行程问题答案及详解

合集下载

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)我们在研究一般行程问题时,都不考虑运动物体的长度,但是当研究火车过桥过隧道问题时,有一火车的长度太长,所以不能忽略不计。

火车过桥问题主要有以下几个类型:1、最简单的过桥问题,火车过桥。

例:一列长120米的火车,通过长400米的桥,火车的速度是10米/秒,求火车通过桥需多长时间?解题思路:火车行的路程是一个车长+桥长,然后利用公式时间=路程÷速度即可求出通过桥的时间。

答案:(120+400)÷10=52(秒)答:火车通过桥需要52秒。

2、两列火车错车问题。

例(1):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,当两车错车时,甲车一乘客,看到乙车火车头从她的窗前经过,到乙车车尾离开他的窗户,共用时8秒,求乙车的长度。

解题思路:这类问题类似于相遇问题,路程是乙车车长,然后利用公式路程=速度和x时间算出乙车车长。

答案:(20+25)x8=360(米)答:乙车长360米。

例(2):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从两车车头到两车车尾离开,需要多少时间?解题思路:这类问题类似于相遇问题,路程是两车车长,然后利用公式时间=路程÷速度和算出错时间。

答案:(200+250)÷(25+20)=10(秒)答:需要10秒。

3、两列火车超车问题。

例:两列火车同向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从乙车车头追上甲车车尾到乙车车尾离开甲车头需多少时间?解题思路;此类问题相当于追及问题。

追及路程是两车的车长和,然后利用追及问题公式追及时间=追及路程÷速度差求出时间。

答案: (250+200)十(25-20)=90(秒)答:需要90秒。

小学六年级数学行程问题讲解提高练习(附答案及解析)

小学六年级数学行程问题讲解提高练习(附答案及解析)

行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。

练习1:1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车到乙地立即返回。

两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。

两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。

小学奥数多人行程问题及答案【三篇】

小学奥数多人行程问题及答案【三篇】

小学奥数多人行程问题及答案【三篇】
【篇一】
答案
【篇二】
已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5。

已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强
少走几米?
解析:
根据条件,小明、小强和小刚的速度比是:2×4:3×4:5×3=8:12:15再根据"小刚10分钟比小明多走420米"能够得出,小明10
分钟走:420×8÷(15-8)=480米所以,小明在20分钟里比小强少走:[480×(12-8)÷8]×2=480米做完才发现,小明20分钟比
小强少走的,正好是小明10分钟走的路程,所以方法应该更简单一些。

另一种方法:
把小强的看作单位"1",那么小明是小强的2/3,小刚是小强的
5/4所以小强10分钟行420÷(5/4-2/3)=720米小明10分钟比小
强少行1-2/3=1/3,那么20分钟就少行1/3×2=2/3所以,小明在
20分钟里比小强少走720×2/3=480米
【篇三】。

行程问题,带答案

行程问题,带答案

行程问题★1、已知80千米的水路,甲船顺流而下需要4小时,逆流而上需要10小时,如果乙船顺流而下需要5小时,问乙船逆流而上需要几小时?80÷4=20 80÷8=1080÷(16-6-6)= 20(时)2、一列快车和一列慢车相向而行,快车的车长是320米,慢车的车长是400米,坐在快车上的人看见慢车驶过的时间是10秒,坐在慢车的人看见快车驶过的时间是多少?解:400÷10 = 40(米)320÷40 = 8(秒)3、小明、小军和小光三人都从甲地到乙地。

早上6时小明、小军两人一起从甲地出发,小明每小时走5千米,小军每小时走4千米。

小光上午8点从甲地出发,傍晚6时小光、小明同时到达乙地。

问小光什么时候追上小军?★★4、甲、乙、丙三辆汽车同时从同一地点出发,沿同一条公路去追赶前面一个骑车人,结果三辆车分别用了6小时,8小时,12小时追赶上骑车人。

已知甲车每小时行24千米,丙车每小时行19千米,求乙车的速度是多少?5、在一圆形跑道上,甲从A点,乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇。

甲环行一周需要多少分钟?6、在400米的环形跑道上,A、B两点相距100米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步。

甲每秒行5米,乙每秒行4米,每人跑100米都要停留10秒钟,那么甲追上乙需要多少秒?7、一个游泳池长90米,甲、乙二人分别从游泳池的两端同时出发,游到另一端立即返回,照这样往返游,两人游10分钟,已知甲每秒游3米,乙每秒游2米,二人共相遇 了几次?(同向追上也叫相遇。

)8、冬冬放学回家需走10分钟,晶晶放学回家需走14分钟。

已知晶晶回家的路程比冬冬回家的路程多61,冬冬每分钟比晶晶多走12米,那么晶晶回家的路程是多少米?★ ★ ★9、红星小学有80名学生租了一辆40座的车去海边观看日出,未乘上车的学生步行,和汽车同时出发,由汽车往返接送。

行程问题九大题型

行程问题九大题型

行程问题九大题型一、相遇问题1. 基本概念两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇。

2. 公式相遇路程= 速度和×相遇时间,相遇时间= 相遇路程÷速度和,速度和= 相遇路程÷相遇时间。

3. 例题甲、乙两人分别从A、B两地同时出发,相向而行。

甲的速度是每小时5千米,乙的速度是每小时3千米,经过4小时两人相遇。

求A、B两地的距离。

解:根据公式相遇路程= 速度和×相遇时间,速度和为\(5 + 3=8\)(千米/小时),相遇时间是4小时,所以相遇路程(即A、B两地距离)为\(8×4 = 32\)千米。

二、追及问题1. 基本概念两个物体同向运动,慢者在前,快者在后,经过一定时间快者追上慢者。

2. 公式追及路程= 速度差×追及时间,追及时间= 追及路程÷速度差,速度差= 追及路程÷追及时间。

3. 例题甲以每小时6千米的速度先走1小时后,乙以每小时8千米的速度从同一地点出发去追甲。

问乙多长时间能追上甲?解:甲先走1小时的路程就是追及路程,为\(6×1 = 6\)千米,速度差为\(8 - 6 = 2\)千米/小时。

根据追及时间= 追及路程÷速度差,可得追及时间为\(6÷2 = 3\)小时。

三、环形跑道问题1. 同地出发同向而行基本概念:在环形跑道上,两人同地出发同向而行,快者每追上慢者一次,就比慢者多跑一圈。

公式:追及路程= 环形跑道一圈的长度,追及时间= 环形跑道一圈的长度÷速度差。

例题:在周长为400米的环形跑道上,甲的速度是每秒6米,乙的速度是每秒4米。

如果两人同时同地同向出发,经过多长时间甲第一次追上乙?解:追及路程为400米,速度差为\(6 - 4 = 2\)米/秒,根据追及时间= 追及路程÷速度差,可得追及时间为\(400÷2 = 200\)秒。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

行程问题带解析

行程问题带解析

行程问题☞题型1“行程问题单线型”例1. A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180米.答案: 解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.巩固1. 甲,乙两车分别从A,B两地同时相向匀速行驶,乙车到达A地后未作停留,继续保持原速向远离B地的方向行驶,而甲车到达B地后修整了1个小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数图象如图所示,则A,C两地相距420千米.答案: 解:由图象可得:当x=0时,y=300,∴AB=300千米.∴甲车的速度=300÷5=60千米/小时,又∵300÷3=100千米/小时,∴乙车的速度=100﹣60=40千米/小时,设甲、乙两车出发后经过t小时同时到达C地,依题意可得:60(t﹣1)﹣40t=300,解得t=18,∴B,C两地的距离=40×18=720千米,则A,C两地相距:720﹣300=420千米,故答案为:420.巩固2. 小兵早上从家匀速步行去学校,走到途中发现数学书忘在家里了,随即打电话给爸爸,爸爸立即送书去,小兵掉头以原速往回走,几分钟后,路过一家书店,此时还未遇到爸爸,小兵便在书店挑选了几支笔,刚付完款,爸爸正好赶到,将书交给了小兵.然后,小兵以原速继续上学,爸爸也以原速返回家.爸爸到家后,过一会小兵才到达学校.两人之间的距离y(米)与小兵从家出发的时间x(分钟)的函数关系如图所示.则家与学校相距1740米.答案: 解:观察图象可知小兵爸爸的速度为=90米/分,设小兵的速度为x米/分,由图象可知10(90+x)=1500,解得x=60米/分,60×4=240,1500+240=1740米.故答案为1740.巩固3. 5月13日,周杰伦2017“地表最强”世界巡回演唱会在奥体中心盛大举行,1号巡逻员从舞台走往看台,2号巡逻号从看台走往舞台,两人同时出发,分别以各自的速度在舞台与看台间匀速走动,出发1分钟后,1号巡逻员发现对讲机遗忘在出发地,便立即返回出发地,拿到对讲机后(取对讲机时间不计)立即再从舞台走往看台,结果1号巡逻员先到达看台,2号巡逻员继续走到舞台,设2号巡逻员的行驶时间为x(min),两人之间的距离为y(m),y与x的函数图象如图所示,则当1号巡逻员到达看台时,2号巡逻员离舞台的距离是米.答案: 解:由图象可得2号巡逻员的速度为1000÷12.5=80m/min,1号巡逻员的速度为(1000﹣800)÷1﹣80=200﹣80=120m/min,设两车相遇时的时间为xmin,可得方程:80x+120(x﹣2)=800+200,解得:x=6.2,∴a=6.2,∴2号巡逻员的路程为6,.2×80=496m,1号巡逻员到达看台时,还需要=min,∴2号巡逻员离舞台的距离是1000﹣80×(6.2+)=m,故答案为:m.巩固4. .甲、乙两人相约从A地到B地,甲骑自行车先行,乙开汽车,两人均在同一路线上匀速行驶,乙到B地后即停车等甲,甲、乙两人之间的距离y(千米)与甲行驶的时间x(小时)之间的函数关系如图所示,则乙从A地到B地所用的时间为小时.答案: 解:20÷1=20(千米/小时),20÷(﹣1)+20=20÷+20=80+20=100(千米/小时),30÷(100﹣20)+(﹣1)=30÷80+=+=(小时).答:乙从A地到B地所用的时间为小时.故答案为:.巩固5. .小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要 2.5分钟才能到家.答案: 解:设爸爸从家到与小明相遇的过程中的速度为a米/分钟,由题意和图象可得,,解得,a=120,∴当小鹏回到学校时,爸爸还需要:=2.5(分钟),故答案为:2.5.巩固6. .快车和慢车同时从甲地出发以不同的速度匀速前往乙地,当快车到达乙地后停留了一段时间,立即从原路以另一速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y(千米)与慢车行驶的时间t(小时)之间的函数图象如图所示,则甲乙两地的距离是390千米.答案: 解:由题意慢车为60km/h,设快车是速度为xkm/h,由题意4x﹣4×60=150,解得x=km/h,所以甲乙两地的距离4×=390km,故答案为390.巩固7. .甲、乙两车分别从A、B两地同时出发匀速相向而行,大楼C位于AB 之间,甲与乙相遇在AC中点处,然后两车立即掉头,以原速原路返回,直到各自回到出发点.设甲、乙两车距大楼C的距离之和为y(千米),甲车离开A地的时间为t(小时),y与t的函数图象所示,则第21小时时,甲乙两车之间的距离为1350千米.答案: 解:设AC中点为E.观察函数图象可知:乙车从B到C需用4小时,从C到E需用=8小时,甲从A到E需要12小时,∵点E为AC的中点,乙的速度不变,∴AE=CE=2BC(如图所示).∵2CE=1440,∴AE=720,BE=1080,∴甲的速度为720÷12=60(千米/小时),乙的速度为1080÷12=90(千米/小时).第21小时时,甲乙两车之间的距离为(60+90)×(21﹣12)=1350(千米).故答案为:1350.巩固8. .甲、乙两辆汽车从A地出发前往相距250千米的B地,乙车先出发匀速行驶,一段时间后,甲车出发匀速追赶,途中因油料不足,甲到服务区加油花了6分钟,为了尽快追上乙车,甲车提高速度仍保持匀速行驶,追上乙车后继续保持这一速度直到B地,如图是甲、乙两车之间的距离s(km2),乙车出发时间t(h)之间的函数关系图象,则甲车比乙车早到11.5分钟.答案: 解:由题意可得,乙车的速度为:40÷0.5=80km/h,甲车开始时的速度为:(2×80﹣10)÷(2﹣0.5)=100km/h,甲车后来的速度为:=120km/h,∴乙车动A地到B地用的时间为:250÷80=h,甲车从A地到B地的时间为:=2h,∴==11.5分钟,故答案为:11.5.巩固9. .一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x小时,两车之间的距离为y千米,图中的折线表示y与x之间的函数关系.当两车之间的距离首次为300千米时,经过3小时后,它们之间的距离再次为300千米.答案: 解:(480﹣440)÷0.5=80km/h,440÷(2.7﹣0.5)﹣80=120km/h,所以,慢车速度为80km/h,快车速度为120km/h;由题意,可知两车行驶的过程中有2次两车之间的距离为300km.即相遇前:(80+120)×(x﹣0.5)=440﹣300,解得x=1.2(h),相遇后:(80+120)×(x﹣2.7)=300,解得x=4.2(h),4.2﹣1.2=3(h)所以当两车之间的距离首次为300千米时,经过3小时后,它们之间的距离再次为300千米故答案为:3.巩固10. .“欢乐跑中国•重庆站”比赛前夕,小刚和小强相约晨练跑步.小刚比小强早1分钟跑步出门,3分钟后他们相遇.两人寒暄2分钟后,决定进行跑步比赛.比赛时小刚的速度始终是180米/分,小强的速度是220米/分.比赛开始10分钟后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y(千米)与小刚跑步所用时间x(分钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了分钟.答案: 解:小刚比赛前的速度v1=(540﹣440)=100(米/分),设小强比赛前的速度为v2(米/分),根据题意得2×(v1+v2)=440,解得v2=120米/分,小刚的速度始终是180米/分,小强的速度开始为220米/分,他们的速度之差是40米/分,10分钟相差400米,设再经过t分钟两人相遇,则180t+120t=400,解得t=(分)所以小刚从家出发到他们再次相遇时5+10+=(分).故答案为.巩固11. .欢欢和乐乐骑自行车从滨江路上相距10600米的A、B两地同时出发,先相向而行,行驶一段时间后欢欢的自行车坏了,她立刻停车并马上打电话通知乐乐,乐乐接到电话后立刻提速至原来的倍,碰到欢欢后用了5分钟修好了欢欢的自行车,修好车后乐乐立刻骑车以提速后的速度继续向终点A地前行,欢欢则留在原地整理工具,2分钟以后欢欢再以原速返回A地,在整个行驶过程中,欢欢和乐乐均保持匀速行驶(乐乐停车和打电话的时间忽略不计),两人相距的路程s(米)与欢欢出发的时间t(分钟)之间的关系如图所示,则乐乐到达A 地时,欢欢与A地的距离为2000米.答案: 解:欢欢和乐乐初始速度和为(10600﹣1800)÷16=550(米/分钟),乐乐提速后的速度为(1800﹣1000)÷(18﹣16)=400(米/分钟),乐乐的初始速度为400÷=300(米/分钟),欢欢的速度为550﹣300=250(米/分钟),欢欢坏车的地方离A地的距离为250×16=4000(米),修好车后乐乐到达A地所需时间为4000÷400=10(分钟),乐乐到达A地时,欢欢与A地的距离为4000﹣250×(10﹣2)=2000(米).故答案为:2000.巩固11. .甲、乙两人同时从各自家里出发,沿同一条笔直的公路向公园进行跑步训练.乙的家比甲的家离公园近100米,5分钟后甲追上乙,此时乙将速度提高到原来的2倍,又经过15分钟,乙先到达公园并立即返回,但因体力不支,乙返回时的速度又降低到原来的速度.甲跑到公园后也立即掉头回家,整个过程中,甲的速度始终保持不变,甲、乙两人相距的路程y(米)与甲出发的时间x (分钟)之间的部分函数关系如图所示,则当乙回到自己家时,甲离自己的家还有﹣300米.答案: 解:设乙的速度为v米/分钟,则甲的速度为(v+20)米/分钟,根据题意得:5v+15×2v+100=23(v+20)+(23﹣5﹣15)v,解得:v=40,v+20=60.乙的家离公园的距离5v+15×2v=35v=1400.乙回到家的时间为5+15+1400÷40=55(分钟),此时甲离自己的家的距离为2×(1400+100)﹣55×60=﹣300(米).故答案为:﹣300巩固12. .如图,小明和小亮同时从学校放学,两人以各自速度匀速步行回家,小明的家在学校的正西方向,小亮的家在学校的正东方向,小明准备一回家就开始做作业,打开书包时发现错拿了小亮的练习册,于是立即跑步去追小亮,终于在途中追上了小亮并交还了练习册,然后再以先前的速度步行回家,(小明在家中耽搁和交还作业的时间忽略不计)结果小明比小亮晚回到家中.如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图.则小明的家和小亮的家相距2975米.答案: 解:由图象可知,设FG段两人之间的距离为x米,则有=,解得x=2100米,∵小明回到家的时间比小亮到达学校的时间多用了10分钟,由OE段可知10分钟小明正好从家步行到学校,∴FG段两人之间的距离正好是家到学校的距离,∴小明家与学校相距2100米,因为十分钟内两人走的距离之和是1400米,G点代表小明正好到达学校,小亮正好同时到家.从追上之后到学校这段路程,小明用了15分钟,小亮用了25分钟,得出速度比为5:3,小明家到学校距离为1400×=875米.所以两家相距2100+875=2975米故答案为2975.巩固13.(中).如图所示的图象反映的过程是:甲乙两人同时从A地出发,以各自的速度匀速向B地行驶,甲先到B地停留半小时后,按原路以另一速度匀速返回,直至与乙相遇.乙的速度为60km/h,y(km)表示甲乙两人相距的距离,x (h)表示乙行驶的时间.现有以下4个结论:①A、B两地相距305km;②点D的坐标为(2.5,155);③甲去时的速度为152.5km/h;④甲返回的速度是95km/h.以上4个结论中正确的是①②③④.答案: 解:设甲去时的速度为xkm/h,根据题意得2(x﹣60)=185,解得:x=152.5,由于152.5×2=305,故A、B两地相距305千米;所以选项①③正确;∵甲车先到达B地,停留半小时后按原路以另一速度匀速返回,∴D的横轴应为2.5;∵乙车的速度为每小时60千米,∴半小时后行驶距离为30km,故纵轴应为185﹣30=155;∴点D的坐标(2.5,155);所以选项②正确;∵甲车去时的速度为152千米/时;设甲车返回时行驶速度v千米/时,∴(v+60)×1=155,解得v=95.故甲返回的速度是95千米/时.所以选项④正确,故答案为:①②③④.☞题型2“行程问题双线型”例1. .在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地.在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是②③④(填写所有正确结论的序号).答案: 解:①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷(3.5﹣1)=80(km/h),∵(240+200﹣60﹣170)÷(60+80)=1.5(h),∴乙车出发1.5h时,两车相距170km,结论②正确;③∵(240+200﹣60)÷(60+80)=2(h),∴乙车出发2h时,两车相遇,结论③正确;④∵80×(4﹣3.5)=40(km),∴甲车到达C地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.巩固1. 快、慢两车分别从相距480km的甲,乙两地同时出发,匀速行驶,相向而行,途中慢车因故停留了1小时,然后继续以原速驶向甲地,到达甲地后即停止行驶;快车到达乙地后,立即按原路原速返回甲地(调头时间忽略不计).如图是快、慢两车距乙地路程y(km)与所用时间x(h)之间的函数图象,则当两车第一次相遇时,快车距离甲地的路程是320千米.答案: 解:由题意,得慢车的速度为:480÷(9﹣1)=60千米/时,∴a=60×(7﹣1)=360.则5×60=300,∴D(5,300),设y OD=k1x,由题意,得300=5k1,∴k1=60,∴y OD=60x.∵快车的速度为:(480+360)÷7=120千米/时.∴480÷120=4小时.∴B(4,0),C(8,480).设y AB=k2x+b,由题意,得,解得:,∴y AB=﹣120x+480∴,解得:.∴480﹣160=320千米.答:快车与慢车第一次相遇时,距离甲地的路程是320千米;故答案为:320.巩固2. 周末小明和爸爸从家里出发到野外郊游,小明骑自行车出发0.3小时后爸爸开始骑摩托车追赶,爸爸在追上小明前停留了0.1小时与碰到的朋友聊天,聊天完毕后以原来的速度继续追赶.在整个过程中,他们离家的路程y(千米)与爸爸出发的时间x(小时)之间的关系如图所示,则爸爸出发0.7小时后与小明相遇.答案: 解:爸爸的速度为36÷(1﹣0.1)=40(千米/小时),小明的速度为36÷(1.2+0.3)=24(千米/小时).设爸爸出发t小时后与小明相遇,此时,小明出发了(t+0.3)小时,根据题意得:40(t﹣0.1)=24(t+0.3),解得:t=0.7.答:爸爸出发0.7小时后与小明相遇.故答案为:0.7.巩固3. .某天早晨,小刚从家跑步去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,小刚跑到体育场后发现要下雨,立即以另一速度按原路返回,遇到妈妈后,妈妈立即以小刚返回的速度和小刚一起回家(妈妈与小刚行进的路线相同).如图是两人离家的距离y(米)与小刚出发的时间x(分)之间的函数图象,则小刚第一次和妈妈相遇时,妈妈离家的距离为2000米.答案: 解:3000÷30=100(米/分),3000÷(50﹣30)=150(米/分),150×(50﹣45)=750(米),(3000﹣750)÷45=50(米/分),3000÷(100+50)=20(分),3000﹣50×20=2000(米).答:小刚第一次和妈妈相遇时,妈妈离家的距离为2000 米.故答案为:2000.巩固4. .某周末,小明到彩云湖公园画画写生,小明家到彩云湖公园的路程为3.5千米,步行20分钟后,在家的小明妈妈发现小明画画的某工具没拿,立即通知小明等着自己把工具送过去,小明妈追上小明把工具给了小明后立即返回,同时小明以原来1.5倍的速度前往目的地,如图是小明与小明妈距家的路程(千米)与小明所用时间(分钟)之间的函数图象,则小明到达目的地比小明妈返回家晚5分钟.答案: 解:由图象可知,小明开始的速度为=70m/min,小明原地休息15min后,以105m/min的速度前往目的地,需要的时间==20min,20+15+20﹣50=5min,所以小明到达目的地比小明妈返回家晚5min,故答案为5巩固5. .甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B 地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地,中途与甲车相遇后休息了一会儿,然后以原来的速度继续行驶直到A地.设甲、乙两车距A 地的路程为y(千米),甲车行驶的时间为x(时).y与x之间的函数图象如图所示,则乙车到达A地时甲车距B地的路程为150千米.答案: 解:180÷1.5=120(千米/时),300÷120=2.5(小时),300÷(5.5﹣2.5)=100(千米/时),(300﹣180)÷1.5=80(千米/时),300÷80+(1.75﹣1.5)=3.75+0.25=4(小时),(4﹣2.5)×100=1.5×100=150(千米).答:乙车到达A地时甲车距B地的路程为150千米.故答案为:150.巩固6. .已知A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,则当甲车到达B市时乙车已返回A市的时间为小时.答案: 解:甲车没坏前的速度为80÷2=40(千米/小时),甲车修好后的速度为40×1.5=60(千米/小时),修好车时甲车出发的时间为4﹣(4﹣2﹣)÷2=(小时),甲车到达B市时甲车出发的时间为+(260﹣80)÷60=(小时),当甲车到达B市时乙车已返回A市的时间为﹣4=(小时).故答案为:巩固7. .一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以v1的速度匀速跑至点B,原地休息半小时后,再以v2的速度匀速跑至终点C;乙以v3的速度匀速跑至终点C,甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象如图所示,则AB长为15千米,v1﹣v2=5千米/小时.答案: 解:由题意AB=15千米,V1==15千米/小时,V2==10千米/小时,∴v1﹣v2=15﹣10=5千米/小时,故答案为15,5千米/小时.巩固8. .在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图所示.在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图中的虚线所示,在行驶的过程中,经过 1.2或4.8小时时邮政车与客车和货车的距离相等.答案: 解:v客=360÷6=60千米/时,v邮=360×2÷8=90千米/时,设当邮政车去甲地的途中时,经过t小时邮政车与客车和货车的距离相等,120+(90﹣40)t=360﹣(60+90)tt=1.2(小时);设当邮政车从甲地返回乙地时,经过t小时邮政车与客车和货车的距离相等,90t﹣360﹣(480﹣40t)=60t﹣(90t﹣360)解得t=7.5,当客车和货车相遇时,邮政车与客车和货车的距离相等满足条件,即60t+40t=480,解得t=4.8综上所述,经过1.2或4.8小时或7.5小时邮政车与客车和货车的距离相等,故答案为:1.2或4.8。

行程问题(公务员考试数学运算基础详解)

行程问题(公务员考试数学运算基础详解)

行程问题——基础学习基本题型2、相遇问题例1:同样走100米,小明要走180步,父亲要走120步。

父子同时同方向从同一点出发,如果每走一步所利用的时间相同,那么父亲走出450米后往回走,要走多少步才能遇到小明?()A.648 B.540 C.440 D.108【答案】D【解题关键点】父亲走出450米后共走了4.5×120=540步。

而小明只走540÷180×100=300米。

于是变为一个路程为150米的相遇问题。

父亲每步相当于米,小明每步相当于米。

两人相遇需要走150÷(+)=108步。

(共需要走108步每人走54步)【结束】3、相遇问题例2:甲、乙两车从A、B两地同时出发,相向而行,如果甲车提前一段时间出发,那么两车将提前30分相遇。

已知甲车速度是60千米/时,乙车速度是40千米/时,那么,甲车提前了多少分出发()分钟。

A. 30B. 40C. 50D. 60【答案】C【解题关键点】解析:本题涉及相遇问题。

方法1、方程法:设两车一起走完A、B两地所用时间为x,甲提前了y时,则有, (60+40)x=60[y+(x-30)]+40(x-30), y=50方法2、甲提前走的路程=甲、乙共同走30分钟的路程,那么提前走的时间为,30(60+40)÷60=50【结束】4、相遇问题例3:甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。

如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。

又知甲的速度比乙的速度快,乙原来的速度为()A.3千米/时B.4千米/时C.5千米/时D.6千米/时【答案】B【解题关键点】原来两人速度和为60÷6=10千米/时,现在两人相遇时间为60÷(10+2)=5小时,采用方程法:设原来乙的速度为X千米/时,因乙的速度较慢,则5(X+1)=6X+1,解得X=4。

注意:在解决这种问题的时候一定要先判断谁的速度快。

小学五年级数学 行程问题 带详细答案

小学五年级数学 行程问题 带详细答案

小学五年级数学行程问题(带答案)例题1、甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇,东、西两地相距多少千米?解答:从图中可以看出,两车相遇时,甲车比乙车多行了32×2=64(千米)。

两车同时出发,为什么甲车会比乙车多行64千米呢?因为甲车每小时比乙车多行56-48=8(千米)。

64里包含8个8,所以此时两车各行了8小时,东、西两地的路程只要用(56+48)×8就能得出。

32×2÷(56-48)=8(小时)(56+48)×8=832(千米)练习一1、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。

学校到少年宫有多少米?解答:两人的路程差:120+120=240(米)时间:240÷(100-80)=12(分钟)总路程:(100+80)x12=2160(米)2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。

甲、乙两地相距多少千米?解答:两车的路程差:75(米)时间:750÷(65-40)=3(小时)总路程:(40+65)x3+75=390(米)3、甲、乙二人同时从东村到西村,甲每分钟行120米,乙每分钟行100米,结果甲比乙早5分钟到达西村。

东村到西村的路程是多少米?解答:如果甲继续行5分钟:5x120=600(米)乙的时间:600÷(120-100)=30(分钟)总路程:30x100=3000(米)例题二、快车和慢车同时从甲、乙两地相向开出,乙车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。

慢车每小时行多少千米?解答:快车3小时行驶40×3=120(千米),这时快车已驶过中点25千米,说明甲、乙两地间路程的一半是120-25=95(千米)。

行程问题(题答案)

行程问题(题答案)

一、 相遇与追及1、路程和路程差公式【例 1】 如下图,某城市东西路与南北路交会于路口A .甲在路口A 南边560米的B 点,乙在路口A .甲向北,乙向东同时匀速行走.4分钟后二人距A 的距离相等.再继续行走24分钟后,二人距A 的距离恰又相等.问:甲、乙二人的速度各是多少?【考点】行程问题 【难度】3星 【题型】解答【关键词】2003年,明心奥数挑战赛【解析】 本题总共有两次距离A 相等,第一次:甲到A 的距离正好就是乙从A 出发走的路程.那么甲、乙两人共走了560米,走了4分钟,两人的速度和为:5604140÷=(米/分)。

第二次:两人距A 的距离又相等,只能是甲、乙走过了A 点,且在A 点以北走的路程=乙走的总路程.那么,从第二次甲比乙共多走了560米,共走了42428+=(分钟),两人的速度差:5602820÷=(米/分),甲速+乙速140=,显然甲速要比乙速要快;甲速-乙速20=,解这个和差问题,甲速14020280=+÷=()(米/分),乙速1408060=-=(米/分).【答案】甲速80米/分,乙速60米/分2、多人相遇【例 2】 有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【考点】行程问题 【难度】2星 【题型】解答【解析】 甲、丙6分钟相遇的路程:()1007561050+⨯=(米);甲、乙相遇的时间为:()10508075210÷-=(分钟);东、西两村之间的距离为:()1008021037800+⨯=(米).【答案】37800米3、多次相遇【例 3】 甲、乙两车分别同时从A 、B 两地相对开出,第一次在离A 地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B 地25千米处相遇.求A 、B 两地间的距离是多少千米?【考点】行程问题 【难度】2星 【题型】解答【解析】 画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A 、B 两地间距离,第二次相遇意味着两车共行了三个A 、B 两地间的距离.当甲、乙两车共行了一个A 、B 两地间的距离时,甲车行了95千米,当它们共行三个A 、B 两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A 、B 两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【答案】260千米二、典型行程专题1、火车过桥【例4】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【考点】行程问题之火车问题【难度】3星【题型】解答a)根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(25O-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25-250=500-250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。

行程问题练习题及答案(3篇)

行程问题练习题及答案(3篇)

行程问题练习题及答案(3篇)行程问题练习题及答案 1(一)超车问题(同向运动,追及问题)1、一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米。

慢车在前面行驶,快车从后面追上到完全超过需要多少秒?思路点拨:快车从追上到超过慢车时,快车比慢车多走两个车长的和,而每秒快车比慢车多走(22-17)千米,因此快车追上慢车并且超过慢车用的时间是可求的。

(125+140)÷(22-17)=53(秒)答:快车从后面追上到完全超过需要53秒。

2、甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?(20-18)×110-120=100(米)3、甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?25-(150+160)÷31=15(米)小结:超车问题中,路程差=车身长的和超车时间=车身长的和÷速度差(二)过人(人看作是车身长度是0的火车)1、小王以每秒3米的速度沿着铁路跑步,迎面__一列长147米的火车,它的行使速度每秒18米。

问:火车经过小王身旁的时间是多少?147÷(3+18)=7(秒)答:火车经过小王身旁的时间是7秒。

2、小王以每秒3米的速度沿着铁路跑步,后面__一列长150米的火车,它的行使速度每秒18米。

问:火车经过小王身旁的时间是多少?150÷(18-3)=10(秒)答:火车经过小王身旁的时间是10秒。

(四)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)3、长150米的火车,以每秒18米的速度穿越一条长300米的隧道。

问火车穿越隧道(进入隧道直至完全离开)要多少时间?(150+300)÷18=25(秒)答:火车穿越隧道要25秒。

4、一列火车,以每秒20米的速度通过一条长800米的大桥用了50秒,这列火车长多少米?20×50-800=200(米)行程问题练习题及答案 2甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?解答:甲、乙两车共同走完一个AB全程时,乙车走了64千米,从上图可以看出:它们到第二次相遇时共走了3个AB全程,因此,我们可以理解为乙车共走了3个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程。

行程问题 例题及解答

行程问题 例题及解答

行程问题2.客货两车分别从甲乙两地相对开出,相遇后两车继续到达对方终点后,两车立即返回,又在途中相遇,两次相遇的地点相距3000米。

已知货车的速度是客车速度三分之二,求甲乙两地距离是多少米?(要算式和解题过程)解:将全部的路程看作单位1货车和客车的度比=2:3第一次相遇货车行了全程的2/5,客车行了全程的3/5因为是2次相遇,所以两车走的路程一共是3倍甲乙两地距离,也就是1x3=3 货车行了整个过程的3x2/5=6/5因此第二次相遇是在距离甲地6/5-1=1/5处第一次相遇是在距离甲地3/5处那么两处相距3/5-1/5=2/5甲乙两地距离3000/(2/5)=7500米3、甲、乙两辆车同时分别从两个城市相对开出,经过3小时,两车距离中点18千米处相遇,这时甲车与乙车所行的路程之比是2:3.求甲乙两车的速度各是多少?设甲的速度为2a千米/小时,乙的速度为3a千米/小时总路程=(2a+3a)×3=15a千米甲行的路程=15a×2/5=6a15a/2-6a=1815a-12a=363a=36a=12甲的速度=12x2=24千米/小时乙的速度=12x3=36千米/小时或者将全部路程看作单位1那么相遇时甲行了2/5乙行了1-2/5=3/5全程=(1/2-2/5)=1/10全程=18/(1/10)=180千米甲乙的速度和=180/3=60千米/小时甲的速度=60x2/5=24千米/小时乙的速度=60-24=36千米/小时甲乙两车同时从AB两地出发,相向而行,甲与乙的速度比是4:5。

两车第一次相遇后,甲的速度提高了4分之一,乙的速度提高了3分之一,两车分别到达BA两地后立即返回。

这样,第二次相遇点距第一次相遇点48KM,AB两地相距多少千米?将全部的路程看作单位1因为时间一样,路程比就是速度比所以相遇时,甲行了全程的1x4/(5+4)=4/9乙行了1-4/9=5/9此时甲乙提速,速度比由4:5变为4(1+1/4):5(1+1/3)=5:10/3=3:4甲乙再次相遇路程和是两倍的AB距离,也就是2此时第二次相遇,乙行了全程的2x4/(3+4)=8/7第二次相遇点的距离占全部路程的8/7-4/9=44/63距离第一次相遇点44/63-4/9=16/63AB距离=48/(16/63)=189千米小明放学后,沿某公共汽车路线以每小时4千米的速度步行回家。

行程问题答案及详解

行程问题答案及详解

关于行程问题一、为什么小学生行程问题普遍学不好?1、行程问题的题型多,综合变化多。

行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及多个物体的运动。

涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。

行程问题每一类型题的考察重点都不一样,往往将多种题型综合起来考察。

比如遇到相遇问题关键要抓住速度和,追击问题则要抓住速度差,流水行船中的相遇追及问题要注意跟水速无关等等。

2、行程问题要求学生对动态过程进行演绎和推理。

奥数中静态的知识学生很容易学会。

打个比方,比如数线段问题,学生掌握了方法,依葫芦画瓢就行。

一般情况,静态的奥数知识,学生只要理解了,就能容易做出来。

行程问题难就难在过程分析是动态的,甲乙两个人从开始就在运动,整个过程来回跑。

学生对文字题描述的过程很难还原成对应的数学模型,不画图,习惯性的在脑海里分析运动过程。

还有的学生会用手指,用橡皮模拟,转来转去往往把自己都兜晕了还是没有搞明白这个过程,更别说找出解题所需要的数量关系了。

二、行程问题“九大题型”与“五大方法”很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。

1、九大题型:⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题;⑻接送问题;⑼时钟问题。

2、五大方法:⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。

⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。

示意图包括线段图、折线图,还包括列表。

图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。

另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法。

行程问题

行程问题

12个经典的行程问题甲、乙两人分别从相距100 米的A 、B 两地出发,相向而行,其中甲的速度是2 米每秒,乙的速度是3 米每秒。

一只狗从A 地出发,先以6 米每秒的速度奔向乙,碰到乙后再掉头冲向甲,碰到甲之后再跑向乙,如此反复,直到甲、乙两人相遇。

问在此过程中狗一共跑了多少米?这可以说是最经典的行程问题了。

不用分析小狗具体跑过哪些路程,只需要注意到甲、乙两人从出发到相遇需要20 秒,在这20 秒的时间里小狗一直在跑,因此它跑过的路程就是120 米。

某人上午八点从山脚出发,沿山路步行上山,晚上八点到达山顶。

不过,他并不是匀速前进的,有时慢,有时快,有时甚至会停下来。

第二天,他早晨八点从山顶出发,沿着原路下山,途中也是有时快有时慢,最终在晚上八点到达山脚。

试着说明:此人一定在这两天的某个相同的时刻经过了山路上的同一个点。

这个题目也是经典中的经典了。

把这个人两天的行程重叠到一天去,换句话说想像有一个人从山脚走到了山顶,同一天还有另一个人从山顶走到了山脚。

这两个人一定会在途中的某个地点相遇。

这就说明了,这个人在两天的同一时刻都经过了这里。

甲从A 地前往B 地,乙从B 地前往A 地,两人同时出发,各自匀速地前进,每个人到达目的地后都立即以原速度返回。

两人首次在距离A 地700 米处相遇,后来又在距离B 地400 米处相遇。

求A 、B 两地间的距离。

答案:1700 米。

第一次相遇时,甲、乙共同走完一个AB 的距离;第二次相遇时,甲、乙共同走完三个AB 的距离。

可见,从第一次相遇到第二次相遇的过程花了两个从出发到第一次相遇这么多的时间。

既然第一次相遇时甲走了700 米,说明后来甲又走了1400 米,因此甲一共走了2100 米。

从中减去400 米,正好就是A 、B 之间的距离了。

甲、乙、丙三人百米赛跑,每次都是甲胜乙10 米,乙胜丙10 米。

则甲胜丙多少米?答案是19 米。

“乙胜丙10 米”的意思就是,等乙到了终点处时,丙只到了90 米处。

行程问题试题及答案

行程问题试题及答案

行程问题试题及答案1. 一辆汽车从A地出发,以每小时60公里的速度行驶,行驶了2小时后,又以每小时40公里的速度继续行驶了3小时,问汽车总共行驶了多少公里?答案:汽车在前2小时内行驶了60公里/小时× 2小时 = 120公里。

汽车在后3小时内行驶了40公里/小时× 3小时 = 120公里。

总共行驶了120公里 + 120公里 = 240公里。

2. 甲乙两人分别从相距120公里的A地和B地同时出发,甲以每小时5公里的速度向B地行进,乙以每小时10公里的速度向A地行进,问他们何时相遇?答案:设两人相遇所需时间为x小时,则甲行走的距离为5x公里,乙行走的距离为10x公里。

根据题意,5x + 10x = 120公里,解得x = 8小时。

所以,甲乙两人8小时后相遇。

3. 一艘船从上游的C地顺流而下,以每小时15公里的速度行驶,行驶了4小时后,又逆流而上,以每小时10公里的速度行驶了2小时,问船总共行驶了多少公里?答案:顺流而下行驶了15公里/小时× 4小时 = 60公里。

逆流而上行驶了10公里/小时× 2小时 = 20公里。

总共行驶了60公里 + 20公里 = 80公里。

4. 一辆自行车从D地出发,以每小时15公里的速度行驶,行驶了3小时后,停下来休息了1小时,然后以每小时20公里的速度继续行驶了2小时,问自行车总共行驶了多少公里?答案:前3小时行驶了15公里/小时× 3小时 = 45公里。

休息1小时后,后2小时行驶了20公里/小时× 2小时 = 40公里。

总共行驶了45公里 + 40公里 = 85公里。

5. 一个人从E地出发,步行去F地,步行速度为每小时4公里,步行了3小时后,改乘公交车,公交车速度为每小时30公里,公交车行驶了1小时后到达F地,问从E地到F地总共需要多少时间?答案:步行3小时,步行距离为4公里/小时× 3小时 = 12公里。

【小升初】小学数学《行程问题专题课程》含答案

【小升初】小学数学《行程问题专题课程》含答案

17.行程问题知识要点梳理一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析典例精讲考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。

【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。

【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。

考点2 相遇问题【例2】甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A 城到B城需6小时,乙车从B城到A城需12小时。

六年级行程问题以及工程问题应用题答案解析

六年级行程问题以及工程问题应用题答案解析

六年级行程问题以及工程问题应用题答案解析1.甲乙两人从北京和天津出发,甲每小时行48千米,乙每小时行44千米,他们几小时能相遇?解析:根据题意,甲和乙的相对速度为48+44=92千米/小时,所以他们能相遇的时间为138/92=1.5小时。

2.一辆汽车从甲地到乙地,如果每小时行45千米,就要晚0.5小时到达,如果每小时行50千米,就可提前0.5小时到达。

问甲、乙两地相距多少千米?解析:设甲乙两地相距x千米,根据题意,可以列出方程:0.5=(x/45)-(x/50),解得x=450千米。

3.从甲地到乙地,小轿车每小时行驶90千米,大客车每小时行驶55千米,乘小轿车要用4.4小时,乘大客车要用几小时?解析:设乘大客车需要的时间为x小时,根据题意,可以列出方程:55x=90*4.4,解得x=7.2小时。

4.甲、乙两列火车同时从A、B两城相向开出,4小时相遇。

相遇时,两车所行路程的比是3:4,已知乙车每小时行60千米,求A、B两城相距多少千米?解析:设A、B两城相距x千米,根据题意,可以列出方程:4(60+3x)=4(60+4x),解得x=420千米。

5.XXX开车从甲地到乙地,3小时行驶330千米,照这样计算,还需5小时就可以到达乙地,甲乙两地相距多少千米?解析:设甲乙两地相距x千米,根据题意,可以列出方程:3(110)+5(110)=x,解得x=880千米。

6.两辆汽车同时从北京和上海出发,相向而行,每小时分别行115千米和95千米,京沪高速公路长1260千米,大约经过几小时两车相遇?解析:根据题意,两车的相对速度为115+95=210千米/小时,所以它们相遇的时间为1260/210=6小时。

7.一辆汽车从甲地开往乙地,第一小时行了全程的1/4,第二小时比第一小时多行16千米,这时距离乙地还有94千米,甲乙两地间的公路长多少千米?解析:设甲乙两地间的公路长为x千米,根据题意,可以列出方程:x=(1/4)x+(1/4)x+16+94,解得x=220千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于行程问题一、为什么小学生行程问题普遍学不好?1 、行程问题的题型多,综合变化多。

行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及多个物体的运动。

涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。

行程问题每一类型题的考察重点都不一样,往往将多种题型综合起来考察。

比如遇到相遇问题关键要抓住速度和,追击问题则要抓住速度差,流水行船中的相遇追及问题要注意跟水速无关等等。

2 、行程问题要求学生对动态过程进行演绎和推理。

奥数中静态的知识学生很容易学会。

打个比方,比如数线段问题,学生掌握了方法,依葫芦画瓢就行。

一般情况,静态的奥数知识,学生只要理解了,就能容易做出来。

行程问题难就难在过程分析是动态的,甲乙两个人从开始就在运动,整个过程来回跑。

学生对文字题描述的过程很难还原成对应的数学模型,不画图,习惯性的在脑海里分析运动过程。

还有的学生会用手指,用橡皮模拟,转来转去往往把自己都兜晕了还是没有搞明白这个过程,更别说找出解题所需要的数量关系了。

二、行程问题“九大题型”与“五大方法” 很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。

1 、九大题型:⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题;⑻接送问题;⑼时钟问题。

2、五大方法:⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。

⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。

示意图包括线段图、折线图,还包括列表。

图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。

另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法。

ps :画图的习惯一定要培养起来,图形是最有利于我们分析运动过程的,可以说图画对了,意味着题也差不过做对了30%!⑶比例法:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值。

更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题。

ps :运用比例知识解决复杂的行程问题经常考,而且要考都不简单。

⑷分段法:在非匀速即分段变速的行程问题中,公式不能直接适用。

这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来。

⑸ 方程法:在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。

ps :方程法尤其适用于在重要的考试中,可以节省很多时间。

⑹假设法:在速度发生变化、或提前(晚)出发等数值发生变化的的行程问题中,假设速度没变或时间统一,往往非常起到意想不到的效果,极其有利于解决行程问题。

三、怎样才能学好行程问题?因为行程的复杂,所以很多学生已开始就会有畏难心理。

所以学习行程一定要循序渐进,不要贪多,力争学一个知识点就要能吃透它。

学习奥数有四种境界:第一种:课堂理解。

就是说能够听懂老师讲解的题目。

第二种:能够解题。

就是说学生听懂了还能做出作业。

第三种:能够讲题。

就是不仅自己会做,还要能够讲给家长听。

第四种:能够编题。

就是自己领悟这个知识了,自己能够根据例题出题目,并且解出来。

其实大部分学生学习奥数都只停留在第一种境界(有的甚至还达不到),能够达到第三种境界的学生考取重点中学实验班基本上没有什么问题了。

而要想在行程上一点问题没有,则要求学生达到第四种境界。

即系统学习,还要能深刻理解,刻苦钻研。

而这四种境界则是学习行程的四个阶段,或者说是好的方法。

建议一:不论是什么问题,在学习之前有必要对于要学的东西有个纵向的了解,要系统地梳理一遍,这样有系统,有方向,学习的时候也不会迷茫。

一般这个步骤需要家长和老师一起帮助孩子完成。

这样把大的目标分为不同的小的目标,各个击破,孩子也会有信心。

同时发现问题时,也可以有针对性的进行解决。

建议二:需要强调一点,就是在学习过程中不能捡芝麻丢西瓜,简言之就是要在每学一个知识的时候,都要对学过的知识进行练习。

一定要要重视总结,把行程问题进行分类比较,这样孩子对于行程问题的理解会上升一个新的高度。

建议三:在学习过程中,可以积累孩子的错题,以便日后观察孩子在此部分知识点学习过程中的薄弱环节,这样我们以后的计划会更有针对性。

在制定计划时慢慢的达到量身定做的效果。

行程问题的典型例题行程问题中最基本的公式就是路程=速度X时间,任何行程问题,不管是多么“波澜起伏或者是一波三折” ,他的本质都是研究路程、速度、时间三者的关系,在此基础上衍生出其他问题,在每一个方面或几个方面发生了细微的改变。

类型一:相遇问题相遇问题强调的是一个“和”的思想,两人在时间统一的前提下,路程和=速度和X时间。

当然他的使用,不仅仅局限于相遇这个现象,只要这个题目知道了“和”,我就可以利用这个公式进行求解。

【例1】AB两地900米,甲乙两人在A处同时向B点出发,甲的速度60米/分,乙的速度40 米/分,甲到达B地后立即返回,返回途中与乙相遇,甲乙两人多长时间相遇?解:路程和=900X2=1800 (米)速度和=60+40=100(米/分)相遇时间=1800^100=18 (分钟)上面讲的是比较基本的相遇,到了高年级,可能等多的会涉及到多次或者是多人相遇。

下面来说说多次相遇。

方法一:运用倍比关系解多次相遇问题1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N米。

2.同地同向出发:第1次相遇,共走2个全程; 第2次相遇,共走4个全程; 第3次相遇,共走6个全程;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程【例2】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【解析】画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米, 当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95X 3=285 (千米),而这285千米比一个A、B两地间的距离多25千米,可得:95 X 3-25=285-25=260(千米).【例3】小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发,相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(只算迎面相遇),则甲、乙两地的距离为千米.小王P甲地』 1 第二汝相遇卩乙地誤第一次相遇和【解析】第一次相遇走了1个3千米,第二次相遇走了3个3千米即3X 3=9 (千米)9+6=15 (千米) ---- 两个全程15-2=7.5 (千米)继续上面多次相遇问题,解多次相遇问题的工具一一柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

【例4】甲、乙两人在一条90米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。

如果他们同时分别从直路的两端A、B两点出发,当他们跑12分钟,共相遇了多少次?(从出发后两人同时到达某一点算作一次相遇)。

球/砂砂--------- --------------------------------------------------------沖|_ 9睐十【分析】多次相遇,如图所示,甲用实线表示,乙用虚线表示。

---- 最不甲------ 龜貳乙. 毎聊和抄120-^135^ 1觀砂在180秒内,甲、乙共相遇5次,最后又回到出发的状态。

所以甲、乙共相遇了[12十(180十60)X =20 (次)【例5】甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米•如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?首先,甲跑一个全程需要30 -仁30 (秒),乙跑一个全程需要30 - 0.6=50 (秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒•在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇5 X 4=20 (次)备注:一个周期内共有5次相遇,其中第1 , 2, 4, 5次是迎面相遇,而第3次是追及相遇.有些多次相遇的题目可以根据速度比m:n,设路程为m+n份。

举个例子。

【例6】甲、乙两车分别从A、B两地同时出发,并在A、B两地间不断往返行驶。

已知甲车速度是15千米/时,乙车速度是25千米/时,甲乙两车第一次相遇地点与第二次相遇地点之间相差100千米。

A、B两地相距多少千米?(从出发后两人同时到达某一点算作一次相遇)。

【分析】甲车速度是15千米/时,乙车速度是25千米/时,甲、乙两车的速度之比为15:25=3:5将A、B两地平均分成8小格,甲每走3小格,乙就走5小格;如图所示,C1、C2分别表示第1、2次相遇的地点;1D阡采巧千来/小时I I E其中第一次相遇地点与第二次相遇地点之间相差4小格;每小格的长度为100十4=25千米;所以A B两地相距25 X 8=200千米。

说了多次相遇,再来说说多人的相遇问题即多人行程。

这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。

【例7】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米。

甲从A地,乙和丙从B出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地的距离。

【解析】3人相遇问题。

先画图分析整个题目说了两个相遇过程。

第一次相遇:甲和乙相遇。

相关文档
最新文档