45条考试必备公式与知识点

合集下载

高考数学必背公式

高考数学必背公式

高考数学必背公式
高考数学必背公式包括但不限于:
1. 圆的公式:
圆体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程(x-a)2+(y-b)2=r2,其中(a,b)是圆心坐标
圆的一般方程x2+y2+dx+ey+f=0,其中d2+e2-4f>0
2. 椭圆公式:
椭圆周长公式:l=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差
椭圆面积公式:s=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

3. 两角和公式、倍角公式、半角公式、和差化积等三角函数公式。

4. 等差数列、等比数列等数列公式。

5. 抛物线等几何图形公式。

以上信息仅供参考,建议查阅高中数学教材或教辅资料,获取更准确全面的信息。

初中数学知识点中考必背公式

初中数学知识点中考必背公式

初中数学知识点中考必背公式一、代数部分:1.二次方程的求根公式:对于一元二次方程ax^2+bx+c=0其中a≠0,Δ=b^2-4ac≥0,则求根公式为:x1=[-b+√(b^2-4ac)]/2ax2=[-b-√(b^2-4ac)]/2a2.二次函数的顶点坐标:对于二次函数y=ax^2+bx+c(a≠0),其顶点坐标为:横坐标x=-b/2a,纵坐标y=-Δ/4a3.因式分解公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2(a+b)(a-b)=a^2-b^24.平方差公式:a^2-b^2=(a+b)(a-b)5.和差化积公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)6.一些特殊角的正弦、余弦、正切值:sin30°=1/2,cos30°=√3/2,tan30°=1/√3 sin45°=cos45°=1/√2,tan45°=1sin60°=√3/2,cos60°=1/2,tan60°=√37.等差数列前n项和公式:Sn=n(a1+an)/28.等差数列通项公式:an=a1+(n-1)d9.等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)10.等比数列通项公式:an=a1*q^(n-1)11.绝对值的性质:-a,=,aab,=,a,*,ba/b,=,a,/,b二、几何部分:1.直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方,即a^2+b^2=c^22.等边三角形的边长关系:等边三角形的三条边相等3.等腰三角形的性质:等腰三角形的两底角相等,两腰相等4.两条平行线与两条截线的关系:两条平行线与另外两条非平行线(截线)形成的内角、外角相等5.锐角三角函数的定义:sinA=对边/斜边cosA=邻边/斜边tanA=对边/邻边6.三角形内角和公式:三角形的内角和等于180°,即A+B+C=180°7.角平分线定理:角平分线将一个角分为两个大小相等的角8.两角的和差公式:sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=(tanA±tanB)/(1∓tanAtanB)9.三角形面积公式:对于任意三角形ABC,其面积S可以由三边长度a、b、c计算:S=√[s(s-a)(s-b)(s-c)]其中,s=(a+b+c)/2为半周长10.弦切弧定理:圆内一弦的两个弦心角相等,一弦上的切线与此弦所对的弧上任一弦心角相等11.正三角形的面积公式:对于边长为a的正三角形,其面积S=(√3*a^2)/4三、概率统计部分:1.事件的概率公式:对于随机试验的事件A,事件A发生的概率为P(A)=事件A发生的次数/试验次数2.互斥事件的概率公式:对于互斥事件A和B,两事件发生的概率之和为P(A∪B)=P(A)+P(B)3.相互独立事件的概率公式:对于相互独立事件A和B,两事件同时发生的概率为P(A∩B)=P(A)*P(B)4.条件概率公式:对于事件A和事件B,已知事件B发生的情况下事件A发生的概率为P(A,B)=P(A∩B)/P(B)这里列举的只是初中数学常见到的一部分公式,而实际中考中会用到的公式还有很多,建议同学们在备考过程中广泛积累、熟练掌握各类公式,提高解题能力。

小学五年级下册数学公式必背

小学五年级下册数学公式必背

小学五年级下册数学公式必背1、分数与整数相乘:分子和整数相乘,分母不变。

(能约分的要约分)2、分数与分数相乘,分子与分子相乘,分母与分母相乘,能约分的可以先约分。

3、长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。

4、长方体的棱长总和=(长+宽+高)×45、长方体6个面的总面积叫作它的表面积。

长方体相对的面的面积相等。

前后面的面积=长×高;左右面的面积=宽×高;上下面的面积=长×宽6、长方体的表面积=(长×宽+长×高+宽×高)×2S=(a×b+a×h+b×h)×27、正方体是特殊的长方体。

(长宽高都相等)8、正方体有6个面,都是面积相等的正方形;8个顶点,12条棱都相等。

9、正方体的棱长总和=棱长×1210、正方体6个面的总面积叫作它的表面积,6个面的面积都相等。

11、正方体的表面积=棱长×棱长×6S=6a²12、长方体的体积=长×宽×高V=abh13、正方体的体积=棱长×棱长×棱长V=a×a×a或V=a³14、长方体和正方体体积的统一公式:长方体(正方体)体积=底面积×高V=Sh15、如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。

比如1/2的倒数是2,2的倒数是1/2,这两个数互为倒数。

1的倒数是它本身,0没有倒数。

16、一个数除以一个整数(零除外)等于这个数乘以这个整数的倒数。

17、一个数除以一个分数等于这个数乘以这个分数的倒数。

18、除以一个数(零除外)等于乘这个数的倒数。

19、物体所占空间的大小叫作物体的体积。

常用的体积单位有:方厘米,立方分米,立方米。

高中必背88个数学公式

高中必背88个数学公式

高中必背88个数学公式数学是一门需要记忆的学科,公式则是数学的重要部分。

在高中数学中,我们需要掌握的公式非常多。

下面就是必背的88个数学公式,大家可以结合具体情况进行记忆。

1. 两点距离公式:$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$2. 长方形周长公式:$C=2(a+b)$,面积公式:$S=ab$3. 正方形周长公式:$C=4a$,面积公式:$S=a^2$4. 平行四边形周长公式:$C=2(a+b)$,面积公式:$S=bh$5. 菱形周长公式:$C=4a$,面积公式:$S=\frac{1}{2}d_1d_2$6. 梯形周长公式:$C=a+b+c+d$,面积公式:$S=\frac{1}{2}(a+b)h$7. 圆心角公式:$l=R\theta$8. 弧长公式:$l=R\theta$9. 扇形面积公式:$S=\frac{1}{2}R^2\theta$10. 圆周率的记法:$\pi=\frac{C}{d}$11. 直角三角形勾股定理:$a^2+b^2=c^2$12. 三角形内角和公式:$180^{\circ}$13. 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$14. 余弦定理:$c^2=a^2+b^2-2ab\cos C$15. 正切定理:$\frac{a-b}{a+b}=\tan\frac{A-B}{2}\cdot\tan\frac{A+B}{2}$16. 三角函数和差公式:$\sin(x\pm y)=\sin x\cos y\pm\cos x\sin y$17. 三角函数积化和公式:$\sin x\cos y=\frac{1}{2}[\sin(x+y)+\sin(x-y)]$18. 三角函数积化差公式:$\cos x\cos y=\frac{1}{2}[\cos(x+y)+\cos(x-y)]$19. 三角函数半角公式:$\cos\frac{x}{2}=\pm\sqrt{\frac{1+\cosx}{2}},\sin\frac{x}{2}=\pm\sqrt{\frac{1-\cos x}{2}}$20. 一次函数解析式:$y=kx+b$21. 二次函数解析式:$y=ax^2+bx+c$22. 一次函数的斜率:$k=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$23. 一次函数的截距:$b=y-kx$24. 常数函数:$f(x)=c$25. 幂函数:$f(x)=x^a(a\in R,a\neq0)$26. 指数函数:$f(x)=a^x(a>0,a\neq1)$27. 对数函数:$\log_a x=y\Leftrightarrow a^y=x(a>0,a\neq1)$28. 指数函数的底数为e的情况:$f(x)=e^x$29. 对数函数的底数为e的情况:$f(x)=\ln x$30. 指数函数的性质:$a^x\cdot a^y=a^{x+y},(a^x)^y=a^{xy}$31. 指数函数的导数:$(a^x)'=a^x\ln a$32. 对数函数的性质:$\log_a(xy)=\log_ax+\log_ay,\log_a\frac{x}{y}=\log_ax-\log_ay,\log_aa^x=x$33. 对数函数的导数:$(\log_ax)'=\frac{1}{x\ln a}$34. 牛顿-莱布尼茨公式:$\int_a^bf(x)dx=F(b)-F(a)$35. 实数幂次根的存在性定理:$a>0,n\in N^*$,则存在唯一的$b>0$,使得$b^n=a$。

初中必备数学知识(初中数学必背公式大全)

初中必备数学知识(初中数学必背公式大全)

初中必备数学知识(初中数学必背公式大全)1、有理数的加减法、有理数的乘除法、有理数的乘方。

2、整式的加减。

3、一元一次方程。

4、直线、射线、线段。

5、角。

6.相贯线与平行线、全等角、内角、同侧内角、平行线及其判定。

7、平面直角坐标系。

8.三角形,三角形的高度,中线和角的平分线,三角形的稳定性,三角形的外角。

9、二元一次方程组。

10、不等式与不等式组。

11.数据的收集、整理与描述。

12.统计调查、直方图。

13.一次函数。

14.全等三角形和角的平分线的性质。

15.轴对称、轴对称变换。

16.代数式,代数式的加减法,代数式的乘法,乘法公式,代数式的除法,因式分解,分数,分数运算,分数方程。

17.反比例函数。

18.勾股定理。

19.概率,用枚举求概率,用频率估计概率。

20.锐角三角函数等。

初中数学必背公式大全初中数学是建立数学基础的重要阶段,以下是一些初中数学公式和必背知识点:1. 乘法公式:(a+b)×c=a×c+b×c;(a-b)×c=a×c-b×c>2. 代数式展开公式:(a+b)²=a²+2ab+b²;(a-b)²=a²-2ab+b²;(a+b)(a-b)=a²-b²3. 因式分解公式:a²-b²=(a+b)(a-b);ax+ay=a(x+y);ax-bx=(a-b)x4. 平方差公式:a²-b²=(a+b)(a-b)5. 三角函数:sinθ=对边/斜边;cosθ=邻边/斜边;tanθ=对边/邻边6. 角度制与弧度制的转换公式:弧度=角度×π/180;角度=弧度×180/πp style="text-align:center">>7. 圆的面积公式:S=πr²;周长公式:C=2πr8. 等比数列通项公式:an=a₁qⁿ⁻¹;首项公式:a₁=a₂/q;公比公式:q=a₂/a₁9. 等差数列通项公式:an=a₁+(n-1)d;首项公式:a₁=an-(n-1)d;公差公式:d=a₂-a₁10. 平面直角坐标系中两点间距离公式:d=√[(x₂-x₁)²+(y₂-y₁)²]以上是一些初中数学公式和必背知识点,掌握这些知识可以帮助初中生建立坚实的数学基础,为更高级别的数学学习奠定基础。

高三数学公式归纳大全

高三数学公式归纳大全

数学考试主要考察大家的公式运用情况,所以要想数学考出好成绩,一定要牢牢记住数学公式。

今天老师就给大家总结了整个高中都会用到的数学公式,一共有五十条,大家一定要熟背哦~1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

高中必背88个数学公式

高中必背88个数学公式

高中必背88个数学公式1. 勾股定理:直角三角形的两条直角边的平方和等于斜边平方。

2. 余弦定理:在任意三角形中,一个角的余弦等于与该角相对的边的平方和减去另外两条边的平方的差再除以两倍的另一条边与该角相对的角的正弦的乘积。

3. 正弦定理:在任意三角形中,一个角的正弦等于与该角相对的边长和另外两条边长的比例的乘积。

4. 长方形面积公式:长方形的面积等于长乘以宽。

5. 平行四边形面积公式:平行四边形面积等于底边长乘以高。

6. 梯形面积公式:梯形的面积等于上底加下底乘以高再除以二。

7. 三角形面积公式:三角形面积等于底边长乘以高再除以二。

8. 圆面积公式:圆的面积等于圆周率乘以半径的平方。

9. 圆周长公式:圆的周长等于直径乘以圆周率。

10. 球体表面积公式:球体的表面积等于四倍的圆面积。

11. 球体体积公式:球体的体积等于四分之三的圆面积乘以半径的立方。

12. 一次函数方程: y = kx + b。

13. 二次函数方程: y = ax² + bx + c。

14. 等差数列通项公式: an = a1 + (n - 1)d,其中a1为首项,d为公差,an为第n项。

15. 等差数列前n项和公式: Sn = n(a1 + an)/2,其中a1为首项,an为第n项,n为项数。

16. 等比数列通项公式:an = a1 × qⁿ⁻¹,其中a1为首项,q为公比,n为项数。

17. 等比数列前n项和公式: Sn = a1(1 - qⁿ)/1 - q,其中a1为首项,q为公比,n为项数。

18. 三角函数正弦的定义:在直角三角形中,任意一锐角的正弦是指这个角的对边与这个角所在的斜边的比值。

19. 三角函数余弦的定义:在直角三角形中,任意一锐角的余弦是指这个角的邻边与这个角所在的斜边的比值。

20. 三角函数正切的定义:在直角三角形中,任意一锐角的正切是指这个角的对边与这个角的邻边的比值。

21. 三角函数余切的定义:在直角三角形中,任意一锐角的余切是指这个角的邻边与这个角的对边的比值。

中考数学必背知识点(精简必背)

中考数学必背知识点(精简必背)

中考数学必背知识点(精简必背)中考数学必背知识点一、不为零的量1.分式 $\frac{A}{B}$,分母 $B\neq 0$;2.二次方程 $ax^2+bx+c=0$($a\neq 0$);3.一次函数 $y=kx+b$($k\neq 0$);4.反比例函数 $y=\frac{k}{x}$($k\neq 0$);5.二次函数 $y=ax^2+bx+c=0$($a\neq 0$)。

二、非负数1.$|a|\geq 0$;2.$a\geq 0$($a\geq 0$);3.$a^{2n}\geq 0$($n$ 为自然数)。

三、绝对值:$|a|=\begin{cases}a。

& a\geq 0\\-a。

& a<0\end{cases}$四、重要概念1.平方根与算术平方根:如果 $x^2=a$($a\geq 0$),则称 $x$ 为 $a$ 的平方根,记作:$x=\pm\sqrt{a}$,其中$x=\sqrt{a}$ 称为 $x$ 的算术平方根;2.负指数:$a^{-p}=\frac{1}{a^p}$;3.零指数:$a=1$($a\neq 0$);4.科学计数法:$a\times 10^n$($n$ 为整数,$1\leqa<10$)。

五、重要公式一)幂的运算性质1.同底数幂的乘法法则:$a^m\timesa^n=a^{m+n}$($a\neq 0$,$m$,$n$ 都是正数);2.幂的乘方法则:$(a^m)^n=a^{mn}$($m$,$n$ 都是正数);3.积的乘方法则:$(ab)^n=a^n\times b^n$($n$ 为正整数);4.同底数幂的除法法则:$\frac{a^m}{a^n}=a^{m-n}$($a\neq 0$,$m$,$n$ 都是正数,且 $m>n$)。

二)整式的运算1.平方差公式:$(a+b)(a-b)=a^2-b^2$;2.完全平方公式:$(a\pm b)^2=a^2\pm 2ab+b^2$。

单招考试数学必背知识点

单招考试数学必背知识点

单招考试《数学》必背知识点(一)一.不为0的量1.分式AB中,分母B ≠0; 2.二次方程ax 2+bx +c =0(a ≠0) 3.一次函数y =kx +b (k ≠0) 4.反比例函数ky x=(k ≠0) 5.二次函数y = ax 2+bx +c =0(a ≠0)二.非负数1.│a │≥02. (a ≥0)3. a 2n ≥0(n 为自然数)三.绝对值:(0)(0)aa a a a ≥⎧=⎨-⎩<四.重要概念1. 平方根与算术平方根:如果x 2=a (a ≥0),则称x 为a 的平方根,记作:x=,其中x 的算术平方根.2. 负指数:1p p a a-= 3. 零指数:a 0=1(a ≠0)4. 科学计数法:a ×10 n (n 为整数,1≤a <10) 五.重要公式(一)幂的运算性质1.同底数幂的乘法法则: m n m n a a a +⋅= ( a ≠0,m,n 都是正数)2.幂的乘方法则:()m n mn a a = (m,n 都是正数)3.积的乘方法则:()n n n ab a b =(n 为正整数)4.同底数幂的除法法则: m n m n a a a -÷= (a ≠0,m 、n 都是正数,且m >n ). (二)整式的运算1.平方差公式:22()()a b a b a b +-=-2.完全平方公式:222()2a b a ab b ±=±+ (三)二次根式的运算)0,00,0)a b a b ≥≥=≥>(四)一元二次方程一元二次方程ax 2+bx +c =0(a ≠0)当△=b 2-4ac ≥0时,x ;x 1+x 2= -b a ;x 1x 2=ca(五)函数 平面直角坐标系1.点A 、B 在数轴上的坐标为x A 、x B ,则A 、B 两点间距离=|x A -x B |。

9.P(x ,y)关于x 轴对称点(x ,-y ),关于y 轴对称点(-x ,y ),关于原点对称点(-x ,y ),关于y=x 对称点(y ,x )。

2022新人教版高一物理必修二重点知识点总结(复习必背)

2022新人教版高一物理必修二重点知识点总结(复习必背)

高中物理人教版第二册知识总结(期末考试版)一、高考热点44条高考热点1:曲线运动与变速运动的关系曲线运动一定是变速运动,但变速运动不一定是曲线运动;高考热点2:曲线运动的合外力曲线运动的合外力(加速度)的方向指向曲线的凹侧,速度的方向在该点的切线方向。

高考热点3:平抛运动平抛运动在水平方向做匀速直线运动,在竖直方向做自由落体运动。

高考热点4:平抛运动的实验在平抛运动的实验中必须使斜槽的末端水平;每一次实验必须从斜槽的同一位置由静止释放;实验时选择体积小密度大的钢球做实验。

高考热点5:平抛运动的时间只跟竖直方向的位移(高度)有关,与水平方向的速度无关。

高考热点6:斜抛运动和平抛运动都是抛体运动;抛体运动的加速度为重力加速度。

高考热点7:向上的斜抛运动物体先做匀减速曲线运动,再做平抛运动;在最高点处物体的速度不为零。

向下的斜抛运动物体一直做匀加速曲线运动。

高考热点8:渡河最短时间:船在静水中的速度(河宽)v d t =min高考热点9:抛体运动的速度变化量的方向:竖直向下高考热点10:平抛运动的物体加速度不变;平抛运动的物体在每秒内的速度增量相同;平抛运动的物体速度大小时刻改变;平抛运动是一种在恒力作用下的曲线运动;平抛运动是匀加速曲线运动。

高考热点11:圆周运动一定是曲线运动,但曲线运动不一定是圆周运动(曲线运动包括:平抛运动、斜抛运动,圆周运动)。

高考热点12:匀速圆周运动的线速度大小处处相等,方向时刻改变;匀速圆周运动在相等的时间内的路程相等。

高考热点13:匀速圆周运动的角速度不变;匀速圆周运动在相等的时间内的角度相等。

高考热点14:匀速圆周运动的向心力(向心加速度)大小处处相等,方向时刻改变; 高考热点15:向心力不是物体实际受到的力,而是根据效果命名的力。

高考热点16:向心力由物体的合力提供,或者由某个分力来提供。

高考热点17:向心力的方向始终指向圆心,向心力只改变线速度的方向,不改变线速度的大小。

初中必背化学公式大全

初中必背化学公式大全

初中必背化学公式大全1. 摩尔质量(Molar mass): M = m/n ,其中m为物质的质量,n为物质的摩尔数。

2. 摩尔浓度(Molar concentration): C = n/V ,其中C为溶液的浓度,n为溶质的摩尔数,V为溶液的体积。

3. 分子量(Molecular weight): MW = m/n ,其中m为物质的质量,n为物质的分子数。

分子量也可以通过平均原子量计算,即MW =Σ(niMi)/N,其中ni为每个种类原子的个数,Mi为每个种类原子的相对原子质量,N为所有原子的个数。

4. 体积浓度(Volume concentration): V% = (Vsolvent / Vsolution) × 100%,其中V%solvent为溶剂的体积占比,V%solution为溶液的体积占比。

5. 摩尔吸光度(Molar absorptivity): ε = A / (l · c) ,其中ε为摩尔吸光度,A为吸光度,l为光路程长度,c为溶液浓度。

6. 最大吸收波长(Maximum absorption wavelength): λmax ,指在吸收光谱中具有最大吸收的波长。

7. 摩尔反应热(Molar heat of reaction): ΔH = q/n ,其中ΔH为摩尔反应热,q为反应释放或吸收的热量,n为反应物的摩尔数。

8. 离子反应方程式(Ionic equation): 化学反应中,只写出离子形式的方程式,不考虑分子状态。

9. 断裂键能(Bond energy): 反映化学键的稳定性和键的强度,可以通过反应前后分子间键的差值来计算。

10. 分压定律(Dalton's law of partial pressures): p = p1 +p2 + ... + pn ,其中p为总压力,p1、p2...为各组分气体的分压。

11. 摩尔比(Molar ratio): 化学反应方程中,各物质之间的摩尔比。

初中必背数学公式50个

初中必背数学公式50个

初中必背数学公式50个初中数学涉及许多公式,掌握这些公式对于学好数学非常重要。

以下是初中必背的50个数学公式:1. 勾股定理:a^2 + b^2 = c^22. 一次函数的表达式:y = kx + b3. 相似三角形的边长比公式:\(\frac{a}{a'} = \frac{b}{b'} =\frac{c}{c'}\)4. 一元二次方程求根公式:\(x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}\)5. 等腰三角形的性质:底角相等,底边中线相等6. 平行线的性质:对顶角相等,内错角相等7. 二次函数的顶点坐标公式:\(x = -\frac{b}{2a}\)8. 圆的周长公式:\(C = 2 \pi r\)9. 正比例函数的表达式:y = kx10. 形状相似的图形的面积比公式:\(\frac{S}{S'} =(\frac{a}{a'})^2\)11. 余弦定理:\(c^2 = a^2 + b^2 - 2ab \cos C\)12. 平行四边形的性质:对角线互相平分,对边平行且相等13. 一元一次方程的解法:将未知数移到一侧,常数移到另一侧14. 点到直线的距离公式:\(d = \frac{|Ax_0 + By_0 +C|}{\sqrt{A^2 + B^2}}\)15. 镜面反射定律:入射角等于反射角16. 抛物线的顶点坐标公式:\(x = -\frac{b}{2a}\),\(y = -\frac{\Delta}{4a}\)17. 面积为A的圆的半径公式:\(r = \sqrt{\frac{A}{\pi}}\)18. 二次函数与x轴交点的个数:判别式大于0,有两个不相等的实根;判别式等于0,有一个重根;判别式小于0,无实根19. 平行六边形的性质:对角线互相平分,对边平行且相等20. 一次函数与x轴交点的个数:有且仅有一个实根21. 凸多边形的内角和公式:\(S = (n-2) \times 180^\circ\)22. 弧长公式:\(l = 2\pi r \times (\frac{A}{360^\circ})\)23. 等差数列通项公式:\(a_n = a_1 + (n-1)d\)24. 等差数列求和公式:\(S_n = \frac{n}{2} (a_1 + a_n)\)25. 钝角三角形的性质:最大的角大于90度26. 等腰梯形的面积公式:\(S = \frac{(a+b)h}{2}\)27. 垂直平分线的性质:将线段分成两个相等的部分28. 判断直线与圆关系的条件:切线与圆的切点只有一个;直线与圆无交点;直线穿过圆29. 矩形的对角线公式:\(d = \sqrt{l^2 + w^2}\)30. 两个平行线夹在两直线之间的角平分线是垂线31. 连续两个顶点与中线的连线垂直32. 幂的乘法公式:\(a^m \times a^n = a^{m+n}\)33. 锐角三角形的性质:最大的角小于90度34. 等腰三角形的面积公式:\(S = \frac{1}{2} bh\)35. 立方体的体积公式:\(V = l \times w \times h\)36. 平行四边形的面积公式:\(S = bh\)37. 平面镜成像规律:物距等于焦距,像距等于物距38. 两数的和的平方:\((a+b)^2 = a^2 + b^2 + 2ab\)39. 等腰三角形的面积和底边关系:\(S = \frac{(b^2 \sin\alpha)}{2}\)40. 反比例函数的表达式:\(y = \frac{k}{x}\)41. 直角三角形斜边与其他两边关系:斜边的平方等于两边平方的和42. 正方体的体积公式:\(V = a^3\)43. 正多边形的内角和公式:\(S = (n-2) \times 180^\circ\)44. 等式中的两项交换位置不改变结果,可以交换任意次45. 绕原点旋转点P的坐标变换公式:\(P' (x', y') = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)\)46. 直线的斜率公式:\(k = \frac{y_2 - y_1}{x_2 - x_1}\)47. 等差数列首项与末项之和:\(a_1 + a_n = a_2 + a_{n-1} =\dots = a_{\frac{n+1}{2}} + a_{\frac{n+3}{2}} = \frac{n+1}{2} (a_1 + a_n)\)48. 平行线的斜率相同49. 点到平面的距离公式:\(d = \frac{|Ax_0 + By_0 + Cz_0 +D|}{\sqrt{A^2 + B^2 + C^2}}\)50. 等腰四边形的性质:对角线互相平分,对边平行且相等以上是初中必背的50个数学公式,希望对你研究数学有所帮助!。

英语背熟48个公式

英语背熟48个公式

英语背熟48个公式1.a+单数量词+of+复数可数名词例:a basket of eggs一篮子鸡蛋a group of children一群孩子2.数词+复数量词+of+复数可数名词例:two boxes of pens 两盒钢笔two baskets of apples两篮子苹果3.a+单数量词+of+不可数名词例:a piece of chalk 一支粉笔 a bit of bread一点面包4.数词+复数量词+of+不可数名词例:two glasses of milk 两杯牛奶three cups of coffee 三杯咖啡公式5.单数名词词尾+’s 表示所属例:the children’s toys 儿童玩具today’s news今天的新闻6.复数名词词尾(以s结尾)+’表示所属例:My parents’hometown is very beautiful.我父母的家乡非常美。

7.A(+B...)+and + C+’s 表示两者或多者共同拥有例:Professor Wang is Li Ming and Li Ling’s mother. 王教授是李明和李玲的妈妈。

8.A+’s(+B+’s...)+ and + C+’s 表示两者或多者分别拥有例:Tim’s and Peter’fathers both teach in the same school.蒂姆的爸爸和彼得的爸爸在同一所学校教学。

9.名词+of+名词一般用于无生命事物的名词,有时也可表示人或其他有生命事物的名词间的所有关系。

例:The windows of that house are broken.那间屋子的窗户破了。

10.名词+of+名词的’s所有格例:I have only read four books of Dickens’.我只看过狄更斯的四本书。

11.many等+复数可数名词只修饰复数可数名词的词或短语有a great many,quite a few等。

中考生必知的100个基础知识点及24个初中必背的公式

中考生必知的100个基础知识点及24个初中必背的公式

中考生必知的100个基础知识点及24个初中必背的公式一、电学1.电荷的定向移动形成电流(金属导体里自由电子定向移动的方向与电流方向相反),规定正电荷的定向移动方向为电流方向。

2、电流表不能直接与电源相连。

3.电压是形成电流的原因,安全电压应不高于36V,家庭电路电压220V。

4.金属导体的电阻随温度的升高而增大(玻璃温度越高电阻越小)。

5.能导电的物体是导体,不能导电的物体是绝缘体(错,“容易”,“不容易”)。

6.在一定条件下导体和绝缘体是可以相互转化的。

7.影响电阻大小的因素有:材料、长度、横截面积、温度(温度有时不考虑)。

8.滑动变阻器和电阻箱都是靠改变接入电路中电阻丝的长度来改变电阻的。

9.利用欧姆定律公式要注意I、U、R三个量是对同一段导体而言的。

10.伏安法测电阻原理:R=U/I;伏安法测电功率原理:P=UI。

11.串联电路中:电压、电功、电功率、电热与电阻成正比并联电路中:电流、电功、电功率、电热与电阻成反比。

12.在生活中要做到:不接触低压带电体,不靠近高压带电体。

13.开关应连接在用电器和火线之间。

两孔插座(左零右火),三孔插座(左零右火上地)。

14.“220V 100W”的灯泡比“220V 40W”的灯泡电阻小,灯丝粗。

15.家庭电路中,用电器都是并联的,多并一个用电器,总电阻减小,总电流增大,总功率增大。

16.家庭电路中,电流过大,保险丝熔断,产生的原因有两个:①短路②总功率过大。

17.磁体自由静止时指南的一端是南极(S极),指北的一段是北极(N极)。

磁体外部磁感线由N极出发,回到S极。

18.同名磁极相互排斥,异名磁极相互吸引。

19.地球是一个大磁体,地磁南极在地理北极附近。

20.磁场的方向:①自由的小磁针静止时N极的指向②该点磁感线的切线方向。

21.奥斯特试验证明通电导体周围存在磁场(电生磁、电流的磁效应),法拉第发现了电磁感应现象(磁生电、发电机)。

22.电流越大,线圈匝数越多电磁铁的磁性越强(有铁心比无铁心磁性要强的多)。

初中数学必背公式大全

初中数学必背公式大全

初中数学必背公式大全1 同角或等角的补角相等2 同角或等角的余角相等3 过两点有且只有一条直线4 两点之间线段最短5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 定理线段垂直平分线上的点和这条线段两个端点的距离相等38 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上39 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半40 直角三角形斜边上的中线等于斜边上的一半41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 对角线相等的梯形是等腰梯形75 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等76 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰77 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边78 等腰梯形性质定理等腰梯形在同一底上的两个角相等79 等腰梯形的两条对角线相等80 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d82 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d83 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b84 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半85 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。

初中数学必背公式大全.pdf

初中数学必背公式大全.pdf

初中数学必背公式大全1 同角或等角的补角相等2 同角或等角的余角相等3 过两点有且只有一条直线4 两点之间线段最短5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 定理线段垂直平分线上的点和这条线段两个端点的距离相等38 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上39 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半40 直角三角形斜边上的中线等于斜边上的一半41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 对角线相等的梯形是等腰梯形75 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等76 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰77 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边78 等腰梯形性质定理等腰梯形在同一底上的两个角相等79 等腰梯形的两条对角线相等80 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d82 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d83 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b84 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半85 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。

高考数学常用公式及结论&会考复习必背知识点

高考数学常用公式及结论&会考复习必背知识点

高 考 数 学 常 用 公 式 及 结 论1.U U AB A A B B A BC B C A =⇔=⇔⊆⇔⊆U A C B ⇔=ΦU C A B R ⇔=.2.若{}n a a a a A ,,,,321⋅⋅⋅=,则A的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个.3.从集合{}n a a a a A ,,,,321⋅⋅⋅=到集合{}m b b b b B ,,,,321⋅⋅⋅=的映射有nm 个.4.真值表5.6.7.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 8.二次函数的解析式的三种形式: ①一般式2()(0)f x ax bx c a =++≠;②顶点式()a b ac a b x a x f 44222-+⎪⎭⎫ ⎝⎛+=; ③零点式12()()()(0)f x a x x x x a =--≠.9.函数的的单调性:(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数; 如果0)(<'x f ,则)(x f 为减函数.10.函数()y f x =的图象的对称性:①()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=;②()y f x =的图象关于直线2a bx +=对称()()f a x f b x ⇔+=-()()f a b x f x ⇔+-=;③()y f x =的图象关于点(,0)a 对称()()()()02=-++⇔--=⇔x a f x a f x a f x f ,()y f x =的图象关于点(,)a b 对称⇔()()()()b x a f x a f x a f b x f 222=-++⇔--=.11.两个函数的图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称; ②函数()y f x a =-与函数()y f a x =-的图象关于直线x a =对称; ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =-; ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =--; ⑤函数)(x f y =和函数)(1x fy -=的图象关于直线x y =对称.12.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.13.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.14.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. 15.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 16.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ;(3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.17.分数指数幂:m na=1m nm naa-=(以上0,,a m n N *>∈,且1n >).18.①b N N a a b=⇔=log ; ②()N M MN a a a log log log +=;③N M N M a a alog log log -=; ④log log m n a a nb b m=. 19.对数的换底公式:log log log m a m N N a=.对数恒等式:log a Na N =.20.数列{}n a 的前n 项和为12n n s a a a =+++,则11,1,2n n n s n a s s n -=⎧=⎨-≥⎩.21.①等差数列{}n a 的通项公式:()d n a a n 11-+=,或d m n a a m n )(-+=mn a a d mn --=⇔.②前n 项和公式: 1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 22.对于等差数列{}n a ,若q p m n +=+(m 、n 、p 、q 为正整数),则q p m n a a a a +=+.23.若数列{}n a 是等差数列,n S 是其前n 项和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列,其公差d k D 2=,如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++. 24.数列{}n a 是等差数列⇔n a kn b =+;数列{}n a 是等差数列⇔n S =2An Bn +.25.设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项的和,n S 是前n 项的和,则 ①前n 项的和偶奇S S S n +=; ②当n 为偶数时,d 2nS =-奇偶S ,其中d 为公差; ③当n 为奇数时,则中偶奇a S =-S ,中奇a 21n S +=,中偶a 21n S -=,11S S -+=n n 偶奇,n =-+=-偶奇偶奇偶奇S S S S S S S n(其中中a 是等差数列的中间一项)26.若等差数列{}n a 和{}n b 的前12-n 项的和分别为12-n S 和 12-n T ,则1212--=n n n n T S b a .27.①等比数列{}n a 的通项公式:nn n q qa qa a ⋅==-111;或m n m n m n m n a a q q a a =⇔=--.②前n 项和公式:11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩,或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.28.对于等比数列{}n a ,若v u m n +=+(n 、m 、u 、v 为正整数),则v u m n a a a a ⋅=⋅. 29.数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列,其公比为kq Q =.30.分期付款(按揭贷款)每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).31.裂项法:①()11111+-=+n n n n ; ②()()⎪⎭⎫ ⎝⎛+--⋅=+-1211212112121n n n n ;③()11b a b a ba --=+ ;④()()! 11! 1! 1+-=+n n n n .32.常见三角不等式 (1)若(0,)2x π∈,则sin tan x x x <<. (2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.33.同角三角函数的基本关系式:①22sin cos 1θθ+=,αα22sec tan 1=+,αα22csc cot 1=+; ②tan θ=θθcos sin ; ③tan 1cot θθ⋅=. 34.正弦、余弦的诱导公式:212(1)sin ,sin()2(1)s ,n n n n co n απαα-⎧-⎪+=⎨⎪-⎩为偶数为奇数;212(1)s ,s()2(1)sin ,nn co n n co n απαα+⎧-⎪+=⎨⎪-⎩为偶数为奇数. 即:“奇变偶不变,符号看象限”.如απαsin 2cos -=⎪⎭⎫⎝⎛+,()ααπcos cos -=-. 35.和角与差角公式①sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.②22sin()sin()sin sin αβαβαβ+-=-;22cos()cos()cos sin αβαβαβ+-=-. ③sin cos a b αα+)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,tan baϕ=). 36.二倍角公式:①αααcos sin 22sin =.②2222cos 2cos sin 2cos 112sin ααααα=-=-=-(升幂公式).221cos 21cos 2cos ,sin 22αααα+-==(降幂公式). 37.万能公式:22tan sin 21tan ααα=+;221tan cos 21tan ααα-=+;22tan tan 21tan ααα=-(正切倍角公式). 38.半角公式:sin 1cos tan 21cos sin ααααα-==+. 39.三函数的周期公式:①函数sin()y A x ωϕ=+及cos()y A x ωϕ=+的周期ωπ2=T (A 、ω、ϕ为常数,且A ≠0).②函数()φω+=x A y tan 的周期ωπ=T (A 、ω、ϕ为常数,且A ≠0). 40.sin y x =的单调递增区间为2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,单调递减区间为32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴为()2x k k Z ππ=+∈,对称中心为(),0k π()k Z ∈. 41.cos y x =的单调递增区间为[]2,2k k k Z πππ-∈,单调递减区间为[]2,2k k k Z πππ+∈,对称轴为()x k k Z π=∈,对称中心为,02k ππ⎛⎫+ ⎪⎝⎭()k Z ∈. 42.tan y x =的单调递增区间为,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对称中心为⎪⎭⎫⎝⎛0,2πk ()Z k ∈. 43.三角函数变换:①相位变换:x y sin =的图象()()−−−−−−−−−→−<>个单位平移或向右向左φφφ00()φ+=x y sin 的图象;②周期变换:x y sin =的图象()()−−−−−−−−−−−−→−><<倍到原来的或缩短横坐标伸长ωωω1110x y ωsin =的图象; ③振幅变换:x y sin =的图象()()−−−−−−−−−−−→−<<>倍到原来的或缩短纵坐标伸长A A A 101x A y sin =的图象.44.①正弦定理 2sin sin sin a b cR A B C ===(R 为ABC ∆的外接圆的半径); ②余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.45.三角形面积公式:①111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高);②111sin sin sin 222S ab C bc A ca B ===.46.在△ABC 中,有①()222C A BA B C C A B πππ+++=⇔=-+⇔=-222()C A B π⇔=-+; ②B A b a sin sin >⇔>(注意是在ABC ∆中).47.平面上两点间的距离公式:,A B d =A 11(,)x y ,B 22(,)x y . 48.向量的平行与垂直: 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则①a ∥b ⇔b =λa 12210x y x y ⇔-=;② a ⊥b (a ≠0)⇔a ·b =012120x x y y ⇔+=.49.线段的定比分点公式:设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+⇔12(1)OP tOP t OP =+-(其中11t λ=+). 50.若OA xOB yOB =+,则A 、B 、C 共线的充要条件是1=+y x .51.三角形的重心坐标公式: △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则其重心的坐标是123123(,)33x x x y y y G ++++. 52.①点的平移公式 ''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ (图形F 上的任意一点P(x ,y)在平移后的图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k ); ②函数()x f y =按向量()k h a ,=平移后的解析式为()h x f k y -=-. 53.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+. (3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .54. 三角形五“心”向量形式的充要条件设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 55.常用不等式:(1),a b R ∈⇒222a b ab +≥222b a ab +≤⇔(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b +≥22⎪⎭⎫⎝⎛+≤⇔b a ab (当且仅当a =b 时取“=”号). (3) abc c b a 3333≥++⇔33abc c b a ≥++(当且仅当c b a ==时取“=”号).(4)b a b a b a +≤±≤-,(注意等号成立的条件).(5)10,0)112a b a b a b+≤≤≤>>+.(6)柯西不等式:22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈56.极值定理:已知y x ,都是正数,则有(1)如果积xy 是定值p ,那么当y x =时和y x +有最小值p 2; (2)如果和y x +是定值s ,那么当y x =时积xy 有最大值241s . 57.解一元二次不等式20(0)ax bx c ++><或:若0>a ,则对于解集不是全集或空集时,对应的解集为“大两边,小中间”.如:当21x x <,()()21210x x x x x x x <<⇔<--;()()12210x x x x x x x x <>⇔>--或.58.含有绝对值的不等式:当0>a 时,有①a x a a x a x <<-⇔<⇔<22;②22x a x a x a >⇔>⇔>或x a <-.59.分式不等式: (1)()()()()00>⋅⇔>x g x f x g x f ; (2)()()()()00<⋅⇔<x g x f x g x f ; (3)()()()()()⎩⎨⎧≠≥⋅⇔≥000x g x g x f x g x f ; (4)()()()()()⎩⎨⎧≠≤⋅⇔≤000x g x g x f x g x f . 60.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x aa f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x aa f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩.61.斜率公式:2121y y k x x -=-,其中111(,)P x y 、222(,)P x y .直线的方向向量()b a v ,=,则直线的斜率为k =(0)ba a≠. 62.直线方程的五种形式(1)点斜式:11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式:y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式:112121y y x x y y x x --=--(111(,)P x y 、222(,)P x y 12x x ≠,12y y ≠).(4)截距式:1=+bya x (其中a 、b 分别为直线在x 轴、y 轴上的截距,且0,0≠≠b a ). (5)一般式:0Ax By C ++=(其中A 、B 不同时为0).63.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+,则① 1l ∥2l 21k k =⇔,21b b ≠; ②12121l l k k ⊥⇔=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,则① 0//122121=-⇔B A B A l l 且01221≠-C A C A ;②1212120l l A A B B ⊥⇔+=. 64.①夹角公式:2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-);(注意以下两种特殊情形下的夹角:①12l l ⊥,②1l 或2l 的斜率不存在). ②到角公式:直线l 1到l 2的角是2121tan 1k k k k α-=+(111:l y k x b =+,222:l y k x b =+,121k k ≠-). 65.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).66.两条平行线间的距离:若直线0:11=++C By Ax l ;0:22=++C By Ax l ,则d =.67. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左. 68. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.69.圆的方程的四种形式(1)圆的标准方程:222()()x a y b r -+-=.(2)圆的一般方程:220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程:cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程:1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).70.圆中有关重要结论:(1)若P(0x ,0y )是圆222x y r +=上的点,则过点P(0x ,0y )的切线方程为200xx yy r +=.(2)若P(0x ,0y )是圆222()()x a y b r -+-=上的点,则过点P(0x ,0y )的切线方程为200()()()()x a x a y b y b r --+--=.(3)若P(0x ,0y )是圆222x y r +=外一点,由P(0x ,0y )向圆引两条切线, 切点分别为A 、B则直线AB 的方程为200xx yy r +=.(4)若P(0x ,0y )是圆222()()x a y b r -+-=外一点, 由P(0x ,0y )向圆引两条切线, 切点分别为A 、B ,则直线AB 的方程为200()()()()x a x a y b y b r --+--=.71.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±72.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.73.(1)椭圆22221(0)x y a b a b +=>>的准线方程为2a x c =±,焦半径公式p ex a PF ±=;(2)椭圆22221(0)x y a b b a +=>>的准线方程为2a y c =±,焦半径公式p ey a PF ±=.74.(1)椭圆22221(0)x y a b a b +=>>的通径(过焦点且垂直于对称轴的弦)长为22b a ;(2) 双曲线22221(0,0)x y a b a b -=>>的通径(过焦点且垂直于对称轴的弦)长为22b a.75. 椭圆的切线方程(1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y ya b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=.76.(1)双曲线22221(0,0)x y a b a b -=>>的准线方程为2a x c =±,焦半径公式p ex a PF -=;(2)双曲线22221(0,0)x y a b b a -=>>的准线方程为2a y c =±,焦半径公式p ey a PF -=.77.(1)双曲线22221(0,0)x y a b a b -=>>的渐近线方程为by x a =±;(2)双曲线22221(0,0)x y a b b a -=>>的渐近线方程为ay x b=±.78. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y ya b-=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b-=. (3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A a B b c -=.79.(1)P 是椭圆22221(0)x y a b a b+=>>上一点,F 1、F 2是它的两个焦点,∠F 1P F 2=θ,则△P F 1 F 2的面积=2tan2b θ.(2)P 是双曲线22221(0,0)x y a b a b-=>>上一点,F 1、F 2是它的两个焦点,∠F 1P F 2=θ,则△P F 1 F 2的面积=2cot2b θ.80.抛物线px y 22=上的动点()00,y x P 可设为P ),2(020y py 或)2,2(2pt pt P .81.(1)P(0x ,0y )是抛物线px y 22=上的一点,F 是它的焦点,则20p x PF +=;(2)抛物线px y 22=的焦点弦长22sin p l θ=,其中θ是焦点弦与x 轴的夹角; (3) 抛物线px y 22=的通径长为p 2.82. 抛物线的切线方程(1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =. 83.直线与圆锥曲线相交的弦长公式:若弦端点为A ),(),,(2211y x B y x ,则AB =或2211k x x AB +-=, 或22111ky y AB +-=. 84.圆锥曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. 85.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是:22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.86.“四线”一方程对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.87.共线向量定理:对空间任意两个向量a 、b (b ≠0),有a ∥b ⇔存在实数λ使a =λb . 88.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++, 则四点P 、A 、B 、C 共面⇔1x y z ++=. 89.空间两个向量的夹角公式:232221232221332211b b b a a a b a b a b a ++⋅++++=,其中度()321,,a a a a =,()321,,b b b b =.90.直线AB 与平面α所成的角:==sin β,故=β,其中m 为平面α的法向量.91.锐二面角βα--l 的平面角:cos =θ,故=θ或-=πθ,其中m 、n 为平面α、β的法向量.92.空间两点间的距离公式:若()()222111,,x B ,,z y z y x A ,则()()()212212212,z z y y x x d B A -+-+-=.*93.点Q 到直线l 的距离:h =,点P 在直线l 上,直线l 的方向向量PA a =,向量PQ b =.94.点B 到平面α的距离:d =,n 为平面α的法向量,AB 是面α的一条斜线,α∈A .95. (1)设直线OA 为平面α的斜线,其在平面内的射影为OB ,OA 与OB 所成的角为1θ,OC 在平面α内,且与OB 所成的角为2θ,与OA 所成的角为θ,则12cos cos cos θθθ=. (2)若经过BOC ∠的顶点的直线OA 与BOC ∠的两边OB 、OC 所在的角相等,则OA 在BOC ∠所在平面上的射影为BOC ∠的角平分线;反之也成立.96. 面积射影定理:'cos S S θ=(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 97.体积公式:Sh V 31=锥;Sh V =柱. 98.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比. 99. 球的半径是R ,则其体积是343V R π=,其表面积是24S R π=. 100.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a,. 101.分类计数原理:12n N m m m =+++.分步计数原理:12n N m m m =⨯⨯⨯.102.排列数公式:mn A =)1()1(+--m n n n =!!)(m n n -(n ,m ∈N *,且m n ≤).103.排列恒等式:①1(1)m m n n A n m A -=-+; ②1m mn n n A A n m-=-; ③11m m n n A nA --=;④11n n n n n n nA A A ++=-; ⑤11m m m n n n A A mA -+=+.104.组合数公式:m nC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤).105.组合数的性质:①mn C =mn n C - ;②m n C +1-m nC =m n C 1+;③11k k n n kC nC --=.106.组合恒等式:(1)11mm n n n m C C m --+=;(2)1m m n n n C C n m -=-;(3)11mm nn n C C m--=; (4)∑=nr r nC=n2;(5)1121++++=++++r n r n r r r r r r C C C C C .(6)nn n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)rn m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)nn n n n n n C C C C C 22222120)()()()(=++++ . 107.排列数与组合数的关系是:m mn n A m C =⋅!.108.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n kk A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +. 109.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn nn nn mn nn mn nmn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N m m =⋅⋅=-.(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!!...211c b a m C C C N m m n n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n =1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m =⋅=-.110.“错位问题”及其推广贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为:1111()![(1)]2!3!4!!n f n n n =-+-+-. 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m ppmm mmf n m n C n C n C n C n C n p C n m =--+---+--+--++--12341224![1(1)(1)]p m pmm m m mmmp m n n n n nnC C C C C C n A A A A A A =-+-+-+-++-.111.二项式定理:nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式:rr n r n r b a C T -+=1)210(n r ,,, =.112.等可能性事件的概率:()mP A n=.(一次试验共有n 个结果等可能的出现,事件A 包含其中m 个结果)113.①互斥事件A 、B 有一个发生的概率:()()()B P A P B A P +=+;n 个互斥事件中有一个发生的概率:()()()()n n A P A P A P A A A P +⋅⋅⋅++=+⋅⋅⋅++2121; ②A 、B 是两个任意事件,则()()()B A P B A P B A P ⋅-=+-=+11.114.相互独立事件A 、B 同时发生的概率:()()()B P A P B A P ⋅=⋅;n 个相互独立事件同时发生的概率:()()()()n n A P A P A P A A A P ⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅2121.115.独立重复试验中:①二项分布:()()()p n k b p p C k P kn kk n n ,;1=-=-;②几何分布:()()p p p k g k 11,--=,其中⋅⋅⋅=,3,2,1k*116.若离散型随机变量ξ的概率分布为其中121=⋅⋅⋅++⋅⋅⋅++n p p p ,则①⋅⋅⋅++⋅⋅⋅++=n n p x p x p x E 2211ξ为ξ的数学期望.②()()()⋅⋅⋅+⋅-+⋅⋅⋅+⋅-+⋅-=n n p E x p E x p E x D 2222121ξξξξ为随机变量ξ的方差.③数学期望与方差的性质:()b aE b a E +=+ξξ;()ξξD a b a D 2=+;()22ξξξE E D -=. ①若()p n B ,~ξ,则()p np D np E -==1,ξξ; ②若()p k g ,~ξ,则21,1ppD pE -==ξξ; ③若10~-ξ分布,则()p p D p E -==1,ξξ.*117.正态分布密度函数()()()2226,,x f x x μ--=∈-∞+∞,式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差.*118.标准正态分布密度函数()()22,,x f x x -=∈-∞+∞.对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率,即 )()(00x x P x <=Φ,其中00>x ,图中阴影部分的面积表示为概率0()P x x < 只要有标准正态分布表即可查表解决.从图中不难发现:当00<x 时,)(1)(00x x -Φ-=Φ;而当00=x 时,Φ(0)=0.5*119.对于2(,)N μσ,取值小于x 的概率:()x F x μσ-⎛⎫=Φ ⎪⎝⎭.()()()12201x x P x x P x x x P <-<=<<()()21F x F x =-21x x μμσσ--⎛⎫⎛⎫=Φ-Φ ⎪ ⎪⎝⎭⎝⎭.120.①简单随机抽样:设一个总体中有有限个个体,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.②系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样.③分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.注:这三种抽样的共同特点是在抽样过程中每个个体被抽取的概率相等; *121. C C n =∞→lim (C 为常数);②如果1<a ,那么0lim =∞→nn a ;③无穷递缩等比数列所有项的和qa S -=11,其中1<q ,0≠q . *122. ()()()a x f x f a x f x x x x x x ==⇔=+-→→→0lim lim lim*123.特殊数列的极限(1)0||1lim 11||11nn q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k tt t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩不存在 .(3)()111lim11nn a q a S qq→∞-==--(S 无穷等比数列}{11n a q - (||1q <)的和). *124.函数的极限定理lim ()x x f x a →=⇔0lim ()lim ()x x x x f x f x a -+→→==.*125.函数的夹逼性定理如果函数f(x),g(x),h(x)在点x 0的附近满足: (1)()()()g x f x h x ≤≤;(2)0lim (),lim ()x x x x g x a h x a →→==(常数),则0lim ()x x f x a →=.本定理对于单侧极限和∞→x 的情况仍然成立. *126.几个常用极限(1)1lim 0n n→∞=,lim 0n n a →∞=(||1a <); (2)00lim x x x x →=,0011lim x x x x →=.两个重要的极限(1)0sin lim 1x xx →=;(1)(sin sin //lim lim ==→→xx x xx x ) (2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭(e=2.718281845…).*127.极限的四则运算法则:①函数的极限:如果()()b x g a x f x x x x ==→→0lim ,lim ,那么()()[]b a x g x f x x ±=±→0lim ;()()[]b a x g x f x x ⋅=⋅→0lim ;()()()0lim≠=→b bax g x f x x . ()[]()x f C x Cf x x x x 0lim lim →→=(C 为常数);()[]()nx x nx x x f x f ⎥⎦⎤⎢⎣⎡=→→00lim lim ()*∈N n .②数列的极限:如果b b a a n n n n ==∞→∞→lim ,lim ,那么()b a b a n n n ±=±∞→0lim ;()b a b a n n n ⋅=⋅∞→lim ;()0lim≠=∞→b b ab a nn n .*128.(1)函数()x f 在点0x 处连续必须满足三个条件:①函数()x f 在点0x x =处有意义; ②()x f x x 0lim →存在;③()()00lim x f x f x x =→.(2)如果函数()x f 在点0x 处可导,那么()x f 在点0x 处连续;如果函数()x f 在点0x 处连续,()x f 在该点却不一定可导.*129.最大值最小值定理:如果()x f 是闭区间[]b a ,上的连续函数,那么()x f 在闭区间[]b a ,上有最大值和最小值.130.)(x f 在0x 处的导数(或变化率或微商)00000()()()limlimx x x x f x x f x yf x y x x=∆→∆→+∆-∆''===∆∆. *131.瞬时速度00()()()limlimt t s s t t s t s t t tυ∆→∆→∆+∆-'===∆∆. *132.瞬时加速度00()()()limlimt t v v t t v t a v t t t∆→∆→∆+∆-'===∆∆. *133.)(x f 在),(b a 的导数()dy df f x y dx dx ''===00()()lim limx x y f x x f x x x∆→∆→∆+∆-==∆∆. 134. 函数)(x f y =在点0x 处的导数的几何意义:函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=- 135.导数与函数的单调性的关系(1)0)(>'x f 与)(x f 为增函数的关系:0)(>'x f 能推出)(x f 为增函数,但反之不一定.如函数3)(x x f =在),(+∞-∞上单调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的 充分不必要条件.(2)0)(≥'x f 与)(x f 为增函数的关系:)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定,因为0)(≥'x f ,即为0)(>'x f 或0)(='x f .当函数在某个区间内恒有0)(='x f ,则)(x f 为常数,函数不具有单调性.∴0)(≥'x f 是)(x f 为增函数的必要不充分条件. 136.常见函数的导数:①0='C (C 为常数);②()1-='n nnx x ()Q n ∈;③()x x cos sin =';④()x x sin cos -=';⑤()xx 1ln =',()e xx aa log 1log =';⑥()xxe e =',()a a a xxln ='.*137.可导函数四则运算的求导法则:①()v u v u '±'='±;②()v u v u uv '+'=',()u C Cu '=';③()02≠'-'='⎪⎭⎫ ⎝⎛v v v u v u v u .*138.复合函数的求导法则设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处有导数,且'''x u x y y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.*139.复数的相等,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈) *140.复数z a bi =+的模(或绝对值)||z =||a bi +*141.复数的四则运算法则(1)()()()()a bi c di a c b d i +++=+++;(2)()()()()a bi c di a c b d i +-+=-+-; (3)()()()()a bi c di ac bd bc ad i ++=-++; (4)2222()()(0)ac bd bc ada bi c di i c di c d c d +-+÷+=++≠++.*142.复数的乘法的运算律对于任何123,,z z z C ∈,有交换律:1221z z z z ⋅=⋅.结合律:123123()()z z z z z z ⋅⋅=⋅⋅. 分配律:1231213()z z z z z z z ⋅+=⋅+⋅ . *143.复平面上的两点间的距离公式12||d z z =-=(111z x y i =+,222z x y i =+).*144.向量的垂直非零复数1z a bi =+,2z c di =+对应的向量分别是1OZ ,2OZ ,则 12OZ OZ ⊥⇔12z z ⋅的实部为零⇔21z z 为纯虚数⇔2221212||||||z z z z +=+ ⇔2221212||||||z z z z -=+⇔1212||||z z z z +=-⇔0ac bd +=⇔12z iz λ= (λ为非零实数).*145.对虚数单位i ,有1 , ,1,4342414=-=-==+++n n n n i i i i i i.*146.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数互为共轭复数.如bi a + 与bi a -()R b a ∈,互为共轭复数.*147.()()1011123=⇔=++-⇔=ωωωωω或i 2321±-=ω. 注:带*的仅理科生掌握!高中数学会考复习必背知识点第一章 集合与简易逻辑 1、含n 个元素的集合的所有子集有n 2个 第二章 函数 1、求)(x f y =的反函数:解出)(1y fx -=,y x ,互换,写出)(1x fy -=的定义域;2、对数:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数:N M NMa a alog log log -=,幂的对数:M n M a n a log log =;b mnb a na m log log =, 第三章 数列1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数; (2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;) (3)、前n 项和:1.2)(1n n a a n S +=d n n na 2)1(1-+=(整理后是关于n 的没有常数项的二次函数)(4)、等差中项: A 是a 与b 的等差中项:2ba A +=或b a A +=2,三个数成等差常设:a-d ,a ,a+d3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数,(0≠q )。

MBA备考数学必背公式大全

MBA备考数学必背公式大全

备考数学必备公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理() 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( )有两角和它们的夹边对应相等的两个三角形全等24 推论() 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理() 有三边对应相等的两个三角形全等26 斜边、直角边公理() 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2^2^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2^2^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 ()÷2 ×h83 (1)比例的基本性质如果,那么如果,那么84 (2)合比性质如果,那么(a±b)(c±d)85 (3)等比性质如果…(…≠0),那么 (…)/(…)86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似()92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似()94 判定定理3 三边对应成比例,两三角形相似()95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比外语学习98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

公务员考试行测必背公式

公务员考试行测必背公式

公务员考试必背公式大全第一章 数量关系一、计算问题1.等差数列:记第一项为a 1,第n 项为a n ,公差为d ,则有 通项公式:a n =a 1+(n-1)×d ,a n =a m +(n-m )×d ; 等差数列求和公式:S n =a 1n+⨯−d n n 2(1)=⨯+n a a n 21=n 中a 。

2.等比数列:记第一项为a 1,第n 项为a n ,公比为q ,则有 通项公式:a n =a 1−q n 1,a n =a m −q n m ;等比数列求和公式:S n =−qa q n 1-(1)1=−q a a qn 1-1(q ≠1)。

3.分式的裂项公式:+n n (1)1=n 1-+n 11+n n d (1)=(n 1-+n 11)×d+=−+n n d d n n d1()1(11)4.基础计算公式:平方差公式:−=+−a b a b a b 22()() 完全平方公式:±=±+a b a ab b ()2222立方和与立方差公式: ±=±+a b a b a ab b 3322()()5.正约数的个数公式:设将自然数n 进行质因数分解得n=n n p p p ααα1212,则n 的正约数个数为(1)(1)(1)n ααα+++12。

二、利润问题1.利润=售价-成本当售价大于成本时,赢利,反之,亏损,此时商品利润用负数表示。

2.利润率利润成本售价成本成本(售价成本)=⨯=⨯=⨯100%-100%-1100% 推出公式:①售价=成本×(1+利润率) ②成本=1+售价利润率3.折扣=打折后的售价原来的售价=11⨯+⨯+成本(后来的利润率)成本(原来的利润率)=11++后来的利润率原来的利润率三、行程问题设路程为S ,速度为v ,时间为t ,则S=vt 。

1.平均速度公式:=平均速度总路程总时间等距离平均速度公式:平均速度=+v v v v 212122.普通行程:S 一定,v 与t 成反比;v 一定,S 与t 成正比;t 一定,S 与v 成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.函数的单调性
2.函数的奇偶性
3.函数在某处的导数的几何意义
4.几种常见函数的导数
5.导数的运算法则
6.求函数的极值
7.分数指数幂
8.根式的性质
9.有理数指数幂的运算性质
10.对数公式
11.常见的函数图像
12.同角三角函数的基本关系式
13.正弦、余弦的诱导公式
14.和角与差角公式
15.二倍角公式
16.三角函数的周期
17.正弦定理
18.余弦定理
19.面积定理
20.三角形内角和定理
21.a与b的数量积
22.平面向量的坐标运算
23.两向量的夹角公式
24.平面两点间距离公式
25.向量的平行于垂直
26.数列通项公式与前n项和的关系
27.等差数列通项公式与前n项和公式
28.等差数列的性质
29.等比数列的通项公式与前n项和公式
30.等比数列的性质
31.常用不等式
32.直线的三角方程
33.两条直线的垂直和平行
34.点到直线的距离
35.圆的两种方程
36.点与圆的位置关系
37.直线与圆的位置关系
38.椭圆、双曲线、抛物线的性质
39.双曲线方程与渐近线方程的关系
40.抛物线的焦半径公式
41.平方差标准差的计算
42.回归直线方程
43.独立性检验
44.复数
45.参数方程、极坐标化直角坐标
关注高中数学(gaozhongshu-xue)即可免费获取:知识点精讲、解题技巧分享,大小考真题押题详解以及小数老师贴心答疑解惑。

相关文档
最新文档