八年级数学下学期《二次根式》易错题集

合集下载

(易错题精选)初中数学二次根式难题汇编附解析

(易错题精选)初中数学二次根式难题汇编附解析

(易错题精选)初中数学二次根式难题汇编附解析一、选择题1.如果一个三角形的三边长分别为12、k、72,则化简21236k k-+﹣|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k【答案】D【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,21236k k-+-|2k-5|,=()26k--|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k,故选D.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.2.下列计算正确的是()A.+=B.﹣=﹣1 C.×=6 D.÷=3【答案】D【解析】【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A、B与不能合并,所以A、B选项错误;C、原式= ×=,所以C选项错误;D、原式==3,所以D选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列各式计算正确的是( )A 1082==-= B .()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式6,所以C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.当3x =-时,二次根m 等于( )AB .2CD 【答案】B【解析】解:把x =﹣3代入二次根式得,原式=,依题意得:=.故选B .5.若代数式1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】∵代数式1x -在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.6.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=-C .1)4=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.7.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .8.5130.5a 22a b -22x y +中,是最简二次根式的有( )A .2个B .3个C .4个D .5个 【答案】A【解析】 5 133 0.5a 2a ,不是最简二次根式; 22a b -b ,不是最简二次根式;22x y +是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9.下列计算错误的是( )A .2598a a a +=B .14772⨯=C .3223-=D .60523÷= 【答案】C【解析】【分析】 根据二次根式的运算法则逐项判断即可.【详解】解:A. 259538a a a a a +=+=,正确;B. 14727772⨯=⨯⨯=,正确;C. 32222-=,原式错误;D. 6051223÷==,正确;故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D【答案】A【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<45-<2.故选:A .【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.11.有意义的x 的取值范围( ) A .x >2B .x≥2C .x >3D .x≥2且x≠3 【答案】D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数. 根据题意,得20{30x x -≥-≠解得,x≥2且x≠3. 考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件12.有意义,则x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.13的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.14.计算201720192)2)的结果是( )A.B2 C.7 D.7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩可求解.16.下列运算正确的是( )A .235a a a +=B .23241(2)()162a a a -÷=-C .1133a a-= D .2222)3441a a a ÷=-+【答案】D【解析】 试题分析:A .23a a +,无法计算,故此选项错误;B .()23262112824a a a a ⎛⎫⎛⎫-÷=-÷ ⎪ ⎪⎝⎭⎝⎭=432a -,故此选项错误; C .133a a -=,故此选项错误;D .()22223441a a a ÷=-+,正确.故选D .17.下列运算正确的是( )A =B 2÷=C .3=D .142=【答案】B【解析】【分析】根据二次根式的混合运算的相关知识即可解答.【详解】=,故错误;2÷=,正确;C. =D. 142故选B.【点睛】此题考查二次根式的性质与化简,解题关键在于掌握运算法则.18.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0得,3x +有意义的条件是+30≥x解得:-3≥x故选:D 【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】 2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.20.已知25523y x x =--,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由25523y x x =--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .。

二次根式易错题集

二次根式易错题集

二次根式易错题集一、二次根式的概念:二次根式的性质: 1.a(a≥0)是一个非负数。

2.a2=a(a≥0)⎧a(a≥0)3.a2=a=⎧ ⎧-a(a 0)错题:1.52= 52.-32= -(-3)=3 3.25-(-1)2=5-1=44.6=3∙6=9⨯6=54或3=5.-()22)2()⨯6)=54)=542222-62=--6=-6 6.5-2=11⎧1⎧ == ⎧255⎧5⎧27.根据条件,请你解答下列问题:(1)已知20-n是整数,求自然数n的值;解:首先二次根式有意义,则满足20-n≥0,所以n≤20,又因为20-n是整数,所以根号内的数一定是一个平方数,即20-n必定可化为20-n=a2(a为整数,且a≥0)这种形式,即20-n=a2(a为整数,且a≥0)。

所以满足条件的平方数a2有0,1,4,9,16。

所以n=20,19,16,11,4. (2)已知20n是整数,求正整数n的最小值解:因为20n是整数,所以根号内的数一定是一个平方数,即20n必定可化为20n=a2(a为整数)这种形式,即20n=a2(a为整数),而20n=4⨯5⨯a2(a为整数),4可以开平方,剩下不能开平方的数5,所以正整数n的最小值就是5,因5⨯5=52能被开平方。

所以我们要把常数先进行分解,把能开平方的数分解出来,剩下的不能开平方的数与字母相乘再配成能开平方的数,而字母的最小值就是这个不能开平方的数。

7-2.(2)已知-n是正整数,求实数n的最大值;解:因为20-n是正整数,所以满足12-n 0,所以n 12,所以根号内的数一定是一个平方数,即20-n必定可化为20-n=a2(a为整数,且a 0)这种形式,即20-n=a2(a为整数,且a 0)。

所以满足条件的平方数a2有1,4,9。

所以n=11,8,3.最大值为11. 8.计算x)+2x-2)29.计算:若a-4+-9=0,则a)22-a+)22-b=10.已知y=2x-5+5-2x-3,则2xy的值为。

二次根式易错题汇编及答案解析

二次根式易错题汇编及答案解析
故选:C.
【点睛】
此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
4.若代数式 在实数范围内有意义,则实数 的取值范围是( )
A. B. 且 C. D. 且
【答案】D
【解析】
【分析】
根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.
17.下列二次根式是最简二次根式的是()
A. B. C. D.
【答案】D
【解析】
【分析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数含分母,故A不符合题意;
B、被开方数含开的尽的因数,故B不符合题意;
C、被开方数是小数,故C不符合题意;
D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.
【详解】
A、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
B、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
C、 与 的被开方数相同,所以它们是同类二次根式;故本选项正确;
D、 是三次根式;故本选项错误.
故选:C.
【点睛】
本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
【详解】
解:A、 =2 ,故本选项错误;
B、 是最简根式,故本选项正确;
C、 = ,故本选项错误;
D、 = ,故本选项错误.
故选:B.
【点睛】
本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.
12.下列计算正确的是
A. B. C. D.

八年级数学下册第十六章二次根式易错题集锦(带答案)

八年级数学下册第十六章二次根式易错题集锦(带答案)

八年级数学下册第十六章二次根式易错题集锦单选题1、若x =√2+1,则代数式x 2−2x +2的值为( )A .7B .4C .3D .3−2√2答案:C分析:先将代数式x 2−2x +2变形为(x −1)2+1,再代入即可求解.解:x 2−2x +2=(x −1)2+1=(√2+1−1)2+1=3.故选:C小提示:本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.2、下列计算正确的是( )A .32=6B .(﹣25)3=﹣85C .(﹣2a 2)2=2a 4D .√3+2√3=3√3答案:D分析:由有理数的乘方运算可判断A ,B ,由积的乘方运算与幂的乘方运算可判断C ,由二次根式的加法运算可判断D ,从而可得答案.解:32=9,故A 不符合题意;(−25)3=−8125, 故B 不符合题意;(−2a 2)2=4a 4, 故C 不符合题意;√3+2√3=3√3, 故D 符合题意;故选D小提示:本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.3、下列各式是二次根式的是( )A .√3B .√−1C .√53D .√π−4答案:A分析:根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.解:A 、符合二次根式有意义条件,符合题意;B 、-1<0,所以√−1无意义,故B 选项不符合题意;C 、是三次根式,所以C 选项不符合题意;D 、π-4<0,所以√π−4无意义,故D 选项不符合题意.故选:A .小提示:本题考查二次根式的定义及有意义的条件:√a 是二次根式,必须有a≥0.4、估计(2√30−√24)⋅√16的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间答案:B分析:先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围. (2√30−√24)⋅√16=2√30×√16−√24×√16,=2√5−2,而2√5=√4×5=√20,4<√20<5,所以2<2√5−2<3,所以估计(2√30−√24)⋅√16的值应在2和3之间, 故选B.小提示:本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.5、对于无理数√3,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是( ).A .2√3−3√2B .√3+√3C .(√3)3D .0×√3答案:D分析:分别计算出各选项的结果再进行判断即可.A .2√3−3√2不能再计算了,是无理数,不符合题意;B .√3+√3=2√3,是无理数,不符合题意;C .(√3)3=3√3,是无理数,不符合题意;D .0×√3=0,是有理数,正确.故选:D .小提示:此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.6、在下列代数式中,不是二次根式的是( )A .√5B .√13C .√x 2+1D .2x 答案:D分析:直接利用二次根式的定义即可解答.解:A 、√5是二次根式,故此选项不合题意;B 、√13是二次根式,故此选项不合题意;C 、√x 2+1是二次根式,故此选项不合题意;D 、2x ,不是二次根式,故此选项符合题意.故答案为D .小提示:本题主要考查了二次根式的定义,一般形如√a (a ≥0)的代数式叫做二次根式,正确把握二次根式的定义是解答本题的关键.7、实数a ,b 在数轴上的位置如图所示,化简(√a)2+√b 2的结果是( ).A .−a +bB .−a −bC .a +bD .a −b答案:D分析:根据题意得出b <0<1<a ,进而化简求出即可.解:由数轴可得:b<0<1<a,则原式=a-b.故选:D.小提示:本题主要考查了二次根式的性质与化简,正确得出a,b的符号是解题关键.8、下列二次根式中,最简二次根式是()D.√a2A.−√2B.√12C.√15答案:A分析:根据最简二次根式的两个条件逐项判定即可.解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选:A.小提示:本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、√(−3)2化简后的结果是()A.√3B.3C.±√3D.±3答案:B试题分析:“√a”表示的是a的算术平方根,“±√a”表示的是a的平方根.√(−3)2=√9=3,故选B.10、从√2,−√3,−√2这三个实数中任选两数相乘,所有积中小于2的有()个.A.0B.1C.2D.3答案:C分析:根据题意分别求出这三个实数中任意两数的积,进而问题可求解.解:由题意得:−√3×√2=−√6,−√2×√2=−2,−√3×(−√2)=√6,∴所有积中小于2的有−√6,−2两个;故选C .小提示:本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.填空题11、若a >√2a +1,化简|a +√2|−√(a +√2+1)2=_____.答案:1分析:先根据a >√2a +1,判断出a <−1−√2,据此可得a +√2<−1,a +√2+1<0,再依据绝对值性质和二次根式的性质化简可得.解:∵a >√2a +1,∴(1−√2)a >1,则a <1−√2,即a <−1−√2, ∴a +√2<−1,a +√2+1<0,原式=−a −√2+a +√2+1=1,所以答案是:1 .小提示:本题主要考查二次根式的应用,解题的关键是掌握二次根式的性质、绝对值的性质和解一元一次不等式的步骤.12、已知最简二次根式√2a +1a−b−1和√a +3是同类二次根式,则a b =______. 答案:12分析:根据同类二次根式定义:两个被开方数相同的最简二次根式是同类二次根,列出方程组{a −b −1=22a +1=a +3求解,得出a 、b 值,再代入计算即可. 银,根据题意,得{a −b −1=22a +1=a +3,解得:{a =2b =−1, ∴ab =2-1=12,所以答案是:12.小提示:本题考查同类二次根式概念,代数式求值,负整理指数幂的运算,解二元一次方程组,熟练掌握同类二次根式概念是解题的关键.13、计算√5×√15−√12的结果是_______.答案:3√3分析:根据二次根式的运算法则计算即可得出答案.原式=√5×15−2√3=5√3−2√3=3√3,故答案为3√3.小提示:本题考查的是二次根式,比较简单,需要熟练掌握二次根式的运算法则.14、已知a+2a =√20,那么a−2a的值为__________.答案:±2√3分析:根据已知条件求出a2+(2a )2的值,再由:(a−2a)2=a2+(2a)2−4,即可得出答案.解:∵a+2a=√20,得:a2+(2a )2=20−4=16,∴(a−2a )2=a2+(2a)2−4=16−4=12,∴a−2a=±2√3,所以答案是:±2√3.小提示:本题考查完全平方公式的变形运用,能利用已知条件求出a2+(2a )2,再将a−2a化为平方形式,再化回来是关键.15、已知等式√5−xx−3=√5−x√x−3成立,化简|x﹣6|+√(x−2)2的结果为 _____.答案:4分析:直接利用二次根式的除法运算法则得出x的取值范围,进而化简得出答案.解:∵等式√5−xx−3=√5−x√x−3成立,∴{5−x ≥0x −3>0, 解得:3<x ≤5,∴|x ﹣6|+√(x −2)2=6﹣x +x ﹣2=4.所以答案是:4.小提示:此题主要考查了二次根式的除法运算以及非负数的性质,正确得出x 的取值范围是解题关键. 解答题16、计算:(13)﹣1﹣√18×(﹣√3)﹣|√6﹣3|.答案:4√6分析:根据负整数幂运算公式,二次根式的运算,绝对值的运算进行化简运算即可.(13)−1﹣√18×(﹣√3)﹣|√6﹣3|=3+3√6+√6﹣3=4√6.小提示:本题主要考查了负整数指数幂、实数的运算,熟练掌握运算公式和法则是解题的关键.17、已知a =2+√5,b =2−√5,求代数式a 2b +ab 2的值.答案:-4分析:先将代数式因式分解,再代入求值.a 2b +ab 2=ab(a +b)=(2+√5)(2−√5)(2+√5+2−√5)=−1×4=−4.故代数式的值为−4.小提示:本题考查因式分解、二次根式的混合运算,解决本题的关键是熟练进行二次根式的计算.18、计算:(1)3(√2+√3)+2(√2−2√3)3−√2+(√3)2+|1−√2|(2)√8答案:(1)5√2-√3(2)4分析:(1)原式去括号,合并同类二次根式即可得到答案;(2)根据立方根、算术平方根,平方和绝对值的代数意义化简各项后再进行加减运算即可得到答案.(1)原式=3√2+3√3+2√2-4√3=5√2-√3(2)原式=2-√2+3+√2-1=2+3-1=4小提示:此题主要考查了实数的混合运算以及二次根式的加减法,熟练掌握运算法则是解答此题的关键.。

二次根式易错题汇编及答案

二次根式易错题汇编及答案

二次根式易错题汇编及答案一、选择题1.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a . 2.下列各式计算正确的是( )A 22221081081082-==-= B .()()()()4949236-⨯-=--=-⨯-= C 11111154949236+==+= D .9255116164==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式36,所以A 选项错误;B 、原式49⨯49,所以B 选项错误;C 、原式6,所以C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列计算中,正确的是( )A .=B 1b =(a >0,b >0)C =D .=【答案】B【解析】 【分析】a≥0,b≥0a≥0,b >0)进行计算即可. 【详解】A 、B 1b (a >0,b >0),故原题计算正确;C ,故原题计算错误;D 32故选:B .【点睛】 此题主要考查了二次根式的乘除法,关键是掌握计算法则.4.已知n是整数,则n的最小值是().A.3 B.5 C.15 D.25【答案】C【解析】【分析】【详解】解:135n=也是整数,∴n的最小正整数值是15,故选C.5.在下列算式中:=②=;==;=,其中正确的是()4A.①③B.②④C.③④D.①④【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】①错误;=②正确;==,故③错误;==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.6.已知n n的最小值是()A.3 B.5 C.15 D.45【答案】B【解析】【分析】由题意可知45n是一个完全平方数,从而可求得答案.【详解】=∵n∴n的最小值为5.故选:B.【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.7.下列计算结果正确的是()A3B±6CD.3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A、原式=|-3|=3,正确;B、原式=6,错误;C、原式不能合并,错误;D、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.8.)A.±3 B.-3 C.3 D.9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.9.下列各式中计算正确的是()A+=B.2+=C=D.2=2【答案】C【解析】【分析】结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案.【详解】解:不是同类二次根式,不能合并,故本选项错误;B.2==1,原式计算错误,故本选项错误.D.2故选:C.【点睛】本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.10.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.11.x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x+∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.12.如果一个三角形的三边长分别为12、k、7221236k k-+|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k【答案】D【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,21236k k-+,=()26k--|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k,故选D.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.13的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.14.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.15.a 的取值范围为() A .0a >B .0a <C .0a =D .不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .16.下列计算或化简正确的是( )A.=BC 3=-D 3= 【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B =,故B 错误;C 3=,故C 错误;D 3===,正确.故选D .17.下列各式中,运算正确的是( )A 2=-B 4=C =D .2=【答案】B【解析】【分析】=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】A 2=,故原题计算错误;B =,故原题计算正确;C =D 、2不能合并,故原题计算错误;故选B .【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.18.下列运算正确的是( )A =B =C 123=D 2=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A .≠A 错误;B .=,故B 正确;C .=C 错误;D .2=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.19.如果m 2+m =0,那么代数式(221m m ++1)31m m +÷的值是( )A B . C + 1 D + 2 【答案】A【解析】【分析】先进行分式化简,再把m 2+m =. 【详解】解:(221m m ++1)31m m +÷ 223211m m m m m +++=÷ 232(1)1m m m m +=⋅+ =m 2+m ,∵m 2+m =0,∴m 2+m =∴原式=故选:A .【点睛】 本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=-C .1)4=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.。

(完整版)八年级数学二次根式易错题集锦

(完整版)八年级数学二次根式易错题集锦

a > o 时,式子 a 才是二次根式;若a <o ,则式子 \ a 就不能叫二次根式,即 A /a 无意义。

2 •易把 、a 2 与(\ a)2混淆。

3 •二次根式的乘除法混合运算的顺序,一般从左到右依次进行或先把除法统一成乘法后,再用乘法运算 法则计算。

4 •对同类二次根式的定义理解不透。

针对训练题:6.已知:xy 3,则x 、y y x 的值是 \ x \ y7.若.(x 1)2(x 2) (x 1) \ x 2则x 的取值范围是8.已知a b 3,ab 2,计算“ b的值.14.已知x易错题知识点 二次根式易错题1 •忽略二次根式有意义的条件,只有被开方数 5 •二次根式的混合运算顺序不正确。

1.若..X 1— 2 x (x y),则 x y = 2. .(b 3)3b ,则b 的取值范围是 3. (. a 1)2 1成立的条件是4.计算a 1的结果是 a I ab ------ 2的值为 (a b)29.已知实数 a,b 在数轴上的对应点分别为 A,B,且 A 在原点左侧,B 要原点右侧,如果a b ,则 a b Na10.已知a,b 分别为等腰三角形的两条边长 ,且a,b 满足b 4 ,3a 6 3.2 a ,求此三角形的周长?11.若代数式;m --有意义, Vmn 那么直角坐标系中点 P ( m , n )的位置在( )象限12. 当 1时,化简.(a 1)2 1 2a13.化简1).2). \ 4m 3n(m 0)=15.已知:实数 7 \ 3的整数部分为a,小数部分为b,求代数式ab 的值。

16..若 a,b 为实数,且 4a 2 b 2 4a 10b2619.如图所示的Rt △ ABC 中,/ B=90 ° ,点P 从点B 开始沿BA 边以1厘米/?秒的速度向点 A 移动;同时, 点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点 C 移动.问:几秒后△ PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)17. 已知 i' -~ 2 小 <x 3y x 9 0,求 的值。

八年级初二数学下学期二次根式单元 易错题质量专项训练

八年级初二数学下学期二次根式单元 易错题质量专项训练
三、解答题
21.阅读下面问题:
阅读理解:
﹣1;


应用计算:(1) 的值;
(2) (n为正整数)的值.
归纳拓展:(3) 的值.
【答案】应用计算:(1) ;(2) ;归纳拓展:(3)9.
【分析】
由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1)乘以 分母利用平方差公式计算即可,(2)乘以 分母利用平方差公式计算即可,(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可.
14.化简并计算: ________.(结果中分母不含根式)
15.已知整数 , 满足 ,则 __________.
16.已知 ,化简: ____Leabharlann .17.化简: =_____.
18.若 有意义,则x的取值范围是____.
19.要使 有意义,则x的取值范围是_____
20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是 , , ,记 ,那么三角形的面积 .在 中, , , 所对的边分别记为 , , ,若 , , ,则 面积是_______.
所以a2-4a=-1.
所以2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1.
请你根据小明的分析过程,解决如下问题:
(1)计算: =-.
(2)计算: +…+ ;
(3)若a= ,求4a2-8a+1的值.
【答案】(1) ,1;(2) 9;(3) 5
【分析】
(1) ;
(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题(解析版)

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题(解析版)

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题学校:___________姓名:___________班级:___________考号:___________一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列运算正确的是()A=.(22=C+=2=-【答案】B【分析】利用二次根式的加减法对A、C进行判断;根据二次根式的性质对B、D进行判断.【详解】解:A A选项错误;B、(22=,所以B选项正确;C C选项错误;=-D选项错误.D、原式22故选:B.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.下列二次根式能与)A.B C D【答案】A【分析】能与【详解】解:.A =,被开方数与A 正确;B =,被开方数与B 错误;C =,被开方数与C 错误;D =,被开方数与D 错误. 故选择:A .【点睛】本题考查了同类二次根式,几个二次根式化成最简二次根式后被开方数相同,这几个二次根式叫同类二次根式,同类二次根式可以进行合并,熟练掌握同类二次根式的定义是解题的关键.3.若|2013|a a -=,则22013a -的值是( )A .2012B .2013C .2014D .无法确定【答案】C【分析】根据二次根式的被开方数是非负数、将其代入求值即可.【详解】解:∵a -2014≥0,∵a≥2014,-=a ,=2013,∵a -2014=20132,∵a -20132=2014.故选:C .【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.已知||5a =7=b a =-,则a b +=( )A .2B .12C .2或12D .2-或12-【答案】C【分析】先根据绝对值性质和二次根式的性质得出a 、b 的值,再分别代入计算可得.【详解】解:∵|a|=57=,∵a=±5,b=±7,又b a =-,∵a -b≤0,即a≤b ,则a=-5,b=7或a=5,b=7,当a=-5,b=7时,a+b=-5+7=2;当a=5,b=7时,a+b=5+7=12;综上,a+b 的值为2或12,故选C .【点睛】本题主要考查二次根式的性质与化简,解题的关键是掌握绝对值性质和二次根式的性质.5.下列计算中正确的是( )A .1=B =C .5=±D 761=-= 【答案】B【分析】根据二次根式的性质和减法运算分别判断.【详解】解:A 、=,故错误,不符合;B 223)2332,故正确,符合;C 5=,故错误,不符合;D 13,故错误,不符合;故选B .【点睛】 本题考查了二次根式的性质,二次根式的减法运算,解题的关键是掌握运算法则. 6.当x在实数范围内有意义( ) A .1x >B .1≥xC .1x <D .1x ≤ 【答案】A【分析】根据分式的分母不等于0的条件及二次根式非负性解答.【详解】由题意得:x-1>0,解得x>1,故选:A.【点睛】此题考查未知数的取值范围的确定,掌握分式的分母不等于0的条件及二次根式非负性是解题的关键.7的结果估计在()A.10到11之间B.9到10之间C.8到9之间D.7到8之间【答案】D【分析】先根据二次根式的乘法计算得到原式为4+的范围,即可得出答案.【详解】===+,解:原式4∵34<<,∵748<+<,故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.8.如x为实数,在“1)□x”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x不可能是()A.1B1C.D.1【答案】C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】-=,故选项A不符合题意;解:A、1)1)0⨯=,故选项B不符合题意;B、1)1)2C1与C符合题意;+=,故选项D不符合题意.D、1)(10故选:C.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.9.已知m、n是正整数,则满足条件的有序数对(m,n)为()A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是【答案】C【分析】根据二次根式的性质分析即可得出答案.【详解】解:m 、n 是正整数, ∵m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20),故选:C .【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.10.当x =()20193419971994x x --的值为( ).A .1B .1-C .20022D .20012-【答案】B【解析】【分析】 由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.【详解】∵12x +=,()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-. ∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化.二、填空题(本大题共7小题,每小题3分,共21分) 114132-⎛⎫-+-= ⎪⎝⎭__________________. 【答案】-13【分析】根据二次根式的运算、负指数幂及绝对值可直接进行求解.【详解】解:原式=16313+-=-;故答案为13-.【点睛】本题主要考查二次根式的运算及负指数幂,熟练掌握二次根式的加减运算及负指数幂是解题的关键.12.已知1,1a b ==,则ab =_____,a b b a+=_____. 【答案】1 6【分析】(1)运用平方差公式计算;(2)先通分,然后a 、b 的值代入计算.【详解】解:1,1a b ==,221)11ab ∴==-=,a b b a+ 22a b ab+= 2()2a b ab ab-+== 6=.故答案为1,6.【点睛】本题考查了二次根式、分式的化简求值,熟练掌握求解的方法是解题的关键.13.如果点A (x ,y 80y -=,则点A 在第_____象限.【答案】二【分析】根据非负性求出x 、y 的值,即可判断A 所在的象限.【详解】80y -=根据二次根式和绝对值的非负性可知x =﹣2,y=8.则A(﹣2,8),应在第二象限.故答案为:二.【点睛】本题考查非负性的应用,坐标点与象限的关系,关键在于利用非负性解出x ,y .14.下列各式:=;==a >0,b≥0);①=-,其中一定成立的是________(填序号). 【答案】∵∵∵【分析】根据二次根式的性质及运算法则逐项分析即可.【详解】∵00,a b ≥>≠,故不一定;=00,a b ≥>; ∵当00,a b >≥时,22231633333b b b a ab a a a aa ===,故一定成立; ∵3a 成立时,0a ≤3a a a a a ,故一定成立;故答案为:∵∵∵.【点睛】本题考查二次根式的性质以及乘除远算法则,熟练掌握基本性质计算法则是解题关键.15.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2-=※________.【答案】1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2※=2=2-2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.16.数轴上有A ,B ,C 三点,相邻两个点之间的距离相等,其中点A 表示,点B 表示1,那么点C 表示的数是________.【答案】1--或12或2【分析】分点C 在点A 的左侧、点C 在点A 、B 的中间、点C 在点B 的右侧三种情况,再分别利用数轴的定义建立方程,解方程即可得.【详解】设点C 表示的数是x ,由题意,分以下三种情况:(1)当点C 在点A 的左侧时,则AC AB =,即1(x =-,解得1x =--(2)当点C 在点A 、B 的中间时,则AC BC =,即(1x x -=-,解得12x =; (3)当点C 在点B 的右侧时,则AB BC =,即1(1x -=-,解得2x =;综上,点C 表示的数是1--或2故答案为:1--12或2+. 【点睛】本题考查了实数与数轴、一元一次方程的应用,熟练掌握数轴的定义是解题关键.17.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.【答案】21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而【详解】∵10a b c ++=∵100a b c ---=∵2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∵2221)2)3)0++=∵123===∵111429a b c -=⎧⎪-=⎨⎪-=⎩∵2511a b c =⎧⎪=⎨⎪=⎩∵2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.三、解答题(本大题共6小题,共49分)18.计算:(1)101(3)|2|2π-⎛⎫--+- ⎪⎝⎭ (22【答案】(1)3;(2(1)根据负指数幂、零指数幂和绝对值的概念直接计算即可;(2)根据二次根式的运算进行计算即可.【详解】解:(1)101(3)|2|2π-⎛⎫--+- ⎪⎝⎭2123=-+=(2222=-【点睛】 本题考查了负指数幂、零指数幂的计算,二次根式的计算,熟练掌握运算法则是解题的关键.19.计算题:(1;(2;(3))()2331⨯-【答案】(1)(2)8;(3)【分析】(1)先利用二次根式的性质进行化简,再利用二次根式的乘除法运算法则计算即可; (2)先利用二次根式的性质进行化简,再利用二次根式的运算法则计算即可;(3)先利用完全平方公式和平方差公式进行计算,再利用二次根式的加减运算法则计算即可.【详解】(1====(2=102=-8=(3)23)(31)+---2(31)=+--22223211⎡⎤=---+⎣⎦9531=--+=.【点睛】本题主要考查二次根式的混合运算,解题的关键是正确化简二次根式,熟练掌握二次根式的运算法则.20.先化简,再求值:2241244x x x x x -⎛⎫-÷ ⎪--+⎝⎭,其中2x =-+【答案】22x -+, 【分析】首先计算括号里面分式的减法,然后再计算括号外分式的除法,化简后,再代入x 的值可得答案.【详解】 解:2241244x x x x x -⎛⎫-÷ ⎪--+⎝⎭22(2)22(2)(2)x x x x x x x --⎛⎫=-⨯ ⎪--+-⎝⎭ 2222x x x --=⨯-+ 22x =-+,当2x =-+== 【点睛】本题考查了分式的化简求值,二次根式的混合运算.分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式. 21.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2; (3)设a =,b =c =,比较a ,b ,c 的大小关系.【答案】(1==(2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (2+1=1=1=.(3)a ==2b ==+2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.22.已知x =y = (1)求222x xy y ++的值. (2【答案】(1)40;(2)6-【分析】(1)先将x 、y 进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x 、y 进行计算即可.【详解】 (1)310x ==,3y ==, x y ∴+=6-=x y ,22222()40x xy y x y ∴++=+==.(2)103x =,3y =,20x ∴->,10y+>,21(2)(1)x y x x y y -+=--+ 11x y=-=-=33=-.6【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质及分母有理化的方法、完全平方公式的变形等知识点.23.阅读下列材料,然后回答问题.①一样的式子,其实我们====还可以将其进一步化简:1以上这种化简的步骤叫做分母有理化.①学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab =-3 ,求a2 + b2.我们可以把a+b和ab看成是一个整体,令x=a+b ,y = ab ,则 a 2+ b2= (a + b)2- 2ab = x2- 2y = 4+ 6=10.这样,我们不用求出a,b,就可以得到最后的结果....+(1b 2a2+ 1823ab + 2b2=(2)已知m 是正整数,a2019 .求m.(31=【答案】(1(2)2;(3)9【分析】(1)先将式子的每一项进行分母有理化,再计算即可; (2)先求出,a b ab +的值,再用换元法计算求解即可;(31=【详解】解:(1)原式12019+2222=+++12019122+++==(2)∵a,b∵2(21),1a b m ab +==+= ∵2a 2+ 1823ab + 2b 2 = 2019∵222()18232019a b ++=∵2298a b +=∵24(21)100m +=∵251m =±- ∵m 是正整数∵m=2.(31=得出21==20∵2281=+=≥≥=.9【点睛】本题考查的知识点是分母有理化以及利用换元思想求解,解此题的关键是读懂题意.理解分母有理化的方法以及利用换元方法解题的方法.试卷第21页,总21页。

八年级初二数学下学期二次根式单元 易错题难题测试题

八年级初二数学下学期二次根式单元 易错题难题测试题

八年级初二数学下学期二次根式单元 易错题难题测试题一、选择题1.下列计算正确的是( ) A .()25-=﹣5 B .4y =2y C .822aaa=D .235+=2.下列各式成立的是( ) A .2(3)3-=B .633-=C .222()33-=- D .2332-=3.下列运算正确的是( ) A .732-= B .()255-=-C .1232÷=D .03812+=4.下列计算正确的是( ) A .2+3=5B .8=42C .32﹣2=3D .23⋅=65.下列二次根式中,最简二次根式是( ) A . 1.5B .13C .10D .276.下列根式中,最简二次根式是( ) A .13B .0.3C .3D .87.化简1156+的结果为( ) A .1130 B .30330C .33030D .30118.若化简|1-x|-2816x x -+的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数 B .1≤x ≤4C .x ≥1D . x ≤49.下列计算不正确的是 ( )A .35525-=B .236⨯=C 774=D 363693=+==10.若|x 2﹣4x+4|23x y --x+y 的值为( ) A .3B .4C .6D .911.下列运算正确的是( ) A 235=B .(228-= C 112222=D .()21313-=-12.已知实数x 、y 满足222y x x =-+--,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定二、填空题13.已知()2117932x x x y ---+-=-,则2x ﹣18y 2=_____.14.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.15.实数a 、b 满足22a -4a 436-12a a 10-b 4-b-2+++=+,则22a b +的最大值为_________.16.已知|a ﹣2007|+2008a -=a ,则a ﹣20072的值是_____. 17.把1a a-的根号外的因式移到根号内等于? 18.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.19.已知23x =243x x --的值为_______.20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______. 三、解答题21.先阅读材料,再回答问题: 因为)21211=2121=+;因为(32321=,所以3232=+(43431=4343=+ (154=+ ,1n n=++ ; (2213210099⋅⋅⋅++++的值. 【答案】(1541n n +2)9 【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案. 【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.计算: 21)3)(3--【答案】3-23.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式=4-23-[32-(23)2]-626 3⨯=4-23-[32-(23)2]-4=4-23+3-4=3-23【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.24.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一)53533 333⨯==⨯;(二)231)=31 31(31)(31)-=-++-(;(三)22(3)1(31)(31)=31 31313131-+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简5+3:①参照(二)式化简5+3=__________.②参照(三)式化简5+3=_____________(2)+315+37+599+97+【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.25.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==---.以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-.(1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1.【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.26.计算:27812)6【答案】3243【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可. 【详解】解:(27812)6=(332223)6=322)6=323 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.27.计算(118831)31)⨯; (2)1(123)622【答案】(122+;(2)2. 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算. 详解:(1)1883131+;=()322231- 22 ;(2)原式=(2233622⨯, =3362=3322⨯ =922=2点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.28.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.29.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)12a ===,b ===22221111()223122222a b a b ab ⎛⎫+=+-=+-⨯⨯=-= ⎪ ⎪⎝⎭ 【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.30.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断. 【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;C=,所以C选项正确;D D选项错误.故选:C.【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:A3=,故A正确;B-不能合并,故B错误;C、22(3=,故C错误;D、=D错误;故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.C解析:C【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案.【详解】解:A A错误;B5=,故B错误;C2==,故C正确;D01213=+=,故D错误;故选:C.【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.4.D解析:D【解析】解:A A错误;B==,所以B错误;C.=C错误;D==D正确.故选D.5.C解析:C【分析】化简得到结果,即可做出判断.【详解】解:A,不是最简二次根式;2B,不是最简二次根式;C是最简二次根式;D故选:C.【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.6.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.7.C解析:C【解析】故选C.点睛:此题主要考查了二次根式的化简,解题关键是利用分数的通分求和,然后把其分母有理化即可求解,比较简单,但是易出错,是常考题.8.B解析:B【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】原式可化简为|1-x|-|x-4|,当1-x≥0,x-4≥0时,可得x无解,不符合题意;当1-x≥0,x-4≤0时,可得x≤1时,原式=1-x-4+x=-3;当1-x≤0,x-4≥0时,可得x≥4时,原式=x-1-x+4=3;当1-x≤0,x-4≤0时,可得1≤x≤4时,原式=x-1-4+x=2x-5,据以上分析可得当1≤x≤4时,多项式等于2x-5,故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.D解析:D【解析】根据二次根式的加减法,合并同类二次根式,可知=故正确;=根据二次根式的性质和化简,=,故正确;根据二次根式的加减,不是同类二次根式,故不正确.故选D.10.A解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.11.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A错误;选项B,(2428-=⨯=,选项B正确;选项C124==,选项C错误;选项D1,选项D错误.综上,符合题意的只有选项B.故选B.【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.12.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】∵实数x、y满足2y=,∴x=2,y=﹣2,∴yx=22-⨯=-4.故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.二、填空题13.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,∴x ≥11,|7﹣x =3y ﹣2,﹣x +7+x ﹣9=3y ﹣2,=3y ,∴x ﹣11=9y 2,则2x ﹣18y 2=2x ﹣2(x ﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.14.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.15.【分析】首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出的最大值.【详解】解析:【分析】10-b 4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出22a b +的最大值.【详解】10-b 4-b-2=+,1042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.16.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.17.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.18.﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,.故答案为-2a .【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题. 19.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---4383=--+=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.20.【分析】根据a ,b ,c 的值求得p =,然后将其代入三角形的面积S =求值即可.【详解】解:由a =4,b =5,c =7,得p ===8.所以三角形的面积S ===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

二次根式易错题汇编附答案解析

二次根式易错题汇编附答案解析

9;因此这三个选项都不是最简二次根式.所以只有 C 选项符合最简二次根式的要求.
【详解】
解: A 、 1 2 ,被开方数含有分母,不是最简二次根式; 22
B 、 0.3 30 ,被开方数含有小数,不是最简二次根式; 10
D 、 18 3 2 ,被开方数含有能开得尽方的因数,不是最简二次根式;
所以,这三个选项都不是最简二次根式.
A.3
B.5
C.15
【答案】B
D.45
【解析】 【分析】 由题意可知 45n 是一个完全平方数,从而可求得答案. 【详解】 解: 45n 95n 3 5n ,
∵n 是正整数, 45n 也是一个正整数,
∴n 的最小值为 5. 故选:B. 【点睛】 此题考查二次根式的定义,掌握二次根式的定义是解题的关键.
∴ x2 y2 (x y)(x y) (3 2 2)(3 2 2) =1.
故选:B. 【点睛】 本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差
公式进行解题.
12.式子 1 a 有意义,则实数 a 的取值范围是( ) a2
A.a≥-1
B.a≤1 且 a≠-2
a2 | a b | b2 a a b b
a (a b) b
a a b b 2a.
故选 A. 【点睛】 本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.
17.若 a b ,则化简二次根式 a3b 的正确结果是( )
A. a ab
B. a ab
C. a ab
=m2+m,
∵m2+m 2 0,
∴m2+m 2 ,
∴原式 2 ,
故选:A. 【点睛】

八年级初二数学下学期二次根式单元 易错题难题学能测试试题

八年级初二数学下学期二次根式单元 易错题难题学能测试试题

一、选择题1.下列式子为最简二次根式的是( )A .22a b +B .2aC .12aD .12 2.若5,a =17=b ,则0.85的值用a 、b 可以表示为 ( )A .10a b +B .10-b a C .10ab D .b a 3.下列式子中,属于最简二次根式的是( ) A .9 B .13 C .20 D .74.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣1 5.已知52a =+,52b =-,则227a b ++的值为( )A .4B .5C .6D .76.下列各式中,不正确的是( )A .233(3)(3)->-B .33648<C .2221a a +>+D .2(5)5-= 7.下列计算正确的是( )A .235+=B .2332-=C .()222=D .393= 8.在式子23(0),2,1(2),2(0),3,1,2x x y y x x x x y >+=-->++中,二次根式有( )A .2个B .3个C .4个D .5个9.下列属于最简二次根式的是( )A .8B .5C .4D .1310.若3x -在实数范围内有意义,则x 的取值范围是( )A .x >0B .x >3C .x ≥3D .x ≤3二、填空题11.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.12.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.13.观察下列等式:第1个等式:a 1=2112=-+, 第2个等式:a 2=3223=-+, 第3个等式:a 3=32+=2-3, 第4个等式:a 4=5225=-+, …按上述规律,回答以下问题:(1)请写出第n 个等式:a n =__________.(2)a 1+a 2+a 3+…+a n =_________14.已知a ,b 是正整数,若有序数对(a ,b )使得112()a b+的值也是整数,则称(a ,b )是112()a b +的一个“理想数对”,如(1,4)使得112()a b+=3,所以(1,4)是112()a b +的一个“理想数对”.请写出112()a b+其他所有的“理想数对”: __________. 15.若0xy >,则二次根式2y x x -化简的结果为________. 16.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______.17.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫= ⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________.18.n 的最小值为___19.若实数a =,则代数式244a a -+的值为___.20.函数y 中,自变量x 的取值范围是____________. 三、解答题21.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析.【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可.【详解】解:(1该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间.【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a-=-=,∴2212a a-+=,即221a a-=∴原式=24(2)14115a a-+=⨯+=解法二∴原式=24(211)1a a-+-+24(1)3a=--211)3=--4235=⨯-=点睛:(1得22=-=-a b,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.23.计算:(1(041--;(2⎛- ⎝【答案】(1;(2)【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(041--(2⎛- ⎝-0-=24.观察下列等式:1==;==== 回答下列问题: (1(2)计算:【答案】(1(2)9【分析】(1)根据已知的31=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.【详解】解:(1=(2+99+=1100++-=1=10-1=9.25.计算(2)2;(4)【答案】(1)2)9-;(3)1;(4)【分析】(1)根据二次根式的性质和绝对值的代数意义进行化简后合并即可;(2)根据完全平方公式进行计算即可;(3)根据二次根式的乘除法法则进行计算即可;(4)先进行乘法运算,再合并即可得到答案.【详解】解:==(2)2=22-=63-=9-=1;(4)===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.26.先化简,再求值:2222212⎛⎫----÷⎪-+⎝⎭x y x yxx x xy y,其中x y==.【答案】原式x yx-=-,把x y==代入得,原式1=-.【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可.试题解析:2222212⎛⎫----÷⎪-+⎝⎭x y x yxx x xy y()()()222=x yx y x xx x x x y x y-⎛⎫---⋅⎪+-⎝⎭=y x x yx x y---⋅+x yx-=-把x y==代入得:原式1==-+考点:分式的化简求值.27.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y==,求22x xy y++的值.【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦, (()1475452=⨯+---230=+28=-;(2)(1119,22x y ==, 1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.28.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】AB |a |,可以化简,故不是最简二次根式;C =D =,可以化简,故不是最简二次根式; 故选:A .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.C解析:C【分析】化简即可. 【详解】10ab . 故选C .【点睛】的形式. 3.D解析:D【分析】根据直角二次根式满足的两个条件进行判断即可.【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A 错误;3=被开方数中含分母,不是最简二次根式,故选项B 错误;=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C 错误;是最简二次根式,故选项D 正确.故选D .【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.4.A解析:A【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A .【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小5.B解析:B【分析】根据二次根式的混合运算和完全平方公式进行计算,即可得到结果.【详解】解:∵2a =,2b =,∴227a b ++2252527 554547454 25= ∴255故选:B .【点睛】本题主要考查了二次根式的混合运算和完全平方公式,熟悉相关运算法则是解题的关键 6.B解析:B【解析】=-3,故A 正确;=4,故B不正确;根据被开方数越大,结果越大,可知C正确;5=,可知D正确.故选B.7.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A、非同类二次根式,不能合并,故错误;B、=C、22=,正确;D故选C.【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.8.B解析:B【解析】解:当y=﹣2时,y+1=﹣2+1=﹣1,∴y=-2)无意义;当x>0无意义;x>0共3个.故选B.9.B解析:B【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】解:A,不符合题意;BC=2,不符合题意;D3,不符合题意;故选B.【点睛】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.10.C解析:C【详解】解:根据题意得:x-3≥0解得:x≥3故选C.二、填空题11.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.12.3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|解析:3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|b|+|a﹣b|﹣|a+b|=b ﹣(a ﹣b )+(a +b )=b ﹣a +b +a +b=3b ,故答案为:3b【点睛】a =和绝对值的性质是解题的关键.13.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n==(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题14.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 15.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy > ∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 16.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数:∴102个数.∵每一行排列了6个数,而1026=17÷ ∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.17.【解析】上述各式反映的规律是(n ⩾1的整数),得到第5个等式为: (n ⩾1的整数).故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.18.5【分析】因为是整数,且,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∵,且是整数,∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.19.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.20.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】,得4-x≥0且x-2≠0.解:由y=x-2解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

初二数学二次根式易错题总结

初二数学二次根式易错题总结

初二数学二次根式易错题总结1、当a>1时,化简的结果是_________2、把根号外的因式移入根号内的结果是_____________3、若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而增大,则一次函数的图像一定经过_____________________4、已知Rt△ABC的两条边长都是方程x2-6x+8=0的根,则Rt △ABC的第三边可能是5、已知关于x的一元二次方程(m﹣1)x2+x+1=0没有实数根,则m的取值范围是______.6、已知关于x的方程有两个不相等的实数根,则k的取值范围是7、若,则的结果是()(A)-2a-2 (B)2a+2 (C)4 (D)-48、化简的结果是()(A)(B)(C)(D)9、如果<0,那么化简的结果是()(A)-2(B)1(C)-1(D)210、把下列各式分母有理化:(1).(2).(3).(a≠b)(4).() (5).11、化简:(1).(1<x<4) (2).(x+y)(x<y<0) 12、已知:x=,求代数式3-的值13、已知=,求的值。

14、已知:,为实数,且。

求的值。

15、计算:(1)(2)(3)(4)(5)(6)(7)当a=时,求的值16、已知+=5,求的值17、已知-=2,求+的值18、已知关于x的一元二次方程x2+ 2(k-1)x+k2-1= 0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.19、在等腰△ABC中,三边分别为、、,其中,若关于的方程有两个相等的实数根,求△ABC的周长.20、关于的一元二次方程有两实数根.(1)求的取值范围;(2)若,求的值.1、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?2、一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?3、一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?4、如图所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航.一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?5、如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,则道路的宽为________米.6、阅读材料:设一元二次方程(≠0)的两根为,,则两根与方程的系数之间有如下关系:+=-,·=.根据该材料完成下列填空:已知,是方程的两根,则(1)+= ,;(2)()()= .7、我市“利民快餐店”试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日纯收入.(日纯收入=每天的销售额﹣套餐成本﹣每天固定支出)(1)若每份套餐售价不超过10元.①试写出y与x的函数关系式;②若要使该店每天的纯收入不少于800元,则每份套餐的售价应不低于多少元?(2)该店既要吸引顾客,使每天销售量较大,又要有较高的日纯收入.按此要求,每份套餐的售价应定为多少元?此时日纯收入为多少元?8、某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。

八年级初二数学第二学期二次根式单元 易错题质量专项训练试题

八年级初二数学第二学期二次根式单元 易错题质量专项训练试题

八年级初二数学第二学期二次根式单元 易错题质量专项训练试题一、选择题1.下列运算结果正确的是( )A 9=-B 3=C .(22= D 5=-2.下列计算正确的是( )A =B =C =D =3.下列根式中,最简二次根式是( )A B C D 4.下列二次根式中,是最简二次根式的是( )A BC D5.下列运算中,正确的是( )A =3B .=-1C D .36.下列二次根式是最简二次根式的是( )AB C D7.下列运算正确的是( )A .32-=﹣6B 12-C =±2D .=8.化简 )ABC D9.设a b 21b a-的值为( )A 1+B 1+C 1D 110.下列计算或判断:(1)±3是27的立方根;(2;(32;(4;(5)A .1个B .2个C .3个D .4个11.下列二次根式是最简二次根式的是( ) A .0.1B .19C .8D .14412.已知最简二次根式23a -与2a 是同类二次根式,则a 的值是( ) A .2B .-1C .3D .-1或3二、填空题13.比较实数的大小:(1)5?-______3- ;(2)514-_______12 14.能力拓展:1:2121A -=+;2:3232A -=+;3:4343A -=+;4:54A -=________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A∵32+________21+∴32+________21+ ∴32-________21-()3同理,我们可以比较出以下代数式的大小:43-________32-;76-________54-;1n n +-________1n n --15.化简322+=___________.16.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 17.观察下列等式: 第1个等式:a 12112=+, 第2个等式:a 23223=+,第3个等式:a 3=32+=2-3, 第4个等式:a 4=5225=-+, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________ 18.已知函数1x f xx,那么21f _____.19.222a a ++-1的最小值是______.20.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.三、解答题21.阅读下面问题: 阅读理解:2221(21)(21)==++-1; 323232(32)(32)==++-(55252(52)(52)==-++-.应用计算:(176+ (211n n++(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9. 【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可. 【详解】(1(2(3+98+,(+98+,++99-, =10-1, =9. 【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.23.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.24.观察下列等式:1==;==== 回答下列问题:(1(2)计算:【答案】(1(2)9 【分析】(1)根据已知的31=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可. 【详解】=解:(1(2+99+++-=1100=1=10-1=9.25.观察下列一组等式,然后解答后面的问题=,1)1=,1=,1=⋯⋯1(1)观察以上规律,请写出第n个等式:(n为正整数).(2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为1=;(2)原式111019 ==-=;-==,(3<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.26.计算(1-(2)(()21【答案】(1);(2)24+【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1==-=2-(2)(()21---=22(181)=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.27.在一个边长为(cm的正方形的内部挖去一个长为()cm,cm的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm2).考点:二次根式的应用28.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443. 【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.29.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =, 由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据二次根式的性质及除法法则逐一判断即可得答案. 【详解】9=,故该选项计算错误,不符合题意,=C.(22=,故该选项计算正确,符合题意,5=,故该选项计算错误,不符合题意, 故选:C . 【点睛】本题考查二次根式的性质及运算,理解二次根式的性质并熟练掌握二次根式除法法则是解题关键.2.B解析:B【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案.【详解】=,=3∴A、C、D均错误,B正确,故选:B.【点睛】此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 3.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.4.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】ABC,不是最简二次根式,故本选项不符合题意;2D故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.5.D解析:D【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】=+=,此项错误A314==-,此项错误B、23===⨯=,此项错误C2428=,此项正确D、3故选:D.【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.6.A解析:A【分析】根据最简二次根式的定义即可得.【详解】A是最简二次根式,此项符合题意=B5x<C、当0D=不是最简二次根式,此项不符题意故选:A.【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.7.B解析:B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12=-,此选项计算正确;C 2=,此选项计算错误;D 、,此选项计算错误;故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.8.C解析:C【解析】 根据二次根式有意义的条件可知﹣1x>0,求得x <0,然后根据二次根式的化简,可得x. 故选C .9.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a 、b 对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a ,∴b ,∴21b a -, 故选:B .【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.10.B解析:B【解析】根据立方根的意义,可知27的立方根是3,故(1a =正确,故(2)正=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知8=,故(4=,故(5)正确.故选B.11.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A 、被开方数含分母,故A 错误;B 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B 正确;C 、被开方数含能开得尽方的因数,故C 错误;D 、被开方数含分母,故D 错误;故选B .【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.12.C解析:C【分析】根据同类二次根式的性质即可求出答案.【详解】由题意可知:a 2-3=2a∴解得:a=3或a=-1当a=-1时,该二次根式无意义,故a=3故选C.【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.二、填空题13.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为:,.解析:<<【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<12=∵3=<∴14<12故答案为:<,<.【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.14.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.15.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 16.(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1. (2)∵32016p q +=, ∴20163p q =-,p=2016-62016+9q,∴p=14x 3(其中x 为正整数), 同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。

(易错题精选)初中数学二次根式难题汇编附答案

(易错题精选)初中数学二次根式难题汇编附答案
【详解】
解:∵ |2a-1|,
∴|2a-1|=1-2a,
∴2a-1≤0,
∴ .
故选:C.
【点睛】
此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.
6.若式子 在实数范围内有意义,则x的取值范围是()
A.x≥ B.x> C.x≤ D.x<
【答案】B
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
B、 ,正确;
C、 ,故此选项错误;
D、 =3,故此选项错误;
故选:B.
【点睛】
此题主要考查了二次根式的加减以及二次根式的性质,正确掌握二次根式的性质是解题关键.
12.下列计算正确的是
A. B.
C. D.
【答案】B
【解析】
【分析】
根据二次根式的混合运算顺序和运算法则逐一计算可得.
【详解】
A. ,此选项计算错误;
【详解】
根据题意得: ,
解得:x≥0且x≠1.
故选:B.
【点睛】
此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.
8.如果 ,那么()
A. B. C. D.x为一切实数
【答案】B
【解析】
∵ ,
∴x≥0,x-6≥0,
∴ .
故选B.
9.下列各式中计算正确的是()
B. ,此选项计算正确;
C. ,此选项计算错误;
D. ,此选项计算错误;
故选:B.
【点睛】
本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.
13.式子 有意义,则实数a的取值范围是()

(易错题精选)初中数学二次根式知识点总复习含解析

(易错题精选)初中数学二次根式知识点总复习含解析

(易错题精选)初中数学二次根式知识点总复习含解析一、选择题1x 的取值范围是( )A .x≥5B .x>-5C .x≥-5D .x≤-5【答案】C【解析】【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】 Q有意义,∴x+5≥0,解得x≥-5.故答案选:C.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.2.当3x =-时,二次根m 等于( )AB .2CD 【答案】B【解析】解:把x =﹣3代入二次根式得,原式=,依题意得:2=.故选B .3.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.4.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.5.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C【解析】由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.6.若代数式y =有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠ 【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.7.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.8.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9.(的结果在()之间.A.1和2 B.2和3 C.3和4 D.4和5【答案】B【解析】【分析】的范围,再求出答案即可.【详解】(==22∵45<∴223<<(的结果在2和3之间故选:B【点睛】本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.10.有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.【详解】依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.11.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】=解:2<<∵91216<<∴34<<值应在3到4之间.∴估计2故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.12的值是一个整数,则正整数a的最小值是()A.1 B.2 C.3 D.5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.13.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.14.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.15.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】 本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.16.下列二次根式中,属于最简二次根式的是( )A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】A. 12,根号内含有分数,故不是最简二次根式;B. 0.8,根号内含有小数,故不是最简二次根式;C. 5,是最简二次根式;D. 4=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.17.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B .6C .236223+--D .23225+-【答案】D【解析】【分析】 将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积((222323=222233+=23225故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.18.当实数x 2x -41y x =+中y 的取值范围是( )A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】 根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥,419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.19.下列运算正确的是( )A .235a a a +=B .23241(2)()162a a a -÷=-C .1133a a-=D .2222(233)3441a a a a a -÷=-+ 【答案】D【解析】 试题分析:A .23a a +,无法计算,故此选项错误;B .()23262112824a a a a ⎛⎫⎛⎫-÷=-÷ ⎪ ⎪⎝⎭⎝⎭=432a -,故此选项错误; C .133a a-=,故此选项错误; D .()22222333441a aa a a -÷=-+,正确.故选D .20.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D【答案】A【解析】【分析】先化简原式得44【详解】原式=4由于23,∴1<42.故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.。

八年级初二数学下学期二次根式单元 易错题质量专项训练试题

八年级初二数学下学期二次根式单元 易错题质量专项训练试题

八年级初二数学下学期二次根式单元 易错题质量专项训练试题一、选择题1.下列二次根式中,最简二次根式是( )A B C D2.下列方程中,有实数根的方程是( )A 0=B 10=C 2=D 1=.3.下列计算正确的是( )A =B .2=C .1=D =4.x 的取值范围是( )A .13x ≥B .13x >C .13x ≤D .13x <5.下列运算中,正确的是( )A =3B .=-1C D .36.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D7.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y+--+的值是( ) A .3B .13C .2D .538.设,n k 为正整数,1A =2A =3A =4A =…k A =….,已知1002005A =,则n =( ).A .1806B .2005C .3612D .40119.已知实数x,y满足(x-22008x-)(y-2-2008y)=2008,则3x2-2y2+3x-3y-2007的值为()A.-2008 B.2008 C.-1 D.110.已知2225152x x---=,则222515x x-+-的值为()A.3 B.4 C.5 D.611.下列各式计算正确的是()A.2+3=5B.43-33=1C.2333=63⨯D.123=2÷12.若75与最简二次根式1m+是同类二次根式,则m的值为()A.7 B.11 C.2 D.1二、填空题13.化简322+=___________.14.(1)已知实数a、b在数轴上的位置如图所示,化简()222144a a ab b+--+=_____________;(2)已知正整数p,q满足32016p q+=,则整数对()p q,的个数是_______________;(3)△ABC中,∠A=50°,高BE、CF所在的直线交于点O,∠BOC的度数__________.15.对于任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.16.若a、b、c均为实数,且a、b、c均不为043252a cb=___________17.已知:5+22可用含x2=_____.18.计算:652015·652016=________.19.4102541025-+++=_______.20.下列各式:2521+n2b0.1y是最简二次根式的是:_____(填序号)三、解答题21.1123 1242313728 31-+-1 【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】22-+=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(1)4;(2) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b cb c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅=1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.23.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.解:设x222x=++2334x=+,x2=10∴x=10.0.【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x2=2+2+即x2=4+4+6,x2=14∴x=.0,∴x.【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.25.观察下列等式:1==;==== 回答下列问题:(1(2)计算:【答案】(1(2)9 【分析】(1)根据已知的31=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可. 【详解】解:(1=(2+99+=1100++-=1 =10-1 =9.26.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.27.计算(1+(2+-÷(4)((3)2b【答案】(1)234)7.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+=+22=;(2==;(3÷==;(4)((22=-=7【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.28.计算下列各式:(1;(2【答案】(12;(2)【分析】先根据二次根式的性质化简,再合并同类二次根式即可.【详解】(1)原式2=-2=;(2)原式==.【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a aaa a≥⎧==⎨-<⎩,)0,0a b=≥≥=(a≥0,b>0). 29.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.解:(1)原式=-++-=6+.(2)原式=3434【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.30.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】化简得到结果,即可做出判断.【详解】,不是最简二次根式;解:A2B,不是最简二次根式;C是最简二次根式;D【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.2.C解析:C【分析】=的形式,再根据二次根式成立的条件逐个进行判断即可.k【详解】解:A、x2+4=0,此时方程无解,故本选项错误;B10=,-,1∵算术平方根是非负数,∴此时方程无解,故本选项错误;C2=,∴x+1=4,∴x=3,故本选项正确;D1=,∴x-3≥0且3-x≥0,解得:x=3,代入得:0+0=1,此时不成立,故本选项错误;故选:C.【点睛】本题考查了二次根式的意义,能根据二次根式成立的条件进行判断是解此题的关键.3.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.4.C解析:C【分析】根据二次根式的性质:被开方数大于或等于0,列不等式求解.【详解】解:依题意有当130x -≥时,原二次根式有意义; 解得:13x ≤; 故选:C .【点睛】 本题考查了二次根式的基本性质(被开方数大于或等于0);解一元一次不等式,在解一元一次不等式的过程中要用到不等式的基本性质(1.不等式两边同时加上或同时减去一个数,不等号的方向不变;2.不等式两边同时乘以或同时除以一个正数,不等号的方向不变;3.不等式两边同时乘以或同时除以一个负数,不等号的方向改变.)熟记并灵活运用不等式的基本性质是解本题的关键.5.D解析:D【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】A 314=+=,此项错误B 、23==-,此项错误C 2428===⨯=,此项错误D 、3=,此项正确 故选:D .【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.6.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b c p +++==∴其面积为S====故选:A.【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.7.B解析:B【分析】根据根号下的数要是非负数,得到a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x,把y=-x代入原式即可求出答案.【详解】由于根号下的数要是非负数,∴a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,a(x-a)≥0和x-a≥0可以得到a≥0,a(y-a)≥0和a-y≥0可以得到a≤0,所以a只能等于0,代入等式得,所以有x=-y,即:y=-x,由于x,y,a是两两不同的实数,∴x>0,y<0.将x=-y代入原式得:原式=()()()()2222313x x x xx x x x+---=--+-.故选B.【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a、x、y的值和代入求分式的值是解此题的关键.8.A解析:A【解析】【分析】利用多项式的乘法把各数开方进行计算,然后求出A1,A2,A3的值,从而找出规律并写出规律表达式,再把k=100代入进行计算即可求解.【详解】∵(n+3)(n-1)+4=n2+2n-3+4=n2+2n+1=(n+1)2,∴A 11n =+∵(n+5)A 1+4=(n+5)(n+1)+4=n 2+6n+5+4=n 2+6n+9=(n+3)2,∴A 23n =+∵(n+7)A 2+4=(n+7)(n+3)+4=n 2+10n+21+4=n 2+10n+25=(n+5)2,∴A 35n =+⋯⋯依此类推,A k =n+(2k-1)∴A 100=n+(2×100-1)=2005解得,n=1806.故选A.【点睛】本题是对数字变化规律的考查,对被开方数整理,求出A 1,A 2,A 3,从而找出规律写出规律的表达式是解题的关键.9.D解析:D【解析】由(x y )=2008,可知将方程中的x,y 对换位置,关系式不变,那么说明x=y 是方程的一个解由此可以解得,或者则3x 2-2y 2+3x -3y -2007=1,故选D. 10.C解析:C【解析】2=,2222251510x x =-=--+=,5=.故选C.11.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;3==,故正确.故选D.12.C解析:C【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解=m=7时==,故A错误;当m=11时==B错误;当m=1时=故D错误;当m=2时=故C正确;故选择C.【点睛】本题考查了同类二次根式的定义.二、填空题13.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()00a aa aa a⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】 本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解.14.(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a -2b +1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)==∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数)∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。

八年级初二数学第二学期二次根式单元 易错题同步练习试卷

八年级初二数学第二学期二次根式单元 易错题同步练习试卷

一、选择题1.计算12718483--的结果是( ) A .1 B .﹣1 C .32-- D .23- 2.2的倒数是( )A .2B .22C .2-D .22- 3.下列计算正确的是( )A .2510⨯=B .623÷=C .12315+=D .241-= 4.当4x =时,22232343124312x x x x x x -+--+++的值为( ) A .1B .3C .2D .3 5.已知,那么满足上述条件的整数的个数是( ). A .4 B .5 C .6 D .76.“分母有理化”是我们常用的一种化简的方法,如:23(23)(23)74323(23)(23)+++==+--+,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3535+--,设3535x =+--,易知3535+>-,故0x >,由22(3535)35352(35)(35)2x =+--=++--+-=,解得2x =,即35352+--=.根据以上方法,化简3263363332-+--++后的结果为( )A .536+B .56+C .56-D .536- 7.下列计算不正确的是 ( )A .35525-=B .236⨯=C 7742= D 363693=+== 8.下列各式计算正确的是( ) A 235+=B .236=() C 824= D 236=9.x ≥3是下列哪个二次根式有意义的条件( )A .3x +B .13x -C .13x +D .3x -10.下列各式计算正确的是( )A .()233=B .()255-=±C .523-=D .3223-=二、填空题11.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.12.把1m m-_____________. 13.若实数x ,y ,m 满足等式 ()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为________.14.x y 53xy 153,则x+y=_______.15.已知a ,b 是正整数,若有序数对(a ,b )使得11)a b的值也是整数,则称(a ,b )是11)a b 的一个“理想数对”,如(1,4)使得112(a b =3,所以(1,4)是11)a b 的一个“理想数对”.请写出11)a b其他所有的“理想数对”: __________.16.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+--+----,则p =__________.17.3a ,小数部分是b 3a b -=______.181262_____.19.已知x=12,y=12,则x 2+xy +y 2的值为______. 20.观察分析下列数据:0,,-3,的规律得到第10个数据应是__________.三、解答题21.计算及解方程组:(1-1-) (2)2+ (3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩ 【答案】(1)2)7;(3)102x y =⎧⎨=⎩. 【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可;(2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可;(3)首先将第二个方程化简,然后利用加减消元法即可求解.【详解】(11-1+(11=1 (22+)=34-=7-=7-(3)251032x y x y x y -=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③②-③得: 10x =把x=10代入①得:y=2∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.先阅读下列解答过程,然后再解答:,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。

八年级初二数学第二学期二次根式单元 易错题测试题试题

八年级初二数学第二学期二次根式单元 易错题测试题试题

一、选择题1.下列计算,正确的是( )A . 235+=B . 2323+=C . 8220-=D . 510-=2.对于所有实数a ,b ,下列等式总能成立的是( )A .()2b a b a +=+B .22222(b a b )a +=+C .22b a b a +=+D .2(b)a b a +=+ 3.下列计算正确的是( )A .822-=B .321-=C .325+=D .(4)(9)496-⨯-=-⨯-= 4.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( ) A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣1 5.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .6 6.下列计算正确的是( ) A 235=B 623=C 23(3)86-=-D 321= 7.若a b >3a b - )A .ab --B .-abC .a abD .-ab8.23a -2a a 的值是( )A .2B .-1C .3D .-1或39.如果实数x ,y 23x y xy y =-(),x y 在( )A .第一象限B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上10.3x -在实数范围内有意义,则x 的取值范围是( )A .x >0B .x >3C .x ≥3D .x ≤3 二、填空题11.设4 a,小数部分为 b.则1a b- = __________________________.12.2==________.13.实数a 、b 10-b 4-b-2=+,则22a b +的最大值为_________.14.设12211112S =++,22211123S =++,32211134S =++,设...S =S=________________ (用含有n 的代数式表示,其中n 为正整数).15.甲容器中装有浓度为a ,乙容器中装有浓度为b ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.)30m -≤,若整数a 满足m a +=a =__________.17.把根号外的因式移入根号内,得________18.若a 、b 为实数,且b +4,则a+b =_____.19_____.20.下列各式:③4是最简二次根式的是:_____(填序号) 三、解答题21.计算:(1(2))((222+-+.【答案】(1)【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式化简,再化简、合并同类二次根式即可.【详解】(1==(2))((222+-+--+=2223=5-4-3+2=022.先阅读下列解答过程,然后再解答:,a b,使a b m=,使得+=,ab n22m+====>a b)+=⨯=,==,由于437,4312m n7,12+=,=即:227===+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a 的取值范围.
=a;当
解答: 解: ∵

=|2 ﹣a| ﹣|a ﹣3| ,
又∵ (a﹣ 2)﹣( a﹣3)=1,
∴2﹣a ≤,0a﹣3 ≥,0
解得 a≥3.
点评: 解决本题的关键是根据二次根式的结果为非负数的意义,得到相应的关系式求解.
8、若 a<0,则 |
﹣a| 的结果为( )
A、0
B、﹣ 2a
解答: 解:原式 =

=anb3 ﹣ an+1b2 =(anb3﹣an+1b2) . 故选 B. 点评: 本题考查的是二次根式的化简.最简二次根式的条件:被开方数中不含开得尽方的因式 或因数.
2.当 x取某一范围的实数时,代数式

A .29 B.16 C. 13 D.3 考点 :二次根式的性质与化简。
6、如果 a< b,那么
等于( )
A、(x+a)
B、( x+a)
C、﹣( x+a)
D、﹣( x+a)
考点 :二次根式的性质与化简。
分析: 根据被开方数的特点,判断出( x+a)< 0,(x+b) ≥0,再开方即可.
解答: 解:如果 a<b,则( x+a)<( x+b);

有意义,可知( x+a)< 0,( x+b)≥0;
根号里面. 解答: 解:原式 =﹣
=﹣

故选 D. 点评:本题考查了根据二次根式性质的运用.当
因式 “移”到根号里面.
5、在下列各式中,等号不成立的是(

a≥0时,a=
A、
B、 2x =
( x>0)
,运用这一性质可将根号外面的
C、
=a
D、( x+2 +y) ÷( + ) = +
考点 :二次根式的性质与化简。 分析: 分别对每个选项进行运算,然后选出正确答案.
=
= =﹣ .
故选 D. 点评: 本题主要考查二次根式的化简方法与运用: 时, =0.
a>0 时,
4、化简( a﹣ 1)
的结果是(

=a;a<0 时,
=﹣a;a=0
A、
B、
C、﹣
D、﹣
考点 :二次根式的性质与化简。
分析: 代数式( a﹣1)
有意义,必有 1﹣ a>0,由 a﹣1=﹣( 1﹣a),把正数( 1﹣ a)移到

= 2x . ,又 0<x<1,则有 ﹣ x> 0,
=x+ ﹣( ﹣ x) =2x. 点评: 本题考查的是对完全平方公式的灵活使用和对二次根式的化简应用.
16.计算: ?(﹣ )﹣2 ﹣( 2
)0+|﹣ |+
的结果是

考点 :二次根式的性质与化简;绝对值;零指数幂;负整数指数幂。
分析: 计算时首先要分清运算顺序,先乘方,后加减.二次根式的加减,实质是合并同类二次 根式,需要先化简,再合并.
C、2a
D、以上都不对
考点 :二次根式的性质与化简。
分析: 根据二次根式的化简方法可知.
解答: 解:若 a<0,则
=﹣ a,
解答: 解:(1)隐含条件 a> 0, ∴
= =﹣ ,等式成立.
(2)∵ x>0,∴ 2x =
=
,等式成立.
(3)由表示形式可得 a< 0,故将 a3 开出来得,
=﹣a
,等式不成立.
(4)(x+2 +y) ÷( + ) =
÷( + )= + ,等式成立.
故选 C
点评: 本题考查二次根式的化简,属于基础题,关键在于开根号时要注意字母的正负性.
分析: 将被开方数中 16﹣x和x﹣13的取值范围进行讨论.
解答: 解:
=|16﹣x|+|x﹣13|,
的值是一个常数,该常数是(
(1)当
时,解得 13< x< 16,原式 =16﹣x+x ﹣13=3,为常数;
(2)当
时,解得 x<13,原式 =16﹣ x+13﹣ x=29﹣ 2x,不是常数;
(3)当

=﹣( x+a)

故选 C. 点评: 本题考查了根据二次根式的意义与化简,二次根式
规律总结:当 a≥0时,
a<0 时, =﹣ a.
7、已知代数式

的值是常数 1,则 a 的取值范围是(

A、a≥3 B、a≤2 C、2≤ a≤3 D、 a=2 或 a=3 考点 :二次根式的性质与化简。 分析: 从结果是常数 1 开始,对原式化简,然后求
a、b的取值范围,从而确定
填空题
8.计算:( 1)( 2 + )( 2 ﹣ )= 10 ;
(2)3 ﹣2 =

(3)
= a.
考点 :实数的运算;二次根式的性质与化简。 分析: 根据平方差公式,二次根式的性质计算即可. 解答: 解:( 1)( 2 + )( 2 ﹣ )=12﹣2=10; (2)3 ﹣2 =12 ﹣10 =2 ;
a> 0时,
=a;a< 0时,
, =0;
解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.
=﹣ a;a=0时
4.化简 |2a+3 |+
(a<﹣ 4)的结果是(

A . ﹣3a B.3a﹣ C.a+
D. ﹣3a
考点 :二次根式的性质与化简;绝对值。 分析: 本题应先讨论绝对值内的数的正负性再去绝对值,而根号内的数可先化简、配方,最后 再开根号,将两式相加即可得出结论. 解答: 解:∵ a<﹣ 4, ∴2a<﹣ 8,a﹣4<0,
分析: 此题应先解出不等式组,找出 a 的取值范围,再将根式化简,确定符号,从而得出结论.
解答: 解:解不等式组
得 1<a<2,

=|a﹣ 2| ﹣|1 ﹣a|
=﹣( a﹣2)﹣ [ ﹣( 1﹣a)] =3﹣ 2a. 故选 A. 点评: 化简二次根式常用的性质:
=|a| .
2、化简
的结果是( )
A、
=2 ﹣ +2 =2+ . 点评: 本题考查 0次幂、负数次幂、二次根式的化简以及合并,任何非零数的 0次幂都得 1,
=1,负数次幂可以运用底倒指反技巧,
=21=2.
10.观察下列各式
根据以上规律,直接写出结果
= 4030055 .
考点 :二次根式的性质与化简。
专题 :规律型。
分析: 根据上面各式,可找出规律,根据规律作答即可.
分析: 根据 x<﹣ 1,可知 2﹣x>0,x﹣1<0,利用开平方和绝对值的性质计算.
解答: 解:∵ x<Байду номын сангаас 1
∴2﹣x>0,x﹣1<0
∴|x﹣
﹣ 2|﹣2|x﹣1|
=|x﹣( 2﹣x)﹣ 2|﹣ 2( 1﹣ x) =|2(x﹣2) |﹣2(1﹣x) =﹣2(x﹣2)﹣ 2(1﹣x) =2. 故选 A . 点评: 本题主要考查二次根式的化简方法与运用:
∴2a+3 <﹣ 8+3 < 0
原式 =|2a+3 |+
=|2a+3 |+
=﹣2a﹣ 3 +4﹣ a= ﹣3a.
故选 D. 点评: 本题考查的是二次根式的化简和绝对值的化简,解此类题目时要充分考虑数的取值范围 ,再去绝对值,否则容易计算错误.
5.当 x<2y时,化简
得( )
A .x(x﹣2y) B.
《二次根式》易错题集
易错题知识点 1.忽略二次根式有意义的条件, 只有被开方数
≥ 0 时,式子
才是二次根式; 若 <0,
则式子
就不能叫二次根式,即
无意义。
2.易把

混淆。
3.二次根式的乘除法混合运算的顺序,一般从左到右依次进行或先把除法统一成乘法后,
再用
乘法运算法则计算。
4.对同类二次根式的定义理解不透。
解答: 解:
=2006×( 2006+3)+1=4030055.
点评: 找出规律是解题的关键,一定要认真观察.
11.代数式
取最大值时, x=
考点 :二次根式的性质与化简。
专题 :计算题。
分析: 根据二次根式有意义的条件,求出
解答: 解:∵
≥0,
∴代数式
取得最大值时,
即当
=0时原式有最大值,

=0得: x=±2,
解答: 解: ?(﹣ )﹣2 ﹣( 2
)0+|﹣ |+
= ?4﹣ 1+ +1+
=2 +4 =7 . 点评: 计算时注意负指数次幂与 0次幂的含义,并且理解绝对值起到括号的作用.
选择题
1、已知实数 a 满足不等式组
则化简下列式子
的结果
是( )
A、3﹣2a
B、2a﹣3
C、1
D、﹣ 1
考点 :二次根式的性质与化简;解一元一次不等式组。
13.若 a< 1,化简
= ﹣a .
考点 :二次根式的性质与化简。
分析:
=|a﹣1|﹣1,根据 a的范围, a﹣1<0,所以 |a﹣1|=﹣( a﹣1),进而得到
原式的值.
解答: 解:∵ a< 1,
∴a﹣1<0,

=|a﹣1|﹣1
=﹣( a﹣1)﹣ 1
=﹣a+1﹣1=﹣a.
点评: 对于
化简,应先将其转化为绝对值形式,再去绝对值符号,即
±2 . x的取值即可.
取得最小值,
答案为 ±2. 点评: 本题比较简单,考查了二次根式有意义的条件,即被开方数大于等于 0.
相关文档
最新文档