行程问题答案及详解
行程问题(题 答案)
一、相遇与追及
1、路程和路程差公式
【例 1】如下图,某城市东西路与南北路交会于路口A.甲在路口A南边560米的B点,乙在路口A.甲向北,乙向东同时匀速行走.4分钟后二人距A的距离相等.再继续行走24分钟后,二人距A的距离恰又相等.问:甲、乙二人的速度各是多少?
【考点】行程问题【难度】3星【题型】解答
【关键词】2003年,明心奥数挑战赛
【解析】本题总共有两次距离A相等,第一次:甲到A的距离正好就是乙从A出发走的路程.那么甲、乙两人共走了560米,走了4分钟,两人的速度和为:5604140
÷= (米/分)。第二次:两人距A的距离又相等,只能是甲、乙走过了A点,且在A点
以北走的路程=乙走的总路程.那么,从第二次甲比乙共多走了560米,共走了
=,显然
÷=(米/分),甲速+乙速140 42428
+=(分钟),两人的速度差:5602820
甲速要比乙速要快;甲速-乙速20
=,解这个和差问题,甲速()(米/分),乙速1408060
=-=(米/分).
14020280
=+÷=
【答案】甲速80米/分,乙速60米/分
2、多人相遇
【例 2】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?
【考点】行程问题【难度】2星【题型】解答
【解析】甲、丙6分钟相遇的路程:()
+⨯=(米);
1007561050
甲、乙相遇的时间为:()
÷-=(分钟);
10508075210
东、西两村之间的距离为:()
行程问题五题练习及答案解析
行程问题五题练习及答案解析
请选中您要保存的内容,粘贴到此文本框
【例1】飞行员前4分钟用半速飞行,后4分钟用全速飞行,在8分钟内一共飞行了72千米,则飞机全速飞行的时速是()。
A.360千米
B.540千米
C.720千米
D.840千米
【例2】一列队伍长15米,它以每分钟85米的速度通过一座长100米的桥,问队伍从队首上桥到队尾离开桥大约需要多少分钟?()
A.1.0
B.1.2
C.1.3
D.1.5
【例3】某校下午2点整派车去某厂接劳模作报告,往返需1小时,该劳模在下午1点整就离厂步行向学校走来,途中遇到接他的车,便坐上车去学校,于下午2点40分到达,问汽车的速度是劳模的步行速度的多少倍?()
A.5倍
B.6倍
C.7倍
D.8倍
【例4】两列对开的列车相遇,第一列车的车速为10米/秒,第二列车的车速为12.5米/秒,第二列车上的旅客发现第一列车在旁边开过时共用了6秒,则第一列车的长度为多少米?()
A.60
B.75
C.80
D.135
【例5】一汽船往返于两码头间,逆流需要10小时,顺流需要6小时。已知船在静水中的速度为12公里/小时。问水流的速度是多少公里/小时?()
A.2
B.3
C.4
D.5
——————————————
【答案与解析】
【例1】本题正确答案为C。
设飞机全速为v千米/分,则飞机半速为v/2千米/分。
4×v/2+4v=72v=12千米/分=720千米/时。
【名师点评】本题可用代入排除法。对于数学水平一般的考生是个不错的办法。
【易错点分析】本题“飞行的时速”最后的单位是千米/小时。与前面的单位(分钟)不一致。
小学六年级数学奥数行程问题20道详解(含答案)全国通用
行程问题50道详解一
1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.
解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,
通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,
所以两次相遇点相距9-(3+4)=2千米。
2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差
所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米。甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。那么两车第三次相遇为止,乙车共走了多少千米?
解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。第二次相遇,乙正好走了1份到B地,又返回走了1份。这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
行程问题-例题答案
模块一、时间相同速度比等于路程比
【例 1】甲、乙二人分别从A、B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达A地后都立即沿原路返回,已知二
人第二次相遇的地点距第一次相遇的地点30千米,则A、B 两地相距多少千
米?
【解析】两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙
两个人共走了3个全程,三个全程中甲走了45
31
77
⨯=个全程,与第一次相遇地
点的距离为542
(1)
777
--=个全程.所以A、B两地相距
2
30105
7
÷=(千米).
【例 2】B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,
于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,
丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少
时间。
【解析】根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:
10分钟
因为丙的速度是甲、乙的3倍,分步讨论如下:
(1)假设丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷〔3-1〕=5〔分钟〕此时拿上乙拿错
的信
5分钟5分钟
10分钟
当丙再回到B点用5分钟,此时甲已经距B地有10+10+5+5=30〔分
钟〕,同理丙追及时间为30÷〔3-1〕=15〔分钟〕,此时给甲应该送的信,
行程问题(习题及答案)
行程问题(习题)
➢巩固练习
1.小明每天要在8:00前赶到学校上学.一天,小明以70米/分
的速度出发去上学,11分钟后,小明的爸爸发现儿子忘了带数学作业,于是爸爸立即以180米/分的速度去追小明,并且与小明同时到达学校.请问小明家距学校有多远的距离?
2.一个邮递员骑自行车要在规定时间内把特快专递送到某单
位.他如果每小时行15千米,可以早到10分钟;如果每小时行12千米,就会迟到10分钟,则规定的时间是多少小时?
他行驶的路程是多少千米?
3.家住郑州的李明和家住开封的好友张华分别沿郑开大道匀速
赶往对方家中.已知两人在上午8:00时同时出发,到上午8:40时,两人还相距12 km,到上午9:00时,两人正好相遇.求两家之间的距离.
4.小明和小刚从两地同时相向而行,两地相距2 km,小明每小
时走7 km,小刚每小时走6 km,如果小明带一只狗和他同时出发,狗以每小时10 km的速度向小刚方向跑去,遇到小刚后又立即回头跑向小明,遇到小明后又立即回头跑向小刚,这样往返直到二人相遇.
(1)两个人经过多少小时相遇?
(2)这只狗共跑了多少千米?
5.一队学生去校外进行训练,他们以5千米/时的速度行进,走
了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,则通讯员追上学生队伍时行进了多少千米?通讯员用了多长时间?(用两种不同的方法)
6.一列火车匀速行驶经过一条隧道、从车头进入隧道到车尾离
开隧道共需45 s,而整列火车在隧道内的时间为33 s,且火车的长度为180 m,求隧道的长度和火车的速度.
行程问题应用题及答案
行程问题应用题及答案
行程问题应用题及答案
行程问题一直是数学应用题的必考点,那么,下面是小编给大家整理收集的行程问题应用题及答案,内容仅供参考。
行程问题应用题及答案一
1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。问:羊再跑多远,马可以追上它?
2、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)
7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
行程问题典型例题及答案详解
行程问题典型例题及答案详解
行程问题是小学奥数中的重点和难点,也是西安小升初考试中的热点题型,纵观近几年试题,基本行程问题、相遇追及、多次相遇、火车、流水、钟表、平均速度、发车间隔、环形跑道、猎狗追兔等题型比比皆是,以下是一些上述类型经典例题(附答案详解)的汇总整理,有疑问可以直接联系我。
例1:一辆汽车往返于甲乙两地,去时用了4个小时,回来时速度提高了1/7,问:回来用了多少时间?
分析与解答:在行程问题中,路程一定,时间与速度成反比,也就是说速度越快,时间越短。设汽车去时的速度为v千米/时,全程为s千米,则:去时,有s÷v=s/v=4,则
回来时的时间为:,即回来时用了3.5小时。评注:利用路程、时间、速度的关系解题,其中任一项固定,另外两项都有一定的比例关系(正比或反比)。
例2:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?
分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。
解答:后半段路程长:240÷2=120(千米),后半段用时为:6÷2-0.5=2.5(小时),后半段行驶速度应为:120÷2.5=48(千米/时),原计划速度为:240÷6=40(千米/时),汽车在后半段加快了:48-40=8(千米/时)。
答:汽车在后半段路程时速度加快8千米/时。
例3:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?
经典行程问题的应用题(含详细参考答案)
经典行程问题的应用题(含详细参考答案)
2020年7月
1、有一客船从甲港开往乙港,货船从乙港开往甲港,两船同时出发,10小时相遇,相遇后继续行驶2小时,此时客船离乙港420千米,货船离甲港580千米。甲、乙两港相距几千米?
2、.如图,A、C两地相距3千米,C、B两地相距8千米.甲、乙两人同时从C地出发,甲向A地走,乙向B地走,并且到达这两地又都立即返回.如果乙的速度是甲的速度的2倍,那么当甲到达D地时,还未能与乙相遇,他们相距1千米,这时乙距C地______千米.
3、甲乙两人分别驾车从A、B两地同时相向而行,第一次相遇时甲行了全程的5分之3,相遇后两人继续前进,甲和乙分别到达A、B两地后又立即返回,第
2次相遇地点和第一次相距120千米,A、B两地相距多少千米?
4、甲乙两车分别从A.B两地同时相向出发,已知甲车速度与乙车的速度比为4:3,C在A.B之间,甲乙两车到达C地时间分别是上午8:00和下午3:00,问:甲乙两辆车相遇时间是什么时间?
5、有一个200米的环形跑道,甲、乙两人同时从同一地点同方向出发.甲以每秒0.8米的速度步行,乙以每秒2.4米的速度跑步,乙在第2次追上甲时用了多少秒?
6、甲乙丙3人都要从A地到B地,A,B 2地相距42千米,甲骑摩拖车,一次只能带一个人,摩拖车每小时行36千米,人步行每小时行4千米。如果采用摩拖车和步行相结和的办法,3人同时从A地出发,全部到达B地,最快要多长时间?
7、已知一条船从甲码头到乙码头往返一次需要2小时,由于返回时间是顺水,比去时每小时可多行驶8千米,因此第2小时比第1小时多行驶6千米.那么,甲乙两码头相距多少千米?
行程问题练习题及答案
行程问题练习题及答案
行程问题练习题及答案
(一)超车问题(同向运动,追及问题)
1、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米。慢车在前面行驶,快车从后面追上到完全超过需要多少秒?
思路点拨:快车从追上到超过慢车时,快车比慢车多走两个车长的和,而每秒快车比慢车多走(22-17)千米,因此快车追上慢车并且超过慢车用的时间是可求的。
(125+140)÷(22-17)=53(秒)
答:快车从后面追上到完全超过需要53秒。
2、甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?
(20-18)×110-120=100(米)
3、甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?
25-(150+160)÷31=15(米)
小结:超车问题中,路程差=车身长的和
超车时间=车身长的和÷速度差
(二)过人(人看作是车身长度是0的火车)
1、小王以每秒3米的速度沿着铁路跑步,迎面开来一列长147米的火车,它的行使速度每秒18米。问:火车经过小王身旁的时间是多少?
147÷(3+18)=7(秒)
答:火车经过小王身旁的时间是7秒。
2、小王以每秒3米的速度沿着铁路跑步,后面开来一列长150米
的火车,它的行使速度每秒18米。问:火车经过小王身旁的时间是多少?
150÷(18-3)=10(秒)
答:火车经过小王身旁的时间是10秒。
(四)过桥、隧道(桥、隧道看作是有车身长度,速度是0的`火车)
行程问题(题+答案)
一、相遇与追及
1、路程和路程差公式
【例1】如下图,某城市东西路与南北路交会于路口A.甲在路口A南边560米的B点,乙在路口A.甲向北,乙向东同时匀速行走.4分钟后二人距A的距离相等.再继续行走24分钟后,二人距A的距离恰又相等.问:甲、乙二人的速度各是多少?
【考点】行程问题【难度】3星【题型】解答
【关键词】2003年,明心奥数挑战赛
【解析】本题总共有两次距离A相等,第一次:甲到A的距离正好就是乙从A出发走的路程.那么甲、乙两人共走了560米,走了4分钟,两人的速度和为:5604140
÷= (米/分)。第二次:两人距A的距离又相等,只能是甲、乙走过了A点,且在A点
以北走的路程=乙走的总路程.那么,从第二次甲比乙共多走了560米,共走了
=,显然42428
÷=(米/分),甲速+乙速140 +=(分钟),两人的速度差:5602820
甲速要比乙速要快;甲速-乙速20
=,解这个和差问题,甲速
=-=(米/分).
14020280
()(米/分),乙速1408060
=+÷=
【答案】甲速80米/分,乙速60米/分
2、多人相遇
【例2】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?
【考点】行程问题【难度】2星【题型】解答
【解析】甲、丙6分钟相遇的路程:()
+⨯=(米);
1007561050
甲、乙相遇的时间为:()
÷-=(分钟);
10508075210
东、西两村之间的距离为:()
行程问题应用题及答案
行程问题应用题及答案
行程问题应用题及答案一
1、羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30米,马开始追它。问:羊再跑多远,马可以追上它?
2、甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
3、在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
4、慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
5、在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
6、一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)
7、猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
8、 AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
行程问题练习题及答案
行程问题练习题及答案
行程问题练习题及答案「篇一」
甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?
解答:
【分析】甲、乙两车共同走完一个AB全程时,乙车走了 64千米,从上图可以看出:它们到第二次相遇时共走了 3个AB全程,因此,我们可以理解为乙车共走了 3
个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程。AB 间的距离是64 × 3-48=144 (千米)
两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。两城市相距千米
A.200
B.150
C.120
D.100
选择Do
解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了 52X2;104千米,从B城出发的汽车走了 52+44=94千米,故两城间距离为(104+96)÷2=100千米。
行程问题练习题及答案「篇二」
1.某店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售.由于
定价过高,无人购买,后来不得不按38%的利润重新定价,这样出售了其中的40%. 此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果.结果,实际获得的总利润是原定利润的30. 2%.那么第二次降价后的价格是原定价的百分之多少?
【分析与解】第二次降价的利润是:
行程问题 例题及解答
行程问题
2.客货两车分别从甲乙两地相对开出,相遇后两车继续到达对方终点后,两车立即返回,又在途中相遇,两次相遇的地点相距3000米。已知货车的速度是客车速度三分之二,求甲乙两地距离是多少米?(要算式和解题过程)
解:将全部的路程看作单位1
货车和客车的度比=2:3
第一次相遇货车行了全程的2/5,客车行了全程的3/5
因为是2次相遇,所以两车走的路程一共是3倍甲乙两地距离,也就是1x3=3 货车行了整个过程的3x2/5=6/5
因此第二次相遇是在距离甲地6/5-1=1/5处
第一次相遇是在距离甲地3/5处
那么两处相距3/5-1/5=2/5
甲乙两地距离3000/(2/5)=7500米
3、甲、乙两辆车同时分别从两个城市相对开出,经过3小时,两车距离中点18千米处相遇,这时甲车与乙车所行的路程之比是2:3.求甲乙两车的速度各是多少?
设甲的速度为2a千米/小时,乙的速度为3a千米/小时
总路程=(2a+3a)×3=15a千米
甲行的路程=15a×2/5=6a
15a/2-6a=18
15a-12a=36
3a=36
a=12
甲的速度=12x2=24千米/小时
乙的速度=12x3=36千米/小时
或者
将全部路程看作单位1
那么相遇时甲行了2/5
乙行了1-2/5=3/5
全程=(1/2-2/5)=1/10
全程=18/(1/10)=180千米
甲乙的速度和=180/3=60千米/小时
甲的速度=60x2/5=24千米/小时
乙的速度=60-24=36千米/小时
甲乙两车同时从AB两地出发,相向而行,甲与乙的速度比是4:5。两车第一次相遇后,甲的速度提高了4分之一,乙的速度提高了3分之一,两车分别到达BA两地后立即返回。这样,第二次相遇点距第一次相遇点48KM,AB两地相距多少千米?
最新的行程问题应用题及答案
最新的行程问题应用题及答案
例1、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇? [分析]出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇。
解:30÷(6+4)
=30÷10
=3(小时)
答:3小时后两人相遇。
例2、甲、乙二人从相距100千米的A、B两地同时出发相向而行,甲骑车,乙步行,在行走过程中,甲的车发生故障,修车用了1小时。在出发4小时后,甲、乙二人相遇,又已知甲的速度为乙的2倍,且相遇时甲的车已修好,那么,甲、乙二人的速度各是多少?
〔分析〕甲的速度为乙的2倍,因此,乙走了4小时的路,甲只要2小时就可以了,这样就可以求出甲的速度。
解:甲的速度为:100÷(4-1+4÷2)
=100÷5=20(千米/小时)
乙的速度为:20÷2=10(千米/小时)
答:甲的速度为20千米/小时,乙的速度为10千米/小时。
延伸阅读:
基本数量关系应用题:
【练习巩固】
1、甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?
2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。两地相距多少千米?
3、甲乙两艘轮船从相距654千米的两地相对开出,8小时两船还相距22千米。已知乙船每小时行42千米,甲船每小时行多少千米?
4、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?
行程问题的应用题及答案
行程问题的应用题及答案
在数学中,行程问题是一类常见的应用题,其涉及到计算一个人或物品从一个地点到另一个地点的路程或距离。行程问题可以采用各种不同的形式和条件,包括时间、速度、交通工具、地理条件等,通过解答行程问题,我们可以应用数学知识解决实际生活中的交通规划、旅游路线、工作行程等问题。本文将介绍行程问题的应用题,并给出详细的解答。
1. 张三乘坐高铁从A城市出发,要前往B城市,全程为600公里,高铁的平均速度为300公里/小时。假设张三在上车前30分钟到达高铁站,而下车后还需要步行20分钟才能到达目的地,问张三一共需要多长时间到达B城市?
解答:
根据题意可得,张三在高铁上的行驶时间为600公里 / 300公里/小时 = 2小时。
上车前到达高铁站的时间为30分钟 = 0.5小时。
下车后步行到目的地的时间为20分钟 = 0.33小时。
因此,张三一共需要的时间为2小时 + 0.5小时 + 0.33小时 = 2.83小时,即2小时50分钟。
2. 小明打算从自家出发前往旅游景点C,全程为250公里。他可以选择乘坐汽车以每小时50公里的速度,或者骑自行车以每小时15公里的速度,问小明选择哪种方式能够更快到达?
解答:
小明选择乘坐汽车的行车速度为50公里/小时,行程为250公里,所需时间为250公里 / 50公里/小时 = 5小时。
小明选择骑自行车的行车速度为15公里/小时,行程为250公里,所需时间为250公里 / 15公里/小时≈ 16.67小时≈ 16小时40分钟。
因此,小明选择乘坐汽车能够更快地到达旅游景点C。
行程问题的应用题及答案
行程问题的应用题及答案
1、龟兔进行10000米赛跑,兔子的速度是乌龟的速度的5倍。当它们从起点一起出发后,乌龟不停地跑,兔子跑到某一地点开始睡觉,兔子醒来时乌龟已经领先它5000米;兔子奋起直追,但乌龟到达终点时,兔子仍落后100米。那么兔子睡觉期间,乌龟跑了多少米?
分析:兔子跑了10000-100=9900米,这段时间里乌龟跑了9900*1/5=1980米,兔子睡觉时乌龟跑了10000-1980=8020米
答:兔子睡觉期间乌龟跑了8020米。
2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。小明上学走两条路所用的时间一样多。已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?
分析:解法1:设路程为180,则上坡和下坡均是90。设走平路的速度是2,则下坡速度是3。走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。
解法2:因为距离和时间都相同,所以平均速度也相同,又因为上坡和下坡路各一半也相同,设距离是1份,时间是1份,则下坡时间=0.5/1.5=1/3,上坡时间=1-1/3=2/3,上坡速度=(1/2)/(2/3)=3/4=0.75
解法3:因为距离和时间都相同,所以:1/2*路程/上坡速度+1/2*路程/1.5=路程/1,得:上坡速度=0.75
答:上坡的速度是平路的0.75倍。
3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。那么甲、乙两地之间的距离是多少千米?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于行程问题
一、为什么小学生行程问题普遍学不好?
1 、行程问题的题型多,综合变化多。行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及多个物体的运动。涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。行程问题每一类型题的考察重点都不一样,往往将多种题型综合起来考察。比如遇到相遇问题关键要抓住速度和,追击问题则要抓住速度差,流水行船中的相遇追及问题要注意跟水速无关等等。
2 、行程问题要求学生对动态过程进行演绎和推理。奥数中静态的知识学生很容易学会。打个比方,比如数线段问题,学生掌握了方法,依葫芦画瓢就行。一般情况,静态的奥数知识,学生只要理解了,就能容易做出来。行程问题难就难在过程分析是动态的,甲乙两个人从开始就在运动,整个过程来回跑。学生对文字题描述的过程很难还原成对应的数学模型,不画图,习惯性的在脑海里分析运动过程。还有的学生会用手指,用橡皮模拟,转来转去往往把自己都兜晕了还是没有搞明白这个过程,更别说找出解题所需要的数量关系了。
二、行程问题“九大题型”与“五大方法” 很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。
1 、九大题型:
⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题;⑻接送问题;⑼时钟问题。
2、五大方法:
⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。
⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。示意图包括线段图、折线图,还包括列表。图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。另外在多次相
遇、追及问题中,画图分析往往也是最有效的解题方法。
ps :画图的习惯一定要培养起来,图形是最有利于我们分析运动过程的,可以说图画对了,意味着题也差不过做对了30%!
⑶比例法:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值。更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题。
ps :运用比例知识解决复杂的行程问题经常考,而且要考都不简单。
⑷分段法:在非匀速即分段变速的行程问题中,公式不能直接适用。这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来。
⑸ 方程法:在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。
ps :方程法尤其适用于在重要的考试中,可以节省很多时间。
⑹假设法:在速度发生变化、或提前(晚)出发等数值发生变化的的行程问题中,假设速度没变或时间统一,往往非常起到意想不到的效果,极其有利于解决行程问题。
三、怎样才能学好行程问题?
因为行程的复杂,所以很多学生已开始就会有畏难心理。所以学习行程一定要循序渐进,不要贪多,力争学一个知识点就要能吃透它。学习奥数有四种境界:第一种:课堂理解。就是说能够听懂老师讲解的题目。第二种:能够解题。就是说学生听懂了还能做出作业。第三种:能够讲题。就是不仅自己会做,还要能够讲给家长听。
第四种:能够编题。就是自己领悟这个知识了,自己能够根据例题出题目,并且解出来。
其实大部分学生学习奥数都只停留在第一种境界(有的甚至还达不到),能够达到第三种境界的学生考取重点中学实验班基本上没有什么问题了。而要想在行程上一点问题没有,则要求学生达到第四种境界。即系统学习,还要能深刻理解,刻苦钻研。而这四种境界则是学习行程的四个阶段,或者说是好的方法。
建议一:不论是什么问题,在学习之前有必要对于要学的东西有个纵向的了解,要系统地梳理一遍,这样有系统,有方向,学习的时候也不会迷茫。一般这个步骤需要家长和老师一起帮助孩子完成。这样把大的目标分为不同的小的目标,各个击破,孩子也会有信心。同时发现问题时,也可以有针对性的进行解决。
建议二:需要强调一点,就是在学习过程中不能捡芝麻丢西瓜,简言之就是要在每学一个知识的时候,都要对学过的知识进行练习。一定要要重视总结,把行程问题进行分类比较,这样孩子对于行程问题的理解会上升一个新的高度。
建议三:在学习过程中,可以积累孩子的错题,以便日后观察孩子在此部分知识点学习过程中的薄弱环节,这样我们以后的计划会更有针对性。在制定计划时慢慢的达到量身定做的效果。
行程问题的典型例题
行程问题中最基本的公式就是路程=速度X时间,任何行程问题,不管是多么“波澜起
伏或者是一波三折” ,他的本质都是研究路程、速度、时间三者的关系,在此基础上衍生出其他问题,在每一个方面或几个方面发生了细微的改变。
类型一:相遇问题
相遇问题强调的是一个“和”的思想,两人在时间统一的前提下,路程和=速度和X时间。当然他的使用,不仅仅局限于相遇这个现象,只要这个题目知道了“和”,我就可以利用这
个公式进行求解。
【例1】AB两地900米,甲乙两人在A处同时向B点出发,甲的速度60米/分,乙的速度40 米/分,甲到达B地后立即返回,返回途中与乙相遇,甲乙两人多长时间相遇?
解:路程和=900X2=1800 (米)
速度和=60+40=100(米/分)
相遇时间=1800^100=18 (分钟)
上面讲的是比较基本的相遇,到了高年级,可能等多的会涉及到多次或者是多人相遇。下面来说说多次相遇。
方法一:运用倍比关系解多次相遇问题
1.两地相向出发:
第1次相遇,共走1个全程;
第2次相遇,共走3个全程;
第3次相遇,共走5个全程;第N次相遇,共走2N-1个全程;
注意:除了第1次,剩下的次与次之间都是2个全程。即甲第1次如果走了N米,以后每次
都走2N米。
2.同地同向出发:
第1次相遇,共走2个全程; 第2次相遇,共走4个全程; 第3次相遇,共走6个全程;