kw .h 的该市居民家庭按第三档电价交费④ 该市居民家庭月用电量的中间水平(50%的用户)为110kw .h 其中合理的是( ).A. ①②③ B .①②④ C .①③④ D .②③④二、填空题(本题共18分,第11~16题每小题2分,第17,18题每小题3分)11. 不等式组1,2xx>-⎧⎨<⎩的解集是___________.12.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段P A,PB,PC,PD,PE中,最短的一条线段是_______,理由是.13. 右图中的四边形均为长方形,根据图形,写出一个正确的等式:_________________________________.14. 如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D.BE⊥AD于点E,若∠CAB=50°,则∠DBE=_________°.15.如图,AB∥CD,CE交AB于F,∠C=55°,∠AEC=15°,则∠A=°.16.七巧板又称智慧板,是中国民间流传的智力玩具,它由七块板组成(如图1),用这七块板可拼出许多图形(1600种以上). 例如:三角形、平行四边形以及不规则的多边形,它还可以拼出各种人物、动物、建筑等. 请你用七巧板中标号为①②③的三块板(如图2)经过平移、旋转拼出下列图形(相邻两块板之间无空隙,无重叠;示意图的顶点画在小方格顶点上):(1)拼成长方形,在图3中画出示意图;(2)拼成等腰直角三角形,在图4中画出示意图.17. 如图,在平面直角坐标系xOy 中,平行四边形ABCD 的四个顶点 A ,B ,C ,D 是整点(横、纵坐标都是整数),则四边形ABCD 的面积是 .18. 若一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,因为22521=+,所以5是一个“完美数”.(1)请你再写一个大于10且小于20的“完美数” ;(2)已知M 是一个“完美数”,且224512M x xy y y k =++-+(x ,y 是两个任意整数,k 是常数),则k 的值为 .三、解答题(本题共17分,第19题5分,第20,21题每小题6分) 19.计算:035(523)23(3)π-++-+- 解:20.解不等式:2231132x x ++->,并把解集表示在数轴上. 解:21.先化简,再求值:22(2)(2)(4)ab ab a b ab ab +-++÷,其中10a =,15b =. 解:四、解答题(本题共27分,第24题6分,其余每小题7分)22. 在平面直角坐标系xOy 中,△ABC 的三个顶点分别是A (-2,0),B (0,3),C (3,0).(1)在所给的图中,画出这个平面直角坐标系;(2)点A 经过平移后对应点为D (3,-3),将△ABC 作同样的平移得到△DEF ,画出平移后的△DEF ;(3)在(2)的条件下,点M 在直线CD 上,若2CM DM =,直接写出点M 的坐标.解:(3)M 点的坐标为 .23. 如图,点O 在直线AB 上,OC ⊥OD ,∠EDO 与∠1互余. (1)求证:ED//AB ;(2)OF 平分∠COD 交DE 于点F ,若∠OFD =70︒,补全图形,并求∠1的度数. (1)证明:(2)解:1DC ABE24.某地需要将一段长为180米的河道进行整修,整修任务由A ,B 两个工程队先、后接力完成.已知A 工程队每天整修12米,B 工程队每天整修8米,共用时20天.问A ,B 两个工程队整修河道分别工作了多少天? (1)以下是甲同学的做法:设A 工程队整修河道工作了x 天,B 工程队整修河道工作了y 天.根据题意,得方程组: . 解得x y =⎧⎨=⎩请将甲同学的上述做法补充完整;(2)乙同学说:本题还有另外一种解法,他列出了不完整的方程组如下:⎪⎩⎪⎨⎧=+=+812y x y x①在乙同学的做法中,x 表示 ,8y表示 ; ②请将乙同学所列方程组补充完整.25.阅读下列材料:2017年,我国全年水资源总量为28675亿m3.2016年,我国全年水资源总量为32466.4亿m3. 2015年,我国全年水资源总量为27962.6亿m3,全年平均降水量为660.8mm.我国水资源的消费结构包含工业用水、农业用水、生态用水、生活用水四类. 2017年全国用水总量6040亿m3,其中工业用水占用水总量的22%,农业用水占用水总量的62%,生态用水占用水总量的2%,生活用水844.5亿m3.根据上述材料,解答下列问题:(1)根据材料画适当的统计图,直观地表示2015~2017年我国全年水资源总量情况;(2)2017年全国生活用水占用水总量的%,并补全扇形统计图;(3)2012~2017年全国生活用水情况统计如下图所示,根据统计图中提供的信息,①请你估计2018年全国生活用水量为亿m3,你的预估理由是.②谈谈节约用水如何从我做起?.五、解答题(本题共8分)26.如图,在直角三角形ABC 中,∠ACB=90°.(1)如图1,点M 在线段CB 上,在线段BC 的延长线上取一点N ,使得∠NAC=∠MAC . 过点B作BD ⊥AM ,交AM 延长线于点D ,过点N 作NE ∥BD ,交AB 于点E ,交AM 于点F .判断∠ENB 与∠NAC 有怎样的数量关系,写出你的结论,并加以证明;(2)如图2,点M 在线段CB 的延长线上,在线段BC 的延长线上取一点N ,使得∠NAC=∠MAC .过点B 作BD ⊥AM 于点D ,过点N 作NE ∥BD ,交BA 延长线于点E ,交MA 延长线于点F . ①依题意补全图形;②若∠CAB =45°,求证:∠NEA =∠NAE .图1 图2N北京市西城区2017— 2018学年度第二学期期末试卷七年级数学附加题2018.7试卷满分:20分一、填空题(本题共8分)1. 分别观察下列三组图形,并填写表格:如图1所示,在由一些三角形组成的图形中,每条边上都排列了一些点,其中每个图形中所有点的总.数.记为S n,S n叫做第n个“三角形数”(n为整数,且n>1). 类似的也可以用点排出一些“四边形数”,“五边形数”,如图2,图3所示.第n个多边形数n=2 n=3 n=4 n=5 n=6 n=7 …n=k 类型三角形数 3 6 10 15 28 … a四边形数 4 9 16 25 49 … b五边形数 5 12 22 35 70 …(1)请你将第6个“三角形数”,第6个“四边形数”,第6个“五边形数”,填写在上面的表格中;(2)若第k个“三角形数”a,第k个“四边形数”为b,请用含a,b的代数式表示第k个“五边形数”,并填入表格中.二、解答题(本题共12分,每小题6分)2. 食品中的维生素含量以及食品加工问题维生素又名维他命,通俗来讲,即维持生命的物质,是保持人体健康的重要活性物质,一般由食物中取得. 现阶段发现的维生素有几十种,如维生素A、维生素B、维生素C等.食品加工是一种专业技术,就是把原料经过人为处理形成一种新形式的可直接食用的产品,这个过程就是食品加工. 比如用小麦经过碾磨,筛选,加料搅拌,成型烘干,成为饼干,就是属于食品加工的过程.下表给出了甲、乙、丙三种原料中的维生素A,B的含量(单位:单位/kg).将甲、乙、丙三种原料共100kg混合制成一种新食品,其中原料甲x kg,原料乙y kg,(1)这种新食品中:原料丙含有kg,维生素B的含量是单位;(用含x,y的式子表示)(2)若这种新食品中,维生素A的含量至少为44000单位,维生素B的含量至少为48000单位,请你证明:x+y ≥ 50.(1)解:原料丙有kg,维生素B的含量是单位.(2)证明:3.在平面直角坐标系xOy错误!未指定书签。

北京市西城区(北区)七年级2017—2018学年度第一学期期末试卷含答案

北京市西城区(北区)七年级2017—2018学年度第一学期期末试卷含答案
北京市西城区(北区)2017— 2018 学年度第一学期期末试卷
七年级数学
(试卷满分 100 分,考试时间 100 分钟)
一、选择题(本题共 30 分,每小题 3 分)
下面各题均有四个选项,其中只有一.个.是符合题意的.
1. −6 的绝对值等于( ).
A. −6
B. 6
C. − 1 6
D. 1 6
2018.1

12.计算:135°45′ − 91°16′ =

13.一件童装每件的进价为 a 元( a > 0 ),商家按进价的 3 倍定价销售了一段时间后,为了
吸引顾客,又在原定价的基础上打六折出售,那么按新的售价销售,每件童装所得的利润
用代数式表示应为
元.
14.将长方形纸片 ABCD 折叠并压平,如图所示,点 C,点 D 的对应
AC= 2a − b
8.将下列图形画在硬纸片上,剪下并折叠后能围成三棱柱的是
A
B
C
D
9.已知 a,b 是有理数,若 a 在数轴上的对应点的位置如图所示, a + b < 0 ,有以下
结论:① b < 0 ;② b − a > 0 ;③ −a > −b ;④ b < −1 . a
则所有正确的结论是( ).
2
五、解下列方程(组)(本题共 10 分,每小题 5 分)
23. x − 3 + 2x −1 = x −1 .
2
3
2x + 3y = 14, 24. 4x − 5y = 6.
七年级数学第一学期期末试卷 第 4 页(共 8 页)
六、解答题(本题 4 分) 25. 问题:如图,线段 AC 上依次有 D,B,E 三点,其中点 B 为线段 AC 的中点, AD = BE ,

2021-2022学年北京市西城区七年级(上)期末数学试卷(含答案解析)

2021-2022学年北京市西城区七年级(上)期末数学试卷(含答案解析)

2021-2022学年北京市西城区七年级(上)期末数学试卷1.−5的绝对值是( )A. 5B. −5C. 15D. −152.云南的澄江化石地世界自然遗产博物馆升级改造完工,馆内所收藏的约520000000年前的澄江生物群化石,展示了寒武纪时期的生物多样化场景.将520000000用科学记数法表示应为( )A. 0.52×109B. 5.2×108C. 5.2×109D. 52×1073.如图,数轴上的点A表示的数可能是( )A. −4110B. −412C. −3110D. −3124.下列计算正确的是( )A. −3y−3y=0B. 5mn−nm=4mnC. 4a2−3a=aD. a2b+2ab2=3a2b5.一个角的余角比它的补角的14多15∘,设这个角为α,下列关于α的方程中,正确的是( )A. 90∘−α=14(180∘−α)+15∘ B. 90∘−α=14(180∘−α)−15∘C. 180∘−α=14(180∘−α)+15∘ D. 180∘−α=14(180∘−α)−15∘6.我国曾发行过一款如图所示的国家重点保护野生动物(1级)邮票小全张,设计者巧妙地将“野耗牛”和“黑颈鹤”这两枚不同规格的过桥票(无邮政铭记和面值的附票,在图中标记为①,②),与其他10枚尺寸相同的普通邮票组合在一起构成一个长方形,整个画面和谐统一,以下关于图中所示的三种规格邮票边长的数量关系的结论中,正确的是( )A. c=2dB. e=3aC. de+ac=4abD. de−ac=2ab7.下列方程变形中,正确的是( )A. 方程3x+4=4x−5,移项得3x−4x=5−4B. 方程−32x=4,系数化为1得x=4×(−32)C. 方程3−2(x+1)=5,去括号得3−2x−2=5D. 方程x−12−1=3x+13,去分母得3(x−1)−1=2(3x+1)8.用6个棱长为1的小正方体可以粘合形成不同形状的积木,将如图所示的两块积木摆放在桌面上,再从下列四块积木中选择一块,能搭成一个长、宽、高分别为3、2、3的长方体的是( )A. B. C. D.9.38∘30′=__________∘.10.用四舍五入法把3.786精确到0.01,所得到的近似数为__________.11.如果单项式x a y4与5x3y b是同类项,那么a=__________,b=__________.12.若a=16,b=13,则6a2−3ab的值为__________.13.若x=5是关于x的方程2x+3a=4的解,则a=__________.14.有理数a,b在数轴上的对应点的位置如图所示,有以下结论:①a+b>0;②a−b>0;③ba>1;④3a+b<0,其中所有正确的结论是__________ (只填写序号).15.线段AB=6,C为线段AB的中点,点D在直线AB上,若BD=3AC,则CD=__________.16.在如图所示的星形图案中,十个“圆圈”中的数字分别是1,2,3,4,5,6,8,9,10,12,并且每条“直线”上的四个数字之和都相等.请将图中的数字补全.17.计算:(1)−5+(−6)−(−9);(2)(−83)×(−58)÷19;(3)−32−(−2)3÷32;(4)(−43+56−78)×(−24).18.先化简,再求值:5(a2+b)−2(b+2a2)+2b,其中a=2,b=−1.19.平面上有三个点A,B,O,点A在点O的北偏东80∘方向上,OA=4cm,点B在点O的南偏东30∘方向上,OB=3cm,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出AB<OA+OB的依据;(3)比较线段OC与AC的长短并说明理由;(4)直接写出∠AOB的度数.20.解下列方程:(1)5(x−1)=3(x+1);(2)x−34−2x+12=1.21.如图,∠AOB=90∘,∠COD=90∘,OA平分∠COE,∠BOD=n∘(0<n<90).(1)求∠DOE的度数(用含n的式子表示);请将以下解答过程补充完整.解:因为∠AOB=90∘,所以∠BOD+∠AOD=90∘.因为∠COD=90∘.所以∠AOC+∠AOD=90∘.所以∠BOD=∠______.(理由:______)因为∠BOD=n∘,所以∠AOC=n∘.因为OA平分∠COE,所以∠______=2∠AOC.(理由:______)所以∠DOE=∠COD−∠______=______∘.(2)用等式表示∠AOD与∠BOC的数量关系.22.某班手工兴趣小组的同学们计划制作一批中国结送给敬老院作为新年礼物.如果每人制作9个,那么就比计划少做17个;如果每人制作12个,那么就比计划多做4个.(1)这个手工兴趣小组共有多少人?计划要做的这批中国结有多少个?(2)同学们打算用A,B两种不同的编结方式来制作这一批中国结,已知每个A型中国结需用红绳0.6米,每个B型中国结需用红绳0.9米,现有50米红绳,制作这批中国结能恰好用完这50米红绳吗?请说明你的理由.23.在数轴上有A,B,C,M四点,点A表示的数是−1,点B表示的数是6,点M位于点B 的左侧并与点B的距离是5,M为线段AC的中点.(1)画出点M ,点C ,并直接写出点M ,点C 表示的数;(2)画出在数轴上与点B 的距离小于或等于5的点组成的图形,并描述该图形的特征;(3)若数轴上的点Q 满足QA =14QC ,求点Q 表示的数.24. 【阅读与理解】小天同学看到如下的阅读材料:对于一个数A ,以下给出了判断数A 是否为19的倍数的一种方法:每次划掉该数的最后一位数字,将划掉这个数字的两倍与剩下的数相加得到一个和,称为一次操作,依此类推,直到数变为20以内的数为止.若最后得到的数为19.则最初的数A 就是19的倍数,否则,数A 就不是19的倍数.以A =436为例,如下面算式所示,经过第一次操作得到55,经过第二次操作得到15,15<20,15≠19.所以436不是19的倍数.当数A 的位数更多时,这种方法依然适用.【操作与说理】(1)当A =532时,请你帮小天写出判断过程;(2)小天尝试说明方法的道理,他发现解决问题的关键是每次判断过程的第一次操作,后续的操作道理都与第一次相同,于是他列出了如下表格进行分析.请你补全小天列出的表格: 说明:abc −表示100a +10b +c ,其中1≤a ≤9,0≤b ≤9,0≤c ≤9,a ,b ,c 均为整数. A A 的表达式 第一次操作得到的和,记为M(A)436 436=10×43+6M(436)=43+2×6 532 532=______ M(532)=______863 863=10×86+3M(863)=86+2×3 … …… abc − abc −=______ M(abc −)=______(3)利用以上信息说明:当M(abc −)是19的倍数时,abc −也是19的倍数.25.小冬阅读了教材中“借助三角尺画角”的探究活动(如图1、图2的实物图所示),他在老师指导下画出了图1所对应的几何图形,并标注了所使用三角尺的相应角度(如图3),他发现用一副三角尺还能画出其他特殊角.请你借助三角尺完成以下画图,并标注所使用三角尺的相应角度.(1)画出图2对应的几何图形;(2)设计用一副三角尺画出105∘角的画图方案,并画出相应的几何图形;(3)如图4,已知∠MON=30∘,画∠MON的角平分线OP.26.我们将数轴上点P表示的数记为x P.对于数轴上不同的三个点M,N,T,若有x N−x T= k(x M−x T),其中k为有理数,则称点N是点M关于点T的“k星点”.已知在数轴上,原点为O,点A,点B表示的数分别为x A=−2,x B=3.(1)若点B是点A关于原点O的“k星点”,则k=______ ;若点C是点A关于点B的“2星点”,则x C=______ ;(2)若线段AB在数轴上沿正方向运动,每秒运动1个单位长度,取线段AB的中点D.是否存在某一时刻,使得点D是点A关于点O的“−2星点”?若存在,求出线段AB的运动时间;若不存在,请说明理由;(3)点Q在数轴上运动(点Q不与A,B两点重合),作点A关于点Q的“3星点”,记为A′,作点B关于点Q的“3星点”,记为B′.当点Q运动时,QA′+QB′是否存在最小值?若存在,求出最小值及相应点Q的位置;若不存在,请说明理由.答案和解析1.【答案】A【解析】【分析】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|−5|=5.故选:A.2.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.根据科学记数法的表示方法即可得出答案.【解答】解:将520000000用科学记数法表示应为5.2×108.故选:B.3.【答案】C【解析】【分析】本题考查了有理数与数轴的对应关系.关键是明确数轴上的点表示的数的大小,估计数的取值范围.设A点表示的数为x,则−3.5<x<−3,再根据每个选项进行判断.【解答】解:如图,设A点表示的数为x,则−3.5<x<−3,<−3.5,所以A错误;因为−4110<−3.5,所以B错误;因为−412<−3,所以C正确;因为−3.5<−3110<x,所以D错误.因为−312故选:C.4.【答案】B【解析】【分析】此题主要考查了合并同类项,正确掌握合并同类项的法则是解题的关键.根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进而分别判断得出答案.【解答】解:A.−3y−3y=−6y,故此选项不合题意;B.5mn−nm=4mn,故此选项符合题意;C.4a2−3a,无法合并,故此选项不合题意;D.a2b+2ab2,无法合并,故此选项不合题意;故选:B.5.【答案】A【解析】【分析】本题考查了余角和补角,正确得到各个角之间的关系是正确解答的关键.设这个角为α,它的余角为90∘−α,它的补角为180∘−α,由题意列方程即可.【解答】解:设这个角为α,它的余角为90∘−α,它的补角为180∘−α,(180∘−α)+15∘根据题意:90∘−α=14故选:A.6.【答案】D【解析】【分析】此题考查了根据图形列整式的能力,关键是能根据图形准确确定邮票尺寸间的关系.根据两枚邮票的边长与其它10枚尺寸相同普通邮票间的关系进行辨别.【解答】解:因为c=d=2b,所以选项A不符合题意;因为e=2a,所以选项B不符合题意;因为de+ac=6ab,所以选项C不符合题意;因为de−ac=2ab,所以选项D符合题意,故选:D.7.【答案】C【解析】【分析】此题考查了解一元一次方程,以及等式的性质,熟练掌握等式的性质以及去括号法则是解本题的关键.各选项分别移项,系数化为1,去括号,以及去分母得到结果,即可作出判断.【解答】解:A、方程3x+4=4x−5,移项得3x−4x=−5−4,不符合题意;B、方程−32x=4,系数化为1得x=4×(−23),不符合题意;C、方程3−2(x+1)=5,去括号得3−2x−2=5,符合题意;D、方程x−12−1=3x+13,去分母得3(x−1)−6=2(3x+1),不符合题意.故选:C.8.【答案】D【解析】【分析】本题考查了认识立体图形.根据题目的已知并结合图形分析即可解答.【解答】解:由题意可知:要搭成一个长、宽、高分别为3、2、3的长方体,结合图形可得:侧面缺少一个由4个小正方体铺成的2×2的四方体,由此排除A,C,再从正面可知,还缺少一条由3个小正方体组成的直条,由此排除B,故选:D.9.【答案】38.5【解析】【分析】本题考查了度分秒的换算,熟练掌握度分秒的进制是解题的关键.根据度分秒的进制进行计算即可.【解答】解:因为1∘=60′,所以30′=0.5∘,所以38∘30′=38.5∘,故答案为:38.5.10.【答案】3.79【解析】【分析】本题主要考查近似数.掌握精确度的概念是解题的关键.对千分位数字6四舍五入即可.【解答】解:用四舍五入法把3.786精确到0.01,所得到的近似数为3.79,故答案为:3.79.11.【答案】3 ,4【解析】【分析】本题考查同类项的定义,掌握含有的字母相同且相同字母的指数也相同的项是同类项是解决问题的关键.根据同类项的定义可得a 、b 的值.【解答】解:因为单项式x a y 4与5x 3y b 是同类项,所以a =3,b =4,故答案为:3,4.12.【答案】0【解析】【分析】本题主要考查了算式求值问题,将a ,b 代入后准确运算是解题的关键.将a ,b 的值代入计算即可.【解答】解:当a =16,b =13时,原式=6×(16)2−3×16×13=16−16=0,故答案为:0. 13.【答案】−2【解析】【分析】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键.把x=5代入方程2x+3a=4得出10+3a=4,再求出方程的解即可.【解答】解:把x=5代入方程2x+3a=4得:10+3a=4,解得:a=−2,故答案为:−2.14.【答案】①④【解析】【分析】本题主要考查与数轴有关的计算,关键是要能根据a,b在数轴上的位置近似确定它们的值.先根据a,b在数轴上的位置可假设a=−1,b=1.5,然后代入①②③④即可判断出答案.【解答】解:由a,b在数轴上的位置可假设a=−1,b=1.5,因为a+b=−1+1.5=0.5>0,所以①符合题意,因为a−b=−1−1.5=−2.5<0,所以②不符合题意,因为ba =1.5−1=−1.5<0,所以③不符合题意,因为3a+b=−3+1.5=−1.5<0,所以④符合题意,所以正确的结论是①④,故答案为:①④.15.【答案】12或6【解析】【分析】本题考查了线段的和差以及线段的中点,根据题目的已知条件并结合图形分析是解题的关键,同时渗透了分类讨论的数学思想.分两种情况:点D在点B的右侧,点D在点B的左侧两种情况,利用线段的和差计算即可得出答案.【解答】解:分两种情况:当点D在点B的右侧时,如图:因为点C是线段AB的中点,AB=6,所以AC=12AB=3,因为BD=3AC=9,所以CD=CB+BD=3+9=12,当点D在点B的左侧时,如图:因为点C是线段AB的中点,AB=6,所以AC=12AB=3,因为BD=3AC=9,所以CD=BD−CB=9−3=6,所以线段CD的长为12或6,故答案为:12或6.16.【答案】解:如图:【解析】本题考查了有理数的加法.根据每条“直线”上的四个数字之和都相等,且当把所有“直线”上的数相加时,每个数都加了2次,用所有数字之和除以5即可得到每一条“直线”上的数字和,从而可求解.1+2+3+4+5+6+8+9+10+12=60,60×2÷5=24,所以24−10−1−4=9,24−9−2−5=8,24−8−1−3=12,24−12−4−2=6.17.【答案】解:(1)−5+(−6)−(−9)=−5−6+9=−2;(2)(−83)×(−58)÷19=(−83)×(−58)×9=15;(3)−32−(−2)3÷3 2=−9−(−8)×2 3=−9+16 3=−113;(4)(−43+56−78)×(−24)=−43×(−24)+56×(−24)−78×(−24)=32−20+21=33.【解析】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.(1)先将减法转化为加法,再根据有理数加法法则计算即可;(2)先将除法转化为乘法,再根据有理数乘法法则计算即可;(3)先算乘方,再算除法,最后算减法即可;(4)利用乘法分配律计算即可.18.【答案】解:5(a2+b)−2(b+2a2)+2b=5a2+5b−2b−4a2+2b=a2+5b,当a=2,b=−1时,原式=22+5×(−1)=4−5=−1.【解析】本题考查整式的加减-化简求值,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.先根据整式的加减运算法则进行化简,然后将a与b的值代入即可求出答案.19.【答案】解:(1)图形如图所示:(2)AB<OA+OB的依据是:两点之间线段最短.(3)由测量法可知OC=2.8cm,AC=2.1cm,所以OC>AC.(4)70∘【解析】本题考查作图与测量,方向角的定义,两点之间线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.(1)根据要求画出图形即可;(2)利用两点之间线段最短解决问题;(3)利用测量法判断即可;(4)根据平角为180∘,利用角的和差定义求解.(1)(2)(3)见答案(4)∠AOB=180∘−80∘−30∘=70∘.20.【答案】解:(1)去括号,可得:5x−5=3x+3,移项,可得:5x−3x=3+5,合并同类项,可得:2x=8,系数化为1,可得:x=4;(2)去分母,可得:(x−3)−2(2x+1)=4,去括号,可得:x−3−4x−2=4,移项,可得:x−4x=4+3+2,合并同类项,可得:−3x=9,系数化为1,可得:x=−3.【解析】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.21.【答案】解:(1)AOC,同角的余角相等,COE,角平分线的定义,COE ,(90−2n);(2)因为∠AOB=∠COD=90∘,所以∠AOB+∠COD=∠BOC+∠AOD=90∘+90∘=180∘,所以∠AOD+∠BOC=180∘.【解析】【分析】本题主要考查角平分线的定义,余角和补角,角的计算,灵活运用角平分线的定义求解角的度数是解题的关键.(1)由同角的余角相等可得∠BOD=∠AOC,结合角平分线的定义可得∠COE=2∠AOC,进而可求解∠DOE的度数;(2)由角的和差可求解∠AOD+∠BOC=180∘,即可求解.【解答】解:(1)因为∠AOB=90∘,所以∠BOD+∠AOD=90∘因为∠COD=90∘.所以∠AOC+∠AOD=90∘.所以∠BOD=∠AOC.(理由:同角的余角相等)因为∠BOD=n∘,所以∠AOC=n∘.因为OA平分∠COE,所以∠COE=2∠AOC.(理由:角平分线的定义)所以∠DOE=∠COD−∠COE=(90−2n)∘.故答案为:AOC ,同角的余角相等,COE,角平分线的定义,COE ,(90−2n);(2)见答案.22.【答案】解:(1)设这个手工兴趣小组共有x人,由题意可得:9x+17=12x−4,解得:x=7,所以9x+17=80,答:这个手工兴趣小组共有7人,计划要做的这批中国结有80个;(2)不能,理由如下:设编结a个A型中国结,编结b个B型中国结,由题意,得0.6a+0.9b=50,,整理,得2a+3b=5003因为a、b都是正整数,所以(2a+3b)不可能为分数,即没有符合条件的a、b的值.所以编结这批中国结(A、B型都要有)不能刚好用完50米长的红绳.【解析】本题考查一元一次方程的应用,二元一次方程的应用,找出题目蕴含的数量关系,列出方程是解题的关键.(1)设这个手工兴趣小组共有x人,由题意表示出计划做的个数为(9x+17)或(12x−4),由此联立方程求得人数,进一步求得计划做的个数即可.(2)不能,理由如下:设编结a个A型中国结,编结b个B型中国结,由题意,得0.6a+0.9b=50,看有没有符合条件的a、b的值即可.23.【答案】解:(1)因为点B表示的数是6,点M位于点B的左侧并与点B的距离是5,所以点M表示的数是1,因为点A表示的数是−1,所以AM=1−(−1)=1+1=2,因为M为线段AC的中点,所以MC=AM=2,所以点C表示的数是3,点M,点C在数轴上的位置如图所示:所以点M,点C表示的数分别为:1,3;(2)与点B的距离小于或等于5的点组成的图形,是一条线段EF,如图所示:线段EF是以点B为中点,距离为10的线段,且点E在数轴上表示的数为1,点F在数轴上表示的数为11;(3)设点Q表示的数为x,分两种情况:①当点Q在点A的左侧,QC,因为QA=14(3−x),所以−1−x=14所以x =−73, 所以点Q 表的数为−73. ②当点Q 在点A 的右侧, 因为QA =14QC ,所以x −(−1)=14(3−x), 所以x =−15,所以点Q 表示的数为:−15, 综上所述:点Q 表示的数为−73或−15.【解析】本题考查了数轴,根据题目的已知条件在数轴上找到各点对应的数是解题的关键,同时渗透了分类讨论的数学思想.(1)根据已知可知点M 表示的数是1,点C 表示的数是3,即可解答; (2)分两种情况,在点B 的左侧,在点B 的右侧;(3)分两种情况,点Q 在点A 的左侧,点Q 在点A 的右侧.24.【答案】解:(1)所以532是19的倍数;(2)10×53+2,53+2×2,100a +10b +c , 10a +b +2c ; (3)当M(abc −)是19的倍数时,10a +b +2c 是19的倍数, 设10a +b +2c =19m ,则m 为正整数, 10M(abc −)=100a +10b +20c =190m , 因为100a +10b +20c =abc −+19c =190m , 所以abc −=190m −19c , 因为m ,c 为整数, 所以abc −是19的倍数. 【解析】【分析】本题考查整式的运算规律,解题关键是理解材料所提供方法,找出M(abc −)=10a +b +2c. (1)根据材料所提方法求解; (2)根据表格所提方法求解;(3)由M(abc −)是19的倍数可得10a +b +2c 是19的倍数,设10a +b +2c =19m ,根据10M(abc −)=100a +10b +20c =190m 可得结论成立. 【解答】 解:(1)见答案;(2)532=10×53+2,M(532)=53+2×2, abc −=100a +10b +c ,M(abc −)=10a +b +2c ,故答案为:10×53+2,53+2×2,100a +10b +c ,10a +b +2c ; (3)见答案.25.【答案】解:(1)如图即为对应的几何图形;(2)如图即为105∘角及相应的几何图形;(3)如图4,∠MON 的角平分线OP 即为所求.【解析】本题考查了作图-应用与设计作图,角的计算,解决本题的关键是掌握基本作图方法. (1)结合题干中的图2即可画出对应的几何图形;(2)将一副三角尺的60度角和45度角相加即可画出105∘角,进而可以画出相应的几何图形; (3)利用一副三角尺的45度角和30度角之差即可画出∠MON 的角平分线OP.26.【答案】解:(1)−32,−7;(2)若线段AB在数轴上沿正方向运动,每秒运动1个单位长度,取线段AB的中点D,存在某一时刻,使得点D是点A关于点O的“−2星点”,设线段AB运动t秒,使得点D是点A关于点O的“−2星点”,则此时x A=−2+t,x B=3+t所以此时x D=−2+t+3+t2=t+12,因为点D是点A关于点O的“−2星点”,所以x D−x O=−2(x A−x O)即t+12−0=−2(−2+t−0),解得:t=76,即线段AB运动76秒时,点D是点A关于点O的“−2星点”;(3)当点Q在线段AB(点Q不与A,B两点重合)上时,QA′+QB′存在最小值,理由如下:设点Q表示的数为y,因为点A′是点A关于点Q的“3星点”,所以点A′表示的数为−6−2y,因为点B′是点B关于点Q的“3星点”,所以点B′表示的数是9−2y,所以QA′+QB′=|−6−2y−y|+|9−2y−y|=|−6−3y|+|9−3y|,当y<−2时,QA′+QB′=3−6y>15,当−2<y<3时,QA′+QB′=15,当y>3时,QA′+QB′=6y−3>15,所以当点Q在线段AB(点Q不与A,B两点重合)上时,QA′+QB′存在最小值,最小值为15.【解析】【分析】本题考查了一元一次方程的应用,绝对值,理解“k星点”的定义并运用是解题的关键.(1)由“k星点”的定义列出方程可求解;(2)设线段AB运动t秒,则x A=−2+t,x B=3+t,进而求出点D表示的数,再根据点D是点A关于点O的“−2星点”,得出x D−x O=−2(x A−x O),进而可求出t的值即可.(3)先求出A′,B′表示的数,得出QA′+QB′=|−6−3y|+|9−3y|,由绝对值的性质即可求解.【解答】解:(1)因为点B是点A关于原点O的“k星点”,则x B−x O=k(x A−x O)所以3−0=k(−2−0),解得:k=−3,2因为点C是点A关于点B的“2星点”,x C−x B=2(x A−x B)所以x C−3=2×(−2−3),所以x C=−7,故答案为:−3,−7;2(2)见答案;(3)见答案.。

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷北京市西城区2017-2018学年度第二学期期末试卷高一数学2018.7 A卷 [立体几何初步与解析几何初步] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1.已知点 M(-1,2),N(3,0),则点 M 到点 N 的距离为()。

A) 2 (B) 4 (C) 5 (D) 2√52.直线 x-y-3=0 的倾斜角为()。

A) 45 (B) 60 (C) 120 (D) 1353.直线 y=2x-2 与直线 l 关于 y 轴对称,则直线 l 的方程为()。

A) y=-2x+2 (B) y=-2x-2 (C) y=2x+2 (D) y=1/x-14.已知圆 M: x^2+y^2=1 与圆 N: (x-2)^2+y^2=9,则两圆的位置关系是()。

A) 相交 (B) 相离 (C) 内切 (D) 外切5.设m,n 为两条不重合的直线,α,β 为两个不重合的平面,m,n 既不在α 内,也不在β 内。

则下列结论正确的是()。

A) 若m//α,n//α,则 m//n。

B) 若 m//n,n//α,则m//α。

C) 若 m⊥α,n⊥α,则 m⊥n。

D) 若 m⊥α,m⊥β,则α⊥β。

6.若方程 x^2+y^2-4x+2y+5k=0 表示圆,则实数 k 的取值范围是()。

A) (-∞,1) (B) (-∞,1] (C) [1,+∞) (D) R7.圆柱的侧面展开图是一个边长为 2 的正方形,那么这个圆柱的体积是()。

A) π (B) π/2 (C) 2π (D) π/28.方程 x=1-y^2 表示的图形是()。

A) 两个半圆 (B) 两个圆 (C) 圆 (D) 半圆9.如图,四棱锥 P-ABCD 的底面 ABCD 是梯形,XXX。

若平面 PAD 平面 PBC∥l,则()。

北京市西城区17-18学年上七年级第1次月考试试卷--数学

北京市西城区17-18学年上七年级第1次月考试试卷--数学

北京市西城区2017-2018学年上学期七年级第1次月考试数学试卷数据的收集、整理与描述一、精心选一选(每小题3分,共30分)1.下列各项调查:①调查中央电视台《新闻联播》节目的收视率;②某校学生订做一套校服,对学生的胸围、腰围进行的测量;③一批罐头产品的质量检查;④对河水污染情况的调查.其中适合用全面调查的是( ).A.②B.②③④C.①②③D.①②③④2.为了了解恩施市七年级学生体重的大致情况,想抽取1000名七年级学生进行调查,应该( ).A.从身体肥胖的同学中抽取B.从身体瘦弱的同学中抽取C.从某初中学校在课外活动时,抽取正在进行体育活动的同学D.对全市所有初中学校在校园里随机调查七年级同学3.计算机上为了直观地看出磁盘“已用空间”与“可用空间”各占整个磁盘空间的百分比,选用的统计图是( ).A.频率分布直方图B.折线统计图C.扇形统计图D.以上三种都可以4.一个扇形统计图中,扇形A、B、C、D 的面积之比为2∶1∶4∶5,则最大扇形的圆心角为( ).A.80°B.100°C.120°D.150°5.现有一组数据,最大值为93,最小值为22,现要把它分成6组,则下列组距中,合适的是( ).A.9 B.12 C.15 D.186.下列调查中:①为了了解七年级学生每天做作业的时间,对某学校七年级⑴班的学生进行调查;②爱心中学美术爱好小组拟组织一次郊外写生活动,为了确定写生地点,对美术爱好小组全体成员进行调查;③为了了解观众对电视剧的喜爱程度,数学兴趣小组调查了某小区的100位居民,其中属于抽样调查的有()A. 3个B. 2个C. 1个D. 0个7.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( )A.该班总人数为50人B.骑车人数占总人数的20%C.步行人数为30人D.乘车人数是骑车人数的2.5倍8.如图是某班40名学生一分钟跳绳测试成绩(次数为整数)的频数分布直方图,从左起第一、二、三、四个小长方形的高的比为1∶4∶3∶2,那么该班一分钟跳绳次数在100次以上的学生有( )A.6人B.8人C.16人D.20人9.随着经济的发展,人们的生活水平不断提高。

北京市西城区2018-2019学年七年级(上)期末数学试卷(含解析)

北京市西城区2018-2019学年七年级(上)期末数学试卷(含解析)

七年级(上)期末数学试卷一、选择题(本题共24分,第1-4题每小题3分,第5-10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.(3分)2018年11月6日上午,在上海召开的首届中国国际进口博览会北京主题活动上,北京市交易团重点发布了2022北京冬奥会、北京大兴国际机场等北京未来发展的重要规划及采购需求,现场签约金额总计超过50000000000元人民币,将50000000000科学记数法表示应为()A.0.5×1010B.5×1010C.5×1011D.50×1092.(3分)下列计算正确的是()A.b﹣5b=﹣4B.2m+n=2mn C.2a4+4a2=6a6D.﹣2a2b+5a2b=3a2b 3.(3分)如果x=3是关于x的方程2x+m=7的解,那么m的值为()A.1B.2C.﹣1D.﹣24.(3分)用四舍五入法将3.694精确到0.01,所得到的近似数为()A.3.6B.3.69C.3.7D.3.705.(2分)如果2x2﹣x﹣2=0,那么6x2﹣3x﹣1的值等于()A.5B.3C.﹣7D.﹣96.(2分)如图1,南非曾发行过一个可折叠邮政包装箱的邮票小全张,将其中包装箱的展开图截下,并按图1中左下角所示方法进行折叠,使画面朝外,那么与图2中图案所在的面相对的面上的图案是()A .B .C .D .7.(2分)以下说法正确的是()A.两点之间直线最短B.延长直线AB到点E,使BE=ABC.钝角的一半一定不会小于45°D.连接两点间的线段就是这两点的距离8.(2分)下列解方程的步骤正确的是()A.由2x+4=3x+1,得2x+3x=1+4B.由0.5x﹣0.7x=5﹣1.3x,得5x﹣7=5﹣13xC.由3(x﹣2)=2(x+3),得3x﹣6=2x+6D .由=2,得2x﹣2﹣x+2=129.(2分)如图,数轴上A,B两点对应的数分别是a和b,对于以下四个式子:①2a﹣b;②a+b;③|b|﹣|a|:④,其中值为负数的是()A.①②B.③④C.①③D.②④10.(2分)南水北调工程中线自2014年12月正式通水以来,沿线多座大中城市受益,河南、河北、北京及天津四个省(市)的水资源紧张态势得到缓解,有效促进了地下水资源的涵养和恢复,若与上年同期相比,北京地下水的水位下降记为负,回升记为正,记录从2013年底以来,北京地下水水位的变化得到下表:以下关于2013年以来北京地下水水位的说法不正确的是()A.从2014年底开始,北京地下水水位的下降趋势得到缓解B.从2015年底到2016年底,北京地下水水位首次回升C.2013年以来,每年年底的地下水位与上年同比的回升量最大的是2018年D.2018年9月底的地下水水位低于2012年底的地下水水位二、填空题(本題共20分,其中第11、13、14、16、17题每小题2分,第12、15题每小题2分,第18题4分)11.(2分)﹣6的相反数等于.12.(3分)如果|m+3|+(n﹣2)2=0,那么m=,n=,m n=.13.(2分)45°25′的余角等于°′.14.(2分)写出一个次数为4的单项式,要求其中所含字母只有x,y:.15.(3分)如图,在以下建筑物的图片上做标记得到三个角α,β,γ,将这三个角按从大到小的顺序排列:,,.16.(2分)一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.17.(2分)线段AB=6,在直线AB上截取线段BC=3AB,D为线段AB的中点,E为线段BC的中点,那么线段DE的长为.18.(4分)我国现行的二代身份证号码是18位数字,由前17位数字本体码和最后1位校验码组成.校验码通过前17位数字根据一定规则计算得出,如果校验码不符合这个规则,那么该号码肯定是假号码,现将前17位数字本体码记为A1A2A3…A16A17,其中A i(i=1,…,17)表示第i位置上的身份证号码数字值,按下表中的规定分别给出每个位置上的一个对应的值W i.现以号码N=440524************为例,先将该号码N的前17位数字本体码填入表中(现已填好),依照以下操作步骤计算相应的校验码进行校验:(1)对前17位数字本体码,按下列方式求和,并将和记为S:S=A1×W1+A2×W2+……+A17×W17.现经计算,已得出A1×W1+A2×W2+…+A13×W13=189,继续求得S=;(2)计算S÷11,所得的余数记为Y,那么Y=;(3)查阅下表得到对应的校验码(其中X为罗马数字,用来代替10):所得到的校验码为,与号码N中的最后一位进行对比,由此判断号码N是(填“真”或“假”)身份证号.三、解答题(本题共56分)19.(8分)计算:(1)﹣8+12﹣25+6(2)﹣9×(﹣)220.(8分)计算:(1)[﹣(﹣)+2]÷(﹣).(2)﹣4+(﹣2)4÷4﹣(﹣0.28)×.21.(5分)先化简,再求值:3(x2﹣xy﹣2y)﹣2(x2﹣3y),其中x=﹣1,y=2.22.(5分)解方程:﹣=223.(5分)解方程组:.24.(5分)已知:如图,点A,点B,点D在射线OM上,点C在射线ON上,∠O+∠OCA =90°,∠O+∠OBC=90°,CA平分∠OCD.求证:∠ACD=∠OBC.请将下面的证明过程补充完整:证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠.(理由:)∵CA平分∠OCD∴∠ACD=.(理由:)∴∠ACD=∠OBC.(理由:).25.(4分)任务画图已知:如图,在正方形网格中,∠AOB=α.任务:在网格中画出一个顶点为O且等于180°﹣2α的角.要求:画图并标记符合要求的角,写出简要的画图步骤.(说明:可以借助网格、量角器)26.(5分)阅读下面材料两位同学在用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字乘以5,加上7,再乘以2,再加上卡片B上的数字,把最后得到的数M的值告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信”……试验一下:(1)如果乙同学抽出的卡片A上的数字为2,卡片B上的数字为5,他最后得到的数M =;(2)若乙同学最后得到的数M=57,则卡片A上的数字为,卡片B上的数字为.解密:请你说明:对任意告知的数M,甲同学是如何猜到卡片的.27.(5分)列方程(组)解决问题某校初一年级组织了数学嘉年华活动,同学们踊跃参加,活动共评出三个奖项,年级购买了一些奖品进行表彰,为此组织活动的老师设计了如下表格进行统计.已知获得二等奖的人数比一等奖的人数多5人.问:获得三种奖项的同学各多少人?28.(6分)如图,数轴上A,B两点对应的有理数分别为x A=﹣5和x B=6,动点P从点A 出发,以每秒1个单位的速度沿数轴在A,B之间往返运动,同时动点Q从点B出发,以每秒2个单位的速度沿数轴在B,A之间往返运动.设运动时间为t秒.(1)当t=2时,点P对应的有理数x P=,PQ=;(2)当0<t≤11时,若原点O恰好是线段PQ的中点,求t的值;(3)我们把数轴上的整数对应的点称为“整点”,当P,Q两点第一次在整点处重合时,直接写出此整点对应的数.参考答案与试题解析一、选择题(本题共24分,第1-4题每小题3分,第5-10题每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.【解答】解:50000000000=5×1010,故选:B.2.【解答】解:A、b﹣5b=﹣4b,错误;B、2m与n不是同类项,不能合并,错误;C、2a4与4a2不是同类项,不能合并,错误;D、﹣2a2b+5a2b=3a2b,正确;故选:D.3.【解答】解:把x=3代入方程2x+m=7得:6+m=7,解得:m=1,故选:A.4.【解答】解:3.694≈3.69(精确到0.01).故选:B.5.【解答】解:∵2x2﹣x﹣2=0,∴2x2﹣x=2,则6x2﹣3x﹣1=3(2x2﹣x)﹣1=3×2﹣1=6﹣1=5,故选:A.6.【解答】解:根据正方体的展开图,可得与图2中图案所在的面相对的面上的图案为:故选:A.7.【解答】解:A、两点之间线段最短,故原来的说法错误,不符合题意;B、延长线段AB到点E,使BE=AB,故原来的说法错误,不符合题意;C、说法正确,符合题意;D、连接两点间的线段的长度,叫作这两点间的距离,故说法错误,不符合题意.故选:C.8.【解答】解:A、2x+4=3x+1,2x﹣3x=1﹣4,故本选项错误;B、0.5x﹣0.7x=5﹣1.3x,5x﹣7x=50﹣13x,故本选项错误;C、3(x﹣2)=2(x+3),3x﹣6=2x+6,故本选项正确;D、=2,3x﹣3﹣x﹣2=12,故本选项错误;故选:C.9.【解答】解:根据图示,可得b<﹣3,0<a<3,①2a﹣b>0;②a+b<0;③|b|﹣|a|>0;④<0.故其中值为负数的是②④.故选:D.10.【解答】解:A、从2014年底开始,北京地下水水位的下降趋势得到缓解,正确;B、从2015年底到2016年底,北京地下水水位首次回升,正确;C、2013年以来,每年年底的地下水位与上年同比的回升量最大的是2018年,正确;D、∵2018年9月底的地下水水位与2012年底的地下水水位无法比较,∴2018年9月底的地下水水位低于2012年底的地下水水位错误.故选:D.二、填空题(本題共20分,其中第11、13、14、16、17题每小题2分,第12、15题每小题2分,第18题4分)11.【解答】解:﹣6的相反数等于:6.故答案为:6.12.【解答】解:∵|m+3|+(n﹣2)2=0,∴m+3=0,n﹣2=0,解得:m=﹣3,n=2,故m n=(﹣3)2=9.故答案为:﹣3,2,9.13.【解答】解:45°25′的余角等于90°﹣45°25′=44°35'.故答案为:44,35.14.【解答】解:由题意得,答案不唯一:如x2y2等.故答案为:如x2y2等.15.【解答】解:由图可得,β>γ>α.∴三个角按从大到小的顺序排列为:β,γ,α.故答案为:β,γ,α.16.【解答】解:从左面观察这个立体图形,分别是2个正方形,1个正方形,1个正方形,如图所示:17.【解答】解:C在线段AB的延长线上,如图1:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=AB=3,BE=BC=9,DE=BD﹣BE=9﹣3=6;C在线段AB的反向延长线上,如图2:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=AB=3,BE=BC=9,DE=BD﹣BE=9+3=12.故线段DE的长为6或12.故答案为:6或12.18.【解答】解:(1)根据求和规律可得到A14×W14=5,A15×W15=0,A16×W16=0,A17×W17=2,从而得到S=189+5+0+0+2=196;(2)S÷11=196÷11=17……9;(3)查表得,所得到的校验码为3,再与原身份证的最后一位是6比较,判断号码N是假身份证号.三、解答题(本题共56分)19.【解答】解:(1)原式=4+6﹣25=10﹣25=﹣15;(2)原式=﹣9××=﹣.20.【解答】解:(1)原式=(++)×(﹣)=×(﹣)+×(﹣)+×(﹣)=﹣2﹣﹣6=﹣8;(2)原式=﹣4+16÷4+0.07=﹣4+4+0.07=0.07.21.【解答】解:原式=3x2﹣3xy﹣6y﹣2x2+6y=x2﹣3xy,把x=﹣1,y=2代入x2﹣3xy=(﹣1)2﹣3×(﹣1)×2=7.22.【解答】解:去分母得:4(2x﹣1)﹣3(3x﹣5)=24,8x﹣4﹣9x+15=24,8x﹣9x=24+4﹣15,﹣x=13,x=﹣13.23.【解答】解:,①+②×3得:11x=33,解得:x=3,把x=3代入②得:y=﹣1,则方程组的解为.24.【解答】证明:∠O+∠OCA=90°,∠O+∠OBC=90°,∴∠OCA=∠OBC.(理由:同角的余角相等)∵CA平分∠OCD∴∠ACD=∠OCA.(理由:角平分线的定义)∴∠ACD=∠OBC.(理由:等量代换).故答案为:OBC,同角的余角相等,∠OCA,角平分线的定义,等量代换.25.【解答】解:如图所示,①利用OB边上的格点C,在网格中画出∠AOB关于直线OA的对称的∠AOD,则∠AOD=∠AOB=α,∠COD=2α;②画平角∠DOE,那么∠BOE=180°﹣2α.26.【解答】解:(1)M=(2×5+7)×2+5=39,故答案为:39;(2)设卡片A上的数字为x,卡片B上的数字为y,则(5x+7)×2+y=57,10x+14+y=57,10x+y=43,∵x、y都是1至9这9个数字,∴x=4,y=3,故答案为:4,3;解密:设卡片A上的数字为x,卡片B上的数字为y(其中x、y为1,2,…,9这9个数字),则M=2(5x+7)+y=(10x+y)+14,得:M﹣14=10x+y,其中十位数字是x,个位数字是y,所以由给出的M的值减去14,所得两位数十位上的数字为卡片A上的数字x,个位数上的数字为卡片B上的数字y.27.【解答】解:设一等奖的人数有x人,根据题意得:4x+3(x+5)+2(35﹣2x)=100,解得:x=5,则二等奖的人数有x+5=5+5=10人,三等奖的人数有35﹣2x=35﹣2×5=25人,答:一等奖的人数有5人,二等奖的人数有10人,三等奖的人数有25人;故答案为:x,x+5,40﹣x﹣(x+5),4x,3(x+5),2(35﹣2x).28.【解答】解:(1)当t=2时,点P对应的有理数x P=﹣5+1×2=﹣3,点Q对应的有理数x Q=6﹣2×2=2,∴PQ=2﹣(﹣3)=5.故答案为﹣3,5;(2)∵x A=﹣5,x B=6,∴OA=5,OB=6.由题意可知,当0<t≤11时,点P运动的最远路径为数轴上从点A到点B,点Q运动的最远路径为数轴上从点B到点A并且折返回到点B.对于点P,因为它的运动速度v P=1,点P从点A运动到点O需要5秒,运动到点B需要11秒.对于点Q,因为它的运动速度v Q=2,点Q从点B运动到点O需要3秒,运动到点A需要5.5秒,返回到点B需要11秒.要使原点O恰好是线段PQ的中点,需要P,Q两点分别在原点O的两侧,且OP=OQ,此时t≠5.5.①当0<t<5.5时,点Q运动还未到点A,有AP=t,BQ=2t.此时OP=|5﹣t|,OQ=|6﹣2t|.∵原点O恰好是线段PQ的中点,∴OP=OQ,∴|5﹣t|=|6﹣2t|,解得t=1或t=.检验:当t=时,P,Q两点重合,且都在原点O左侧,不合题意舍去;t=1符合题意.∴t=1;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,要使原点O恰好是线段PQ的中点,点Q必须位于原点O左侧,此时P,Q两点的大致位置如下图所示.此时,OP=AP﹣OA=t﹣5,OQ=OA﹣AQ=5﹣2(t﹣5.5)=16﹣2t.∵原点O恰好是线段PQ的中点,∴OP=OQ,∴t﹣5=16﹣2t,解得t=7.检验:当t=7时符合题意.∴t=7.综上可知,t=1或7;(3)①当0<t<5.5时,点Q运动还未到点A,当P,Q两点重合时,P与Q相遇,此时需要的时间为:秒,相遇点对应的数为﹣5+=﹣,不是整点,不合题意舍去;②当5.5<t≤11时,点P在数轴上原点右侧,点Q已经沿射线BA方向运动到点A后折返,当P,Q两点重合时,点Q追上点P,AQ=AP,2(t﹣5.5)=t,解得t=11,追击点对应的数为﹣5+11=6.故当P,Q两点第一次在整点处重合时,此整点对应的数为6.。

北京市西城区2014—2015学年度第一学期期末考试七年级数学试卷(含详细解答)

北京市西城区2014—2015学年度第一学期期末考试七年级数学试卷(含详细解答)

北京市西城区2014— 2015学年度第一学期期末考试七年级数学试卷2015.1试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在1, 0,1-,2-这四个数中,最小的数是( )A. 2-B. 1-C. 0D.2.2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约为13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为A . 13.1×106B .1.31×107C .1.31×108D .0.131×1083.下列计算正确的是( )A. 235a b ab +=B. 325a a a +=C. 2222a a a --=-D. 22271422a b a b a b -= 4.已知关于x 的方程225x m +=的解是2x =-,则m 的值为( ). A. 12 B. 12- C. 92 D. 92- 5.若21(2)02x y -++=,则2015()xy 的值为( ) A. B. 1- C. 2015- D. 20156.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )A B CD7.如图,将一个直角三角板AOB 的顶点O 放在直线CD 上,若∠AOC =35°,则∠BOD 等于A .155°B .145°C .65°D . 55°8.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x 支,则可列得的一元一次方程为( )A .0.8 1.20.92(60)87x x ⨯+⨯-=B .0.8 1.20.92(60)87x x ⨯+⨯+=C .0.920.8 1.2(60)87x x ⨯+⨯+=D . 0.920.8 1.2(60)87x x ⨯+⨯-=9.如图,四个有理数在数轴上的对应点M ,P ,N , Q ,M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是A .点MB .点NC .点PD .点Q10了一个“D 二、填空题(本题共20分,第11~14题每小题3分,第15~18题每小题2分)11.4-的倒数是 .12. “m 与n 的平方差”用式子表示为 .13.若∠A =45°30′,则∠A 的补角等于 .14.已知多项式22x y +的值是3,则多项式224x y ++的值是 .15.写出一个只含有字母x ,y16.如图,已知线段AB =10cm ,C 是线段AB 的中点,E 是线段BC 的中点,则DE 的长是 cm .17.如图,把一个圆平均分为若干份,然后把它们全部剪开,拼成一个近似的平行四边形.若这个平行四边形的周长比圆的周长增加了4cm ,则这个圆的半径是 cm ,拼成的平行四边形的面积是 cm 2.18.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52× = ×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b ≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是.三、计算题(本题共16分,每小题4分)19. 3011(10)(12)-+--- 20.51(3)()(1)64-⨯-÷- 解: 解:21.21[1(10.5)][10(3)]3--⨯⨯-+- 22.312138()(2)(8)595⨯--⨯-+-⨯ 解: 解:。

2023-2024学年北京市西城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市西城区七年级(上)期末数学试卷+答案解析

2023-2024学年北京市西城区七年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.的绝对值是.()A.3B.C.D.2.特色产业激发乡村发展新活力.据报道,截至2023年10月9日,全国已建设180个优势特色乡村产业集群,全产业链产值超过4600000000000元,辐射带动1000多万户农民.数字4600000000000用科学记数法表示为.()A. B. C. D.3.下图是某个几何体的展开图,则这个几何体是。

()A.三棱柱B.圆柱C.四棱柱D.圆锥4.下列各式计算中正确的是.()A. B.C. D.5.如果一个角等于它的余角的2倍,那么这个角的度数是.()A. B. C. D.6.有理数a,b在数轴上的对应点的位置如图所示,下列结论正确的是()A. B. C. D.7.下列解方程的变形过程正确的是()A.方程,移项得B.方程,系数化为1得C.方程,去括号得D.方程,去分母得8.如图,某乡镇的五户居民依次居住在同一条笔直的小道边的A处,B处,C处,D处,E处,且这五户居民的人数依次有1人,2人,3人,3人,2人.乡村扶贫改造期间,该乡镇打算在这条小道上新建一个便民服务点M,使得所有居民到便民服务点的距离之和每户所有居民均需要计算最小,则便民服务点M应建在.()A.A处B.B处C.C处D.D处二、填空题:本题共8小题,每小题2分,共16分。

9.如果向东走5米记作米,那么向西走10米可记作__________米.10.比较大小:__________11.如图所示的网格是正方形网格,则__________填“>”“<”“=”12.如果单项式与单项式的和仍是单项式,那么m的值是__________,n的值是__________.13.若是关于x的方程的解,则a的值为__________.14.若代数式的值为2,则代数式的值为__________.15.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房.设有x间客房,可列方程为:__________.16.“幻方”最早记载于春秋时期的《大戴礼》中,现将1,2,3,4,5,7,8,9这八个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.若按同样的要求重新填数如图2所示,则的值是__________,的值是__________.三、计算题:本大题共2小题,共20分。

2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析

2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析

B.最大的负整数是﹣ 1
C.有理数包括正有理数和负有理数
D.一个有理数的平方总是正数
3.(2017?扬州)若数轴上表示﹣ 1 和 3 的两点分别是点 A 和点 B,则点 A 和点 B
之间的距离是(

A .﹣ 4
B.﹣ 2
C.2
D. 4
4.( 2017?长春) 3 的相反数是(

A .﹣ 3
B.﹣
C.
A .90°B. 120° C. 160° D. 180° 【分析】 因为本题中∠ AOC 始终在变化,因此可以采用 “设而不求 ”的解题技巧进 行求解. 【解答】 解:设∠ AOD=a ,∠ AOC=9°0 +a,∠ BOD=9°0 ﹣a, 所以∠ AOC +∠ BOD=9°0 +a+90°﹣a=180°. 故选 D. 二.填空题(每小题 3 分,共 24 分) 13.(2017?冷水滩区一模)若∠ α补角是∠ α余角的 3 倍,则∠ α= 45° . 【分析】 分别表示出∠ α补角和∠ α余角,然后根据题目所给的等量关系, 列方程 求出∠ α的度数. 【解答】 解:∠ α的补角 =180°﹣ α, ∠α的余角 =90°﹣α, 则有: 180°﹣ α=3(90°﹣α), 解得: α=45°. 故答案为: 45°. 14.(2017?枣庄阴平质检)已知∠ AOB=70°,∠ BOC=20°,OE 为∠ AOB 的平分
25.(12 分)(2017?岳阳) 我市某校组织爱心捐书活动,准备将一批捐赠的书打包
寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的
,结果打了
16 个包还多 40 本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书 一起,刚好又打了 9 个包,那么这批书共有多少本?

北京市西城区(南区)2012-2013学年七年级上学期期末考试数学试题

北京市西城区(南区)2012-2013学年七年级上学期期末考试数学试题

北京市西城区(南区)2012—2013学年度第一学期七年级期末考试数学试卷本份试卷满分100分,考试时间120分钟。

一、选择题(本题共12个小题,每小题2分,共24分。

) 1. -3的相反数是A. -3B. 3C.31 D. -31 2. 据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680 000 000元,将680 000 000用科学记数法表示正确的是A. 68×107B. 6.8×108C. 6.8×107D. 6.8×1063. 如果单项式y x m231与342+n y x 是同类项,那么m 、n 的值分别是 A. ⎩⎨⎧-==22n m B. ⎩⎨⎧==14n m C. ⎩⎨⎧==12n m D. ⎩⎨⎧-==24n m4. 下列运算正确的是A. 2222=-x xB. 2222555d c d c =+C. xy xy xy =-45D. 532532m m m =+5. 下列方程中,解是x=4的是A. 942=+xB. )1(235x x -=-C. 573=--xD.43232-=+x x 6. 如图,已知点O 在直线AB 上,∠BOC=90°,则∠AOE 的余角是(第6题)A. ∠COEB. ∠BOCC. ∠BOED. ∠AOE7. 已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是(第7题)A. 圆柱B. 圆锥C. 球体D. 棱锥8. 有理数a 、b 在数轴上对应的位置如图所示,则下列结论成立的是(第8题)A. a+b>0B. a+b=0C. a -b>0D. a -b<09. 如果线段AB=6,点C 在直线AB 上,BC=4,D 是AC 的中点,那么A 、D 两点间的距离是A. 只有5B. 只有2.5C. 5或2.5D. 5或110. 已知⎩⎨⎧=-=+872y cx by ax 的解为⎩⎨⎧-==23y x ,某同学由于看错了c 的值,得到的解为⎩⎨⎧=-=22y x ,则a+b+c 的值为A. 7B. 8C. 9D. 1011. 下列说法中:①若a+b+c=0,则22c)(a b =+.②若a+b+c=0,则x=1一定是关于x 的方程ax+b+c=0的解. ③若a+b+c=0,且abc ≠0,则abc>0. 其中正确的是 A. ①②③B. ①③C. ①②D. ②③12. 有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,那么a+b 的值为(第12题)A. 6B. 7C. 8D. 9二、填空题(本题共8个小题,每小题2分,共16分)13. 单项式5332b a -的系数是_________________,次数是_________________.14. 计算:6334'︒=______________°.15. 把弯曲的河道改直,能够缩短航程,这样做的道理是:_________________________. 16. 若0)2(32=++-x y ,则y x 的值为__________________.17. 若一个角的补角是100°,则这个角的余角是_____________________________. 18. 如图,已知直线AB 、CD 相交于点O ,OE 平分∠COB ,若∠EOB=55°,则∠AOC 的度数是__________.(第18题)19. 对有理数x ,y 定义运算*,使1++=*b ax y x y. 若47921=*,50032=*,则23*的值为______________.20. 如图所示,圆圈内分别标有1, 2, …, 12, 这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(3n -2)步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳1213=-⨯步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳4223=-⨯步到达标有数字6的圆圈,…. 依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字是___________;第2013次电子跳蚤能跳到的圆圈内所标的数字为________________.(第20题图)三、解答题(60分)21. 计算(每小题3分,共6分)(1)12-7+18-15; (2))3()2()611()321(2-⨯-+-÷-. 22. 化简(每小题3分,共6分)(1)-x+2(x -2)-(3x+5); (2))]2(2[232222ab b a ab b a --- 23. 解下列方程(组)(每小题4分,共12分)(1)122312++=-x x ;(2)⎩⎨⎧=+=+10341353y x y x ;(3)⎪⎩⎪⎨⎧=-+=+++=.52,14,1z y x z y x y x24. 先化简,再求值(本题5分)b a ab b a ab 22222)1(2)27()39(31-++-+-,其中a=-2,b=3. 25. 按要求画图(本题5分)(1)如图1,点M 、N 是平面上的两个定点.图1①连结MN ;②反向延长线段MN 至D ,使MD=MN. (2)如图2,P 是∠AOB 的边OB 上的一点.图2①过点P 画OB 的垂线,交OA 于点C ; ②过点P 画OA 的垂线,垂足为H.26. 列方程(组)解应用题(每小题5分,共10分)(1)某商场进了一批豆浆机,原计划按进价的180%标价销售. 但考虑在春节期间,为了能吸引消费者,于是按照售价的7折销售,此时每台豆浆机仍可获利52元,请问每台豆浆机的进价是多少元?(2)如图所示,在长方形ABCD 中有9个形状、大小完全相同的小长方形,试根据图中所给数据求出三块阴影部分面积的和.27. 几何解答题(每小题5分,共10分)(1)如图,延长线段AB 到C ,使BC=21AB ,D 为AC 的中点,DC=2,求AB 的长.(2)如图,将一副直角三角尺的直角顶点C 叠放在一起.①如图1,若CE 恰好是∠ACD 的角平分线,请直接回答此时CD 是否是∠ECB 的角平分线?图1②如图2,若∠ECD=α,CD 在∠BCE 的内部,请你猜想∠ACE 与∠DCB 是否相等?并简述理由;图2③在②的条件下,请问∠ECD 与∠ACB 的和是多少?并简述理由. 28. 解答下列问题(本题6分)已知整数x 满足:a x <-31.(a 为正整数) (1)请利用数轴分别求当a=1和a=2时的所有满足条件的x 的值; (2)对于任意的正整数a 值,请求出所有满足条件的x 的和与a 的商.【试题答案】一、选择题(本题12个小题,每小题2分,共24分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBACDABCDACB二、填空题(本题8个小题,每小题2分,共16分)题号 1314 15 16 17 18 19 20 答案5,53- 34.6两点之间, 线段最短-810°70°50310,10三、解答题(本题共60分) 21. 计算(每小题3分,共6分)(1)12-7+18-15. 解:原式=30-22 =8.……3分(2))3()2()611()321(2-⨯-+-÷-.解:原式=)3(4)76(31-⨯+-⨯……2分 =786-.……3分22. 化简(每小题3分,共6分)(1)-x+2(x -2)-(3x+5). 解:原式=-x+2x -4-3x -5 ……2分 =-2x -9.……3分 (2))]2(2[232222ab b a ab b a ---. 解:原式=22228423ab b a ab b a -+- ……2分 =22107ab b a -.……3分23. 解下列方程(组)(每小题4分,共12分)(1)122312++=-x x . 解:去分母,原方程化为6)2(3)12(2++=-x x ,去括号,得66324++=-x x ,……3分移项,整理得x=14. 所以,原方程的解为x=14.……4分(2)⎩⎨⎧=+=+②①.1034,1353y x y x解:①×4,得12x+20y=52 ③ ②×3,得12x+9y=30 ④ ③-④,得11y=22 y=2.……2分将y=2代入②中,得x=1.所以原方程组的解为⎩⎨⎧==21y x .……4分(3)⎪⎩⎪⎨⎧=-+=+++=③②①.52,14,1z y x z y x y x 解:①代入②中,得2y+z=13 ④①代入③中,得2y -2z=4 ⑤④-⑤,得3z=9 z=3.……2分将z=3代入④中,得y=5. 将y=5代入④中,得x=6.所以原方程组的解为⎪⎩⎪⎨⎧===356z y x .……4分24. 先化简,再求值(本题5分)解:b a ab b a ab 22222)1(2)27()39(31-++-+-b a ab b a ab 22222222713-++-+-=15522-+=b a ab .……3分 当a=-2,b=3时,原式=-31.……5分25. 按要求画图(本题5分)(1) ……3分(2)……5分 26. 列方程(组)解应用题(每小题5分,共10分)(1)解:设每台豆浆机的进价是x 元. ……1分 根据题意,得180%x ×0.7=x+52. ……3分 解得x=200.……4分 答:每台豆浆机的进价是200元. ……5分 (2)设小长方形的宽为x ,则小长方形的长为(66-4x ).……1分 依题意,得(66-4x )+2x=21+3x ……2分 解得x=9.……3分 ∴小长方形的长为66-4x=66-4×9=30.……4分∴三块阴影部分面积的和为66×(21+3×9)-9×30×9=738. ……5分27. 几何解答题(每小题5分,共10分)(1)∵D 为AC 的中点,(已知) ∴AC=2DC.(线段中点定义) ∵DC=2,(已知) ∴AC=4.……3分∵BC=21AB ,AC=AB+BC ,(已知) ∴AB=38.(等式的性质)……5分 (2)解:①是 ……1分 ②∠ACE=∠DCB……2分∵∠ACD=90°,∠BCE=90°,∠ECD=α, ∠ACE=90°-α,∠DCB=90°-α, ∴∠ACE=∠DCB.……3分 ③∠ECD+∠ACB=180°.……4分理由如下:∠ECD+∠ACB=∠ECD+∠ACE+∠ECB =∠ACD+∠ECB =90°+90° =180°.……5分说明:求解、说理过程,只要学生能基本说明就可以了. 28. 解答下列问题(本题6分)(1)当a=1时,1|31|<-x , 整数x 的值为0, 1; 当a=2时,2|31|<-x , 整数x 的值为-1, 0, 1, 2.……2分(2)因为,当a=1时,整数x 的值和为1, 当a=2时,整数x 的值和为2, 当a=3时,整数x 的值和为3,所以,对于任意的正整数a,整数x的值分别是:-(a-1), -(a-2)…-2, -1, 0, 1, 2, 3…(a-1), a, 它们的和为a,所以,满足条件的x的所有的整数的和与a的商等于1. ……6分。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

西城七年级上学期期末数学试题B卷

西城七年级上学期期末数学试题B卷

∴∠AOF=∠FOE-∠AOE=90°-60°=30°
∴∠COF=∠AOC-∠AOF=60°-30°=30°
∴∠AOF=∠COF
3分 4分
(2)∵O 是直线 AB 上一点,∴∠AOE+∠BOE=180°
∵∠AOE=60°,∴∠BOE=180°-60°=120°
5分
30.解:设小长方形的宽为 x,则小长方形的长为
2分
当 a − b = 2 , ab = −1时
原式 = 2 × 2 − 6 × (−1)
3分
= 10
4分
五、解方程(本题 5 分)
2x −1 − 10x + 1 = 2x +1 −1
26. 3
6
4
解:去分母,得 4(2x − 1) − 2(10x + 1) = 3(2x + 1) − 12
1分
去括号,得8x − 4 − 20x − 2 = 6x + 3 −12
为 22150 000 000m3,这个数用科学记数法表示为( ).
A.221.5×108 m 3 B.22.15×109 m 3
C.2.215×1010 m 3 D.2.215×1011 m 3
3.已知|a|=|-3|,则 a 等于( ).
A.3
B.-3
C.0
D.±3
4.现规定一种运算:a*6=ab+a-b,其中 a,b 为有理数,则 3*5 的值为( ).
D.OD 的方向是北偏东 60°
7.甲、乙两人练习赛跑,甲每秒钟跑 7 米,乙每秒钟跑 6.5 米,他俩从同一地点起跑,乙先跑 5 米后,
甲出发追赶乙.设甲出发 x 秒后追上乙,则下列四个方程中正确的是( ).

【期末试卷】人教版 2017-2018学年 七年级数学上册 期末模拟题 四(含答案)

【期末试卷】人教版 2017-2018学年 七年级数学上册 期末模拟题 四(含答案)

2017-2018学年七年级数学上册期末模拟题一、选择题:1.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米.A.0.34×108B.3.4×106 C.34×106D.3.4×1072.如图是一个正方体,则它的表面展开图可以是()3.一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( )A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.下列方程中,以-2为解的方程是( )A.3x-2=2x B.4x-1=2x+3 C.5x-3=6x-2 D.3x+1=2x-15.计算1-(-2)的正确结果是( )A.-2 B.-1 C.1 D.36.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xy C.3y2﹣2y2=1 D.3x2+2x=5x37.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A.1个B.2个C.3个D.4个8.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°9.钟表在3点30分时,它的时针和分针所成的角是()A.75°B.80°C.85°D.90°10.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A,-2B.-1 C,0 D,211.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是()A.盈利50元B.盈利100元C.亏损150元D.亏损100元12.有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是()A.2015 B.1036 C.518 D.259二、填空题:13.x,y,z在数轴上的位置如图所示,则化简|x-y|+|z-y|的结果是______.14.18.36°= °′″.15.如图,在自来水株管道AB的两旁有两个住宅小区C,D,现要在住管道上开一个接口P往C,D两小区铺设水管,为节约材料,接口P应开在主管AB的什么位置可以用学过的数学知识来解决这个问题。

2019-2020学年北京市西城区七年级(上)期末数学试卷与答案解析

2019-2020学年北京市西城区七年级(上)期末数学试卷与答案解析

2019-2020学年北京市西城区七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)1.(3分)﹣4的倒数是()A.B.﹣C.4 D.﹣42.(3分)在国庆70周年的联欢活动中,参与表演的3290名群众演员,每人手持一个长和宽都为80厘米的光影屏,每一块光影屏上都有1024颗灯珠,约3369000颗灯珠共同构成流光溢彩的巨幅光影图案,给观众带来了震撼的视觉效果.将3369000用科学记数法表示为()A.0.3369×10B.3.369×10C.3.369×10D.3369×103.(3分)下列计算正确的是()A.5a+6b=11ab B.9a﹣a=8C.a+3a=4a D.3ab+4ab=7ab4.(3分)如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是()A.两点之间,线段最短 B.两点确定一条直线C.两点之间,直线最短 D.直线比线段长5.(3分)下列解方程的步骤中正确的是()A.由x﹣5=7,可得x=7﹣5B.由8﹣2(3x+1)=x,可得8﹣6x﹣2=xC.由x=﹣1,可得x=﹣D.由,可得2(x﹣1)=x﹣36.(3分)已知3a﹣a=1,则代数式6a﹣2a﹣5的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣77.(3分)有理数a,b,c在数轴上的对应点的位置如图所示,有如下四个结论:①|a|>3;②ab>0;③b+c<0;④b﹣a>0.上述结论中,所有正确结论的序号是()A.①② B.②③ C.②④ D.③④8.(3分)下列说法中正确的是()A.如果|x|=7,那么x一定是7B.﹣a表示的数一定是负数C.射线AB和射线BA是同一条射线D.一个锐角的补角比这个角的余角大90°9.(3分)下列图形中,可能是右面正方体的展开图的是()A.B.C.D.10.(3分)居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.据统计,从2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率如图所示:根据上图提供的信息,下列推断中不合理的是()A.2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变B.2018年11月与2018年10月相比,全国居民消费价格降低0.3%C.2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4% D.2019年1月到2019年8月,全国居民消费价格每月比上个月的增长率一直持续变大二、填空题(本题共16分,第11~15题每小题2分,第16~18题每小题2分)11.(2分)如图所示的网格式正方形网格,∠ABC∠DEF(填“>”,“=”或“<”)12.(2分)用四舍五入法将0.0586精确到千分位,所得到的近似数为.13.(2分)已知x=3是关于x的一元一次方程ax+b=0的解,请写出一组满足条件的a,b的值:a=,b=.14.(2分)若(x+1)+|y﹣2020|=0,则x=.15.(2分)《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”.《九章算术》大约成书于公元前200年~公元前50年,是以应用问题解法集成的体例编纂成书的,全书按题目的应用范围与解题方法划分为“方田”、“粟米”、“衰分”等九章.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为.16.(3分)我们把称为二阶行列式,且=ad﹣bc如:=1×(﹣4)﹣3×2=﹣10.(1)计算:=;(2)若=6,则m的值为.17.(3分)已知线段AB如图所示,延长AB至C,使BC=AB,反向延长AB至D,使AD=BC,点E是线段CD的中点.(1)依题意补全图形;(2)若AB的长为30,则BE的长为.18.(3分)一件商品的包装盒是一个长方体(如图1),它的宽和高相等.小明将四个这样的包装盒放入一个长方体大纸箱中,从上面看所得图形如图2所示,大纸箱底面长方形未被覆盖的部分用阴影表示.接着小明将这四个包装盒又换了一种摆放方式,从上面看所得图形如图3所示,大纸箱底面未被覆盖的部分也用阴影表示.设图1中商品包装盒的宽为a,则商品包装盒的长为,图2中阴影部分的周长与图3中阴影部分的周长的差为(都用含a的式子表示).三、计算题(本题共16分,每小题8分)19.(8分)计算:(1)(﹣5)+12﹣(﹣8)﹣21(2)20.(8分)计算:(1)(2)四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分)21.(5分)先化简,再求值:6y+4(x﹣2xy)﹣2(3y﹣xy),其中x=﹣2,y=3.22.(5分)解方程:.23.(5分)解方程组:.24.(4分)24、已知:如图,O是直线AB上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整:证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=°∵OD是∠AOC的平分线∴∠AOD=∠(理由:)∴∠BOE=∠COE(理由:)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补25.(5分)某同学模仿二维码的方式为学校设计了一个身份识别图案系统:在4×4的正方形网格中,黑色正方形表示数字1,白色正方形变式数字0.如图1是某个学生的身份识别图案.约定如下:把第i行,第j列表示的数字记为a(其中i,j=1,2,3,4),如图1中第2行第1列的数字a=0;对第i行使用公式A=8a+4a+2a+a进行计算,所得结果A表示所在年级,A表示所在班级,A表示学号的十位数字,A表示学号的个位数字.如图1中,第二行A=8×0+4×1+2×0+1=5,说明这个学生在5班.(1)图1代表的学生所在年级是年级,他的学号是;(2)请仿照图1,在图2中画出八年级4班学号是36的同学的身份识别图案26.(6分)学校计划在某商店购买秋季运动会的奖品,若买5个篮球和10个足球需花费1150元,若买9个篮球和6个足球需花费1170元.(1)篮球和足球的单价各是多少元?(2)实际购买时,正逢该商店进行促销.所有体育用品都按原价的八折优惠出售,学校购买了若干个篮球和足球,恰好花费1760元.请直接写出学校购买篮球和足球的个数各是多少.27.(5分)点O为数轴的原点,点A、B在数轴上的位置如图所示,点A表示的数为5,线段AB的长为线段OA长的1.2倍.点C在数轴上,M为线段OC的中点.(1)点B表示的数为;(2)若线段BM的长为4.5,则线段AC的长为;(3)若线段AC的长为x,求线段BM的长(用含x的式子表示).一、填空题(本题6分)28.观察下列等式,探究其中的规律并解答问题:(1)第4个等式中,k=;(2)写出第5个等式:;(3)写出第n个等式:(其中n为正整数)二、解答题(本题共14分,每小题0分)29.我们熟知的七巧板,是由宋代黄伯思设计的“燕几图”(“燕几”就是“宴几”,也就是宴请宾客的案几)演变而来.到了明代,严澄将“燕几图”里的方形案几改为三角形,发明了“蝶翅几”.而到了清代初期,在“燕几图”和“蝶翅几”的基础上,兼有三角形、正方形和平行四边形,能拼出更加生动、多样图案的七巧板就问世了(如图1网格中所示)(1)若正方形网格的边长为1,则图1中七巧板的七块拼板的总面积为.(2)使用图1中的七巧板可以拼出一个轮廓如图2所示的长方形,请在图2中画出拼图方法(要求:画出各块拼板的轮廓).(3)随着七巧板的发展,出现了一些形式不同的七巧板,如图3所示的是另一种七巧板.利用图3中的七巧板可以拼出一个轮廓如图4所示的图形;大正方形的中间去掉一个小正方形,请在图4中画出拼图的方法(要求:画出各块拼板的轮廓).30.对于平面内给定射线OA,射线OB及∠MON,给出如下定义:若由射线OA、OB组成的∠AOB的平分线OT落在∠MON的内部或边OM、ON上,则称射线OA与射线OB关于∠MON内含对称.例如,图1中射线OA与射线OB关于∠MON内含对称.已知:如图2,在平面内,∠AOM=10°,∠MON=20°.(1)若有两条射线OB,OB的位置如图3所示,且∠BOM=30°,∠BOM=15°,则在这两条射线中,与射线OA关于∠MON内含对称的射线是;(2)射线OC是平面上绕点O旋转的一条动射线,若射线OA与射线OC关于∠MON 内含对称,设∠COM=x°,求x的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH=20°,现将射线OH绕点O以每秒1°的速度顺时针旋转,同时将射线OE和OF绕点O都以每秒3°的速度顺时针旋转.设旋转的时间为t秒,且0<t<60.若∠FOE的内部及两边至少存在一条以O为顶点的射线与射线OH关于∠MON内含对称,直接写出t的取值范围.2019-2020学年北京市西城区七年级(上)期末数学试卷试题解析一、选择题(本题共30分,每小题3分)1.【答案】B解:﹣4的倒数是﹣.故选:B.2.【答案】B解:将3369000用科学记数法表示为3.369×10,故选:B.3.【答案】D解:A.5a与6b不是同类项,所以不能合并,故本选项不合题意;B.9a﹣a=8a,故本选项不合题意;D.3ab+8ab=7ab,正确,故本选项符合题意.故选:D.4.【答案】A解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短,故选:A.5.【答案】B解:A、由x﹣5=7,可得x=7+5,不符合题意;B、由8﹣2(3x+1)=x,可得8﹣6x﹣2=x,符合题意;C、由x=﹣1,可得x=﹣6,不符合题意;D、由=﹣3,可得2(x﹣1)=x﹣12,不符合题意,故选:B.6.【答案】A解:∵3a﹣a=1,∴原式=2(3a﹣a)﹣5=2﹣5=﹣3,故选:A.7.【答案】C解:∵﹣3<a<﹣2,∴|a|<3,∵a<8,b<0,∴选项②符合题意;∴b+c>0,∵b>a,∴选项④符合题意,故选:C.8.【答案】D解:A、∵|x|=7,∴x=±7,故本选项不符合题意.B、﹣a不是的数不一定是负数,本选项不符合题意.C、射线AB和射线BA不是同一条射线,本选项不符合题意.D、一个锐角的补角比这个角的余角大90°,正确,本选项符合题意,故选:D.9.【答案】C解:A、折叠后,圆不是与两个空白小正方形相邻,故与原正方体不符,故此选项错误;B、折叠后,圆与三角形成对面,与原正方体不符,故此选项错误;C、折叠后与原正方体相同,与原正方体符和,故此选项正确;D、折叠后,两个三角形的短边不是与两个空白小正方形相邻,与原正方体不符,故此选项错误.故选:C.10.【答案】D解:由统计图可知,2018年12月的增长率为0.0%,说明与2018年11月相比,全国居民消费价格保持不变,故选项A合理;2018年9月到2019年8月,全国居民消费价格每月比上个月的增长率中最小的是﹣0.4%,故选项C合理;故选:D.二、填空题(本题共16分,第11~15题每小题2分,第16~18题每小题2分)11.【答案】见试题解答内容解:由图可得,∠ABC=45°,∠DEF<45°,∴∠ABC>∠DEF,故答案为:>.12.【答案】见试题解答内容解:0.0586≈0.059(精确到千分位).故答案为0.059.13.【答案】见试题解答内容解:把x=3代入关于x的一元一次方程ax+b=0得到3a+b=0,则一组满足条件的a,b的值:a=4,b=﹣3.故答案为:1,﹣3(答案不唯一).14.【答案】见试题解答内容解:∵(x+1)+|y﹣2020|=0,∴x+1=0,y﹣2020=0,所以x=(﹣1)=1.故答案为:1.15.【答案】见试题解答内容解:设有x个人,依题意,得:400x﹣3400=300x﹣100.故答案为:400x﹣3400=300x﹣100.16.【答案】见试题解答内容解:(1)=2×7﹣(﹣3)×6=28∴﹣4m﹣2×4=6,∴m=﹣5.故答案为:28、﹣5.17.【答案】见试题解答内容解:(1)如图所示;(2)∵AB=30,BC=AB,∵AD=BC=10,∵点E是线段CD的中点,∴BE=BD﹣DE=5,故答案为:5.18.【答案】见试题解答内容解:根据摆放情况可得,包装盒的一个长等于两个宽,即长为2a,大纸箱的长为4a,宽为3a,图3中阴影部分的周长为:4a×8+2a=10a,故答案为:2a,2a.三、计算题(本题共16分,每小题8分)19.【答案】见试题解答内容解:(1)(﹣5)+12﹣(﹣8)﹣21=7+7﹣21=﹣6=(﹣4)÷(﹣)=20.【答案】见试题解答内容解:(1)=1×(﹣)﹣×(﹣)+×(﹣)=﹣1=(9+2﹣19)×(﹣4)=32四、解答题(本题共35分,第24题4分,第26题6分,其余每小题5分)21.【答案】见试题解答内容解:原式=6y+4x﹣8xy﹣6y+4xy=4x﹣6xy,当x=﹣2,y=3时,原式=﹣32+36=4.22.【答案】见试题解答内容解:去分母得:9x+6=15+10x﹣5,移项合并得:﹣x=4,解得:x=﹣4.23.【答案】见试题解答内容解:,①+②×3得:10x=30,把x=3代入②得:y=﹣2,则方程组的解为.24.【答案】见试题解答内容证明:∵O是直线AB上一点∴∠AOB=180°∴∠COD+∠COE=90°∵OD是∠AOC的平分线∴∠BOE=∠COE(理由:等式性质)∴∠AOE+∠COE=180°故答案为:90;COD;角平分线的定义;等式性质.25.【答案】见试题解答内容解:(1)A=8×0+4×1+2×4+1=7,A=3×0+4×0+2×1+2=2,A=8×1+4×0+2×6+0=8,故答案为7,28;26.【答案】见试题解答内容解:(1)设篮球的单价为x元,足球的单价为y元,依题意,得:,答:篮球的单价为80元,足球的单价为75元.依题意,得:0.8(80m+75n)=1760,∵m,n均为非负整数,答:学校购买篮球20个、足球8个或者篮球5个、足球24个.27.【答案】见试题解答内容解:(1)∵点A表示的数为5,线段AB的长为线段OA长的1.2倍,∴AB=2.2×5×=×6∴OB=AB﹣OA=1,故答案为﹣1;∴OM=4.5﹣1=6.5(点M在原点右侧)∵M为线段OC的中点∴AC=7﹣5=2(点C在原点右侧)∴线段AC的长为5或16.(3)当AC=x,OC=5+x∴BM=OB+OM=1+(5+x)=x+OC=AC﹣OA=x﹣5∴BM=OM﹣OB=(x﹣5)﹣1=x﹣答:线段BM的长为:x+或x﹣.一、填空题(本题6分)28.【答案】见试题解答内容解:(1)由所给式子可知,k=7,故答案为7;故答案为4+6+7+8+9+10+11+12+13=9;故答案为n+(n+3)+(n+2)+…+(3n﹣3)+(3n﹣2)=(6n﹣1).二、解答题(本题共14分,每小题0分)29.【答案】见试题解答内容解:(1)七块拼板的总面积=(2)×2=4,故答案为8.(2)答案如图所示.(8)答案如图所示.30.【答案】(1)OB;(2)10≤x≤50;(3)20≤t≤32.5.解:(1)∵∠AOB在∠MON的外部,∴射线OA、OB组成的∠AOB的平分线在∠MON的外部,∵∠BOM=15°,∠AOM=10°,∴射线OA、OB组成的∠AOB的平分线在∠MON的内部,故答案为:OB;∵∠COM=x°,∠AOM=10°,∠MON=20°,∵射线OA与射线OC关于∠MON内含对称,∴10≤x≤50;∴∠HOM=50°,∠HON=70°,∠EOM=30°,∠FOM=40°,∴50﹣t≤≤70﹣t,若射线OF与射线OH关于∠MON内含对称,∴22.5≤t≤32.5,综上所述:20≤t≤32.5.。

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案

E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2017— 2018学年度第一学期期末试卷 七年级数学 2018.1
试卷满分:100分,考试时间:100分钟
一、选择题(本题共30分,每小题3分)
下面各题均有四个选项,其中只有一个..
是符合题意的. 1.据中新社2017年10月8日报道,2017年我国粮食总产量达到736 000 000吨,将736 000 000用科学记数法表示为( ).
(A )673610⨯ (B )773.610⨯ (C )87.3610⨯ (D )90.73610⨯
2. 如图所示,将两个圆柱体紧靠在一起,从上面看这两个立体图形,得
到的平面图形是( ).
(A ) (B ) (C ) (D )
3. 下列运算中,正确的是( ).
(A )2(2)4=-- (B ) 224=- (C )236= (D )3(3)27-=-
4. 下列各式进行的变形中,不.正确..
的是( ). (A )若3a =2b ,则3a +2 =2b +2 (B )若3a =2b ,则3a -5 =2b - 5
(C )若3a =2b ,则 9a =4b (D )若3a =2b ,则
23
a b = 5.若2(1)210x y -++=,则x +y 的值为( ). (A )
12 (B )12- (C )32 (D )32
-
6. 在一些商场、饭店或写字楼中,常常能看到一种三翼式旋转门在圆柱体的空间內旋转. 旋转
门的三片旋转翼把空间等分
..成三个部分,下图是从上面俯视旋转门的平面图,两片旋转翼之间的角度是().
(A)100°(B)120°(C)135°(D)150°
7. 实数a,b,c,d在数轴上对应点的位置如图所示,正确的结论是
(A)a > c(B)b +c > 0 (C)|a|<|d| (D)-b<d
8. 如图,在下列各关系式中,不.正确
..的是().
(A)AD - CD=AB + BC
(B)AC- BC=AD -DB
(C)AC- BC=AC + BD
(D)AD -AC=BD -BC
9. 某礼品包装商店提供了多种款式的包装纸片,将它们沿实线折
叠(图案在包装纸片的外部,内部无图案),再用透明胶条粘
合,就折成了正方体包装盒,小明用购买的纸片制作的包装盒
如右图所示,在下列四种款式的纸片中,小明所选的款式的是
().
(A)(B)
(C)(D).
10.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行
一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是
一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人? 如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是( ).
(A )10060(100)x x =- (B )60100(100)x x =-
(C )10060(100)x x =+ (D )60100(100)x x =+
二、填空题(本题共20分,第11~14题每小题3分,第15~18题每小题2分)
11.已知x = 2是关于x 的方程3x + a = 8的解,则a = . 12.一个有理数x 满足: x <0且2x <,写出一个满足条件的有理数x 的值: x = .
13.在一面墙上用一根钉子钉木条时,木条总是来回晃动;用两根钉子钉木条时,木条就会固
定不动,用数学知识解释这两种生活现象为 .
14.已知222x x +=,则多项式2243x x +-的值为 .
15.已知一个角的补角比这个角的一半多30°,设这个角的度数为x °,
则列出的方程是: .
16.右图是一所住宅的建筑平面图(图中长度单位:m ),
这所住宅的建筑面积为 m. .
17.如图,点A ,O ,B 在同一条直线上,射线OD
平分∠BOC ,射线OE 在∠AOC 的内部,且
∠DOE =90°,写出图中所有互为余角的
角: .
18.如图,一艘货轮位于O 地,发现灯塔A 在它的正北方向上,这艘货轮沿正东方向航行,
到达B 地,此时发现灯塔A 在它的北偏西60°的方向上.
(1) 在图中用直尺、量角器画出B 地的位置;
(2) 连接AB ,若货轮位于O 地时,货轮与灯塔A 相距1.5千米,通过测量图中AB 的长度,计算出货轮到达B 地时与灯塔A 的实际距离约为 千米(精确到0.1千米).
三、计算题(本题共16分,每小题4分)
19.(21)(9)(8)(12)---+---
解:
20. 311()()(2)424
-⨯-÷- 解:
21.31125(25)25()424
⨯--⨯+⨯- 解:
22.3213(2)0.254[()]4028
-⨯-÷--- 解:
四、解答题(本题共20分,每小题5分)
23.先化简,再求值:
2223()2()3x xy x y xy ---+,其中1x =-,3y =.
解:
24.解方程 12423
x x +-+=. 解:
25.解方程组 253 1.x y x y +=⎧⎨-=⎩
, 解:
26.已知AB =10,点C 在射线 AB 上, 且12
BC AB =,D 为AC 的中点. (1)依题意,画出图形;
(2)直接写出线段BD 的长.
解:(1)依题意,画图如下:
(2)线段BD 的长为 .
五、解答题(本题共13分,第27题6分,第28题7分)
27.列方程或方程组解应用题
为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒).该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元.经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.
(1)若这个班计划购买6盒乒乓球,则在甲商店付款元,在乙商店付款元;
(2)当这个班购买多少盒乒乓球时,在甲、乙两家商店付款相同?
28. 如图,A,O,B三点在同一直线上,∠BOD与∠BOC互补.
(1)试判断∠AOC与∠BOD之间有怎样的数量关系,写出你的结论,并加以证明;
(2)OM平分∠AOC,ON平分∠AOD,
①依题意,将备用图补全;
②若∠MON=40°,求∠BOD的度数.
解:(1)答:∠AOC与∠BOD之间的数量关系为:;
理由如下:
(2)①补全图形;

备用图。

相关文档
最新文档