等腰三角形中的分类讨论知识讲解

合集下载

等腰三角形中的分类讨论

等腰三角形中的分类讨论

等腰三角形中的分类讨论一、等腰三角形的定义等腰三角形是指具有两条边相等的三角形,也就是说,等腰三角形的两条边边长相等,而另一条边则较短。

等腰三角形可以有不同的形状和性质,下面将对等腰三角形进行分类讨论。

二、等腰三角形的分类1. 等腰直角三角形等腰直角三角形是一种特殊的等腰三角形,其中的一个内角为直角(即90度)。

在等腰直角三角形中,另外两个内角相等,均为45度。

根据勾股定理,等腰直角三角形的斜边与两条直角边之间的关系为:斜边的长度等于直角边长度的平方根乘以2。

2. 等腰锐角三角形等腰锐角三角形是指两个等腰三角形的顶点角小于90度的三角形。

在等腰锐角三角形中,两个等腰边的边长相等,而顶点角则小于90度。

等腰锐角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。

3. 等腰钝角三角形等腰钝角三角形是指两个等腰三角形的顶点角大于90度的三角形。

在等腰钝角三角形中,两个等腰边的边长相等,而顶点角则大于90度。

等腰钝角三角形的两个等腰边的长度与顶点角之间的关系为:等腰边的长度等于另一条边的长度乘以正弦顶点角的一半。

4. 等腰等边三角形等腰等边三角形是一种特殊的等腰三角形,其中的三个边全都相等。

等腰等边三角形的三个内角均为60度。

等腰等边三角形具有许多特殊性质,例如:它的三条高线、中线、角平分线和垂直平分线都重合于同一个点;它的外接圆和内切圆都与三个顶点相切。

三、等腰三角形是指具有两条边相等的三角形,根据顶点角的大小和不同属性,可以进一步分类为等腰直角三角形、等腰锐角三角形、等腰钝角三角形和等腰等边三角形。

每种分类的等腰三角形都有其特殊的性质和关系,值得我们深入学习和研究。

注意:此文档仅为示例文档,实际写作时请根据需求进行修改和扩展,结合数学知识以及示例文档提供的内容,形成一篇丰富详尽的文档。

分类讨论思想在初中等腰三角形问题中的应用探究

分类讨论思想在初中等腰三角形问题中的应用探究

分类讨论思想在初中等腰三角形问题中的应用探究【摘要】本文探讨了分类讨论思想在初中等腰三角形问题中的应用探究。

在我们介绍了研究背景和研究目的。

在我们首先介绍了初中等腰三角形的性质,然后详细探讨了分类讨论思想在这类问题中的作用和具体应用,并通过实际案例加以分析。

我们讨论了分类讨论思想的优势和局限性。

在我们总结了分类讨论思想在初中等腰三角形问题中的应用,并提出了未来的研究方向。

通过本文的研究,我们可以更加深入地理解分类讨论思想在解决等腰三角形问题中的重要性,同时也为未来的研究提供了一定的参考方向。

【关键词】初中等腰三角形、分类讨论思想、性质、作用、具体应用、实际案例、优势、局限性、结论、研究方向。

1. 引言1.1 研究背景在初中数学教学中,等腰三角形是一个重要的几何形状,学生在学习过程中常常会遇到与等腰三角形相关的各种问题。

在解决这些问题时,分类讨论思想被广泛运用,并显示出良好的效果。

研究表明,分类讨论思想在初中等腰三角形问题中的应用可以有效地帮助学生理清问题的结构,找到解决问题的关键点。

通过将问题进行分类和讨论,学生可以更好地把握问题的本质,准确地找到解决问题的方法。

目前对于分类讨论思想在初中等腰三角形问题中的具体应用还存在一些不足之处,比如在教学实践中,学生可能会遇到分类不清晰、讨论不透彻的情况。

有必要对分类讨论思想在初中等腰三角形问题中的应用进行深入研究,以便更好地指导数学教学实践,并提高学生解决问题的能力。

1.2 研究目的研究目的旨在深入探究分类讨论思想在初中等腰三角形问题中的应用,通过对等腰三角形性质的介绍和分类讨论思想的具体应用进行分析,揭示分类讨论思想在解决等腰三角形问题时的优势和局限性。

通过举例分析实际案例,抽丝剥茧地解析分类讨论思想在初中等腰三角形问题中的应用方法,准确把握等腰三角形的性质和特点。

就此,本研究旨在为初中生更好地理解和应用分类讨论思想提供指导,同时为教师在教学中有效运用这一思维方法提供参考。

等腰三角形

等腰三角形

等腰三角形性质及分类讨论(讲义)一、知识点睛1. 在等腰三角形中,顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),这是等腰三角形的重要性质.2. 在一个三角形中,当中线,高线,角平分线“三线”中有“两线”重合时,尝试构造等腰三角形.3. 分类讨论的类型: ①定义法则.如绝对值,平方,完全平方式等. ②关键词不明确.如等腰三角形的角(底角与顶角),边(底边与腰)等. ③位置不确定.如线段端点的位置,角的位置,高等. ④对应关系不确定.如两部分的差,全等三角形对应关系等. 4. 分类讨论题目解题要点: ①辨识类型;②画出各种类型的图形并求解; ③根据标准进行取舍.标准包括限制条件,实际意义等.二、精讲精练1. 已知:如图,D ,E 分别是AB ,AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,CD ,BE 交于点O .求证:AB =AC .O EC DB2. 已知:如图,在△ABC 中,∠A =90º,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5cm ,求BD 的长.AED3.如图,在△ABC中,延长BC到D,使CD=AC,连接AD,CF平分∠ACB,交AB于F,AF=BF.求证:BC=CD.AF4.如图,在△ABC中,点E在AB上,AE=AC,连接CE,点G为EC的中点,连接AG并延长交BC于D,连接ED,过点E作EF∥BC交AC于点F.求证:EC平分∠DEF.GEBFC A5.(1)若4x2-(m-1)xy+9y2是完全平方式,则m=_________.(2)若x2-4xy+ny2是完全平方式,则n=_________.(3)若9x2-12xy+(m+1)2y2是完全平方式,则m=_________.6.等腰三角形的一个角是另一个角的4倍,则顶角的度数为______________.7.已知一等腰三角形的三边分别是3x-1,x+1,5,则x=________.8.在直线l上任取一点A,截取AB=2cm,再截取AC=3cm,则线段BC的长为______________.9.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为__________.10.若等腰三角形的底边长为5cm,一腰上的中线把其周长分成的两部分之差为3cm,则腰长为__________.11.已知等腰三角形的周长为20cm,两边的差为2cm,则底边长为__________.12.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为30º,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?求出每个等腰三角形顶角的度数.B30°lA13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,在直线BC或AC上取一点P,使得△P AB为等腰三角形,找出所有符合条件的点P.AB C三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】1.证明略(提示:连接BC,证明AC=BC,AB=BC)2.10cm(提示:延长CE交BA的延长线于点F,证明BD=2CE)3.证明略(提示:延长CF到E,使CF=EF,连接BE,证明△AFC≌△BEF,再证明BE=BC)4.证明略(提示:利用等腰三角形“三线合一”,证明AD⊥EC,再证明ED=CD,利用平行导角)5.(1)-11,13 (2)4 (3)1,-36.120°或20°7. 28.1cm或5cm9.65°或115°10. 8cm 11. 8cm 或163cm 12. 作图略 13. 作图略等腰三角形性质及分类讨论(随堂测试)1. 若x 2-(a+1)xy +4y 2是完全平方式,则a =_________.2. 等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形顶角的度数为______________.3. 如图,在△ABC 中,D ,E 为BC 上的点,AC =CD ,CF ⊥AD 交AD 于G ,交AB 于F ,AD 平分∠BAE . 求证:DF ∥AE .【参考答案】1.3或-52.50°或130°3.证明略;(利用等腰三角形“三线合一”得到AG =DG ,得到AF =FD ,证得∠F AD =∠FDA ,由角平分线可得∠FDA =∠EAD ,所以DF ∥AE ) FGEDA等腰三角形性质及分类讨论(作业)14.已知:如图,在△ABC中,AD平分∠BAC,BD=CD,E,F分别为AB,AC边上的点,BE=CF.求证:DE=DF.15.已知:如图,在等边△ABC中,D是AC的中点,E是BC延长线上一点,CE=CD,DM⊥BC,垂足为M.求证:BM=ME.16.如图,在△ABC中,D为BC上一点,DE⊥AB,DF⊥AC,垂足分别为E,F,DE平分∠ADB,AF=FC,连接AD.M DAF DAE求证:BD=CD.AFE17.若4x2-axy+16y2是完全平方式,则a=_________.18.在直线l上任取一点A,截取AB=8cm,点C为AB中点,截取CD=5cm,则线段AD的长为______________.19.若等腰三角形的一个角比另一个角大30°,则此等腰三角形顶角的度数为______________.20.已知一等腰三角形的三边分别是5x 3,3x+3,27,则x=__________.21.等腰三角形一腰的垂直平分线与另一腰所在的直线夹角为30°,则顶角的度数为__________.22.已知等腰三角形的周长为24cm,两边的差为3cm,则底边长为__________.23.在已知直线l上找一点C,和直线外的A,B两点组成一个等腰三角形.一共可以画出几个符合条件的等腰三角形?请你在直线l上找出所有符合条件的点C.l【参考答案】1.证明略(提示:延长AD到H,使DH=AD,连接BH,证明△BHD≌△CAD,导出AB=AC,再证明△BED≌△CFD)2.证明略(提示:连接BD,利用“三线合一”证明∠DBE=∠E=30°)3.证明略(提示:证明AD=DC,AD=BD)4.±165. 1cm 或9cm6. 80°或40°7. 6或88. 60°或120°9. 10cm 或6cm 10. 点C 有5个,作图略等腰三角形(讲义)一、知识点睛1. ______________的三角形叫做等腰三角形.2. 等腰三角形是_________图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“__________”),它们所在的直线都是等腰三角形的_________.3. 等腰三角形的两个底角________,简称______________.如果一个三角形有两个角相等,那么它们所对的边也______,简称_________________.4. 三边都______的三角形是等边三角形.等边三角形三边都相等,三个内角都是________.二、精讲精练1. 在下面的等腰三角形中,∠A 是顶角,请分别将它们底角的度数标注在相应的图上.2. 如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =____.ABC DABDC第2题图第3题图3. 如图,在等腰△ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =_________.4. 如图,在Rt △ABC 中,∠B =90°,DE 垂60°108°BA C ABC A BCA直平分AC ,交AC 于D ,交BC 于E ,连接AE ,若 ∠BAE :∠BAC =1:5,则∠C =_____.5. 如图,在△ABC 中,BE 平分∠ABC ,DE ∥BC . (1)若∠ADE =80°,则∠DEB =________.(2)若F 为BE 中点,则DF 与BE 的位置关系是________.C DAB EF6. 已知:如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,且CE =CD ,DM ⊥BC 于M . 求证:M 是BE 的中点.7. 已知:如图,在△ABC 中,AB =AC ,D 为AC 上任意一点,延长BA 到E ,使AE =AD ,连接DE .求证:DE ⊥BC .E DCAECMAD B8. 已知:如图,△ABC 是等边三角形,D 是BC 的中点,DF ⊥AC 于F ,延长DF 到E ,使EF =DF ,连接AE .求∠E 的度数.FE DCBA9. 若等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为_______________.10. 若等腰三角形的周长是25cm ,一腰上的中线将周长分为3:2的两部分,则此三角形的底边长为_____________.11. 若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________.12. 若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.13. 已知:如图,线段AB 的端点A 在直线l 上(AB 与l 不垂直),请在直线l上另找一点C ,使△ABC 是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.14.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为60°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】一、知识点睛1.有两边相等的三角形叫做等腰三角形.2.等腰三角形是轴对称图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.3.等腰三角形的两个底角相等,简称等边对等角.如果一个三角形有两个角相等,那么它们所对的边也相等,简称等角对等边.4.三边都相等的三角形是等边三角形.等边三角形三边都相等,三个内角都是60°.1.60°,60°;45°,45°;36°,36°2.80°3.108°4.40°5.(1)40°;(2)DF⊥BE6.提示:连接BD,由三线合一得∠DBC=∠E=30°,从而得到BD=ED,△BDE是等腰三角形,利用三线合一可以知道底边BE上的高DM也是BE边上的中线,所以M是BE的中点.7.提示:延长ED与BC交于点F,根据已知条件可以知道△AED和△ABC是等腰三角形,设∠E=α,可以表示出∠CDF=α,∠BAC=2α,∠C=90 α,得到∠EFC=90°,所以DE⊥BC.8.提示:连接AD,利用垂直平分线定理得AD=AE,从而∠E=∠ADE.9.3cm10.5cm或353cm11.40°或100°12.50°或130°13.这样的点有4个14.这样的点有2个等腰三角形(随堂测试)1.如图,在△ABC中,D为AC边上一点,且AD=BD=BC.若∠A=40°,则∠DBC=______.DC2. 等腰三角形的周长为28cm ,其中一边长为10cm ,则该等腰三角形的底边长为_______________.3. 已知:如图,在△ABC 中,E 为BC 边上一点,连接AE ,D 为AE 的中点,连接BD ,∠BAD =∠EAC +∠C .求证:AD ⊥BD .E DCB A【参考答案】1. 20°2. 10cm 或8cm3. 提示:利用外角可以得到∠AEB =∠BAD ,根据等角对等边,得到BA =BE ,因为D 是AE 的中点,利用等腰三角形三线合一,可以得到AD ⊥BD .等腰三角形(作业)1. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,交AC 于点D ,点E 在BC 边上,且BD =BE .若∠A =84°,则∠DEC =______.E DC BA2. 已知:如图,在△ABC 中,AB =AC ,D 为AB 边上一点,若CD =AD =BC ,则∠A =_________.DCB AN MEA第2题图第3题图3. 如图,在△ABC 中,∠ABC 的平分线和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N .若BM +CN =9,则线段MN 的长为( ) A .6B .7C .8D .94. 如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于D ,12CD BC.求证:∠ACD =∠B .DB A5. 已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点P 在AD 上.求证:PB=PC .DBAP6. 已知:如图,B ,D ,E ,C 在同一直线上,AB =AC ,AD =AE . 求证:BD =CE .AB CD E7. 等腰三角形两边长分别为4和8,则这个等腰三角形的周长为________. 8. 等腰三角形的一个角比另一个角大30°,则这个三角形的顶角的度数为_____________.9. 已知:如图,线段AB 的端点A 在直线l 上,AB 与l 的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.1.78°2.36°3. D4.提示:过点A作AE⊥BC于E,可证Rt△ADC≌Rt△AEB(HL),从而得到∠ACD=∠B.5.提示:利用等腰三角形三线合一的性质,得AD垂直平分BC,从而得到PB=PC.6.提示:根据等边对等角可以得到∠B=∠C,∠ADE=∠AED,进而可以得到∠BAD=∠CAE,从而证明△ABD≌△ACE(ASA),根据全等三角形对应边相等,可以得到BD=CE.7.208.80°或40°9.共有4个,图略.。

等腰三角形中的分类讨论思想

等腰三角形中的分类讨论思想

等腰三角形中的分类讨论思想作者:李贵生来源:《初中生之友·中旬刊》2012年第09期在解决等腰三角形问题时,由于等腰三角形的特殊性,为了解题方便,可以将问题分为不同种类,然后逐类解决,从而达到解决问题的目的,这一思想方法称为分类讨论的思想方法。

下面结合例题介绍分类讨论思想在等腰三角形中的应用,供同学们参考。

一、三角形的形状不确定等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°分析根据题意满足条件的三角形可能是锐角三角形,也有可能是钝角三角形。

解(1)当等腰三角形为锐角三角形时,一腰上的高在三角形内部,它与另一腰的夹角为30°,则顶角∠C为60°,如图1—1。

(2)当等腰三角形为钝角三角形时,一腰上的高在腰的延长线上,它与另一腰的夹角为30°,则顶角的补角是60°,顶角的度数为120°,如图1—2。

综上所述,顶角的度数为60°或120°。

故答案选D。

点评因为三角形的形状不确定,因此,所对应的三角形的顶角的度数也就不一样。

二、线段未确定在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P共有()A.1个B.2个C.3个D.4个分析线段OA可以是底边,也可以是腰。

解如图2所示,若OA为底,则P1(1,0);点评以上解答是按OA为边时的情况讨论,当然也可以按A为顶角的顶点和O为顶角的顶点的情况讨论。

三、角未确定已知等腰三角形的一个角为80°,则它的另外两个角是_______。

分析题目中没有指出80°角是等腰三角形的底角还是顶角,因此,需要分两种情况求解。

四、边未确定已知AD为等腰△ABC的腰BC上的高,∠DAB=60°,求这个三角形内角的度数。

八年级等腰三角形的分类讨论专题

八年级等腰三角形的分类讨论专题

专题一:等腰三角形中的分类讨论(一)角分类:顶角和底角+ 三角形内角和;外角1.已知一个等腰三角形两内角的度数之比为1:4,求顶角的度数。

2.一个等腰三角形的一个内角比另一个内角的2倍少30o,求这个三角形的三个内角的度数。

3.如果一个等腰三角形的一个外角等于100°,则该等腰三角形的底角的度数是.(二)边分类:底边和腰+ 三角形三边关系4.等腰三角形的两边分别是8,6,这个等腰三角形的周长为5.等腰三角形的两边分别是8,3,这个等腰三角形的周长为6.在等腰三角形ABC中,AB的长是AC的2倍,三角形的周长是40,则AB的长等于_______________.(三)中线分类7.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,求腰长和底长。

8.等腰三角形的底边长为6cm,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm,求这个等腰三角形的腰长(四)高、垂直平分线分类9.已知等腰三角形一腰上的高与另一腰的夹角为25°,求底角的度数10.在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________11.(2018·哈尔滨中考)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数12.(2019·白银中考)定义:等腰三角形的顶角与其一个底角的度数的比值b 称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=13.(2018·绍兴中考)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题。

与等腰三角形有关的分类讨论问题

与等腰三角形有关的分类讨论问题

与等腰三角形有关的分类讨论是一种特殊而又十分重要的三角形,就是因为这种特殊性,在具体处理问题时往往又会出现错误,因此,同学们在求解有关等腰三角形的问题时一定要注意分类讨论.一:与角有关的分类讨论例1、已知等腰三角形的一个内角为75°则其顶角为________分析:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解.二:与边有关的分类讨论例2、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________.分析:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应在符合三角形三边关系的前提下分类讨论.三:与高有关的分类讨论例3、一等腰三角形的一腰上的高与另一腰成35°,则此等腰三角形的顶角是________度.分析:因不知此等腰三角形的顶角是钝角、直角、锐角,应分情况讨论.解:(1)当顶角为锐角时,(如图1)则顶角为90°-35°=55°.(2)当顶角为直角时,不符合题意(如图2),应舍去.(3)当顶角为钝角时(如图3),顶角为180°-(90°-35°)=125°故此等腰三角形的顶角为55°或125°.小结:此题涉及了顶角有“钝角、直角、锐角”之分的分类讨论,特别是当顶角为钝角时的情况容易漏解,请同学们注意体会.30m的草皮铺设一块一边长为10m的等腰三角形绿地,例4、美化环境,计划在某小区内用2请你求出这个等腰三角形绿地的另两边长.分析:例5、在直角坐标系中,O 为坐标原点,已知A (-2,2), 试在x 轴上确定点P ,使△AOP 为等腰三角形, 求符合条件的点P 的坐标 练习:1、等腰三角形一腰上的高与另一腰所成的夹角为45°,这个等腰三角形的顶角的度数_____度. 归纳:三角形的高是由三角形的形状决定的,对于等腰三角形,当顶角是锐角时,腰上的高在三角形内;当顶角是钝角时,腰上的高在三角形外.2、如图,在平面直角坐标系xoy 中,分别平行x 、y 轴的两直 线a 、b 相交于点A (3,4).连接OA ,若在直线a 上存在点P , 使△AOP 是等腰三角形.那么所有满足条件的点P 的坐标 是3、练习如图,在网格图中找格点M ,使△MPQ 为等腰三角形.并画出相应的△MPQ 的对称轴.baxAOA (-2,2)yxoPQPQPOCBA4、变式这样的点M 共有_________个5、如图,△ABC 是等腰直角三角形,∠BAC =90°,点D 是边BC 上一点,△EAD 是等腰直角三角形,∠EAD =90°,ED 与AC 相交于点F , 联结CE . (1)说明∠B =∠ACE 的理由;(2)若△CFE 是等腰三角形,请求出∠BAD 的度数.6、已知如图点O 是等边三角形ABC 内一点,∠AOB =110°, 将点O 绕点A 按顺时针方向旋转60°到点P ,联结OP 、CP (1)求证:△AOP 是等边三角形(2)若△COP 是等腰三角形,求 ∠BOC 的度数。

专题14图形中的等腰三角形分类讨论(解析版)

专题14图形中的等腰三角形分类讨论(解析版)

专题14图形中的等腰三⾓形分类讨论(解析版)专题14 图形中的等腰三⾓形分类讨论教学重难点1.理解等腰三⾓形的性质和判定定理;2.能⽤等腰三⾓形的判定定理进⾏相关计算和证明;3.初步体会等腰三⾓形中的分类讨论思想;4.体会在函数动点中寻找某些特殊的点形成的等腰三⾓形;5.培养学⽣进⾏独⽴思考,提⾼独⽴解决问题的能⼒。

【备注】:1.此部分知识点梳理,根据第1个图先提问引导学⽣回顾学过的等腰三⾓形的性质,可以在⿊板上举例让学⽣画图;2再根据第2个图引导学⽣总结出题⽬中经常出现的⼀些等腰三⾓形的题型;3.和学⽣⼀起分析⼆次函数背景下等腰三⾓形的基本考点,为后⾯的例题讲解做好铺垫。

建议时间5分钟左右。

等腰三⾓形的性质:等腰三⾓形常见题型分类:函数背景下的等腰三⾓形的考点分析:1.求解相应函数的解析式;2.根据函数解析式求解某些特殊点的坐标;3.根据点的位置进⾏等腰三⾓形的讨论:分“指定腰长”和“不指定腰长”两⼤类;4.根据点的位置和形成的等腰三⾓形⽴等式求解。

【备注】:1.以下每题教法建议,请⽼师根据学⽣实际情况参考;2.在讲解时:不宜采⽤灌输的⽅法,应采⽤启发、诱导的策略,并在读题时引导学⽣发现⼀些题⽬中的条件(相等的量、不变的量、隐藏的量等等),使学⽣在复杂的背景下⾃⼰发现、领悟题⽬的意思;3.可以根据各题的“参考教法”引导学⽣逐步解题,并采⽤讲练结合;注意边讲解边让学⽣计算,加强师⽣之间的互动性,让学⽣参与到例题的分析中来;4.例题讲解,可以根据“教法指导”中的问题引导学⽣分析题⽬,边讲边让学⽣书写,每个问题后⾯有答案提⽰;5.引导的技巧:直接提醒,问题式引导,类⽐式引导等等;6.部分例题可以先让学⽣⾃⼰试⼀试,之后再结合学⽣做的情况讲评;7.每个题⽬的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间⾜够的情况下讲解。

1.(2019青浦⼆模)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂⾜为点D,C为线段OD上⼀点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三⾓形时,求x的值.整体分析:(1)先判断出∠ABM=∠DOM,进⽽判断出△OAC≌△BAM,即可得出结论;(2)先判断出BD=DM,进⽽得出,进⽽得出AE=,再判断出,即可得出结论;(3)分三种情况利⽤勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)当OA=OC时.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC为等腰三⾓形时,x的值为.点睛:本题是圆的综合题,主要考查了相似三⾓形的判定和性质,圆的有关性质,勾股定理,等腰三⾓形的性质,建⽴y关于x 的函数关系式是解答本题的关键.图形背景下等腰三⾓形分类讨论的解题⽅法和策略:1.先寻找题⽬中的条件:相等的⾓、相等的边、相似的三⾓形等;2.根据题⽬中的条件求解相关线段的长度;3.等腰三⾓形讨论中,分三步⾛:分类、画图、计算;4.等腰讨论中,当不能直接利⽤边长相等求解时,⼀般情况下通过“画底边上的⾼”辅助线结合三⾓⽐计算求解;5.注意点的位置取舍答案;6.根据题⽬条件,注意快速、正确画图,⽤好数形结合思想;7.利⽤⼏何定理和性质或者代数⽅法建⽴⽅程求解都是常⽤⽅法。

专题08 等腰三角形中的分类讨论模型(解析版)

专题08 等腰三角形中的分类讨论模型(解析版)

专题08等腰三角形中的分类讨论模型模型1、等腰三角形中的分类讨论:【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。

1)无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论;③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。

2)“两定一动”等腰三角形存在性问题:即:如图:已知A ,B 两点是定点,找一点C 构成等腰ABC △方法:两圆一线具体图解:①当AC AB =时,以点A 为圆心,AB 长为半径作⊙A ,点C 在⊙A 上(B ,C 除外)②当BC AB =时,以点B 为圆心,AB 长为半径作⊙B ,点C 在⊙B 上(A ,E 除外)③当BC AC =时,作AB 的中垂线,点C 在该中垂线上(D 除外)例1.(2023秋·河北张家口·八年级统考期末)ABC 是等腰三角形,5,7AB AC ==,则ABC 的周长为()A .12B .12或17C .14或19D .17或19【答案】D【分析】根据等腰三角形的定义分两种情况:当腰为5与腰为7时,即可得到答案.【详解】解:当ABC 的腰为5时,ABC 的周长55717++=;当ABC 的腰为7时,ABC 的周长57719++=.故选:D .【点睛】本题主要考查等腰三角形的定义,掌握等腰三角形的定义是解题的关键.例2.(2023春·四川巴中·七年级统考期末)等腰三角形的周长为32cm ,一边长为8cm ,则其它两边长是()∴150∠=︒,即顶角为150︒;故答案为:30︒或150︒.BAC【点睛】本题考查等腰三角形的性质,注意掌握分类讨论思想和数形结合思想的应用是解题的关键.例5.(2023秋·江苏·八年级专题练习)在如图所示的网格中,在格点上找一点P,使ABP为等腰三角形,则点P有()A.6个B.7个C.8个D.9个【答案】C【分析】分三种情况讨论:以AB为腰,点A为顶角顶点;以AB为腰,点B为顶角顶点;以AB为底.【详解】解:如图:如图,以AB为腰,点A为顶角顶点的等腰三角形有5个;以AB为腰,点B为顶角顶点的等腰三角形有3个;不存在以AB为底的等腰ABP,所以合计8个.故选:C.【点睛】本题考查等腰三角形的定义,网格图中确定线段长度;在等腰三角形腰、底边待定的情况下,分类讨论是解题的关键.例6.(2023·重庆市八年级期中)如图1,一副直角三角板△ABC和△DEF,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B、D、C、F在同一直线上,点A在DE上.如图2,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°)得△E′DF',当直线E′F′与直线AC、BC所围成的三角形为等腰三角形时,α的大小为___.【答案】7.5°或75°或97.5°或120°【分析】设直线E′F′与直线AC、BC分别交于点P、Q,根据△CPQ为等腰三角形,分三种情况:①当∠PCQ 为顶角时,∠CPQ=∠CQP,如图1,可求得α=7.5°;如图2,△CPQ为等腰三角形中,∠PCQ为顶角,可求得α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,可得∠CPQ=90°,如图3,进而求得α=90°-15°=75°;③如图4,当∠CQP为顶角时,∠CPQ=∠PCQ=45°,可得∠CQP=90°,进而求得α=∠EDE′=∠EDQ+∠QDE′=90°+30°=120°.【详解】解:设直线E′F′与直线AC、BC分别交于点P、Q,∵△CPQ为等腰三角形,∴∠PCQ为顶角或∠CPQ为顶角或∠CQP为顶角,①当∠PCQ为顶角时,∠CPQ=∠CQP,如图1,∵∠BAC=∠EDF=90°,∠B=45°,∠F=30°,∴∠E′DF′=90°,∠ACB=45°,∠E′F′D=30°,∵∠CPQ+∠CQP=∠ACB=45°,∴∠CQP=22.5°,∵∠E′F′D=∠CQP+∠F′DQ,∴∠F′DQ=∠E′F′D-∠CQP=30°-22.5°=7.5°,∴α=7.5°;如图2,∵△CPQ为等腰三角形中,∠PCQ为顶角,∴∠CPQ=∠CQP=67.5°,∵∠E′DF′=90°,∠F′=30°,∴∠E′=60°,∴∠E′DQ=∠CQP-∠E′=67.5°-60°=7.5°,∴α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,∴∠CPQ=90°,如图3,∵∠DE ′F ′=∠CQP +∠QDE ′,∴∠QDE ′=∠DE ′F ′-∠CQP =60°-45°=15°,∴α=90°-15°=75°;③如图4,当∠CQP 为顶角时,∠CPQ =∠PCQ =45°,∴∠CQP =90°,∴∠QDF ′=90°-∠DF ′E ′=60°,∴∠QDE ′=∠E ′DF ′-∠QDF ′=30°,∴α=∠EDE ′=∠EDQ +∠QDE ′=90°+30°=120°;综上所述,α的大小为7.5°或75°或97.5°或120°.故答案为:7.5°或75°或97.5°或120°.【点睛】本题考查了等腰三角形性质,直角三角形性质,旋转的性质,三角形内角和定理等,解题关键是运用数形结合思想和分类讨论思想思考解决问题.例7.(2022秋·江苏徐州·八年级校考期中)如图,70AOB ∠=︒,点C 是边OB 上的一个定点,点P 在角的另一边OA 上运动,当COP 是等腰三角形,OCP ∠=°.【答案】40或70或55【分析】分三种情况讨论:①当OC PC =,②当PO PC =,③当OP OC =,根据等腰三角形的性质以及三角形内角和定理即可得到结论.【详解】解:如图,(1)若点P在BC上,且满足PA PB=,求此时(3)在运动过程中,当t为何值时,ACP△【答案】(1)6516(2)316或52(3)54或32或90ACB∠=︒,5cmAB=在Rt ACP中,由勾股定理得()22234x x∴+-=,解得BP 平分ABC ∠,C ∠在BCP 与BDP △中,∵A B ∠∠=︒+90,90ACP BCP ∠+∠=︒,B BCP ∴∠=∠,CP BP AP ∴==,P ∴是AB 的中点,即15cm 22AP AB ==,524AP t ∴=.②如图,当P 在AB 上且3cm AP CA ==时,∴322AP t ==.③如图,当P 在AB 上且(1)求直线AB 的表达式和点D 的坐标;(2)横坐标为m 的点P 在线段AB 上(不与点A x 轴的平行线交AD 于点E ,设PE 的长为()0y y ≠,求y 与m 之间的函数关系式并直接写出相应的范围;(3)在(2)的条件下,在x 轴上是否存在点F ,使PEF !为等腰直角三角形?若存在求出点若不存在,请说明理由.【答案】(1)()450y x D =-+-,,(2)()33242y m m =+-<<,的运用,解答本题时求出函数的解析式是关键.课后专项训练A.120︒B.75︒【答案】C【答案】D【分析】分为AB AC =、BC BA =,CB CA =三种情况画图判断即可.【详解】解:如图所示:当AB AC =时,符合条件的点有2个;当BC BA =时,符合条件的点有1个;当CB CA =,即当点C 在AB 的垂直平分线上时,符合条件的点有一个.故符合条件的点C 共有4个.故选:D .【点睛】本题考查了等腰三角形的定义,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.4.(2023·江苏八年级期中)如图,在正方形网格中,每个小正方形的边长都为1,点A 、B 都是格点(小正方形的顶点叫做格点),若△ABC 为等腰三角形,且△ABC 的面积为1,则满足条件的格点C 有()A .0个B .2个C .4个D .8个【答案】C 【分析】根据等腰三角形的性质和三角形的面积解答即可.【详解】解:如图所示:∵△ABC 为等腰三角形,且△ABC 的面积为1,∴满足条件的格点C 有4个,故选C .【点睛】本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键A.3【答案】D故选:满足条件的点M 的个数为2.故选A .【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.7.(2022·安徽淮北·九年级阶段练习)如图,在ABC 中,90C ∠=︒,8BC =,6AC =.若点P 为直线BC 上一点,且ABP △为等腰三角形,则符合条件的点P 有().A .1个B .2个C .3个D .4个【点睛】本题考查了等腰三角形的判定和勾股定理的应用,关键要用分类讨论的思想.8.(2022·黑龙江·哈尔滨八年级阶段练习)如图,在平面直角坐标系中,点A 的坐标为()1,1,在x 轴上确定点P ,使AOP 为等腰三角形,则符合条件的点P 有()A.2个B.3个C.4个D.5个【答案】C【分析】先计算OA的长,再以OA为腰或底分别讨论,进而得出答案.【详解】解:如图,22112OA=+=,当AO=OP1,AO=OP3时,P1(﹣2,0),P3(2,0),当AP2=OP2时,P2(1,0),当AO=AP4时,P4(2,0),故符合条件的点有4个.故选:C.【点睛】本题以平面直角坐标系为载体,主要考查了勾股定理和等腰三角形的定义,属于常考题型,全面分类、掌握解答的方法是关键.9.(2022·四川广元·八年级期末)如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,C所在直线为y轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB为等腰三角形,符合条件的M点有()A.6个B.7个C.8个D.9个∵BD AC ⊥,∴90ADB ∠=︒,∵∵BD AC ⊥,∴90ADB ∠=︒,∵ABD ∠11【分析】根据等腰三角形一腰上的中线将其周长分别为12和9两部分得到底和要的差是1293-=,再根据周长列式求解即可得到答案;【详解】解:∵等腰三角形一腰上的中线将其周长分别为12和9两部分,∴腰与底的差为:1293-=,①当底边比腰长时,设腰为x ,则底为3x +,由题意可得,32129x x ++=+,解得:6x =,3639x +=+=,②当腰比底边长时,设腰为x ,则底为3x -,由题意可得,32129x x -+=+,解得:8x =,3835x -=-=,故答案为:6,9或8,5.【点睛】本题主要考查三角形中线有关计算,解题的关键是得到腰长与底边之差再分类讨论.14.(2022·黑龙江哈尔滨·八年级期末)在平面直角坐标系xOy 中,已知A (1,2),在y 轴确定点P ,使△AOP 为等腰三角形,则符合条件的点P 有____个.【答案】4.【分析】根据等腰三角形的判定得出可能OA 为底,可能OA 为腰两种情况,依此即可得出答案.【详解】①以A 为圆心,以OA 为半径作圆,此时交y 轴于1个点(O 除外);②以O 为圆心,以OA 为半径作圆,此时交y 轴于2个点;③作线段AO 的垂直平分线,此时交y 轴于1个点;共1+2+1=4.故答案为:4.【点睛】本题考查了等腰三角形的判定的应用,有两边相等的三角形是等腰三角形,注意要进行分类讨论.15.(2022秋·江苏盐城·八年级校考阶段练习)如图,ABC 中,90ACB ∠=︒,10cm AB =,8cm AC =,若点P 从点A 出发,以每秒1cm 的速度沿折线A C B A ---运动,设运动时间为t 秒()0t >,当点P 在边AB 上,【答案】19或20或21.2【分析】利用等腰三角形的性质,依次画图,分类讨论即可.【详解】∵90ACB ∠=当P 在BA 上时,①②当6cm BC CP ==时,过CD PB ⊥于点D ,如图,∴12BD DP BP ==,∵12ABC S AC BC CD ==V g g ,∴ 4.8AC BC CD AB == ,在Rt CBD △中,由勾股定理得:()2226 4.8 3.6cm BD BC CD =--=,∴)22 3.6cm BP BD ==⨯=,∴(()867.221.2s t =++,【答案】5或8【分析】ABP 是以AB 为腰的等腰三角形时,分两种情况:出BP 的长度,继而可求得t 值.【详解】解:在Rt ABC △中,∠②当AB AP =时,28cm 8BP BC t ===,故答案为:5或8.【点睛】本题考查了勾股定理以及等腰三角形的知识,解答本题的关键是掌握等腰三角形的性质,以及分情况讨论,注意不要漏解.15.(2022·河南平顶山·八年级期末)如图,ABC 中,90C ∠=︒,6BC =,ABC ∠的平分线与线段AC 交于点D ,且有AD BD =,点E 是线段AB 上的动点(与A 、B 不重合),连接DE ,当BDE 是等腰三角形时,则BE 的长为___________.【答案】4或4【分析】现根据已知条件得出30CBD ABD BAD ∠=∠=∠=︒,再根据BC =6,分别求出AB 、AC 、BD 、AD 、(2)当BE =DE ,如图:∵BE =DE ∠EDB =∠ABD =30°,∴∠AED =∠EDB ∴∠ADE =180°-∠AED -∠A =180°-60°-30°=90°,∴ ADE 为直角三角形,又∵30A ∠=︒且AD =43,∴DE ,∴BE =4;(3)当BD =DE ,时,点E 与A 重合,不符合题意;综上所述,BE 为4或43.故答案为:4或43.【点睛】本题考查了等腰三角形的性质,直角三角形的性质和判定,勾股定理的应用,16.(2023·上虞市初二月考)在如图所示的三角形中,∠A =30°,点P 和点Q 分别是边AC 和BC 上的两个动点,分别连接BP 和PQ ,把△ABC 分割成三个三角形△ABP ,△BPQ ,△PQC ,若分割成的这三个三角形都是等腰三角形,则∠C 有可能的值有________个.【答案】7【分析】①当AB=AP ,BQ=PQ ,CP=CQ 时;②当AB=AP ,BP=BQ ,PQ=QC 时;③当APB ,PB=BQ ,PQ=CQ 时;④AP=PB,PB=PQ,PQ=QC时;根据等腰三角形的性质和三角形的内角和即可得到结论.【解析】解:如图所示,共有9种情况,∠C的度数有7个,分别为80°,40°,35°,20°,25°,100°,50°.①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时,③当AP=AB,PQ=CQ,PB=PQ时.④当AP=AB,PQ=PC,BQ=PQ时,⑤当AP=BP,CP=CQ,QB=PQ时,⑥当AP=PB,PB=BQ,PQ=CQ时;⑦AP=PB,PB=PQ,PQ=QC时.⑧AP=PB,QB=PQ,PQ=CC时.⑨BP=AB,PQ=BQ,PQ=PC时.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.17.(2022·浙江·八年级专题练习)已知:如图,线段AC和射线AB有公共端点A.求作:点P,使点P在射线AB上,且ACP为等腰三角形.(利用无刻度的直尺和圆规作出所有符合条件的点P,不写作法,保留作图痕迹)【答案】见解析.【分析】分别作出①AP=CP;②AP=AC;③AC=CP即可.【详解】如图所示,点1P、2P、3P即为所求.△是等腰三角形的三种情况,避免漏答案.【点睛】本题考查尺规作图-作等腰三角形.特别注意ACP18.(2022·山东·周村二中八年级期中)在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.(1)如图,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).(2)如图,在△ABC中,∠A=80°,AB=AC,若点P是△ABC的巧妙点,则符合条件的点P一共有几个?请直接写出每种情况下∠BPC的度数.(3)等边三角形的巧妙点的个数有()A.2个B.6个C.10个D.12个【答案】(1)见解析;(2)6个;∠BPC的度数为40°或160°或140°或80°;(3)C.综上所述:∠BPC的度数40°或80°或140°或160°.(3)如图所示,分别以等边三角形的三条边作其对应边的垂直平分线,再分别以等边三角形的三个顶点为圆心,等边三角形的边长为半径画圆,分别与三条边的垂直平分线的交点和三条垂直平分线的交点即为等边三角形的巧妙点,共有10个,故选:C.【点睛】本题主要考查垂直平分线的性质、等腰三角形的性质,构建等腰三角形的作法:定顶点,定圆心;定腰,定半径;以及等边三角形的性质等.熟练掌握相关性质是解题关键.19.(2022·黑龙江密山·八年级期末)如图,直线MN与x轴、y轴分别相交于B、A两点,()2-+-=.(1)求A,B两点的坐标;(2)若点O到AB的距离为24OA OB6805,求线段AB的长;(3)在(2)的条件下,x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.【答案】(1)A (0,6),B (8,0);(2)AB =10;(3)存在,(-8,0)、(-2,0)、(18,0).【分析】(1)由非负数的性质知OA =6,OB =8,据此可得点A 和点B 的坐标;(2)根据1122OAB S AB d OA OB == △求解可得;(3)先设点P (a ,0),根据A (0,6),B (8,0)得()22222226810100PA a PB a AB =+=-==,,,再分PA =AB 和AB =PB 两种情况分别求解可得.(1)()2680OA OB -+-= ∴O −6=0O −8=068OA OB ∴==则A 点的坐标为A (0,6),B 点的坐标为(8,0)(2)1122OAB S AB d OA OB == △,245d =6810245OA OB AB d ⨯∴=== (3)存在点P ,使△ABP 是以AB 为腰的等腰三角形设点P (a ,0),根据A (0,6),B (8,0)得()22222226810100PA a PB a AB =+=-==,,①若PA =AB ,则22PA AB =,即226100a +=,解得a =8(舍)或a =−8,此时点P (−8,0);②若AB =PB ,即22AB PB =,即()21008a =-解得a =18或a =−2,此时点P (18,0)或(−2,0);综上,存在点P ,使△ABP 使以AB 为腰的等腰三角形,其坐标为(−8,0)或(18,0)或(−2,0).【点睛】本题考察了非负数的性质、直角三角形的面积求法、勾股定理及等腰三角形的性质,分类讨论思想的运用是解决第3问的关键20.(2022秋·四川成都·八年级校考期中)如图,四边形OABC 是一张长方形纸片,将其放在平面直角坐标系中,使得点O 与坐标原点重合,点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为()3,4,D 的坐标为()2,4,现将纸片沿过D 点的直线折叠,使顶点C 落在线段AB 上的点F 处,折痕与y 轴的交点记为E .。

动点等腰三角形的分类讨论

动点等腰三角形的分类讨论

动点等腰三角形的分类讨论等腰三角形是指两边长度相等的三角形,动点等腰三角形则是指在等腰三角形中,其中一个顶点在动态变化的情况下,讨论不同情况下的动点等腰三角形的特点和分类。

一、动点在底边上的情况:当动点在底边上时,等腰三角形的另外两个顶点分别位于底边的两侧。

此时,根据动点的位置不同,可以将动点等腰三角形进一步分类。

1. 动点在底边的中点上:当动点在底边的中点上时,等腰三角形的另外两个顶点将分别位于底边的两侧,且与底边的两个顶点的连线相等。

这种情况下,等腰三角形的两个等边边长相等,且底角为直角。

2. 动点在底边的延长线上:当动点在底边的延长线上时,等腰三角形的另外两个顶点将分别位于底边的两侧的延长线上,且与底边的两个顶点的连线相等。

这种情况下,等腰三角形的两个等边边长相等,且顶角为直角。

3. 动点在底边的延长线上但不与底边相交:当动点在底边的延长线上但不与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧的延长线上,且与底边的两个顶点的连线相等。

这种情况下,等腰三角形的两个等边边长相等,且顶角为锐角。

二、动点在底边外的情况:当动点在底边外时,等腰三角形的另外两个顶点将分别位于底边的两侧。

此时,根据动点的位置不同,可以将动点等腰三角形进一步分类。

1. 动点在底边的延长线上但不与底边相交:当动点在底边的延长线上但不与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧。

这种情况下,等腰三角形的两个等边边长不相等,且顶角为锐角。

2. 动点在底边的延长线上且与底边相交:当动点在底边的延长线上且与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧。

这种情况下,等腰三角形的两个等边边长不相等,且顶角为钝角。

动点等腰三角形可以根据动点在底边上或底边外以及动点位置的具体情况进行分类。

不同情况下,等腰三角形的两个等边边长和顶角的大小都会有所不同。

通过对动点等腰三角形的分类讨论,可以更加全面地了解等腰三角形的特点和性质。

【期末复习】浙教版八年级上册提分专题:等腰三角形中的分类讨论(解析版)

【期末复习】浙教版八年级上册提分专题:等腰三角形中的分类讨论(解析版)

【期末复习】浙教版八年级上册提分专题:等腰三角形中的分类讨论【知识点睛】❖ 在等腰三角形中,没有明确指明边是腰还是底时,要进行分类讨论,且求出未知边的长后,一定要看这三边能否组成三角形;❖ 没有明确指明角是顶角或底角时,也要进行分类讨论设等腰三角形中有一个角为α时对应结论 当α为顶角时底角=α2190-︒当α为直角或钝角时 不需要分类讨论,该角必为顶角 当α为锐角时α可以为顶角;也可以为底角当等腰三角形的一个外角为α时对应结论 若α为锐角、直角 α必为顶角的外角若α为钝角α可以是顶角的外角,也可以是底角的外角❖ 动态环境下的等腰三角形存在性问题【类题训练】1.△ABC 中,AB =AC ,一腰上的中线BD 把三角形的周长分为9cm 和12cm 两部分,则此三角形的腰长是 8cm 或6cm .【分析】等腰三角形一腰上的中线将它的周长分为12厘米和18厘米两部分,但已知没有明确等腰三角形被中线分成的两部分的长,哪个是9cm ,哪个是12cm ,因此,有两种情况,需要分类讨论. 【解答】解:根据题意画出图形,如图, 设等腰三角形的腰长AB =AC =2x ,BC =y , ∵BD 是腰上的中线, ∴AD =DC =x ,若AB +AD 的长为12,则2x +x =12,解得x =4cm , 则x +y =9,即4+y =9,解得y =5cm ;若AB +AD 的长为9,则2x +x =9,解得x =3cm ,则x+y=12,即3+y=12,解得y=9cm;所以等腰三角形的腰长为8cm或6cm.故答案为:8cm或6cm.2.(1)等腰三角形中有一个角是70°,则它的顶角是70°或40°.(2)等腰三角形中有一个角是100°,则它的另两个角是40°,40°.(3)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【分析】(1)等腰三角形一内角为70°,没说明是顶角还是底角,所以有两种情况.(2)由于等腰三角形的两底角相等,所以100°的角只能是顶角,再利用三角形的内角和定理可求得另两底角.(3)题中没有指明已知角是底角还是顶角,故应该分情况进行分析从而求解.【解答】解:(1)①当70°角为顶角,顶角度数即为70°;②当70°为底角时,顶角=180°﹣2×70°=40°.(2)∵等腰三角形的两底角相等∴两底角的和为180°﹣100°=80°∴两个底角分别为40°,40°.(3)①当∠A=70°时,则∠ABC=∠C=55°,因为BD⊥AC,所以∠DBC=90°﹣55°=35°;②当∠C=70°时,因为BD⊥AC,所以∠DBC=90°﹣70°=20°故答案为:70°或40°;40°,40°;35°或20°.3.如果等腰三角形的周长是35cm,一腰上中线把三角形分成两个三角形,其周长之差是4cm,则这个等腰三角形的底边长是9cm或cm.【分析】根据题意画出图形,设等腰三角形的腰长为xcm,则底边长为(19﹣2x)cm,再根据两个三角形的周长差是4cm求出x的值即可.【解答】解:如图所示,等腰△ABC中,AB=AC,点D为AC的中点,设AB=AC=xcm,∵点D为AC的中点,∴AD=CD=,BC=25﹣(AB+AC)=35﹣2x,当△ABD的周长大于△BCD的周长时,AB+AD+BD﹣(BC+CD+BD)=4,即x+﹣(35﹣2x)﹣=4,解得x=13,底边长为35﹣13×2=9(cm);当△BCD的周长大于△ABD的周长时,则BC+CD+BD﹣(AB+AD+BD)=4,即35﹣2x+﹣(x+)=4,解得x=,底边长为35﹣×2=(cm).综上所述,这个等腰三角形的底边长为9cm或cm.故答案为:9cm或cm.4.已知△ABC中,CA=CB,AD⊥BC于D,∠CAD=50°,则∠B=70°或20°.【分析】利用直角三角形两锐角互余可求得∠C,再利用三角形内角和定理和等腰三角形的性质可求得∠B.【解答】解:若△ACB是锐角三角形,如图1.∵AD⊥BC,∠CAD=50°,∴∠C=90°﹣∠CAD=90°﹣50°=40°,∵CA=CB,∴∠B=∠CAB,且2∠B+∠C=180°,∴∠B=70°,若△ACB是钝角三角形,如图2.∵AD⊥BC,∠CAD=50°,∴∠DCA=90°﹣∠CAD=90°﹣50°=40°,∵CA=CB,∴∠B=∠CAB,且∠DCA=∠B+∠CAB∴∠B=20°故答案为:70°或20°.5.如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC或AC上取一点P,使得△P AB是等腰三角形,则符合条件的P点有()A.5个B.6个C.7个D.8个【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【解答】解:如图,第1个点在CA延长线上,取一点P,使BA=AP;第2个点在CB延长线上,取一点P,使AB=PB;第3个点在AC延长线上,取一点P,使AB=PB;第4个点在BC延长线上,取一点P,使AB=P A;第5个点在AC延长线上,取一点P,使AB=AP;第6个点在AC上,取一点P,使∠PBA=∠P AB;∴符合条件的点P有6个点.故选:B.6.用一根长为21厘米的铁丝围成一个三条边长均为整数厘米的等腰三角形,则方案的种数为()A.5B.6C.7D.8【分析】设等腰三角形的腰为x,底边为y,根据三角形的周长求出y=21﹣2x,根据三角形三边关系定理得出x+x>y,求出x+y>21﹣2x,再求出不等式组的解集即可.【解答】解:设等腰三角形的腰为x,底边为y,则x>0,y>0,x+x>y,则x+x+y=21,即①y=21﹣2x>0,所以②x+x>21﹣2x,解①②得:5<x<10.5,所以整数x可以为6,7,8,9,10,共5种,故选:A.7.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为120°或75°或30°.【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【解答】解:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=30°,∴∠OEC=180°﹣30°﹣30°=120°;②当E在E2点时,OC=OE,则∠OEC=∠OCE=(180°﹣30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°;故答案为:120°或75°或30°.8.如图,∠AOB=60°,C是BO延长线上一点,OC=12cm,动点P从点C出发沿CB以2cm/s的速度移动,动点Q从点O出发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=4或12s时,△POQ是等腰三角形.【分析】根据等腰三角形的判定,分两种情况:(1)当点P在线段OC上时;(2)当点P在CO的延长线上时.分别列式计算即可求.【解答】解:分两种情况:(1)当点P在线段OC上时,设t时后△POQ是等腰三角形,有OP=OC﹣CP=OQ,即12﹣2t=t,解得,t=4s;(2)当点P在CO的延长线上时,此时经过CO时的时间已用6s,当△POQ是等腰三角形时,∵∠POQ=60°,∴△POQ是等边三角形,∴OP=OQ,即2(t﹣6)=t,解得,t=12s故答案为4s或12s.9.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.【分析】如果一个三角形有两个角相等,那么这两个角所对的边也相等,据此进行判断即可.【解答】解:A、如图所示,△ACD和△BCD都是等腰三角形;B、如图所示,△ABC不能够分成两个等腰三角形;C、如图所示,△ACD和△BCD都是等腰三角形;D、如图所示,△ACD和△BCD都是等腰三角形;故选:B.10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.【解答】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时都能得到符合题意的等腰三角形.故选:C.11.如图,△ABC中,∠B=60°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为75°或120°或15°.【分析】分三种情形分别求解即可.【解答】解:∵△ABC中,∠B=60°,∠C=90°,∴∠BAC=180°﹣60°﹣90°=30°,如图,有三种情形:①当AC=AD时,∠ADC==75°.②当CD′=AD′时,∠AD′C=180°﹣30°﹣30°=120°.③当AC=AD″时,∠AD″C==15°,故答案为:75°或120°或15°.12.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q运动路线的长为3或9.【分析】如图,连接CP,BQ,由“SAS”可证△ACP≌△ABQ,可得BQ=CP,可得点Q运动轨迹是A→H→B,分两种情况讨论,即可求解.【解答】解:如图,连接CP,BQ,∵△ABC,△APQ是等边三角形,∴AP=AQ=PQ,AC=AB,∠CAP=∠BAQ=60°,∴△ACP≌△ABQ(SAS)∴BQ=CP,∴当点P运动到点B时,点Q运动到点H,且BH=BC=6,∴当点P在AB上运动时,点Q在AH上运动,∵△BPQ是等腰三角形,∴PQ=PB,∴AP=PB=3=AQ,∴点Q运动路线的长为3,当点P在BC上运动时,点Q在BH上运动,∵△BPQ是等腰三角形,∴BQ=PB,∴BP=BQ=3,∴点Q运动路线的长为3+6=9,故答案为:3或9.13.如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为45°或36°或或.【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵过点C的直线能将△ABC分成两个等腰三角形,①如图1,∵∠ACB=2∠A,∴AD=DC=BD,∴∠ACB=90°,∴∠A=45°;②如图2,AD=DC=BC,∴∠A=∠ACD,∠BDC=∠B,∴∠BDC=2∠A,∴∠A=36°,③AD=DC,BD=BC,∴∠BDC=∠BCD,∠A=∠ACD,∴∠BCD=∠BDC=2∠A,∴∠BCD=2∠A,∵∠ACB=2∠A,故这种情况不存在.④如图3,AD=AC,BD=CD,∴∠ADC=∠ACD,∠B=∠BCD,设∠B=∠BCD=α,∴∠ADC=∠ACD=2α,∴∠ACB=3α,∴∠A=α,∵∠A+∠B+∠ACB=180°,∴α+α+3α=180°,∴α=,∴∠A=,⑤如图4,AC=CD=DB,∴∠A=∠CDA,∠B=∠DCB,∵∠CDB=180°﹣∠CDA=180°﹣∠A,∴∠B=∠DCB==,∴∠ACB=∠A=180°﹣,∵∠ACB=2∠A,∴180°﹣=2∠A,∴综上所述,∠A的度数为45°或36°或或.故答案为:45°或36°或或.14.已知等边△ABC的边长为3,点E在直线AB上,点D在直线CB上,且ED=EC,若AE=6,则CD的长为3或9.【分析】①E在线段AB的延长线上时,过E点作EF⊥CD于F,②当E在线段AB的延长线时,过E点作EF ⊥CD于F,根据等边三角形的性质求出BE长和∠ABC=60°,解直角三角形求出BF,求出CF,即可求出答案.【解答】解:点E在直线AB上,AE=6,点E位置有两种情况:①E在线段AB的延长线上时,过E点作EF⊥CD于F,∵△ABC是等边三角形,△ABC的边长为3,AE=6,∴BE=6﹣3=3,∠ABC=60°,∴∠EBF=60°,∴∠BEF=30°,∴BF=BE=,∴CF=+3=,∵ED=EC,∴CF=DF,∴CD=×2=9;②如图2,当E在线段AB的延长线时,过E点作EF⊥CD于F,∵△ABC是等边三角形,△ABC的边长为3,AE=6,∴BE=6+3=9,∠ABC=60°,∴∠EBF=60°,∴∠BEF=30°,∴BF=AE=,∴CF=﹣3=,∵ED=EC,∴CF=DF,∴CD=×2=3;即C=9或3,故答案为:3或9.15.△ABC的高AD、BE所在的直线交于点M,若BM=AC,求∠ABC的度数.【分析】分两种情况考虑:当∠ABC为锐角时,如图1所示,由AD垂直于BC,BE垂直于AC,利用垂直的定义得到一对直角相等,再由一对对顶角相等,得到∠CAD=∠MBD,根据一对直角相等,再由BM=AC,利用AAS得出三角形BMD与三角形ACD全等,由全等三角形对应边相等得到AD=BD,得到三角形ABD为等腰直角三角形,可得出∠ABC=45°;当∠ABC为钝角时,如图2所示,同理利用AAS得出三角形ADC与三角形DBM全等,由全等三角形对应边相等得到AD=BD,得出三角形ABD为等腰直角三角形,求出∠ABD=45°,利用邻补角定义即可求出∠ABC=135°.【解答】解:分两种情况考虑:当∠ABC为锐角时,如图1所示,∵AD⊥DB,BE⊥AC,∴∠MDB=∠AEM=90°,∵∠AME=∠BMD,∴∠CAD=∠MBD,在△BMD和△ACD中,,∴△BMD≌△ACD(AAS),∴AD=BD,即△ABD为等腰直角三角形,∴∠ABC=45°;当∠ABC为钝角时,如图2所示,∵BD⊥AM,BE⊥AC,∴∠BDM=∠BEC=90°,∵∠DBM=∠EBC,∴∠M=∠C,在△BMD和△ACD中,,∴△BMD≌△ACD(AAS),∴AD=BD,即△ABD为等腰直角三角形,∴∠ABD=45゜,则∠ABC=135゜.16.已知点P为线段CB上方一点,CA⊥CB,P A⊥PB,且P A=PB,PM⊥BC于M,若CA=1,PM=4.求CB的长.【分析】根据全等三角形的判定得出△PMB≌△PNA,进而分类讨论得出答案即可.【解答】解:此题分以下两种情况:①如图1,过P作PN⊥CA于N,∵P A⊥PB,∴∠APB=90°,∵∠NPM=90°,∴∠NP A=∠BPM,在△PMB和△PNA中,,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=3,∴BC=7;②如图2,过P作PN⊥CA于N,∵P A⊥PB,∴∠APB=90°,∵∠NPM=90°,∴∠NP A=∠BPM,在△PMB和△PNA中,,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=5,可得BC=9.综合上述CB=7或9.17.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°﹣18°=57°,于是得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,②如图2,当点D在线段BC上时,∠ADC=x°+α,③如图3,当点D在点C右侧时,∠ADC=x°﹣α,根据题意列方程组即可得到结论.【解答】解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∴∠ADE=∠AED=75°,∴∠CDE=180°﹣35°﹣30°﹣75°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°﹣18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,∴,(1)﹣(2)得2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α,∴,(2)﹣(1)得α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α,∴,(2)﹣(1)得2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)图①是顶角为36°的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)图③是顶角为45°的等腰三角形,请你在图③中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,则x所有可能的值为.【分析】(1)在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线即可;(2)在图③中画出顶角为45°的等腰三角形的三分线即可;(3)分两种情况:AD为等腰三角形的腰或底作图即可得结论.【解答】解:(1)在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线;(2)在图③中画出顶角为45°的等腰三角形的三分线.每个等腰三角形顶角的度数为:90°、135°、45°.故答案为:90°、135°、45°.(3)如下图作△ABC,①如图1:当AD=AE时,∵2x+x=30+30,∴x=20.②如图2:当AD=DE时,∵2x+x+30+30=180.∴x=40.所以x的所有可能的值为20°或40°.故答案为20°或40°.19.如图,在四边形ABCD中,AB∥CD,AE交BC于点P,交DC的延长线于点E,点P为AE的中点.(1)求证:点P也是BC的中点;(2)若CB⊥AB,且DP=,CD=,AB=4,求AP的长;(3)在(2)的条件下,若线段AE上有一点Q,使得△ABQ是等腰三角形,求AQ的长.【分析】(1)由平行线的性质得出∠CEP=∠BAP,∠ECP=∠ABP,由点P为AE的中点,得出PE=P A,由AAS证得△CEP≌△BAP,即可得出结论;(2)由CB⊥AB,AB∥CD,得出∠DCP=∠ABP=90°,在Rt△DCP中,CP==3,由(1)得CP=PB=3,在Rt△ABP中,AP==5;(3)①当AQ=AB时,AQ=AB=4;②当BA=BQ时,过点B作BN⊥AQ于N,则AN=NQ,由S△ABP=AB•BP=AP•BN,求出BN=,在Rt△ABN中,AN==,则AQ=2AN=;③当AQ=QB时,证明QB=AQ=QP,则AQ=AP=.【解答】(1)证明:∵AB∥CD,∴∠CEP=∠BAP,∠ECP=∠ABP,∵点P为AE的中点,∴PE=P A,在△CEP和△BAP中,,∴△CEP≌△BAP(AAS),∴PC=PB,∴点P也是BC的中点;(2)解:∵CB⊥AB,AB∥CD,∴∠DCP=∠ABP=90°,在Rt△DCP中,CP===3,由(1)得:CP=PB=3,在Rt△ABP中,AP===5;(3)解:①当AQ=AB时,AQ=AB=4;②当BA=BQ时,过点B作BN⊥AQ于N,如图1所示:则AN=NQ,S△ABP=AB•BP=AP•BN,即4×3=5BN,∴BN=,在Rt△ABN中,AN===,∴AQ=2AN=;③当AQ=QB时,如图2所示:∵AQ=QB,∴∠QAB=∠QBA,∵∠QAB+∠QPB=90°,∠QBA+∠QBP=90°,∴∠QPB=∠QBP,∴QB=QP,∴QB=AQ=QP,∴AQ=AP=;综上所述,△ABQ是等腰三角形,AQ的长为4或或.。

等腰三角形的分类讨论

等腰三角形的分类讨论
在点D的运动过程中,△ADE的形状可以是等腰 三角形吗?若可以,请直接写出∠BDA的度数,若不 可以,请说明理由。
1100或800
类型三:三角形的形状不明时需分类讨论
例:已知等腰△ABC 腰AB上的高CE 与另一腰AC
的夹角为30°,则其顶角的度数为 _6_0_°_或__1__2_0_°_
A E
B 图1
复习与回顾
1、等腰三角形的性质
①等腰三角形的两个底角相等.(等边对等角) ; ②等腰三角形顶角平分线、底边上的中线、底边上的高线互相重合.
2、等腰三角形判定
有两个角相等的三角形是等腰三角形. (等角对等边).
等腰三角形 分类讨论问题
平顶山市实验中学 孙艳霞
类型一:底和腰不明时需分类讨论
例:已知等腰三角形的两边长为3和7,则 其周长为___1_7__.
类型四:一边确定,确定等腰三角形个数时
练习:如图,已知点A的坐标为(2,2),点P在x轴上, △APO为等腰三角形,则满足 条件的点P的坐标为__(_2__2_,_0)___(__-__2__2_,0_)___(_4_,_0)___(__2_,0_)
类型四:一边确定,确定等腰三角形个数时
练习:如图,网格中的每个小正方形的边长为1,A、B 是格点,以A,B,C为等腰三角形顶点的所有格点C的
个数为( B ) A.7个 B.8个 C.9个 D.10个
方法总结 确定的边可能是等腰三角形的腰,也可能是
等腰三角形的底边,解决此类问题通常用圆规 能做到不重不漏.
课堂小结
类型一:底和腰不明时需分类讨论 类型二:顶角与底角不明时需分类讨论 类型三:三角形的形状不明时需分类讨论 类型四:一边确定,确定等腰三角形个数时
C

由等腰三角形边的不确定性引发的分类讨论

由等腰三角形边的不确定性引发的分类讨论

由等腰三角形边、角的不确定性引发的分类讨论分类讨论思想,贯穿于整个中学数学的全部内容中,是中学教学的一个重点课题,也是一个难点问题。

初中阶段虽然没有对此方面的教学要求,但是需要用分类讨论的思想去解决的问题却比比皆是。

在近几年的中考试题中都把分类讨论思想方法列为重要的思想方法来考查,体现出其重要的位置。

小到填空、选择题,大到压轴题都非常容易见到它的身影,学生稍不留神就会因“考虑不周”而遗漏可能的答案,从而导致失分较多,究其原因主要是平时的教与学中,尤其是在中考复习时,对“分类讨论”的数学思想渗透不够。

将分类讨论的思想结合初中的某些知识,列出若干种具体化问题,并作为一种解题的方法传授给学生却是很有必要的,因为这类问题能使复杂的问题简单化,是培养学生思维的发散性和思维的严谨性的最好途径,能提高学生研究问题,探索规律的能力。

需要运用分类讨论的思想解决的数学问题,就其引起分类的原因,可归结为:①涉及的数学概念是分类定义的,如绝对值的定义等;②运用的数学定理、公式或运算性质、法则等数学运算要求是分类给出的,如除法运算中除数不为零等;③由函数性质定理、公式的限制条件引发的分类讨论;④由图形不确定引起的分类讨论;正确解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类出各种符合条件的图形。

画图能力和空间想象能力也是数学中的重要能力,是正确解答此类分类讨论问题所需要的能力,教学中应注意对学生画图能力和空间想象能力的培养,让学生多操作、多思考,提高学生的数学能力。

⑤求解的数学问题的结论有多种情况或多种可能;⑥数学问题中含有参变量,这些参变量的取值会导致不同结果的。

在教学中,我们要多研究、多实践、多探索,让学生更好的掌握好初中数学中的分类讨论思想。

形的相关概念(1)等腰三角形的定义有两边相等的三角形是等腰三角形。

其中相等的两条边称为等腰三角形的两条腰,第三条边称为等腰三角形的底边。

两腰组成的夹角称为等腰三角形的顶角,由一腰和一底边组成的角称为等腰三角形的底角。

等腰三角形中的分类讨论(含答案)

等腰三角形中的分类讨论(含答案)

等腰三角形中的分类讨论
类型1对顶角和底角的分类讨论
对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.
1.等腰三角形中有一个角为52°,它的一条腰上的高与底边的夹角为多少度?
解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°;
②若已知的这个角为底角,则一腰上的高与底边的夹角为38°.
故所求的一腰上的高与底边的夹角为26°或38°.
类型2对腰长和底长的分类讨论
在解答已知等腰三角形边长的问题时,当题目条件中没有明确说明哪条边是“腰”、哪条边是“底”时,往往要进行分类讨论.判定的依据是:三角形的任意两边之和大于第三边;两边之差小于第三边.
2.(1)已知等腰三角形的一边长等于6 cm,一边长等于7 cm,求它的周长;
(2)等腰三角形的一边长等于8 cm,周长等于30 cm,求其他两边的长.
解:(1)周长为19 cm或20 cm.
(2)其他两边的长为8 cm,14 cm或11 cm,11 cm.
1。

期末复习专题等腰三角形中的分类讨论

期末复习专题等腰三角形中的分类讨论
B C
50°
50°
B
2、以BC为一边
1、以AC为一边
C A
B A
C
A
C
3、以AB为一边
B C
A
C B
CB
A
B
A
B
C
A
B
主要思想:
不重复不遗漏!
1.角的分类:顶角、底角 2 .边的分类:腰、底边
一、遇角需讨论
1.已知等腰三角形的一个内角为80°,, 则 其顶角为__8_0_°_或__2_0_°__
A
且点D在D’的位置,E在E’的为时,
如图,与(1)类似地也可以求得
C
D’ B
∠DCE =∠ACB÷2=200。
E’
D
(3)当点D、E在点A的两侧,
A
且E点在E’的位置时,如图,
∵BE’=BC,
C
B
∴∠ BE’C=(180O- ∠CBE) ÷2= ∠CBA ÷2 ,
∵AD=AC,
E’
∴∠ADC=(1800-∠DAC)÷2=∠BAC÷2,AADD NhomakorabeaB
C
B
C
三、遇中线需讨论
变式:等腰三角形底边为5cm,一腰上的中线
把其周长分为两部分的差为3cm,则其周长
为 21cm 。
A
A
D
D
B
C
B
C
注意:要运用三角形的三边关系来验证是否能构 成三角形。
四、遇高需讨论
1.等腰三角形一腰上的高与另一腰所成的夹 角为30°,则这个等腰三角形的顶角度数 是__6_0_°_或__1_2_0_°____
C
C
D
A
E
B

初中数学重难点突破:等腰三角形中的分类讨论问题

初中数学重难点突破:等腰三角形中的分类讨论问题

等腰三角形中的分类讨论问题典例讲解:分类讨论求角度例1:等腰三角形有一个内角是50°,则其余两个内角的度数为 .解:当50°角是顶角时,则底角为(180°-50°)÷2=65°,则其余两个角的度数为65°,65°;当50°角是底角时,则顶角为180°-50°×2=80°,则其余两个角的度数度数为50°,80°.所以,本题的答案为:65°,65°或50°,80°.总结:(1)在等腰三角形中求内角的度数时,要看已知角是否已经确定是顶角或底角.若已确定,则直接利用三角形的内角和定理求解;否则,要分类讨论,分已知角为顶角和已知角为底角两种情况.(2)若等腰三角形中已知的角是直角或钝角,则此角必为顶角,不用再分类讨论.分类讨论求长度解:当3x-1= x+1时,解得x=1,此时三角形的三条边长分别为2,2,5,因为2+2<5,不符合三角形三边关系,所以x=1舍去;当3x-1= 5时,解得x=2,此时三角形的三条边长分别为5,3,5,因为5+3>5,符合三角形三边关系,所以x=2成立;当x+1=5时,解得x=4,此时三角形的三条边长分别为11,5,5,因为5+5<11,不符合三角形三边关系,所以x=4舍去.所以,本题答案为2.总结:利用等腰三角形有两条边长相等的性质求边长或周长时,当不确定哪两条边是腰时,要进行分类讨论,计算出结果后要验证,检验算出的结果是否符号三角形三边关系.提升练习1.已知等腰三角形的两边长a,b满足|a﹣2|+b2﹣10b+25=0,那么这个等腰三角形的周长为()A.8B.12C.9或12D.92.如果等腰三角形两边长是6cm和12cm,那么它的周长是()A.18cm B.24cm C.30cm D.24或30cm3.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为()A.60°B.150°C.60°或120°D.60°或150°4.已知等腰△ABC中,∠A=50°,则∠B的度数为()A.50°B.65°C.50°或65°D.50°或80°或65°5.已知等腰三角形的顶角等于50°,则底角的度数为度.6.等腰三角形一个外角是150°,求一腰上的高与另一腰的夹角是.7.在等腰三角形ABC中,∠A=2∠B,则∠C的度数为.8.在△ABC中,AB=AC,∠B=40°,点D在BC边上,连接AD,若△ABD是直角三角形,则∠DAC的度数是.9.等腰三角形一边长等于4,一边长等于9,它的周长是.10.等腰三角形的一个内角是80°,则它顶角的度数是.11.已知一个等腰三角形的一边长为2cm,另一边长为5cm,则这个等腰三角形的周长是cm.12.一等腰三角形的底边长为15cm,一腰上的中线把三角形的周长分为两部分,其中一部分比另一部分长5cm,那么这个三角形的周长为.13.若等腰三角形一腰上的高与另一腰的夹角为45°,则这个等腰三角形的底角为.14.如图,△ABC中∠ABC=40°,动点D在直线BC上,当△ABD为等腰三角形,∠ADB=.15.等腰三角形的周长为21cm.(1)若已知腰长是底边长的3倍,求各边长;(2)若已知一边长为6cm,求其他两边长.16.如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成18cm和21cm两部分,求△ABC的三边长.17.已知在△ABC中,AB=20,BC=8,AC=2m﹣2.(1)求m的取值范围;(2)若△ABC是等腰三角形,求△ABC的周长.18.已知:在△ABC中,AB=AC,∠BAC=45°.(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.求证:BF=CF;(2)若点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.当△BFD是等腰三角形时,求∠FBD的度数.参考答案:1.B . 2.C . 3.C . 4.D .5. 65 . 6. 30°或60° . 7. 45°或72° . 8. 10°或50° .9. 22 . 10. 80°或20° . 11. 12 . 12. 55cm 或35cm .13. 67.5°或22.5° . 14. 40°或100°或70°或20° .15.解:(1)如图,设底边BC =a cm ,则AC =AB =3a cm ,∵等腰三角形的周长是21cm ,∴3a +3a +a =21,∴a =3,∴3a =9,∴等腰三角形的三边长是3cm ,9cm ,9cm ;(2)①当等腰三角形的底边长为6cm 时,腰长=(21﹣6)÷2=7.5(cm );则等腰三角形的三边长为6cm 、7.5cm 、7.5cm ,能构成三角形;②当等腰三角形的腰长为6cm 时,底边长=21﹣2×6=9;则等腰三角形的三边长为6cm ,6cm 、9cm ,能构成三角形.故等腰三角形其他两边的长为7.5cm ,7.5cm 或6cm 、9cm .16.解:∵BD 是AC 边上的中线,∴AD =CD=21AC , ∵AB =AC ,∴AD =CD=21AB , 设AD =CD =x cm ,BC =y cm ,分两种情况:当时,即,解得:, ∴△ABC 的各边长为10cm ,10cm ,7cm ;当时,即,解得:, ∴△ABC 的各边长为14cm ,14cm ,11cm ;综上所述:△ABC 各边的长为10cm ,10cm ,7cm 或14cm ,14cm ,11cm .17.解:(1)在△ABC中,AB=20,BC=8,AC=2m﹣2.∴20﹣8<2m﹣2<20+8,解得:7<m<15;∴m的取值范围为:7<m<15;(2)∵△ABC是等腰三角形,∴分两种情况:当AB=AC=20时,∴△ABC的周长=20+20+8=48;当BC=AC=8时,∵8+8=16<20,∴不能组成三角形;综上所述,△ABC的周长为48.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,在△BCD与△CBE中,∴△BCD≌△CBE(SAS),∴∠FBC=∠FCB,∴BF=CF;(2)解:∵AB=AC,∠BAC=45°,∴,由(1)知,∠FBC=∠FCB,∴∠DBF=∠ECF,设∠FBD=∠ECF=x,则∠FBC=∠FCB=(67.5°﹣x),∠BDF=∠ECF+∠BAC=x+45°,∠DFB=2∠FBC=2(67.5°﹣x)=135°﹣2x,∵△BFD是等腰三角形,故分三种情况讨论:①.当BD=BF时,此时∠BDF=∠DFB,∴x+45°=135°﹣2x,得x=30°,即∠FBD=30°;②当BD=DF时,此时∠FBD=∠DFB,∴x=135°﹣2x,得x=45°,即∠FBD=45°;③当BF=DF时,此时∠FBD=∠FDB,∴x=x+45°,不符题意,舍去;综上所述,∠FBD=30°或45°.。

等腰三角形中的分类讨论问题归类

等腰三角形中的分类讨论问题归类

等腰三角形中的分类讨论问题归类等腰三角形是高中几何学中的重要概念之一,它具有一些特殊的性质和分类方法。

本文将对等腰三角形进行分类讨论,并归类相关问题。

通过对等腰三角形的深入了解,我们能够更全面地掌握它的性质和应用。

一、定义与性质等腰三角形是指具有两边长度相等的三角形。

根据这个定义,我们可以推导出等腰三角形的一些性质。

首先,等腰三角形的底角(底边所对的角)是两条边所对应的顶角的一半。

其次,等腰三角形的高线(从顶点到底边之间的线段)也是它的中线和中线所在的高线相等。

此外,等腰三角形的角平分线也是高线和中线。

这些性质在解决等腰三角形相关问题时非常有用。

二、基于边长的分类根据等腰三角形底边和两边的长度关系,我们可以将等腰三角形分为以下几种情况。

1. 等腰锐角三角形:当两边的长度小于底边时,所形成的等腰三角形是一个锐角三角形。

在这种情况下,底边所对应的顶角是一个锐角。

2. 等腰直角三角形:当两边的长度等于底边时,所形成的等腰三角形是一个直角三角形。

在这种情况下,底边所对应的顶角是一个直角。

3. 等腰钝角三角形:当两边的长度大于底边时,所形成的等腰三角形是一个钝角三角形。

在这种情况下,底边所对应的顶角是一个钝角。

三、基于角度的分类根据等腰三角形底边所对应的顶角的大小,我们可以将等腰三角形分为以下几种情况。

1. 等腰锐角三角形:当底角小于90度时,所形成的等腰三角形是一个锐角三角形。

在这种情况下,底边所对应的顶角是一个锐角。

2. 等腰直角三角形:当底角等于90度时,所形成的等腰三角形是一个直角三角形。

在这种情况下,底边所对应的顶角是一个直角。

3. 等腰钝角三角形:当底角大于90度时,所形成的等腰三角形是一个钝角三角形。

在这种情况下,底边所对应的顶角是一个钝角。

四、应用与推广了解等腰三角形的分类讨论有助于我们在解决相关几何问题时快速准确地判断和运用。

例如,当我们需要证明一个三角形是等腰三角形时,可以根据其边长关系或角度关系进行分类讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题精练
(关于边的分类)
2、(2012攀枝花)已知实数x,y满足│x-4│+(y8)2=0
,则以x,y的值为两边长的等腰三角形的周长是( B )
A.20或16 B. 20 C. 16 D.以上答案均不对
分析:
两边长
(不确定)
4是底边 8是腰
4是腰 8是底边
8.8.4 另一腰是8 周长是20
4.4.8 另一腰是4
形成的夹角为40°则该三角形的一个底角为_6_5_°__或25°
练习二
1. 一个等腰三角形两边长分别是4和5,则它的周长
是 13或. 14
2.一个等腰三角形的周长为24,一边长为10,则另两边长
10,4或.7,7
例题精练
(关于中线的分类)
1、等腰三角形一腰上的中线把周长分成15和12两
部分,则它的底边长等于 7或11
C.8
D.9
分类的原因:条件不确定(AB具体什么边不确定)
分类的标准: 按边分(① AB是腰 ② AB是底边 )
逐类讨论: ①以A 为圆心以AB长为半径画圆(2个) ②以B 为圆心以AB长为半径画圆 (2个) ③做AB的垂直平分线(4个)
归纳:以AB为腰时画两个圆,以AB为底时做AB的垂直平分线
练习四
1. 在平面直角坐标系中,A(2,2),在坐标轴 上找一点P,使得△AOP是以AO为腰的等腰
三角形,则符合条件的点P有___个6。
2. 在平面直角坐标系中,A(2,2),在坐标轴 上找一点P,使得△AOP是以AO为底的等腰
三角形,则符合条件的点P有___个2。
颗粒归仓
解分类讨论问题的步骤: (1)分类的原因(为何分类):条件不确定
2.等腰三角形底边为5cm,一腰上的中线把其周长分为
两部分的差为3cm,则腰长为_8_c__m_____。
例题精练
1、(2010 湖南株洲)如图所示的正方形网格中,网格线
的交点称为格点.已知A 、B 是两格点,如果C也是图中的格
点,且使得△ABC为等腰三角形,则点C的个数是( C )
A.6
分析:
B.7
顶角为130°
垂直平分线和高的讨论方法相同:
分锐角三角形和钝角三角形讨论
练习一
1、已知等腰三角形的一个内角是40°,则其顶角为 _1_0_0_°__或。40°
2、等腰三角形一腰上的高与另一腰的夹角为45°,则 其顶角为_4_5_°__或. 135° 3、若等腰三角形一腰的垂直平分线和另一腰所在的直线
(2)分类的标准(如何分类):对不确定的条件进 行合理分类. (3)逐类讨论:即对各类问题详细讨论,逐步解决.
(4)检验总结:将各类情况总结归纳。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
桐庐县三合初级中学
(不能组成三 角形舍去)
归纳:分腰和底边讨论
例题精练
(关于腰的高和垂直平分线的分类)
(2007 杭州)一个等腰三角形一腰上的高与另一腰 的夹角为40°,则其顶角为5_0_°_或_1_3.0°
分析:
等腰三角形
锐角等腰三角形
高在三角形内部,顶角为50°
(种类不确定) 钝角等腰三角形
高在另一腰的延长线上
分析: 中线把三角形分为:底+腰一半和腰+腰一半两部分
两部分
(不确定)
1.腰+腰一半=15 底+腰一半=12 10.10.7 √ 2.腰+腰一半 =12 底+腰一半=15 8.8.11√
归纳:设“腰一半”为x,用方程解 决
练习三:
1两.等部腰分三,角则形腰一长腰为上_1_的8__中或__线_1把_4_其。 周长分为27cm和21cm
等腰三角形中的分类讨论
桐庐县三合初级学
例题精练
(关于角的分类)
(2007 杭州)一个等腰三角形的一个外角等于 110°,则这个三角形的两个底角55应°,该55为°或70°,70° 。
分析:
一个外角
(不确定)
顶角的外角 底角的外角
顶角70°,底角55°,55° 底角70°,70°。顶角40°,
归纳:分顶角和底角讨论
相关文档
最新文档