单筋,矩形,正截面受弯,承载力计算

合集下载

受弯构件正截面承载力计算—单筋矩形截面受弯构件

受弯构件正截面承载力计算—单筋矩形截面受弯构件
根据公式
a1 f c bx f y As
直接求得所需的钢筋面积。
并应满足As ≥ minbh;
若≥出现As<minbh时,则应按minbh配筋。
计算步骤4
选择钢筋直径并进行截面布置,得
到实际配筋面积As、as和h0。
截面设计
控制截面
在等截面受弯构件中,指弯矩组合设
计值最大的截面;在变截面受弯构件中,
构件种类


纵向受力钢
筋层数
1层
2层
1层
混凝土强度等级
≤ 25
45mm
70mm
25mm
≥ 30
40mm
65mm
20mm
计算步骤2
根据公式
x
M a1 f c bx( h0 )
2
解一元二次方程求得截面受压区高度x,并满足
x b h0
否则应加大截面,或提高fc ,或改用双筋梁。
计算步骤3
单筋矩形截面受弯构件截面复核
(建筑规范)
截面复核:是指已知截面尺寸、混凝土和钢筋
强度级别以及钢筋在截面上的布置,要求计算截面
的承载力Mu或复核控制截面承受某个弯矩计算值M是
否安全。
截面尺寸
已知条件
材料强度级别
钢筋在截面上的布置
钢筋布置
复核内容
配筋率
截面的承载力Mu
复核步骤1
检查钢筋布置是否符合
M u f cd bh02 b 1 0.5 b
当由上式求得的Mu<M时,可采取提高混凝土
级别、修改截面尺寸,或改为双筋截面等措施;
复核步骤五
当x≤ξbh0时,由公式
x

M u f cd bxM u f sd As h0

单筋矩形截面正截面承载力计算方法

单筋矩形截面正截面承载力计算方法

单筋矩形截面正截面承载力计算方法
在计算单筋矩形截面的承载力时,我们需要考虑两种主要的受力情况:剪力和弯矩。

以下是单筋矩形截面承载力计算的详细方法。

1.剪力承载力计算:
首先,计算纵向筋的贡献:
Vr = φ × As × fy /γs
其中,Vr为纵向筋的承载力,φ为抗剪强度折减系数,一般取0.75,As为纵向筋的截面面积,fy为纵向筋的抗拉强度设计值,γs为安全系数,一般取1.15
然后,计算混凝土的贡献:
Vc = φ × b × x × fcd /γc
其中,Vc为混凝土的承载力,b为矩形截面的宽度,x为截面混凝土
受剪应力点至受拉纵筋的距离,fcd为混凝土的抗压强度设计值,γc为
混凝土安全系数,一般取1.5
最终,剪力承载力为:
V=Vr+Vc
2.弯矩承载力计算:
首先,计算纵向筋的承载力:
Mr = φ × (As × fy) × (d - a/2) / γs
其中,Mr为纵向筋的弯矩承载力,d为矩形截面的有效高度,a为纵向筋至受压边缘的距离,As为纵向筋的截面面积,fy为纵向筋的抗拉强度设计值,γs为安全系数。

3.组合效应计算:
在实际情况中,剪力和弯矩通常是同时作用于单筋矩形截面的。

根据极限状态设计原则,剪力和弯矩的组合效应需要考虑。

计算组合效应时,可以根据相应的超信度进行组合,采用相应的抗风定额规定即可。

综上所述,单筋矩形截面的承载力计算主要包括剪力承载力和弯矩承载力的计算,并根据实际受力情况考虑组合效应。

详细的计算公式和参数需要根据具体情况进行设计和选择,以确保梁的安全可靠性。

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算

单筋矩形截面受弯构件正截面承载力计算单筋矩形截面受弯构件是指具有一个纵向钢筋(单筋)和一个矩形截面的构件。

在受弯时,矩形截面受到压力,而钢筋受到拉力,通过计算正截面承载力可以确定该构件的安全性能。

下面将介绍单筋矩形截面受弯构件正截面承载力的计算方法。

首先,计算正截面的受压区高度h和内力矩M。

假设构件受弯时的截面高度为h,宽度为b,截面厚度为d。

根据等截面原则,构件的正截面宽度和截面高度相等,即b=h。

构件的弯矩M由下式计算得出:M=Rd·Z,其中Rd为设计弯矩,Z为正截面抵抗矩。

然后,计算正截面抵抗矩Z。

在单筋矩形截面中,正截面抵抗矩由钢筋和混凝土组成。

钢筋的抵抗矩可由以下公式计算得出:Zs=As·fy·(h-d/2),其中As为钢筋截面面积,fy为钢筋的抗拉强度。

混凝土的抵抗矩可由以下公式计算得出:Zc=0.85·fck·(b·h-(As+Asc)·(h/2-d/2)),其中fck为混凝土的抗压强度,Asc为纵向钢筋表面积。

正截面的抵抗矩由钢筋的抵抗矩和混凝土的抵抗矩之和得出:Z=Zs+Zc。

接下来,计算正截面的承载力。

正截面受弯构件的承载力由以下条件中的最不利情况决定:1.混凝土达到极限压应力或者钢筋达到屈服应力;2. 混凝土达到达到破坏应变时,即混凝土压应力达到0.45fck或者钢筋达到屈服应变。

计算混凝土达到极限压应力的情况下的承载力,可以得到下式:Nc=0.85·fcd0·A+(Rd-Zs)/Rd·fctd0·A,其中fcd0为混凝土的设计强度,fctd0为混凝土的设计抗拉强度,A为截面面积。

计算钢筋达到屈服应力的情况下的承载力,可以得到下式:Ns=(Zs/0.9zτs)·fsd,其中z为混凝土的截面中和高度,τs为混凝土的应力分布系数,fsd为钢筋的设计抗拉强度。

综合两种情况,正截面受弯构件的正截面承载力Fc为较小值:Fc=min{Nc,Ns}。

单筋矩形正截面受弯承载力计算公式

单筋矩形正截面受弯承载力计算公式

单筋矩形正截面受弯承载力计算公式根据图1和截面内力平衡条件,并满足承载能力极限状态计算表达式的要求,可得出如下基本计算公式:图1 单筋矩形截面梁板正截面受弯承载力计算简图∑x=0 f c bx=f y A s(1)∑M=0 KM≤f c bx(h0−)(2)式中M——弯矩设计值(N·mm);f c——混凝土轴心抗压强度设计值(N/mm2),按附表1–2取用;b——矩形截面宽度(mm);x——混凝土受压区计算高度(mm);h0——截面有效高度(mm);f y——受拉钢筋的强度设计值(N/mm2),按附表1–5取用;A s——受拉钢筋的截面面积(mm2);K——承载力安全系数, 按表1–7取用。

利用基本公式进行截面计算时,必须求解方程组,比较麻烦。

为简化计算,将式(1)、(2)改写如下:将ξ=x/h0代入公式(1)、(2),并引入截面抵抗矩系数αs,令αs =ξ(1–ξ)(3)则基本公式改写为:f c bξh0=f y A s(4)KM≤αs f c bh02(5)由式(4)可得:ρ= ξf c/f y基本公式是根据适筋破坏的情况推导出来的。

因此,它的适用条件为:(1)ρ≤ρmax或x ≤ξb h0或ξ≤ξb,以防止发生超筋破坏,ρmax=ξb f c/f y;基本公式是依据适筋构件破坏时的应力图形情况推导的,当受拉钢筋屈服的同时,受压区混凝土也达到极限压应变εcu,梁发生的临界破坏状态,就是适筋梁与超筋梁的界限。

但为了结构的安全,更有效地防止发生超筋破坏,,应用基本公式和由它派生出来的公式计算时,必须符合此条件。

(2)ρ≥ρmin,以防止发生少筋破坏钢筋混凝土梁板构件破坏时承担的弯矩等于同截面素混凝土梁板构件所能承担的弯矩时的受力状态,为适筋破坏与少筋破坏的分界。

这时梁板的配筋率应是适筋梁板的最小配筋率。

《规范》不仅考虑了这种“等承载力”原则,而且还考虑了混凝土的性质和工程经验等。

因此,基本公式应符合此条件。

单筋矩形截面受弯构件正截面承载能力计算

单筋矩形截面受弯构件正截面承载能力计算
T型截面与矩形截面的差异: 形状上:T型截面有宽大的翼缘; 受力上:T型截面的受压区高度小; 受压区高度:在翼缘内,在翼缘外; 两种不同的受压区高度如何处理; 配筋形式:单筋、双筋等 配筋率如何计算
两种T型截面梁


受压区在翼缘内 受压区在翼缘外 受压区在翼缘内同矩形梁(已经解决, b 'f ) 受压区在翼缘外,把它分解成T型梁计算 关键问题: 如何判别 如何分解

截面校核 给定条件:截面配筋、截面尺寸、材料强 度 求:截面能抵抗的最大弯矩(与已知的截 面最大弯矩比较) 过程: 1)根据给定条件,分析截面适用条件。 2)如果截面适用条件满足,直接用弯矩 平衡方程求最大弯矩。 3)如果截面平衡方程不满足要求,重新 按截面设计问题进行计算。
正截面承载能力计算系数与 计算方法
x
如 满足适用条件,根据弯矩 平衡方程求弯矩
x
如不满足适用条件
向受压区钢筋取矩求弯矩 或 按最大受压区高度求弯矩
主要公式
M u1 f y' As' h0 a '


x M u 2 M M u1 1 f c bx h0 2 1 f c bx M u2 As 2 x fy f y h0 2 f y' ' As1 As fy As As1 As 2 f y' fy A
M u M ui M u 2
几个注意的问题


求出相对受压区高度大于界限受压区高 度如何处理; 求出受压区高度小于2a,如何求As 是否存在按单筋计算比按向受压区受压 钢筋合力点计算,求出的受拉钢筋还小 的情况
As , A
' s

单筋矩形梁正截面受弯承载力计算实例

单筋矩形梁正截面受弯承载力计算实例

单筋矩形截面梁正截面受弯承载力计算实例单筋矩形截面梁、板构件正截面受弯承载力计算步骤见图1。

选配钢筋加大截面尺寸或是M 、b 、h 、f c 、f y 、a s 、K ,A s 、ρmin 、αsmasαs =KM / f c b h 02A s =f c b ξh 0/f ybs 85.0211ξαξ≤--=h 0=h -a s否A s = ρmin bh 0绘配筋图是是A s 已知?αs ≤αsmax提高砼强度等级ρ=A s /(bh 0)≥ρmin是ξ=f y A s / (f c b h 0)ξ≤0.85ξbαs = ξ(1−0.5ξ)M u = αs f c b h 02KM ≤M u是是安全αs = αsmax否否不安全否否否ρ=A s /(bh 0)> ρmin是重新设计图1 单筋矩形截面正截面受弯承载力计算流程图【案例1】某水电站厂房(2级建筑物)的钢筋混凝土简支梁,如图2所示。

一类环境,净跨l n =5.76m ,计算跨度l 0=6.0m ,承受均布永久荷载(包括梁自重)g k =12kN/m ,均布可变荷载q k =m ,采用混凝土强度等级为C20,HRB335级钢筋,试确定该梁的截面尺寸和纵向受拉钢筋面积A s 。

解:查表得:f c = mm 2,f y = 300N/ mm 2,K =。

(1)确定截面尺寸 由构造要求取:h =(1/8~1/12)l 0 =(1/8~1/12)×6000=750~500,取h =500mm b =(1/2~1/3)h =(1/2~1/3)×500=250~167,取b =250mm (2)内力计算M =(+ )l 02/8=(×12+×)×62 /8 = ·m (3)配筋计算取a s =40mm ,则h 0=h –a s =500–40=460mm==2c s bh f KMα248.04602506.91076.10420.126=⨯⨯⨯⨯ 290.0248.0211211s =⨯--=--=αξ<ξb =×=A s =f c bξh 0/f y =×250××460/300=1067mm 2 ρ= 1067/(250×460)=﹪>ρmin =﹪(4)选配钢筋,绘制配筋图选受拉纵筋为322(A s =1140 mm 2),需要最小梁宽b min =2c +3d +2e =2×30+ 3×22+2×25=176(mm )<250mm ,符合构造要求。

单筋矩形截面梁、板正截面受弯承载力计算教学课件.

单筋矩形截面梁、板正截面受弯承载力计算教学课件.

0.96
0.76
0.95
0.73
0.94
0.74
水工混凝土结构
1.3 相对受压区计算高度
相对受压区计算高度是等效矩形混凝土受压区计算高度x
与截面有效高度h0的比值,用ξ= x/h0表示。 当梁发生界限破坏时,即受拉钢筋屈服的同时,受压区
混凝土也达到极限压应变εcu。这时混凝土受压区计算高度xb
与截面有效高度h0的比值,称为相对界限受压区计算高度ξb, ξb= xb/h0。这一临界破坏状态,就是适筋梁与超筋梁的界限。
HPB235
≤C50 HRB335 HRB400 RRB400
0.614
0.550 0.518
0.425
0.399 0.384
0.522
0.468 0.440
0.386
0.358 0.343
水工混凝土结构
1.4 受拉钢筋配筋率 受拉钢筋的配筋率ρ是指受拉钢筋截面面积As与截面有效 截面面积bh0比值的百分率,即ρ =As /(bh0 )×100﹪。 通常用ρmax表示受拉钢筋的最大配筋率; 用ρmin表示受拉钢筋的最小配筋率。 当ρ>ρmax时,将发生超筋破坏; 当ρ<ρmin时,将发生少筋破坏; 当ρmin≤ρ≤ρmax时,将发生适筋破坏。 为避免发生超筋破坏与少筋破坏,截面设计时,应控制 受拉纵筋的配筋率ρ在ρmin~ρmax范围内。
水工混凝土结构
2015.03
钢筋混凝土梁板设计
单筋矩形截面梁、板正截面承载力计算
1 正截面承载力计算的一般规定
1.1 计算方法的基本假定
(1) 截面应变保持为平面:

c

x
c


y

c

单筋矩形梁正截面承载力计算

单筋矩形梁正截面承载力计算

基本构件计算:单筋矩形梁正截面承载力计算一、计算简图二、基本公式1.公式法的三个基本公式:单筋矩形梁正截面受弯承载力计算的三个基本公式:s y c A f bx f =1α⎪⎭⎫ ⎝⎛-=≤201x h bx f M M c u α⎪⎭⎫ ⎝⎛-=≤20x h A f M M s y u式中 M —— 弯矩设计值;M u —— 受弯承载力设计值,即破坏弯矩设计值;c f 1α—— 混凝土等效矩形应力图的应力值; y f —— 钢筋抗拉强度设计值; s A —— 受拉钢筋截面面积; b —— 梁截面宽度; x —— 混凝土受压区高度;h 0 —— 截面有效高度,即截面受压边缘到受拉钢筋合力点的距离,h 0=h-a ; a —— 受拉钢筋合力点到梁受拉边缘的距离,当受拉钢筋为一排时,a =c+d/2; c —— 混凝土保护层厚度; d —— 受拉钢筋直径。

2.系数法的基本公式(1)系数的公式).(s ξ-ξ=α501(4-21)s αξ211--= (4-25)ξ-=α-+=γ5012211.ss (4-26)(2)基本公式 21201)5.01(bh f bh f M c s c ααξξα=-=0h A f M s s y γ=三、基本公式的适用条件1)防止超筋破坏b ξξ≤ 或 b ρρ≤ 或 0h x b ξ≤2)防止少筋破坏bh A A s s min min ,ρ=≥四、计算方法1.截面选择(设计题)按已知的荷载设计值作用下的弯矩M 设计截面时,常遇到下列两种情形: 情形1 : 已知:M 、混凝土强度等级及钢筋等级;构件截面尺寸b 及h 。

求:所需的受拉钢筋截面面积A s 。

[解](1)确定基本数据c f ;y f ;a h h -=0(2)计算有关系数21bh f Mc s αα=s αξ211--=ξ-=α-+=γ5012211.ss(3)计算受拉钢筋 0h f MA s y s γ=或 01bh f f A ycs αξ=(4)根据求得的受拉钢筋A s ,按照有关构造要求从附表20中选用钢筋直径和根数 (5)验算适用条件1)适用条件:b ξ≤ξ;2)若b ξ>ξ:需加大截面,或提高混凝土强度等级,或改用双筋矩形截面 3)验算bh A A m in m in ,s s ρ=≥。

03.4 单筋矩形截面受弯构件正截面承载力计算

03.4 单筋矩形截面受弯构件正截面承载力计算

没有唯一解
设计人员应根据受力性能、材料供应、施工条件、 设计人员应根据受力性能、材料供应、施工条件、使用 要求等因素综合分析,确定较为经济合理的设计。 要求等因素综合分析,确定较为经济合理的设计。
3 3.4 单筋矩形截面承载力计算
第三章 钢筋混凝土受弯构件正截面承载力计算
◆材料选用:
● 适筋梁的 u主要取决于 yAs, 适筋梁的M 主要取决于f
◆适用条件 防止超筋脆性破坏
x ≤ ξ b h0 或 ξ ≤ ξ b α1 fc As ρ= ≤ ρ max = ξ b bh0 fy ≤ M u ,max = α s ,max α1 f c bh02 或 α s ≤ α s ,max M
防止少筋脆性破坏
As ≥ ρ min bh0
2 3.4 单筋矩形截面承载力计算
◆截面尺寸确定
● 截面应具有一定刚度,满足正常使用阶段的验算能 截面应具有一定刚度,
满足挠度变形的要求。 满足挠度变形的要求。

根据工程经验,一般常按高跨比 来估计截面高度 根据工程经验,一般常按高跨比h/L来估计截面高度 ~ 1/16)L,b=(1/2~1/3)h 估计 ,
● 简支梁可取 简支梁可取h=(1/10 ● 简支板可取 简支板可取h ●
因此RC受弯构件的 不宜较高。 因此 受弯构件的 fc 不宜较高。 受弯构件 现浇梁板:常用 现浇梁板:常用C15~C25级混凝土 级混凝土 预制梁板:常用C20~C30级混凝土 预制梁板:常用 级混凝土
● 另一方面,RC受弯构件是带裂缝工作的, 另一方面, 受弯构件是带裂缝工作的, 受弯构件是带裂缝工作的
2 2 问题? 问题? M = α1 f cbh0 ⋅ ξ (1 − 0.5ξ ) = α s ⋅ α1 f cbh0

受弯构件的正截面受弯承载力计算原理单筋矩形截面

受弯构件的正截面受弯承载力计算原理单筋矩形截面

α β β1
1 --等效矩形应力图的强度与受压区砼最大应力的比值
--等效矩形应力图的 受压区高度与平截面假
1 = x xc
定的中和轴高度的比值 混凝土受压区等效矩形应力图系数表
≤C50 C55 C60 C65 C70 C75 C80
α1 1.0 0.99 0.98 0.97 0.96 0.95 0.94 β1 0.8 0.79 0.78 0.77 0.76 0.73 0.74

α 1
fcbx
=
f y As
ξ
=x
As
h0

ξ
αb 1 f
值查表
fc bh0
y
•根据理论面积选择实际截面面积,要求两者相差不超过±5%
•检查实际的as选与假定的是否大致相符,如果相差太大,重算
⑤验算是否少筋
要求满足:As ≥ ρminbh
若不满足:A按s = ρminbh配置
或ρ

ρ min
h h0
xb
β1h0
=
ε cu
εcu + ε y

ξ b
=
xb h0
--等效矩形图界限 相对受压区高度
xb
β1h0
=
ε cu
ε +ε
cu
y
ε y
=
fy
ES
ξ=
β 1
b
1+
fy
Es ⋅ ε cu
相对界限受压区高度 ξ 取值 b
种类
≦C50
C60
C70
钢 300MPa 筋 335MPa 强
度 400MPa 等 级 500MPa
Mu
=

单筋矩形梁正截面承载力计算基本公式的适用条件是

单筋矩形梁正截面承载力计算基本公式的适用条件是

单筋矩形梁正截面承载力计算基本公式的适
用条件是
单筋矩形梁是结构工程中常见的一种梁型,其正截面承载力计算
基本公式的适用条件是指在满足以下条件的情况下,可以通过该公式
计算单筋矩形梁的正截面承载力。

首先,单筋矩形梁的截面形状必须为矩形或近似矩形,梁的纵向
应力分布应为线性分布,且配筋符合规定。

在满足这些基本条件的情
况下,我们可以使用以下的正截面承载力计算公式:
Mrd = As * fy * (d - a/2)
其中,Mrd为弯矩承载力,As为钢筋截面积,fy为钢筋的抗拉强度,d为截面的有效高度,a为受压破坏区的高度。

这个公式的使用需要涉及一些常识和要点,下面我们就来详细了
解一下:
首先,对于单筋梁的受压区混凝土强度的计算,我们需要考虑许
多因素,如混凝土的强度等级、钢筋的截面积和布置方式、截面的形
状和尺寸等。

在确定好这些参数后,我们可以采用双曲线拟合式或者
折线近似式来计算混凝土的受压强度。

另外,对于弯矩承载力的计算,我们需要注意钢筋的屈服点位置,根据不同的材料强度和计算方法,屈服点位置的计算方式也不同。


实际工程中,根据结构的具体情况和设计要求,可以采用不同的计算方法进行弯矩承载力的计算。

除此之外,我们还需要考虑一些其他因素,如混凝土的徐变效应和干缩效应、钢筋的锚固长度等。

在进行正截面承载力计算时,需要全面了解这些因素,并根据实际情况进行适当修正。

综上所述,单筋矩形梁正截面承载力计算基本公式的适用条件是在满足一定前提条件并考虑到一些细节和特殊情况的基础上使用的,工程设计师在进行计算时需要注意这些因素,以确保计算的准确性和可靠性。

单筋矩形截面正截面受弯承载力计算

单筋矩形截面正截面受弯承载力计算

fc 14.3N / mm2 , f y 360N / mm2, ft 1.43N / mm2
1 1.0, b1 0.8, b 0.518
求计算系数:
s
M
1 fcbh02
150 106 1.014.3 250 4602
0.198
1 1 2s 0.223 0.518 ——保证不超筋
h0
1
1 0.5
M (1.05 ~ 1.1)
fyb
M
fyb
8
选定材料强度 fy、fc,截面尺寸b、h(h0)后,未知 数就只有x,As,基本公式可解
问题:
1 fcbx f y As
Mu
1 fcbx(h0
x) 2
f y As (h0
x) 2
M 1 fcbh02 (1 0.5 ) s 1 fcbh02
1m宽
? G gk Qqk
l 2.34m
l 2.34m
简支板板厚可取h = (1/30 ~ 1/35)L,取板厚80mm 13
解:板的自重: gk 250.081 2.0kN/m
跨中处最大弯矩设计值:M来自1 8(G
g
k
qqk )l 2
1 (1.2 2 1.4 3) 2.342 8
第4章 受弯构件正截面承载力计算
Flexural Capacity of RC Beams
1
4.5 单筋矩形截面正截面受弯承载力计算
(Singly Reinforced Section)
正截面——与构件的计算轴线相垂直的截面称为正截
一面、基本计算公式及适用条件
◆适用条件:
1fc
b
C=1fcbx
M x=b1xc

第三章 第四节 单筋矩形截面受弯构件正截面承载力计算

第三章 第四节  单筋矩形截面受弯构件正截面承载力计算

Mu
xc
C
Z
x 0 T C
xt
h0
Tc T s
M 0
M u TZ CZ
设AS—钢筋的面积;fy—钢筋的屈服强度,T= ASfy 。 Z和C与压区高度及压区应力分布有关。
第四节
单筋矩形截面受弯构件正截面承载力计算
b x h
一、计算基本公式及适用条件
基本公式 h0 受弯构件正截面承载能力计算,应满足作用 在结构上的荷载在结构截面中产生的弯矩设计 值M不超过按材料的强度设计值计算得到的受 as 弯构件承载能力设计值Mu, 即:M ≤ Mu
h0——截面有效高度, h0=h-as h——截面高度 as ——受拉钢筋合力点至混凝土受拉边缘的距离,初步计算时,对 于C25~C45等级的混凝土,可按35mm(单排受拉筋)、60mm(双排受拉 筋)、20mm(平板)取值。
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
◆ 例题3-1
解:查表得: fc=9.6N/mm2 ,; fy=300N/mm2 ; ξb=0.55;截面有效 高度 h。=500-40=460mm ;纵向受拉钢筋按一排放置,则梁的有效 高度h0=500—40=460mm。 1.计算受压区高度x
f y As 300 804 x 125.6mm b h0 0.55 460 253mm 1 f cb 1.0 9.6 200
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
第四节 单筋矩形截面受弯构件正截面承载力计算 一、计算基本公式及适用条件
单筋矩形截面 仅在受拉区布置纵向受力钢筋的矩形截面 双筋矩形截面 同时在受拉区和受压区布置纵向受力钢筋的矩形截面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M Mu 1 fcbh02 10.5 MA Mu fyAsh0 10.5 7
四、适用条件验算
(1) 防止少筋脆性破坏
min
min 时取 min
(2) 防止超筋脆性破坏
b或x bh0
As
bh0
max b
fc fy
A
h h0 a
b
As
Ⅰ钢筋: b 0 .614 Ⅱ钢筋: b 0 .544 Ⅲ钢筋: b 0 .518
(2)受压区合力C的作用点不变。
x1xc
1、 A1都是经验系数 凝, 土通 强过 度 6 混 查
三、基本计算公式
x 1xc
Mu
1 fc x/2 C h0
T fy As
x h0
X 0 1fcbxfyAs
M0
M
Mu
1
fcbx(h0
x )
2
x
M
Mu
fy As(h0
) 2
1 fcbh0 fyAs
ee c fc1 1 c
n
0
e 当e 0 <ec≤ ecu 时(水平段):
o
e0
ecu
c 0 fc
(4) 钢筋的应力-应变方程为:
钢筋的应力等于钢筋应变与其弹性模量的乘积,
f 但不大于强度设计值 fy 。极限拉应变取为 0.01。 y
Ese e ey fy e ey
A
Es
1
ey
弹塑性
配筋率 A s bh 0
8
开始

M、
b、
h、
a

s
f y、

1
f c、
A s、
f t、
m

in
b
(截面设计)否
As已 知 ?
是(承载力校核)
x h 0 1
1
2M
1
f
cb
h
2 0
增大截面尺寸
x fyAs 1 fcb

x bh0


x= bh0
x bh0

As
1 fcb x fy
5
二、受压区混凝土应力分布的简化
εcu ε0
0
1 fc
x/2
x 1xc
C
h0
As
Mu
Mu
b
es ey
T fy As
T fy As
(a)
(b)
(c)
(d)
用等效矩形应力图形代替实际曲线应力分布图形时,应满足:
(1)受压区合力C 的大小不变。
Cxc 0
bd x1fcbx
fc 为混凝土轴心抗压强度

A s A s ,m in
是 选定钢筋根数直径
M
1 fcb x
h
0
x 2

M
f
y
A
s
h
0
x 2
A s A s ,m in

M Mu?
承载力不够
f y、 a s 合 适 ?
否 重新假定
f y、 a s
承载力足够





A
9
结束
感谢各位老师指导!
2013-05-18
A
10
单筋矩形截面 正截面受弯承载力的计算方法
简支梁三等分加载示意图
剪弯段
M
纯弯段
剪弯段
V
矩形截面通常分为单筋矩形截面和双筋矩形截面两种。
架立钢筋
箍筋
Hale Waihona Puke 架立筋受压钢筋A's
as' h0
弯筋
h
h0
As
As
h
as
as
b
单筋矩形截面
b
双筋矩形截面
单筋矩形截面:只在受拉区配置纵向受力钢筋的矩形截面。
双筋矩形截面:受拉区,受压区同时配置纵向受力钢筋的矩形截面。
架立钢筋与受力钢筋的区分?
A
3
单筋矩形正截面受弯承载力计算方法
一、正截面承载力计算的基本假定 ec
(1) 截面的应变沿截面高度保 持线性分布——平截面假定
f xc
h0
y
(2)
M
不考虑混凝土的抗拉强度。
A
es
xc
C
Tc
4
T
(3) 混凝土的压应力-压应变之间的关系为:
c fc
当ec≤ e 0时(上升段):
相关文档
最新文档