平行线与相交线易错题训练

合集下载

专题02 相交线与平行线【易错题型专项训练】解析版

专题02 相交线与平行线【易错题型专项训练】解析版

专题02 相交线与平行线【易错题型专项训练】易错点一:两条直线的位置关系1.若∠α=54°,∠β的两边与∠α两边互相垂直,则∠β=____________.【难度】★★【答案】54︒或126︒.【解析】∠α和∠β是相等或者互补的关系.【总结】考察垂线的意义以及两解问题,注意分类讨论.2.平面上三条直线两两相交,最多有m 个交点,最少有n 个交点,则m n +=____________.【难度】★★【答案】4.【解析】最多有3个交点,最少有1个交点.3m =,1n =,4m n +=.【总结】考察学生的作图分析能力.3.作图:已知线段AB 上一点Q 及线段外一点P .(1) 过点Q 作线段AB 的垂线;(2) 过点P 作线段AB 的垂线.【难度】★★【答案】如右图.【解析】注意标注垂直符号,以及字母的标注.【总结】画图一定要写结论.4.下列说法中正确的是( )A .有公共顶点、公共边且和为180°的两个角是邻补角B .有公共顶点且相等的是对顶角C .对顶角的补角一定相等D .互为邻补角的两个角不可能相等【难度】★【答案】C【解析】有一条公共边,并且另一条边互为反向延长线的两个角互为邻补角,故选项A 错误;有公共顶点且相等的两个角不一定是对顶角,故选项B 错误;C 正确;互为邻补角的两个角可能都为90︒,故选型D 错误.【总结】本题主要考查了对顶角和邻补角的概念.5.下列说法正确的是( )A .如果两个角相等,那么这两个角是对顶角B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么内错角相等D.联结直线外一点与直线上各点的所有线段中,垂线段最短【难度】★【答案】D【解析】对顶角相等,但相等的角不一定是对顶角,故选项A错误;过直线外一点有且只有一条直线与已知直线平行,故选项B错误;只有两直线平行时,它们的内错角才相等,故选项C错误;联结直线外一点与直线上各点的所有线段中,垂线段最短,故选项D正确.【总结】本题主要考查了对顶角、内错角、平行线、点到直线的距离的概念.易错点二:同位角、内错角、同旁内角1.在直线AB、CD被直线EF所截的八个角中∠1和∠5是一对________角,∠3和∠5是一对________角,∠4和∠5是一对________角.【难度】★【答案】同位角;内错角;同旁内角.【解析】同位角像字母F,内错角像字母Z,同旁内角像字母U.【总结】本题考查同位角、内错角、同旁内角的概念及特征.2.(1)如图∠1和∠2是直线________与________被直线_______所截,所形成的______角;(2)∠3和∠4是直线_____与_______被直线______所截,所形成的_______角;(3)∠C的同旁内角是_________.【难度】★【答案】(1)DC、AB、DB、内错角;(2)AD、CB、DB、内错角;(3)14、、、.∠∠∠∠CBA CDA【解析】两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角,内错角像字母Z,同旁内角像字母U.【总结】本题考查内错角、同旁内角的概念及特征.3.如图,下列说法错误的是()A.∠5和∠3是同位角B.∠1和∠4是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角【难度】★【答案】B【解析】两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角,故∠1和∠4不是同位角.【总结】本题考查同位角、内错角、同旁内角的概念及特征.4,如图,与∠C是同旁内角的有()A.5个 B.4个C.3个D.2个【难度】★【答案】B【解析】∠C的同旁内角有:∠CED、∠B、∠EDC、∠ADC共四个.【总结】本题考查同旁内角的概念及特征.5.如图,同旁内角的对数是()A.5对B.4对C.3对D.2对【难度】★★【答案】B【解析】两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【总结】本题考查同旁内角的概念及特征.6.如图,∠1和∠2是同位角的是( )A .(1)(2)B .(2)(3)(4)C .(1)(2)(4)D .(3)(4)(4)(3)(2)(1)21212121【难度】★★【答案】C【解析】(1)(2)(4)中∠1与∠2都在截线的同旁,并且都在被截直线的同侧,是同位角;(3)中∠1与∠2两边不在同一直线上,不是同位角,故选C .【总结】本题考查同位角的概念及特征,注意很多学生会容易误以为(2)中的两个角不是同位角,老师们要注意纠错哦.7.指出下图中:(1)∠C 与∠D 的关系;(2)∠B 与∠GEF 的关系;(3)∠A 与∠D 的关系;(4)∠AGE 与∠BGE 的关系;(5)∠CFD 与∠AFB 的关系.【难度】★★【答案】(1)同旁内角;(2)同位角;(3)内错角;(4)邻补角;(5)对顶角.【解析】 两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角.两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【总结】本题考查同位角、内错角、同旁内角、邻补角、对顶角的概念及特征.8.找出图中∠1的所有的同位角.【难度】★★【答案】∠GEF 、∠CBM 、∠ADF 、∠BCN .【解析】两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【总结】本题考查同位角的概念及特征.易错点三:平行线的判定与性质1.如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角() A .相等或互补B .互补C .相等D .相等且互余【难度】★★【答案】A【解析】分为同侧相等和异侧互补两种情况,故选A .【总结】本题考查平行线的基本应用,注意分类讨论.2.已若∠A 的两边与∠B 的两边分别平行,且∠A 是∠B 的2倍少30°,求∠A 与∠B 的度数.【难度】★★【答案】3030B A ∠=︒∠=︒,或70110B A ∠=︒∠=︒,.【解析】由题意可知,180A B A B ∠=∠∠+∠=︒或,又因为∠A 是∠B 的2倍少30°,所以230A B ∠=∠-︒,即3030B A ∠=︒∠=︒,或70110B A ∠=︒∠=︒,【总结】本题考查平行线的性质及两个角的两边平行时的两种情况的讨论.3.如果两个角的两边分别平行,其中一个角比另一个角的3倍多12°,则这两个角是( ).A .42°和138°B .都是10°C .42°和138°或都是10°D .以上都不对【难度】★★【答案】A 【解析】由题意假设这两个角分别为A 、B ,则有:180A B A B ∠=∠∠+∠=︒或,又因为∠A 是∠B 的3倍多12°,则有:312A B ∠=∠+︒,即180********B B B A ︒-∠=∠+︒∠=︒∠=︒,解得:,.【总结】本题考查两角位置关系的可能性,注意两种情况的讨论.5.已知:如图,E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,试说明:∠B =∠C .【难度】★★【解析】因为121AHB ∠=∠∠=∠(已知),(对顶角相等)所以2AHB ∠=∠(等量代换), 所以//AF ED (同位角相等,两直线平行)所以D AFC ∠=∠(两直线平行,同位角相等)因为A D ∠=∠(已知), 所以A AFC ∠=∠(等量代换) 所以//AB CD (内错角相等,两直线平行)所以B C ∠=∠(两直线平行,内错角相等)【总结】本题主要考察平行线的性质定理和判定定理的综合运用.6.如图,直线GC 截两条直线AB 、CD ,AE 是GAB ∠的平分线,CF 是ACD ∠的平分线,且//AE CF ,那么AB CD ∥吗?为什么?【难度】★★【解析】因为AE 是GAB ∠的平分线,CF 是ACD ∠的平分线(已知)所以GAE EAB ACF FCD ∠=∠∠=∠,(角平分线的性质)因为//AE CF (已知),所以GAE ACF ∠=∠(两直线平行,同位角相等)所以EAB FCD ∠=∠(等量代换)所以//(AB CD 同位角相等,两直线平行)【总结】本题主要考查平行线的判定定理及性质定理的综合运用.7.已知,正方形ABCD 的边长为4cm ,求三角形EBC 的面积.【难度】★★【答案】8平方厘米.【解析】由题意可知:三角形EBC 与正方形同底BC ,且其高即是正方形的边DC ,故三角形面积为正方形面积的一半:24428cm ⨯÷=【总结】本题考查三角形的面积的计算,注意三角形与正方形同底等高.8.如图,AD //BC ,52BC AD =,求三角形ABC 与三角形ACD 的面积之比.【难度】★★★【答案】5:2.【解析】因为//AD BC (已知)所以三角形ABC 与三角形ACD 的高相等(平行线间的距离处处相等)所以::52ABC ACD S S BC AD ∆∆==:(两三角形高相等,面积比等于底之比)【总结】本题考查平行线距离处处相等及三角形的面积比问题.9.如图,a ∥b ,.若△ABC 的面积是5,△ABE 的面积是2,则BEC S △=________;DEC S =__________;DBC S =__________;ADE S =___________.【难度】★★★【答案】3;2;5;43.【解析】因为△ABC的面积是5,△ABE的面积是2,所以△BEC的面积为5-2=3,因为△ABC和△DBC为同底等高的三角形,所以△DBC的面积为5,所以△DEC的面积为5-3=2,因为△ABE和△BEC为等高三角形,所以面积之比为底之比,即AE:EC=2:3,因为△ADE和△DEC为等高三角形,所以底之比为面积之比,所以△ADE的面积为4 232=3÷⨯.【总结】本题主要考查了平行线的性质和三角形面积的求法.10.如图,已知∠1=∠2,AD=2BC,三角形ABC的面积为3,求三角形CAD的面积.【难度】★★【答案】6【解析】因为∠1=∠2(已知)所以AD∥BC(内错角相等,两直线平行),所以AD到BC的距离相等,设为a,所以三角形ABC面积=12a BC⨯ =3,所以三角形ACD面积= 12a AD a BC⨯=⨯=6.【总结】本题主要考查了等高三角形的面积之比为底之比的应用.11.如图△ABC中,∠ABC=∠ACB,AE是△ABC的外角的平分线,F是AE上的一点,试说明△ABC与△FBC的面积相等.【难度】★★【解析】因为AE 是△ABC 的外角的平分线(已知)所以∠DAF =12∠DAC (角平分线的意义)因为180DAC BAC ∠+∠=(邻补角的意义),180BAC ABC ACB ∠+∠+∠=(三角形内角和等于180°)所以∠DAC =∠ABC +∠ACB (等式性质)因为DAC DAF CAF ∠=∠+∠(角的和差),∠ABC=∠ACB (已知)所以∠DAF =∠ABC (等式性质)所以AF//BC (同位角相等,两直线平行),所以点A 到直线BC 的距离等于点F 到直线BC 的距离(夹在平行线间的距离处处相等)所以△ABC 与△FBC 为同底等高三角形,所以△ABC 与△FBC 的面积相等.【总结】本题主要考查了平行线的判定和同底等高三角形面积相等的应用.12.如图,已知AB ∥ED ,试说明:∠B +∠D =∠C .【难度】★★【解析】过点C 作AB 的平行线CF ,因为AB ∥ED (已知)所以////AB CF ED (平行的传递性)所以B BCF D DCF ∠=∠∠=∠,(两直线平行,内错角相等)所以B D BCF DCF BCD ∠+∠=∠+∠=∠(等式性质)【总结】本题考查平行线的性质及辅助线的添加.13.如图所示,已知,++360A B C ︒∠∠∠=,试说明AE ∥CD .【难度】★★【解析】过点B向右作BF//AE,所以180A ABF∠+∠=︒(两直线平行,同旁内角互补)因为++360∠∠∠=(已知)A B C︒所以180∠+∠=︒(等式性质)FBC C所以//BF CD(同旁内角互补,两直线平行)所以//AE CD(平行的传递性)【总结】本题考查平行线的判定及性质的综合运用,注意简单的辅助线的添加方法.14.如图,已知:AB//CD,试说明:∠B+∠D+∠BED=360︒(至少用三种方法).【难度】★★【解析】方法一:连接BD则∠EBD+∠EDB+∠E=180°(三角形内角和等于180°)因为AB//CD(已知),所以∠ABD+∠BDC=180°(两直线平行,同旁内角互补)所以∠ABD+∠EBD+∠EDB+∠BDC+∠E=360°,即∠B+∠D+∠BED=360°方法二:过点E作EF//CD,因为//EF AB(平行的传递性)AB CD(已知),所以//所以∠B+∠BEF=180°,∠D+∠DEF=180°(两直线平行,同旁内角互补)所以∠B+∠BEF+∠D+∠DEF=360°(等式性质)即∠B+∠D+∠BED=360°;方法三:过点E作//EF BA因为//EF AB(平行的传递性)AB CD(已知),所以//所以180180,(两直线平行,同旁内角互补)ABE BEF FED EDC∠+∠=︒∠+∠=︒所以∠B+∠D+∠BED=360︒(等式性质);方法四:过点E作EF⊥CD的延长线与F,EG垂直于AB的延长线于G,则有:∠B=∠BGE+∠GEB,∠D=∠EDF+∠DFE,所以∠B+∠D+∠BED=∠BGE+∠DFE+∠GED=180+180=360°.【总结】本题考查平行线的判定及性质的综合运用,注意多种方法的归纳总结.11。

平行线与相交线易错题训练

平行线与相交线易错题训练

学习必备 欢迎下载l 1 l 212 3 ADC B ABC D E FABC D EEDCAOFE DCB ADC B AD CBA GFEDCBA 1234l 3l 2l 112BA 21E DB A54321G FED CBA A BCE F DABC E D相交线与平行线综合演练一、选择题1、到直线L 的距离等于2cm 的点有( )A.0个 B.1个 C.无数个 D.无法确定2、过一点画已知直线的平行线,则( )A.有且只有一条 B.有两条 C. 不存在或只有一条 D.不存在3、如图所示,能判断AB ∥CE 的条件是( )A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE(第3题图) (第4题图)4、如图所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62°B.118°C.72°D.59°5、如图1所示,下列说法正确的是( )A.点B 到AC 的垂线段是线段ABB.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段; D.线段BD 是点B 到AD 的垂线段(第5题图) (第6题图)6、如图,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条7、如图,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG •平分∠BEF,若∠1=72°,则∠2=( )A. 72°B. 54°C.45° D.55° (第7题图) (第8题图)8、如图所示,直线L1,L2,L3相较于一点,交点为O,∠1=∠2,∠3:∠1=8:1,则∠4=( )A. 36°B. 72 C.40° D.45° 9、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置.若∠EFB =65°,则∠AED′=( ) A .70° B .65° C .50° D .25°(第10题图)10、如图,已知 90ACB ∠=°,DE 过点C ,且D E A B∥,若55ACD ∠=°则∠B 的度数是()A.35°B.45°C .55°D .65°11.如图,已知AB CD ∥,若20A ∠=°,35E∠=°,则∠C=12.ABC ,且,则=∠D13.如图,直线1l ∥2l ,则∠α=(第13题图) (第14题图) 14.如图,12//l l ,∠1=120°,∠2=100°,则∠3=15.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =30o 时,∠BOD = 16.下列说法正确的有(填序号)①平面内,过直线上一点有且只有一条直线垂直于已知直线;②平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.17.两条非平行的直线被第三条直线所截,那么这3条直线将所在平面分成部分。

新初中数学相交线与平行线易错题汇编及答案

新初中数学相交线与平行线易错题汇编及答案
B、∠1和∠C是同位角,故本选项错误;
C、∠3和∠4是邻补角,故本选项错误;
D、∠1和∠C是同位角,故本选项正确;
故选:D.
【点睛】
本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
∵AB∥DE,CF∥AB
∴AB∥DE∥CF
∴∠BCF=∠α
∠DCF+∠β=180°
∴∠BCD=∠BCF +∠DCF
∴∠α+180°-∠β=95°∴∠β﹣∠α=85°故选:D【点睛】
本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.
17.如图,下列判断:①若 ,则 ;②若 ,则 :③若 ,则 .其中,正确的个数是().
考点:平行线的性质.
4.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于()
A.81°B.99°C.108°D.120°
【答案】B
【解析】
试题解析:过B作BD∥AE,
∵AE∥CF,
【解析】
【分析】
分两种情况,画出图形,结合平行线的性质求解即可.
【详解】
如图1,
∵a∥b;
∴∠1= =20°,
∵c∥d
∴∠β=∠1=20°;
如图2,
∵a∥b;
∴∠1= =20°,
∵c∥d
∴∠β=180°-∠1=160°;
故选C.
【点睛】
本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.

七年级数学下册第五章相交线与平行线重点易错题(带答案)

七年级数学下册第五章相交线与平行线重点易错题(带答案)

七年级数学下册第五章相交线与平行线重点易错题单选题1、下列定理有逆定理的是( )A.直角都相等B.同旁内角互补,两直线平行C.对顶角相等D.全等三角形的对应角相等答案:B分析:先写出各选项的逆命题,判断出其真假即可得出答案.解:A、直角都相等的逆命题是相等的角是直角,是假命题,此选项无逆定理;B、同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题,此选项有逆定理;C、对顶角相等的逆命题是相等的角是对顶角,是假命题,此选项无逆定理;D、全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题,此选项无逆定理.故选B.小提示:本题考查了对逆定理概念的认识,如果一个定理的逆命题是真命题,那么它的逆命题也叫这个定理的逆定理,如果一个定理的逆命题是假命题,则这个定理没有逆定理.2、如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3B.∠2与∠3互补C.∠2与∠3互余D.不能确定答案:C分析:根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.解:∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.小提示:本题考查了垂线和余角,解题的关键是掌握垂线的定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.的值为()3、如图,四边形ABCO是矩形,点D是BC边上的动点(点D与点B、点C不重合),则∠BAD+∠DOC∠ADO C.2D.无法确定A.1B.12答案:A分析:过点D作DE//AB交AO于点E,由平行的性质可知∠BAD=∠ADE,∠DOC=∠ODE,等量代换可得∠BAD+∠DOC的值.∠ADO解:如图,过点D作DE//AB交AO于点E,∵四边形ABCO是矩形∴AB//OC∵DE//AB∴AB//DE,DE//OC∴∠BAD=∠ADE,∠DOC=∠ODE∴∠BAD+∠DOC∠ADO=∠BAD+∠DOC∠ADE+∠ODE=∠BAD+∠DOC∠BAD+∠DOC=1故选:A.小提示:本题主要考查了平行线的性质,灵活的添加辅助线是解题的关键.4、如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°答案:A分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.5、如图,直线AB、BE被AC所截,下列说法,正确的有()①∠1与∠2是同旁内角;②∠1与∠ACE是内错角;③∠B与∠4是同位角;④∠1与∠3是内错角.A.①③④B.③④C.①②④D.①②③④答案:D分析:根据同位角、内错角、同旁内角的定义可直接得到答案.解:①∠1与∠2是同旁内角,说法正确;②∠1与∠ACE是内错角,说法正确;③∠B与∠4是同位角,说法正确;④∠1与∠3是内错角说法正确,故选:D.小提示:此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.6、如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°答案:C分析:根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.解:因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故选:C.小提示:本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.7、下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的平分线平行;②垂直于同一条直线的两条直线互相平行;③过一点有且只有一条直线与已知直线平行;④对顶角相等,邻补角互补.A.1个B.2个C.3个D.4个答案:A分析:根据平行线的性质及基本事实,对顶角及邻补角的性质进行判断.两条平行线被第三条直线所截,同位角的平分线平行,故①是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故②是假命题;过直线外一点有且只有一条直线与已知直线平行,故③是假命题;对顶角相等,邻补角互补,故④是真命题.故选A.小提示:本题考查命题的真假判断,熟练掌握平行线的性质,对顶角及邻补角的性质是解题的关键.8、如图,不能判定AB∥CD的是()A.∠B=∠DCE B.∠A=∠ACDC.∠B+∠BCD=180°D.∠A=∠DCE答案:D分析:利用平行线的判定方法一一判断即可.解:由∠B=∠DCE,根据同位角相等两直线平行,即可判断AB∥CD.由∠A=∠ACD,根据内错角相等两直线平行,即可判断AB∥CD.由∠B+∠BCD=180°,根据同旁内角互补两直线平行,即可判断AB∥CD.故A,B,C不符合题意,故选:D.小提示:本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.9、如图,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠5答案:B分析:根据同旁内角的定义求解即可.与∠1是同旁内角的是∠3所以答案是:B.小提示:本题考查了同旁内角的问题,掌握同旁内角的定义是解题的关键.10、如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处,则∠ABC等于()A.130°B.120°C.110°D.100°答案:C分析:根据方位角和平行线性质求出∠ABE,再求出∠EBC即可得出答案.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°,故选:C.小提示:本题考查了方向角及平行线的性质,熟练掌握平行线的性质:两直线平行,内错角相等是解题的关键.填空题11、如图,已知直角三角形ABC,∠A=90∘,AB=4cm,BC=5cm.将△ABC沿AC方向平移1.5cm得到△A′B′C′,求四边形BCC′B′的面积为________cm2.答案:6分析:根据题意,再结合平移的性质,可得AB=A′B′,AA′=BB′=CC′=1.5cm,BB′∥CC′,S△ABC=S△A′B′C′,然后再根据等量代换,得出S四边形AA′OB =S四边形OCC′B′,然后再根据等量代换,得出S四边形BCC′B′=S四边形AA′B′B,然后再根据长方形的特征,得出四边形AA′B′B是长方形,然后再根据长方形的面积公式,算出长方形AA′B′B的面积,即可得出四边形BCC′B′的面积.解:如图,∵△ABC沿AC方向平移1.5cm得到△A′B′C′,∴A的对应点为点A′,点B的对应点为点B′,点C的对应点为点C′,∴由平移的性质,可得:AB=A′B′=4cm,AA′=BB′=CC′=1.5cm,BB′∥CC′,又∵△ABC沿AC方向平移1.5cm得到△A′B′C′,∴S△ABC=S△A′B′C′,又∵S△ABC=S四边形AA′OB+S△A′OC,S△A′B′C′=S四边形OCC′B′+S A′OC,∴S四边形AA′OB =S四边形OCC′B′,∵S四边形BCC′B′=S四边形OCC′B′+S△BOB′,S四边形AA′B′B =S四边形AA′OB+S△BOB′,∴S四边形BCC′B′=S四边形AA′B′B,∵AB=A′B′,AA′=BB′,∠A=90∘,∴根据长方形的特征,可得:四边形AA′B′B是长方形,∴S长方形AA′B′B=AB⋅AA′=4×1.5=6cm2,∴S四边形BCC′B′=S四边形AA′B′B=6cm2所以答案是:6小提示:本题考查了平移的性质,等量代换,根据长方形的特征判定长方形,长方形的面积公式,解本题的关键在熟练掌握平移的性质.平移的性质:1、形状大小不变;2、对应点的连线平行(或在同一直线上)且相等;3、对应线段平行(或在同一直线上)且相等,对应角相等.12、说明命题“若x>-4,则x2>16”是假命题的一个反例可以是_______.答案:x=-3,答案不唯一分析:当x=-3时,满足x>-4,但不能得到x2>16,于是x=-3可作为说明命题“x>-4,则x2>16”是假命题的一个反例.说明命题“x>-4,则x2>16”是假命题的一个反例可以是x=-3.故答案为-3.小提示:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13、如图,直线a∥b,AB⊥BC,如果∠1=48°,那么∠2=_______度.答案:42.∵AB⊥BC,∴∠ABC=90°,即∠1+∠3=90°,∵∠1=48°,∴∠3=42°,∵a∥b,∴∠2=∠3=42°.故答案为42.点睛:本题关键利用平行线的性质解题.14、如图,当∠ABC,∠C,∠D满足条件______________时,AB∥ED.答案:∠ABC=∠C+∠D分析:延长CB交DE于F,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠EFB=∠C+∠D,再根据同位角相等,两直线平行解答即可.如图,延长CB交DE于F,则∠EFB=∠C+∠D,当∠ABC=∠EFB时,AB∥ED,所以,当∠ABC=∠C+∠D时,AB∥ED.故答案为∠ABC=∠C+∠D.小提示:本题考查了平行线的判定,作辅助线,把∠C、∠D转化为一个角的度数是解题的关键.15、如图,AB∥CD,若GE平分∠DGH,HE平分∠GHB,GF平分∠CGH,若∠CGH=70°,则∠EHB的度数是______,图中与∠DGE互余的角共有______个.答案: 35°##35度 5分析:由平行线的性质可得,∠CGH=∠GHB=70°,∠GFH=∠CGF,利用邻角的补角可得∠DGH=∠GHA= 110°,利用角平分线的性质可得∠EHB=∠GHE=35°,∠CGF=∠GFH=∠HGF=35°,∠DGE=∠HGE= 55°,进而可求得答案.解:∵AB//CD,∴∠CGH=∠GHB=70°,∠DGH=∠GHA,∠GFH=∠CGF∴∠DGH=∠GHA=180°−70°=110°,又∵HE平分∠GHB,∵GE平分∠DGH,HE平分∠GHB,GF平分∠CGH,∴∠EHB=∠GHE=12∠GHB=35°,∠CGF=∠GFH=∠HGF=12∠CGH=35°,∠DGE=∠HGE=12∠DGH=55°,∴∠DGE+∠BHE=90°,∠DGE+∠GHE=90°,∠DGE+∠CGF=90°,∠DGE+∠HGF=90°,∠DGE+∠GFH=90°,∴与∠DGE互余的角共有5个,所以答案是:35°,5.小提示:本题考查了平行线的性质、角平分线的性质以及互余的定义,熟练掌握角平分线的性质及互余的定义是解题的关键.解答题16、如图所示,已知∠CFE+∠BDC=180°,∠DEF=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.答案:∠AED=∠ACB,理由见解析分析:首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠4.∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).小提示:本题重点考查平行线的性质和判定,难度适中.17、如图,已知AB∥DE,那么∠A+∠C+∠D的和是多少度?为什么?答案:∠A+∠C+∠D的和是360度,理由见解析.分析:如图(见解析),过点C作CF//AB,则CF//DE,先根据平行四边形的性质(两直线平行,同旁内角互补)得出∠A+∠FCA=180°,∠D+∠DCF=180°,再根据角的和差即可得.如图,过点C作CF//AB,则所求的问题变为∠A+∠ACD+∠D的和是多少度∴∠A+∠FCA=180°∵AB//DE∴CF//DE∴∠D+∠DCF=180°∴∠A+∠FCA+∠D+∠DCF=180°+180°=360°即∠A+∠ACD+∠D=360°.小提示:本题考查了平行线的性质、角的和差,熟记平行线的性质是解题关键.18、图形的世界丰富且充满变化,用数学的眼光观察它们,奇妙无比.(1)如图,EF//CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小丽添加的条件:∠B+∠BDG=180°.请你帮小丽将下面的证明过程补充完整.证明:∵EF//CD(已知)∴∠BEF=()∵∠B+∠BDG=180°(已知)∴BC//()∴∠CDG=()∴∠BEF=∠CDG(等量代换)(2)拓展:如图,请你从三个选项①DG//BC,②DG平分∠ADC,③∠B=∠BCD中任选出两个作为条件,另一个作为结论,组成一个真命题,并加以证明.①条件:,结论:(填序号).②证明:.答案:(1)∠BCD;两直线平行,同位角相等;DG;同旁内角互补,两直线平行;∠BCD;两直线平行,内错角相等;(2)①DG∥BC,∠B=∠BCD,DG平分∠ADC,②证明见解析分析:(1)根据平行线的判定定理和性质定理解答;(2)根据真命题的概念写出命题的条件和结论,根据平行线的判定定理和性质定理、角平分线的定义解答.(1)证明:∵EF∥CD(已知),∴∠BEF=∠BCD(两直线平行,同位角相等),∵∠B+∠BDG=180°(已知),∴BC∥DG(同旁内角互补,两直线平行),∴∠CDG=∠BCD(两直线平行,内错角相等),∴∠BEF=∠CDG(等量代换);(2)①条件:DG∥BC,∠B=∠BCD,结论:DG平分∠ADC,②证明:∵DG∥BC,∴∠ADG=∠B,∠CDG=∠BCD,∵∠B=∠BCD,∴∠ADG=∠CDG,即DG平分∠ADC.所以答案是:(1)∠BCD;两直线平行,同位角相等;DG;同旁内角互补,两直线平行;∠BCD;两直线平行,内错角相等;小提示:本题考查了命题的真假判断、平行线的判定和性质,掌握平行线的判定定理和性质定理是解题的关键.。

相交线与平行线易错题汇编及答案解析

相交线与平行线易错题汇编及答案解析
∵∠1=45°(已知),
∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF∥MN(已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D.
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
【详解】
A.由∠D=∠DCE,根据内错角相等,两直线平行可得BD//AE,故不符合题意;
B.由∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得BD//AE,故不符合题意;
C.由∠1=∠2可判定AB//CD,不能得到BD//AE,故符合题意;
D.由∠3=∠4,根据内错角相等,两直线平行可得BD//AE,故不符合题意,
∴∠2=64°.
故选:A.
【点睛】
本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.
7.如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()
A.∠D=∠DCEB.∠D+∠ACD=180°C.∠1=∠2D.∠3=∠4
【答案】C
【解析】
【分析】
根据平行线的判定方法逐项进行分析即可得.
C、∠4=∠5正确,同位角相等两直线平行;
D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.
故选:D.
【点睛】
此题考查同位角、内错角、同旁内角,解题关键在于掌握各性质定义.
5.如图,下列能判定 的条件有( )个.
(1) ; (2) ;
(3) ; (4) .
A.1B.2C.3D.4
A.40°B.60°C.50°D.70°
【答案】B

相交线与平行线易错题汇编附解析

相交线与平行线易错题汇编附解析

相交线与平行线易错题汇编附解析一、选择题1.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.2.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.3.如图,若AB ∥CD ,则∠α、∠β、∠γ之间关系是( )A .∠α+∠β+∠γ=180°B .∠α+∠β﹣∠γ=360°C .∠α﹣∠β+∠γ=180°D .∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF ∥AB ,∵AB ∥CD ,∴EF ∥CD ,∵EF ∥AB ,∴∠α+∠AEF=180°,∵EF ∥CD ,∴∠γ=∠DEF ,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .4.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC∥DE,故①正确;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC∥DE,AC⊥BC,∴DE⊥BC,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB,故③正确,④错误;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.6.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°【答案】B【解析】【分析】【详解】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°.故选B.7.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.8.如图,在下列四组条件中,不能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠ABD=∠BDC D.∠ABC+∠BCD=180°【答案】A【解析】【分析】根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB、CD是否平行即可.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故A不能判断;B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,故选A.【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D 选项是对顶角,故选:D .【点睛】考核知识点:对顶角.理解定义是关键.10.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 首先证明a ∥b ,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,a ∥b ,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C .【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.11.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°,图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .12.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( )A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.13.如图所示,下列条件中,能判定直线a∥b的是()A.∠1=∠4 B.∠4=∠5 C.∠3+∠5=180°D.∠2=∠4【答案】B【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠1=∠4,错误,因为∠1、∠4不是直线a、b被其它直线所截形成的同旁内角或内错角;B、∵∠4=∠5,∴a∥b(同位角相等,两直线平行).C、∠3+∠5=180°,错误,因为∠3与∠5不是直线a、b被其它直线所截形成的同旁内角;D、∠2=∠4,错误,因为∠2、∠4不是直线a、b被其它直线所截形成的同位角.故选:B.【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角14.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .15.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.16.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.17.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.18.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A .115°B .120°C .145°D .135°【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt △ABC 中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.19.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.20.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.。

相交线与平行线易错题汇编及答案

相交线与平行线易错题汇编及答案
【详解】
A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;
B选项:强调了在平面内,正确;
C选项:不符合对顶角的定义,错误;
D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.
故选:B.
【点睛】
对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.
A.①②③④B.①②③④C.①②③④⑤D.①②④⑤
【答案】D
【解析】
如图,
①∠1和∠4是直线AC和直线BC被直线AB截得的同位角,所以①正确;
②∠3和∠5是直线BC和直线AB被直线AC截得的内错角,所以②正确;
③∠2和∠6是直线AB和直线AC被直线CB截得的内错角,所以③错误;
④∠5和∠2是直线AC和直线BC被直线AB截得的同位角,所以④正确;
12.给出下列说法,其中正确的是( )
A.两条直线被第三条直线所截,同位角相等;
B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;
C.相等的两个角是对顶角;
D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.
【答案】B
【解析】
【分析】
正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.
故选C.
7.如图, 平分 , .若 , 到 的距离是2.4,则 的面积等于()
A.3.6B.4.8C.1.8D.7.2
【答案】A
【解析】
【分析】
由角平分线的定义可得出∠BOC=∠DOC,由CD∥OB,得出∠BOC=∠DCO,进而可证出OD=CD=3.再由角平分线的性质可知 到 的距离是2.4,然后根据三角形的面积公式可求 的面积.

“相交线与平行线”易错题

“相交线与平行线”易错题

第五单元《相交线和平行线》易错题5.1相交线1.判断题: 同一平面内三条直线a 、b 、c ,若a ∥b,b ∥c,则a ∥c ;同理,若a ⊥b,b ⊥c,则a⊥c 。

( )【错解】正确【错题剖析】这句话的前半部分是成立的(如图1),但由此推出的后半部分不成立。

平行具有传递性,但垂直不具有传递性(如图2)如果a ⊥b,b ⊥c ,则a ∥c 。

【正确解答】错误【应对攻略】画图是解决问题的最简单也是最直接的办法,往往有意想不到的效果.【练习巩固】1.判断题:1)不相交的两条直线叫做平行线。

( ) 2)过一点有且只有一条直线与已知直线平行。

( ) 3)两直线平行,同旁内角相等。

( ) 4)两条直线被第三条直线所截,同位角相等。

( )2.判断题:只有过直线外一点才能画已知直线的垂线 ( )【错解】正确【错题剖析】此句错误的原因是受“经过直线外一点有且只有一条直线和已知直线平行”这一事实的影响。

但画垂线可以过直线上一点,也可以过直线外一点来画。

正确说法是:经过直线上或直线外一点可以画已知直线的垂线。

【正确解答】错误【应对攻略】考虑问题要全面,全方面的多角度的分析,不能片面看问题.【练习巩固】判断(1)对顶角的余角相等.( )(2)邻补角的角平分线互相垂直.( )(3)平面内画已知直线的垂线,只能画一条.() (4)在同一个平面内不相交的两条直线叫做平行线.( )(5)如果一条直线垂直于两条平行线中的一条直线,那么这条直线垂直于平行线中的另一条直线.( )(6)两条直线被第三条直线所截,两对同旁内角的和等于一个周角.( ) (7)点到直线的距离是这点到这条直线的垂线的长.( )(8)“过直线外一点,有且只有一条直线平行于已知直线”是公理.( )a bc 图1 图23. 如下图,直线AB 、CD 、EF 和射线OG 都经过O 点,则图中对顶角有( )对A 、 6B 、 7C 、 5D 、 8【错解】A.【错题剖析】这种题目很容易“重复”解,也很容易“遗漏”解.本题很容易把 ∠AOG 也数进去. 【正确解答】C.【应对攻略】观察图形需要仔细,要有两个防止:既要防止“重复”又要防止“遗漏”并且应按一定的顺序进行.【练习巩固】如图,BE 平分ABC ,BC DE //,图中相等的角共有( )A 、 3对B 、 4对C 、 5对D 、6对3.观察下列各图,寻找对顶角(不含平角):⑴ 如图a ,图中共有 对对顶角;C EA OB G F DE DCB AA BCD Oa b c A A B B CCD DO OEFGH图a图b图c⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有2008条直线相交于一点,则可形成 对对顶角。

相交线与平行线易错点复习

相交线与平行线易错点复习

相交线与平行线易错点复习一、 平行线的判定与性质1、如图1所示,能判断AB ∥CD 的条件是( )A .∠3=∠4B .∠1=∠2C .∠B=∠D D .∠BAD+∠B=180°2、如图2,直线a 与直线b 互相平行,直线l 与直线a 、b 相交,则∠α的度数是( )A .40°B .60°C .140°D .160°3、已知如图3,∠A=135°,∠B= 45°,在下面的说法中,一定正确的是 ( )A .AD ∥BCB .AB ∥CDC .∠C =135°,∠D = 45° D .∠C =45°,∠D = 135°4、如图4,下列判定中正确的有( )①若∠1=∠3,AD ∥BC ,则BD 是∠ABC 的平分线;②若AD ∥BC ,则∠1=∠2 =∠3; ③若∠1=∠3,则AD ∥BC ;④若∠C + ∠3 +∠4 = 180°,则AD ∥BCA .1个B .2个C .3个D .4个5、如图5,∠1=∠2,则 ∥ ,理由是 __6、如图6,AB ∥CD ,那么∠B +∠E +∠D = °.7、解答题(1)如图,已知AB ⊥BD ,CD ⊥BD ,且∠1+∠2 =180°,求证:CD ∥EF证明: ∵ AB ⊥BD ,CD ⊥BD (已知)∴ AB ∥CD ( )又∵ ∠1+∠2 =180°(已知)∴ AB ∥EF ( )∴ CD ∥EF ( )(2)如图,已知EF ∥BC ,∠1=∠B 。

问DF 与AB 平行吗?请说明理由。

图1 图2 图3 图4 图5 图6(3)如图,已知∵AC⊥AB,BD⊥AB,且∠CAE=∠DBF,求证:AE∥BF。

如图,∵AC⊥AB,BD⊥AB(已知)∴∠CAB=90°,∠______=90°()∴∠CAB=∠______()∵∠CAE=∠DBF(已知)∴∠BAE=∠______ ()∴AE∥BF()(4)如图,已知AD∥BC,∠A=100°,BD平分∠ABC,求∠DBC的度数。

(易错题精选)初中数学相交线与平行线经典测试题含答案解析

(易错题精选)初中数学相交线与平行线经典测试题含答案解析

(易错题精选)初中数学相交线与平行线经典测试题含答案解析一、选择题1.给出下列说法,其中正确的是()A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.2.如图,直线AC// BD, AO、BO分别是/ BAG / ABD的平分线,那么下列结论错误的是()A. / BAO 与/ CAO相等B. / BAC与/ ABD 互补C. /BAO与/ABO互余D. /ABO与/DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得/ BAC+/ ABD=180 ,选项B正确;因AO、BO分别是/ BAC /ABD的平分线,根据角平分线的定义可得/ BAO=Z CAO, / ABO=Z DBO,选项A 正确,选项D 不正确;由/ BAC+Z ABD=180°, / BAO=/ CAO, / ABO=/DBO 即可得/ BAO+Z ABQ=90°,选项 A 正确,故选 D.3 .如图,直线all b,直线c 与直线a, b 相交,若/ 1=56 °,则/ 2等于()试题分析:根据对顶角相等可得/ 3=7 1=56。

(易错题精选)初中数学相交线与平行线易错题汇编含答案解析

(易错题精选)初中数学相交线与平行线易错题汇编含答案解析

(易错题精选)初中数学相交线与平行线易错题汇编含答案解析一、选择题1.如图,在下列四组条件中,不能判断AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠ABD =∠BDCD .∠ABC+∠BCD =180°【答案】A【解析】【分析】 根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB 、CD 是否平行即可.【详解】A 、∵∠1=∠2,∴AD ∥BC (内错角相等,两直线平行),故A 不能判断;B 、∵∠3=∠4,∴AB ∥CD (内错角相等,两直线平行),故B 能判断;C 、∵∠ABD =∠BDC ,∴AB ∥CD (内错角相等,两直线平行),故C 能判断; D 、∵∠ABC +∠BCD =180°,∴AB ∥CD (同旁内角互补,两直线平行),故D 能判断, 故选A .【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.2.如图,将一张矩形纸片折叠,若170∠=︒,则2∠的度数是( )A .65︒B .55︒C .70︒D .40︒【答案】B【解析】【分析】根据平行线的性质求出∠3=170∠=︒,得到∠2+∠4=110°,由折叠得到∠2=∠4即可得到∠2的度数.【详解】∵a ∥b ,∴∠3=170∠=︒,∴∠2+∠4=110°,由折叠得∠2=∠4,∴∠2=55 ,故选:B.【点睛】此题考查平行线的性质,折叠的性质.3.如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()A.∠D=∠DCE B.∠D+∠ACD=180° C.∠1=∠2 D.∠3=∠4【答案】C【解析】【分析】根据平行线的判定方法逐项进行分析即可得.【详解】A.由∠D=∠DCE,根据内错角相等,两直线平行可得BD//AE,故不符合题意;B. 由∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得BD//AE,故不符合题意;C.由∠1=∠2可判定AB//CD,不能得到BD//AE,故符合题意;D.由∠3=∠4,根据内错角相等,两直线平行可得BD//AE,故不符合题意,故选C.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.4.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A.∠ABE=2∠CDE B.∠ABE=3∠CDEC.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°【答案】A【解析】【分析】延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】解:延长BF与CD相交于M,∵BF∥DE,∴∠M=∠CDE,∵AB∥CD,∴∠M=∠ABF,∴∠CDE=∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∴∠ABE=2∠CDE.故选:A.【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.5.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( )A.PA B.PB C.PC D.PD【答案】B【解析】如图,PB是点P到a的垂线段,∴线段中最短的是PB.故选B.6.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】到l1距离为2的直线有2条,到l2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D.【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.7.如图,直线a∥b,直角三角开的直角顶点在直线b上,一条直角边与直线a所形成的∠1=55°,则另外一条直角边与直线b所形成的∠2的度数为()A.25°B.30°C.35°D.40°【答案】C【解析】如图所示:∵直线a∥b,∴∠3=∠1=55°,∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°-55°-90°=35°.故选C.8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o 故选B.9.下列说法中,正确的是( )A .过一点有且只有一条直线与已知直线垂直B .过直线外一点有且只有一条直线与已知直线平行C .垂于同一条直线的两条直线平行D .如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A 、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B 、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C 、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D 、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意; 故选:B .【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.10.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=︒则D ∠=( )A .40︒B .100︒C .80︒D .110︒【答案】B【解析】【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D.【详解】∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线∴EF ∥AC∵∠1=40°,∴∠CAB=40°∵CD ∥BA∴∠DCA=∠CAB=40°∵CD=DA∴∠DAC=∠DCA=40°∴在△DCA 中,∠D=100°故选:B【点睛】本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线.11.若a ⊥b ,c ⊥d ,则a 与c 的关系是( )A .平行B .垂直C .相交D .以上都不对【答案】D【解析】【分析】分情况讨论:①当b ∥d 时;②当b 和d 相交但不垂直时;③当b 和d 垂直时;即可得出a 与c 的关系.【详解】当b ∥d 时a ∥c ;当b 和d 相交但不垂直时,a 与c 相交;当b 和d 垂直时,a 与c 垂直;a 和c 可能平行,也可能相交,还可能垂直.故选:D .本题考查了直线的位置关系,掌握平行、垂直、相交的性质是解题的关键.12.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.13.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不能确定【答案】C【解析】【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【详解】∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.【点睛】本题考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.14.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A.3个B.4个C.5个D.6个【答案】C【解析】【分析】已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∵DE∥AB,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC=180°﹣72°﹣36°=72°,∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选C.【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.15.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..16.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.17.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A .1个B .2个C .3个D .4个 【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.18.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【答案】B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.19.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.20.下列结论中:①若a=b a b;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;33( ) A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】a b解:①若a=b0②在同一平面内,若a⊥b,b//c,则a⊥c,正确③直线外一点到直线的垂线段的长度叫点到直线的距离33正确的个数有②④两个故选B。

2020-2021学年人教版七年级数学下册第五章《相交线与平行线》易错题【含答案】

2020-2021学年人教版七年级数学下册第五章《相交线与平行线》易错题【含答案】

人教版七年级数学下册第五章《相交线与平行线》 易错题________________________一,单项选择题(本大题共10小题,每小题3分,共30分)1.如图,直线m 和n 相交于点O ,若∠1=40°,则∠2的度数是( )A .40°B .50°C .140°D .150°C【分析】 根据邻补角的性质,邻补角互补进行计算,可得答案.【详解】解:直线m 和n 相交于点O ,若∠1=40°,则∠2的度数为180°-∠1= 140°, 故选:C .本题考查了邻补角,理解概念正确计算是解题关键.2.如图,1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠A【分析】根据同位角定义可得答案.【详解】解:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角.即∠2是∠1的同位角.故选:A .此题主要考查了同位角,关键是掌握同位角的边构成“F”形.3.如图,DAF △沿直线AD 平移得到CDE △,CE ,AF 的延长线交于点B .若∠AFD =111°,则∠CED =( )A .110°B .111°C .112°D .113°B【分析】 根据平移的性质即可得到结论.【详解】∠DAF △沿直线AD 平移得到CDE △,且111AFD ∠=︒,∠111CED AFD ∠=∠=︒,故选:B .本题考查了平移的性质,掌握理解平移的性质是解题关键.4.将一把直尺和一块三角板如图叠放,直尺的一边刚好经过直角三角板的直角顶点且与斜边相交,则1∠与2∠一定满足的数量关系是( )A .221∠=∠B .21180∠+∠=︒C .221180∠+∠=︒D .2190∠-∠=︒D【分析】 根据直角和邻补角的定义列出关系式,从而利用等式的性质计算求解.【详解】解:由题意可得:∠1+∠3=90°,∠2+∠3=180°∠∠3=90°-∠1,∠3=180°-∠2∠90°-∠1=180°-∠2∠2190∠-∠=︒故选:D .本题考查直角和邻补角的概念及等式的性质,掌握相关性质正确列关系式求解是关键.5.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠B【分析】 利用平行线的性质得到∠2=∠4,∠3=∠2,∠5=∠1+∠2,再根据角平分线的定义得到∠1=∠2=∠4=∠3,∠5=2∠1,从而可对各选项进行判断.【详解】∠l 1∠AB ,∠∠2=∠4,∠3=∠2,∠5=∠1+∠2,∠AC 为角平分线,∠∠1=∠2=∠4=∠3,∠5=2∠1.故选B .本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125°B.120°C.140°D.130°D如图,∠EF∠GH,∠∠FCD=∠2.∠∠FCD=∠1+∠A,∠1=40°,∠A=90°.∠∠2=∠FCD=130°.故选D.7.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等A【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.∠∠DPF=∠BAF,∠AB∠PD(同位角相等,两直线平行).故选A.此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.8.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°D分析:由折叠可得:∠DGH=12∠DGE=74°,再根据AD∠BC,即可得到∠GHC=180°﹣∠DGH=106°.详解:∠∠AGE=32°,∠∠DGE=148°,由折叠可得:∠DGH=12∠DGE=74°.∠∠GHC=180°﹣∠DGH=106°.故选D.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.9.如图,直线AB∠CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°B过E作EF∠AB,求出AB∠CD∠EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∠AB,∠AB∠CD,∠AB∠CD∠EF,∠∠C=∠FEC,∠BAE=∠FEA,∠∠C=44°,∠AEC为直角,∠∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∠∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.10.如图,已知AB∠CD,BE和DF分别平分∠ABF和∠CDE,2∠E-∠F=48°,则∠CDE 的度数为( ).A.16°B.32°C.48°D.64°B【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∠BE和DF分别平分∠ABF和∠CDE,∠∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∠//AB CD,∠////AB CD EM//FN,∠∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∠∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∠2∠BED-∠BFD=48°,∠2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∠∠CDE=32°.故选B.本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键.二、填空题(本大题共7小题,每小题3分,共21分)11.如图,把小河里的水引到田地A处就作AB∠l,垂足为B,沿AB挖水沟,水沟最短.理由是_______________________.垂线段最短试题分析:点到直线的所有线段中垂线段最短.考点:垂线段的性质12.如图,AB与BC被AD所截得的内错角是_________;DE与AC被直线AD所截得的内错角是__________;图中∠4的内错角是________.∠1和∠3 ∠2和∠4 ∠5和∠2【分析】根据内错角的概念,结合图形中各角的位置即可顺利完成填空.【详解】结合图形可得AB与BC被AD所截得的内错角是∠1和∠3;DE与AC被直线AD所截得的内错角是∠2和∠4;因为∠4和∠5是直线AB和AD被直线ED所截构成的内错角,∠4和∠2是直线DE和AC被直线AD所截构成的内错角,所以图中∠4的内错角是∠5和∠2.本题考查了内错角的概念,熟练掌握两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角是解题的关键.13.如图,在四边形ABCD中,AD∠BC,若∠B与∠C互余,将AB,DC分别平移到EF和EG的位置,则∠FEG的度数为_____.90°【分析】利用平移的性质可以知∠B+∠C=∠EFG+∠EGF,然后根据三角形内角和定理在∠EFG中求得∠FEG=90°.【详解】∠AB,CD分别平移到EF和EG的位置后,∠B的对应角是∠EFG,∠C的对应角是∠EGF.又∠∠B与∠C互余,∠∠EFG与∠EGF互余.∠∠EFG+∠EGF+∠FEG=180°,∠∠FEG=90°(三角形内角和定理).故答案为90°.本题考查了平移的性质,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15°【分析】如下图,过点E作EF∠BC,然后利用平行线的性质结合已知条件进行分析解答即可.【详解】由题意可得AD∠BC ,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E 作EF∠BC , 则AD∠EF∠BC ,∠∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∠∠AEF=∠AEB -∠FEB ,∠∠AEF=90°-30°=60°,∠∠1+45°=60°,∠∠1=60°-45°=15°.故15°.15.如图,AB CD ∥,ABD ∠的平分线与BDC ∠的平分线交于点E ,则12∠+∠=_____.90°【分析】根据平行线的性质可得180ABD CDB ∠+∠=,再根据角平分线的定义即可得出答案.【详解】解:∠AB CD ∥,∠180ABD CDB ∠+∠=,∠BE 是ABD ∠的平分线,∠112ABD ∠=∠, ∠DE 是BDC ∠的平分线,∠122CDB ∠=∠, ∠1290∠+∠=,故90.此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.16.如图,现给出下列条件:∠1B ∠∠=,∠25∠∠=,∠34∠∠=,∠1D ∠∠=,∠B BCD 180∠∠+=︒.其中能够得到AB//CD 的条件是_______.(只填序号)∠∠∠【分析】根据平行线的判定定理对各小题进行逐一判断即可【详解】解:∠∠∠1=∠B ,∠AB∠CD ,故本小题正确;∠∠∠2=∠5,∠AB∠CD ,故本小题正确;∠∠∠3=∠4,∠AD∠BC ,故本小题错误;∠∠∠1=∠D ,∠AD∠BC ,故本小题错误;∠∠∠B+∠BCD=180°,∠AB∠CD ,故本小题正确.故答案为∠∠∠.本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.17.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)70.【详解】作IF∠AB,GK∠AB,JH∠AB因为AB∠CD所以,AB∠CD∠ IF∠GK∠JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.三、解答题(本大题共6小题,共49分)18.如图,已知直线AB 和CD 相交于O 点,射线OE AB ⊥于O ,射线OF CD ⊥于O ,且BOF 25.∠=求:AOC ∠与EOD ∠的度数.∠AOC =115°, ∠EOD =25°.【分析】根据垂线的性质和余角及补角的定义可求出∠ AOC ,由垂线的性质和余角的定义可求出∠EOD【详解】解:∠OF∠CD ,∠∠COF =90°,∠∠BOC =90°-∠BOF =65°,∠∠AOC =180°-65°=115°.∠OE∠AB ,∠∠BOE =90°,∠∠EOF =90°-25°=65°,∠OF∠CD∠∠DOF=90°∠∠EOD=∠DOF −∠EOF=90°-65°=25°.垂线的性质及补角和余角的定义都是本题的考点,正确找出角之间的关系是解题的关键.19.如图,AD是∠EAC的平分线,AD∠BC,∠B=30o,∠EAD、∠DAC、∠C的度数.∠=∠=∠=︒EAD DAC C30【分析】根据角平分线、平行线的性质即可得到结果.【详解】解:∠AD∠BC(已知),∠∠EAD=∠B=30°(两直线平行,同位角相等).∠AD平分∠EAC(已知),∠∠DAC=∠EAD=30°(角平分线的定义).∠∠C=∠DAC=30°(两直线平行,内错角相等).此题主要考查学生对平行线的性质及角平分线的定义的理解及运用能力.20.已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC.∠1=∠3,求证:AB∠DC.证明:∠∠ABC=∠ADC ( )∠1122ABC ADC∠=∠( )∠BF、DE分别平分∠ABC与∠ADC ( )∠111,222ABC ADC∠=∠∠=∠( )∠∠______=∠______ ( )∠∠1=∠3( )∠∠2=∠______ (等量代换)∠____∠____ ( )已知,等式的性质;已知,角平分线的定义;1,2,等量代换;已知,3,AB,DC,内错角相等,两直线平行.【分析】根据等式的性质,角平分线的定义,等量代换,平行线的判定方法求解即可.【详解】证明:∠∠ABC=∠ADC (已知),∠1122ABC ADC∠=∠(等式的性质).∠BF、DE分别平分∠ABC与∠ADC(已知),∠111,222ABC ADC∠=∠∠=∠(角平分线的定义),∠∠1=∠2(等量代换).∠∠2=∠3(等量代换),∠AB∠DC (内错角相等,两直线平行).故已知,等式的性质;已知,角平分线的定义;1,2,等量代换;已知,3,AB,DC,内错角相等,两直线平行.本题考查了等式的性质,角平分线的定义,等量代换,平行线的判定方法等知识.解答本题的关键是熟练掌握平行线的判定方法.21.如图,在∠ABC中,CD∠AB,垂足为D,点E在BC上,EF∠AB,垂足为F.(1) CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.(1)平行;(2)115°.【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∠CD;(2)由EF∠CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∠BC,所以∠ACB=∠3=115°.【详解】解:(1)CD与EF平行.理由如下:CD∠AB,EF∠AB,∠EF∠CD(2) 如图:EF∠CD,∠∠2=∠BCD又∠1=∠2,∠∠1=∠BCD∠DG∠BC,∠∠ACB=∠3=115°.本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.22.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C =∠EFG,∠CED=∠GHD.(1)求证:CE∠GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∠CD,即可得出∠AED+∠D =180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∠∠CED=∠GHD,∠CB∠GF;(2)∠AED+∠D=180°;理由:∠CB∠GF,∠∠C=∠FGD,又∠∠C=∠EFG,∠∠FGD=∠EFG,∠AB∠CD,∠∠AED+∠D=180°;(3)∠∠GHD=∠EHF=80°,∠D=30°,∠∠CGF=80°+30°=110°,又∠CE∠GF,∠∠C=180°﹣110°=70°,又∠AB∠CD,∠∠AEC=∠C=70°,∠∠AEM=180°﹣70°=110°.本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23.如图∠,已知AB∠CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图∠中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFl,得到图∠.(1)在图∠中,过点P作PM∠AB,当α=20°,β=50°时,∠EPM=度,∠EPF=度;(2)在(1)的条件下,求图∠中∠END与∠CFI的度数;(3)在图∠中,当FI∠EH时,请直接写出α与β的数量关系.(1)20,70;(2)80°;(3)90°;【分析】(1)由PM∠AB根据两直线平行,内错角相等可得∠EPM=∠AEP=20°,根据平行公理的推论可得PM∠CD,继而可得∠MPF=∠CFP=50°,从而即可求得∠EPF;(2)由角平分线的定义可得∠AEH=2α=40°,再根据AD∠BC,由两直线平行,内错角相等可得∠END=∠AEH=40°,由对顶角相等以及角平分线定义可得∠IFG=∠DFG=β=50°,再根据平角定义即可求得∠CFI的度数;(3)由(2)可得,∠CFI=180°-2β,由AB∠CD,可得∠END=2α,当FI∠EH时,∠END=∠CFI,据此即可得α+β=90°.【详解】(1)∠PM∠AB,α=20°,∠∠EPM=∠AEP=20°,∠AB∠CD,PM∠AB,∠PM∠CD,∠∠MPF=∠CFP=50°,∠∠EPF=20°+50°=70°,故答案为20,70;(2)∠PE平分∠AEH,∠∠AEH=2α=40°,∠AD∠BC,∠∠END=∠AEH=40°,又∠FG平分∠DFI,∠∠IFG=∠DFG=β=50°,∠∠CFI=180°-2β=80°;(3)由(2)可得,∠CFI=180°-2β,∠AB∠CD,∠∠END=∠AEN=2α,∠当FI∠EH时,∠END=∠CFI,即2α=180°-2β,∠α+β=90°.本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键.。

第五章相交线与平行线单元试卷易错题(Word版 含答案)

第五章相交线与平行线单元试卷易错题(Word版 含答案)

第五章相交线与平行线单元试卷易错题(Word版含答案)一、选择题1.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.125°B.75°C.65°D.55°2.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°3.如图,已知AB∥CD,AD平分∠BAE,∠D=40°,则∠DAE的度数是()A.20°B.40°C.60°D.80°4.已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为( )A.4 cm B.5 cm C.小于2 cm D.不大于2 cm5.下列说法:①垂直于同一条直线的两条直线互相平行;②相等的角是对顶角;③两条直线被第三条直线所截,同位角相等;④两点之间直线最短,其中正确的有()A.0个B.1个C.2个D.3个6.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB=BC,则点B是线段AC的中点.其中正确的有( )A.1个 B.2个 C.3个 D.4个7.一辆汽车在笔直的公路上行驶,两次拐弯后的方向与原来的方向相反,那么两次拐弯的角度可能是是()A.第一次右拐60°,第二次左拐120°B.第一次左拐60°,第二次右拐60°C.第一次左拐60°,第二次左拐120°D.第一次右拐60°,第二次右拐60°8.下列说法中,错误的有( )①若a与c相交,b与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种. A .3个 B .2个 C .1个 D .0个 9.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个10.下列命题是假命题的是( ) A .等腰三角形底边上的高是它的对称轴 B .有两个角相等的三角形是等腰三角形 C .等腰三角形底边上的中线平分顶角 D .等边三角形的每一个内角都等于60°11.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )A .B .C .D .12.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ; ②点C 的对应点是点B ; ③AC ∥EB ;④平移的距离等于线段BF 的长度. A .1B .2C .3D .4二、填空题13.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.14.已知∠ABC=70︒,点D 为BC 边上一点,过点D 作DP//AB ,若∠PBD=12∠ABC ,则∠DPB=_____︒.15.两个角的两边分别平行,一个角是50°,那么另一个角是__________.16.如图,已知EF ∥GH ,A 、D 为GH 上的两点,M 、B 为EF 上的两点,延长AM 于点C ,AB 平分∠DAC ,直线DB 平分∠FBC ,若∠ACB=100°,则∠DBA 的度数为________.17.如图,将直角三角形ABC 沿斜边AC 的方向平移到三角形DEF 的位置,DE 交BC 于点G ,BG =4,EF =12,△BEG 的面积为4,下列结论:①DE ⊥BC ;②△ABC 平移的距离是4;③AD =CF ;④四边形GCFE 的面积为20,其中正确的结论有________(只填写序号).18.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔19.如图,已知12∠=∠,求证:A BCH ∠=∠. 证明:∵12∠=∠(已知)23∠∠=(______)∴13∠=∠(等量代换)∴//CH (______)(同位角相等,两直线平行) ∴A BCH ∠=∠(______)20.如图,已知直线//a b ,直线c 与a 、b 相交,且1135∠=︒,则2∠=______.三、解答题21.已知//AB CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,连接EG 、FG .(1)如图,当点G 在AB 、CD 之间时,请直接写出AEG ∠、CFG ∠与G ∠之间的数量关系__________.(2)如图,当点G 在AB 上方时,且90EGF ︒∠=, 求证:90︒∠-∠=BEG DFG ;(3)如图,在(2)的条件下,过点E 作直线HK 交直线CD 于K , FT 平分DFG ∠交HK 于点T ,延长GE 、FT 交于点R ,若ERT TEB ∠=∠,请你判断FR 与HK 的位置关系,并证明. (不可以直接用三角形内角和180°)22.如图,A、B分别是直线a和b上的点,∠1=∠2,C、D在两条直线之间,且∠C=∠D.(1)证明:a∥b;(2)如图,∠EFG=60°,EF交a于H,FG交b于I,HK∥FG,若∠4=2∠3,判断∠5、∠6的数量关系,并说明理由;(3)如图∠EFG是平角的n分之1(n为大于1的整数),FE交a于H,FG交b于I.点J在FG上,连HJ.若∠8=n∠7,则∠9:∠10=______ .23.(1)问题发现如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.请把下面的证明过程补充完整:证明:过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC()∴∠C=∠CEF.()∵EF∥AB,∴∠B=∠BEF(同理),∴∠B+∠C=(等量代换)即∠B+∠C=∠BEC.(2)拓展探究如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.(3)解决问题如图③,AB ∥DC ,∠C =120°,∠AEC =80°,则∠A = .(之间写出结论,不用写计算过程)24.如图 1,直线GH 分别交,AB CD 于点 ,E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量25.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4直接写出结果出DCE ∠、AEC ∠、CDB ∠之间的数量关系. 26.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值27.如图`,已知:直线AD BC ∥,且直线AB 、CD 与AD 、BC 分别交于A 、D 和B 、C 两点,点P 在直线AB 上.(1)如图1,当点P 在A 、B 两点之间时(点P 不与点A 、B 重合),探究ADP 、DPC ∠、BCP ∠之间的关系,并说明理由.(2)若点P 不在A 、B 两点之间,在备用图中画出图形,直接写出ADP 、DPC ∠、BCP ∠之间的关系,不需说理.28.如图,已知直线//AB CD ,,M N 分别是直线,AB CD 上的点.(1)在图1中,判断,BME MEN ∠∠和DNE ∠之间的数量关系,并证明你的结论; (2)在图2中,请你直接写出,BME MEN ∠∠和DNE ∠之间的数量关系(不需要证明);(3)在图3中,MB 平分EMF ∠,NE 平分DNF ∠,且2180F E ∠+∠=,求FME ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】延长CB ,根据平行线的性质求得∠1的度数,则∠DBC 即可求得. 【详解】延长CB ,延长CB ,∵AD ∥CB,∴∠1=∠ADE=145︒,∴∠DBC=180︒−∠1=180︒−125︒=55︒. 故答案选:D. 【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.解析:B【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.3.B解析:B【分析】根据平行线的性质得出∠DAB=∠D=40°,再由角平分线即可得解.【详解】解:∵AB∥CD,∴∠DAB=∠D=40°(两直线平行,内错角相等),∵AD平分∠BAE,∴∠DAE=∠DAB=40°,故选:B.【点睛】本题考查平行线的性质和角平分线性质,关键是求出∠DAE的度数,题目比较好,难度适中.4.D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.5.A解析:A【分析】据平行线的性质可判断①③错误;根据对顶角相等,可判断②错误;据线段的性质可判断④错误;即可得出结论.【详解】解:①在同一个平面内,垂直于同一条直线的两条直线互相平行,故①错误;②对顶角相等,相等的角不一定是对顶角,故②错误;③两条平行直线被第三条直线所截,同位角相等,故③错误;④两点之间线段最短;故④错误;故选:A.【点睛】本题考查了平行公理、平行线的性质、相等的性质、对顶角相等的性质;熟记有关性质是解决问题的关键.6.B解析:B【解析】分析:根据直线公理对①进行判断;根据两点之间的距离的定义对②进行判断;根据线段公理对③进行判断;根据角的定义对④进行判断;根据线段的中点的定义对⑤进行判断.详解:根据直线公理:两点确定一条直线,所以①正确;连接两点的线段的长度叫做两点的距离,所以②错误;两点之间,线段最短,所以③正确;有一个公共端点的两条射线组成的图形叫做角,所以④错误;若AB=BC,且B点在AB上,则点B是AC的中点,所以⑤错误.故选B.点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.C解析:C【解析】试题分析:两次拐弯以后方向相反,那么2次同方向拐弯之和是180°.故选:C .8.B解析:B【解析】①若a 与b 相交,b 与c 相交,则a 与c 相交或平行,故本小题错误; ②若a ∥b ,b ∥c ,则a ∥c ;根据平行公理的推论:如果两条直线都和第三条直线平行,那么两条直线也互相平行,上面说法正确;③过直线外一点有且只有一条直线与已知直线平行,故正确;④在平面内,两条直线的位置关系有平行和相交两种,故不正确.因此只有②③正确.故选:B.9.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.10.A解析:A【分析】分别分析各题设是否能推出结论,不能推出结论的既是假命题,从而得出答案.【详解】A.等腰三角形底边上的高所在的直线是它的对称轴,故该选项错误,是假命题,B.有两个角相等的三角形是等腰三角形,正确,是真命题,C.等腰三角形底边上的中线平分顶角,正确,是真命题,D.等边三角形的每一个内角都等于60°,正确,是真命题,故选:A .【点睛】本题考查了命题与定理,判断命题的真假,关键是分析各题设是否能推出结论.11.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.12.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.二、填空题13.4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;同理,点M在与2l的距离是1的点,在与2l平行,且到2l的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.14.35或75【解析】分析:根据题意,分为点P在∠ABC的内部和外部两种情况,由平行线的性质求解.详解:如图,当P点在∠ABC的内部时,∵PD∥AB∴∠P=∠ABP∵∠PBD=∠ABC,∠A解析:35或75【解析】分析:根据题意,分为点P在∠ABC的内部和外部两种情况,由平行线的性质求解.详解:如图,当P点在∠ABC的内部时,∵PD∥AB∴∠P=∠ABP∵∠PBD=12∠ABC,∠ABC=70∴∠PBD=35°∴∠ABP=∠ABC-∠PBD=35°.当点P在∠ABC的外部时,∵∠PBD=12∠ABC,∠ABC=70∴∠PBD=35°∴∠ABP=∠ABC+∠DPB=105°∵PD∥AB∴∠DPB+∠ABP=180°∴∠DPB=75°.故答案为:35或75.点睛:此题主要考查了平行线的性质,关键是明确P点的位置,分两种情况进行求解. 15.130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是解析:130°或50°【解析】由两个角的两边分别平行,可得这两个角互补或相等,再根据一个角是50°,即可求得答案.解:∵两个角的两边分别平行,∴这两个角互补或相等,∵一个角是50°,∴另一个角是130°或50°.故答案为:130°或50°.16.50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC 内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线解析:50°【解析】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线BD平分∠FBC,∴∠5=12(180°﹣∠4)=12(180°﹣80°+2x)=50°+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(80°﹣2x)﹣(50°+x)=180°﹣x﹣80°+2x﹣50°﹣x=50°.故答案为50°.点睛:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并理清图中各角度之间的关系是解题的关键.17.①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公解析:①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即可得出结果.【详解】解:∵直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,∴AB∥DE,∴∠ABC=∠DGC=90°,∴DE⊥BC,故①正确;△ABC平移距离应该是BE的长度,BE>4,故②错误;由平移前后的图形是全等可知:AC=DF,∴AC-DC=DF-DC,∴AD=CF,故③正确;∵△BEG的面积是4,BG=4,∴EG=4×2÷4=2,∵由平移知:BC=EF=12,∴CG=12-4=8,四边形GCFE 的面积:(12+8)×2÷2=20,故④正确;故答案为:①③④【点睛】本题主要考查的是平移的性质,正确的掌握平移的性质是解题的关键.18.;(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图中,当时,DE//AC ;图中,当 时,CE//AB ,图中,当 时,DE//BC .故答案为:;(答案解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图③中,当45DCF D α=∠=∠=时,DE//AC ;图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).【点睛】考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.19.对顶角相等,AG ,两直线平行,同位角相等.【分析】根据对顶角的定义可得,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵(已知)(对顶角相等)解析:对顶角相等,AG ,两直线平行,同位角相等.【分析】根据对顶角的定义可得23∠∠=,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵12∠=∠(已知)23∠∠=(对顶角相等)∴13∠=∠(等量代换)∴//CH (AG )(同位角相等,两直线平行)∴A BCH ∠=∠(两直线平行,同位角相等).故答案为:对顶角相等,AG ,两直线平行,同位角相等.【点睛】本题考查了对顶角的定义、平行线的性质和判定定理等知识,灵活应用平行线的性质和判定定理是解答本题的关键.20.45︒【分析】先根据邻补角求出∠3的度数,再根据“两直线平行,同位角相等”求出∠2即可.【详解】如图,∵∠1+∠3=180︒∴∠3=180︒-∠1∵∠1=135︒∴∠3=45︒∵解析:45︒【分析】先根据邻补角求出∠3的度数,再根据“两直线平行,同位角相等”求出∠2即可.【详解】如图,∵∠1+∠3=180︒∴∠3=180︒-∠1∵∠1=135︒∴∠3=45︒∵a//b∴∠2=∠3=45︒.故答案为:45︒【点睛】此题主要考查了平行线的性质以及邻补角的定义,熟练掌握“两直线平行,同位角相等”是解此题的关键.三、解答题21.(1)∠G=∠AEG+∠CFG;(2)见解析;(3)FR⊥HK,理由见解析【分析】(1)根据平行线的判定和性质即可写出结论;(2)过点G 作//GP AB ,根据平行线的性质得角相等和互补,即可得证;(3)根据平行线的性质得角相等,即可求解.【详解】解:(1)如图:过点G 作//GH AB ,∵//AB CD ,∴//GH CD ,∴AEG EGH ∠=∠,CFG FGH ∠=∠,EGF AEG CFG ∴∠==∠+∠AEG ∴∠、CFG ∠与G ∠之间的数量关系为G AEG CFG ∠=∠+∠.故答案为:G AEG CFG ∠=∠+∠.(2)如图,过点G 作//GP AB ,180BEG EGP ∴∠+∠=︒,180EHG HGP ∠+∠=︒,90180EHG EGP ∴∠+︒+∠=︒,90EHG EGP ∴∠+∠=︒,//AB CD ,DFG EHG ∴∠=∠,180180()1809090BEG DFG EGP EHG EGP EHG ∴∠-∠=︒-∠-∠=︒-∠+∠=︒-︒=︒.(3)FR 与HK 的位置关系为垂直.理由如下: FT 平分DFG ∠交HK 于点T ,GFT KFT ∴∠=∠,90EGF ∴∠=︒,90GFT ERT ∴∠+∠=︒,90KFT ERT ∴∠+∠=︒,ERT TEB ∠=∠,90KFT TEB ∴∠+∠=︒,//AB CD ,FKT TEB ∴∠=∠,90KFT FKT ∴∠+∠=︒,90FTK ∴∠=︒,KT FR ∴⊥,即FR HK ⊥.∴FR 与HK 的位置关系是垂直.【点睛】本题考查了平行线的判定和性质,解决本题的关键是应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.22.(1)见解析;(2)526∠=∠,见解析;(3)n-1 【分析】(1)延长AD 交直线b 于点E ,根据平行线的性质与判定即可得证;(2)由//HK FG 得到3EFG α∠+∠=∠,4FJH ∠=∠,再根据三角形的内角和与对顶角的性质即可求解;(3)延长EF 交直线b 于点P ,过点J 作//JQ a ,根据平行线的性质及三角形外角的性质等,得到180107n ︒∠=-∠,()1918017n n n-∠=⋅︒--∠,即可得到9:10∠∠的值. 【详解】(1)如图,延长AD 交直线b 于点E ,ADC C ∠=∠,//AD BC ∴,2AEB ∴∠=∠,12∠=∠,1AEB ∴∠=∠,//a b ∴.(2)∵//HK FG ,60EFG ∠=︒,∴360α∠+∠=︒,4FJH ∠=∠,5120FJH ∠+∠=︒,∵423∠=∠,∴523120∠+∠=︒,即()5260120α∠+-∠=︒,∴52α∠=∠,∵6α∠=∠,∴526∠=∠.(3)如图,延长EF 交直线b 于点P ,过点J 作//JQ a ,则10FPI ∠=∠,8180HJQ ∠+∠=︒,7QJI FIP ∠=∠=∠,∵EFG FPI FIP ∠=∠+∠,9HJI EFG ∠=∠+∠, ∴1801077EFG n︒∠=∠-∠=-∠, ()1918017n HJI EFG n n -∠=∠-∠=⋅︒--∠, ∴9:101n ∠∠=-,故答案为:1n -.【点睛】本题考查平行线的性质与判定,三角形内角和定理,三角形外角的性质等内容,解题的关键是根据题意作出辅助线.23.(1)平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF +∠CEF ;(2)证明见解析;(3)20°.【分析】(1)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;(2)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;(3)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可.【详解】(1)证明:如图①,过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC (平行于同一直线的两直线平行),∴∠C =∠CEF .(两直线平行,内错角相等),∵EF ∥AB ,∴∠B =∠BEF (同理),∴∠B +∠C =∠BEF +∠CEF (等量代换)即∠B +∠C =∠BEC ,故答案为:平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF +∠CEF ; (2)证明:如图②,过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC (平行于同一直线的两直线平行),∴∠C +∠CEF =180°,∠B +∠BEF =180°,∴∠B +∠C +∠AEC =360°,∴∠B +∠C =360°﹣∠BEC ;(3)解:如图③,过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF∥DC(平行于同一直线的两直线平行),∴∠C+∠CEF=180°,∠A=∠BEF,∵∠C=120°,∠AEC=80°,∴∠CEF=180°﹣120°=60°,∴∠BEF=80°﹣60°=20°,∴∠A=∠AEF=20°.故答案为:20°.【点睛】本题考查了平行线的性质和判定的应用,能正确作出辅助线是解此题的关键,注意:①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.24.(1)证明过程见解析;(2)12N AEM NFD∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°.【分析】(1)根据同旁内角互补,两直线平行即可判定AB∥CD;(2)设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y,过M作MP∥AB,过N作NQ∥AB 可得∠PMN=3α-x,∠QNM=2α-y,根据平行线性质得到3α-x=2α-y,化简即可得到1 2N AEM NFD ∠=∠-∠;(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到1 3∠FNP=180°-∠PMH,即13∠N+∠PMH=180°.【详解】(1)证明:∵∠1=∠BEF,12180︒∠+∠=∴∠BEF+∠2=180°∴AB∥CD.(2)解:12N AEM NFD ∠=∠-∠设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB∵//AB CD,MP∥AB,NQ∥AB ∴MP∥NQ∥AB∥CD∴∠EMP=x,∠FNQ=y∴∠PMN=3α-x,∠QNM=2α-y ∴3α-x=2α-y即α=x-y∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM∴∠MON+∠PRF+∠RFM=360°-∠OMF即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH∠FNP-2×13∠FNP=180°-∠PMH13∠FNP=180°-∠PMH即13∠N+∠PMH=180°故答案为13∠N+∠PMH=180°【点睛】本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.25.(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平分线,可得∠CDF=12∠CDB,∠CDE=1 2∠CDO,进而得出∠EDF=12(∠CDB+∠CDO)=90°,再根据平行线的性质,即可得到∠AED=90°,即DE⊥AO;(2)连接OC,依据∠DEO=∠DEC,∠EDO=∠EDC,可得∠DOE=∠DCE,再根据三角形外角性质,即可得到∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)如图3中,依据∠CDB是△ODG的外角,可得∠CDB=∠DOG+∠DGO,依据∠DGO 是△CEG的外角,可得∠DGO=∠AEC+∠C,进而得到∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4中,同理可得∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【详解】解:(1)如图1,∵DE、DF分别是∠CDO、∠CDB的平分线,∴∠CDF=12∠CDB,∠CDE=12∠CDO,∴∠EDF=12(∠CDB+∠CDO)=90°,又∵DF∥AO,∴∠AED=90°,∴DE⊥AO;(2)如图2,连接OC,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△COD的外角,∠AEC是△COE的外角,∴∠CDB=∠COD+∠OCD,∠AEC=∠EOC+∠ECO,∴∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)图3中,∠CDB=∠AEC+2∠DCE;图4中,∠AEC=∠CDB+2∠DCE.理由:如图3,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△ODG的外角,∴∠CDB=∠DOG+∠DGO,∵∠DGO是△CEG的外角,∴∠DGO=∠AEC+∠C,∴∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠AEC是△OEH的外角,∴∠AEC=∠DOE+∠OHE,∵∠OHE是△CDH的外角,∴∠OHE=∠CDB+∠C,∴∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【点睛】本题主要考查了平行线的性质以及三角形外角性质的综合运用,解题时注意:三角形的外角等于与它不相邻的两个内角的和.26.(1)120°;(2)2∠AQB+∠C=180°;(3)∠DAC=60°,∠ACB=120°,∠CBE=120°.【分析】(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°-∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出∠AQB=12(∠CBE-∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD=12∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB的度数.【详解】解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°-∠B,∴∠ACB=∠ACF+∠BCF=180°-(∠B-∠A)=180°-(118°-58°)=120°.(2)在图2中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=12∠CAD,∠EBQ=12∠CBE,∴∠AQB=∠BQM-∠AQM=12(∠CBE-∠CAD).∵∠C=180°-(∠CBE-∠CAD)=180°-2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=12∠CAD,∠ACP=∠PBQ=12∠CBE,∴∠ACB=180°-∠ACP=180°-12∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=12∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°-(∠CBE-∠CAD)=120°,故∠DAC=60°,∠ACB=120°,∠CBE=120°.【点睛】本题考查了平行线的性质、邻补角、角平分线以及垂线,解题的关键是:(1)根据平行线的性质结合角的计算找出∠ACB=180°-(∠B-∠A);(2)根据平行线的性质、角平分线的定义找出∠AQB=12(∠CBE-∠CAD);(3)由AC∥QB、QP⊥PB结合(1)(2)的结论分别求出∠DAC、∠ACB、∠CBE的度数.27.(1)∠ADP+∠BCP=∠DPC,理由见解析;(2)∠ADP=∠DPC+∠BCP,理由见解析【分析】(1)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;(2)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;【详解】解:(1)过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ,∠BCP=∠CPQ,∴∠ADP+∠BCP=∠DPC;(2)∠ADP=∠DPC+∠BCP.过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ=∠DPC+∠CPQ,∠BCP=∠CPQ,∴∠ADP=∠DPC+∠BCP.【点睛】本题考查了平行线的性质,利用平行线的性质得出角的和差关系是解题的关键.28.(1)BME DNE MEN ∠+∠=∠,证明见析;(2)MEN BME DNE ∠=∠-∠;(3)120FME ∠=【解析】【分析】(1)如图,过点E 作直线//EF AB ,由平行线的性质得到BME MEF ∠=∠,FEN DNE ∠=∠,即可求得MEN BME DNE ∠=∠+∠;(2)如图,记AB 与NE 的交点为G ,由平行线的性质得∠EGM=∠DNE ,由三角形外角性质得∠BME=∠MEN+∠EGM ,由此即可得到结论;(3)由角平分线的定义设BMF BME β∠=∠=∠,设22DNF DNE α∠=∠=∠,由(1),得E αβ∠=∠+∠,由(2),得2F βα∠=∠-∠,再根据2180F E ∠+∠=,可求得60β∠=,继而可求得2120FME β∠=∠=.【详解】(1)BME DNE MEN ∠+∠=∠,证明如下:如图,过点E 作直线//EF AB ,∵//EF AB ,∴BME MEF ∠=∠,又∵//AB CD ,∴//EF CD ,∴FEN DNE ∠=∠,∴MEN MEF FEN BME DNE ∠=∠+∠=∠+∠;(2)MEN BME DNE ∠=∠-∠,理由如下:如图,记AB 与NE 的交点为G ,又∵AB//CD ,∴∠EGM=∠DNE ,∵∠BME 是△EMG 的外角,∴∠BME=∠MEN+∠EGM ,∴∠MEN=∠BME-∠DNE ;(3)∵MB 平分EMF ∠,∴设BMF BME β∠=∠=∠,∵NE 平分DNF ∠,∴设22DNF DNE α∠=∠=∠,由(1),得E BME DNE αβ∠=∠+∠=∠+∠,由(2),得2F BMF DNF βα∠=∠-∠=∠-∠,又∵2180F E ∠+∠=,∴22()180βααβ∠-∠+∠+∠=,∴3180β∠=,即60β∠=,∴2120FME β∠=∠=.【点睛】本题考查了平行线的判定与性质,三角形外角的性质,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.。

第五章相交线与平行线单元试卷易错题(Word版 含答案)

第五章相交线与平行线单元试卷易错题(Word版 含答案)

第五章相交线与平行线单元试卷易错题(Word版含答案)一、选择题1.下列说法中错误的是()A.一个锐角的补角一定是钝角;B.同角或等角的余角相等;C.两点间的距离是连结这两点的线段的长度;D.过直线l上的一点有且只有一条直线垂直于l2.如图,AB∥CD,∠1=120°,则∠2=()A.50°B.70°C.120°D.130°3.如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为()A.5cm B.4cm C.3cm D.不能确定4.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB=BC,则点B是线段AC的中点.其中正确的有( )A.1个 B.2个 C.3个 D.4个5.如图,在四边形ABCD中,∠1=∠2,∠A=60°,则∠ADC=()A.65° B.60° C.110° D.120°6.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为(). A.20° B.80° C.160° D.20°或160°7.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标( )A .纵坐标不变,横坐标减2B .纵坐标不变,横坐标先除以2,再均减2C .纵坐标不变,横坐标除以2D .纵坐标不变,横坐标先减2,再均除以28.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( )A .1个B .2个C .3个D .4个9.下列命题:①两边及其中一边的对角对应相等的两个三角形全等;②两角及其中一角的对边对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等;④面积相等的两个三角形肯定全等;⑤有两条直角边对应相等的两个直角三角形全等.其中正确的个数是( )A .1个B .2个C .3个D .4个 10.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC =∠B+∠C ,求证:AB ∥CD证明:延长BE 交__※__于点F ,则∠BEC =__⊙__+∠C又∵∠BEC =∠B+∠C ,∴∠B =▲∴AB ∥CD (__□__相等,两直线平行)A .⊙代表∠FECB .□代表同位角C .▲代表∠EFCD .※代表AB11.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒12.如图所示,下列说法正确的是( ).A .1∠与2∠是同位角B .1∠与3∠是同位角C .2∠与3∠是内错角D .2∠与3∠是同旁内角二、填空题13.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.14.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.15.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.16.如图,A 、B 、C 表示三位同学所站位置,C 同学在A 同学的北偏东50方向,在B 同学的北偏西60方向,那么C 同学看A 、B 两位同学的视角ACB ∠=______.17.设a 、b 、c 为平面上三条不同直线,(1)若//,//a b b c ,则a 与c 的位置关系是_________;(2)若,a b b c ⊥⊥,则a 与c 的位置关系是_________;(3)若//a b ,b c ⊥,则a 与c 的位置关系是________.18.如图,已知直线//a b ,直线c 与a 、b 相交,且1135∠=︒,则2∠=______.19.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.20.如图,AB ∥CD ,∠β=130°,则∠α=_______°.三、解答题21.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.22.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.23.感知与填空:如图①,直线//AB CD ,求证:B D BED ∠+∠=∠.阅读下面的解答过程,并填上适当的理由,解:过点E 作直线//EF CD ,2D ∴∠=∠( )//AB CD (已知),//EF CD ,//AB EF ∴( )1B ∴∠=∠( )12BED ∠+∠=∠,B D BED ∴∠+∠=∠( )应用与拓展:如图②,直线//AB CD ,若22,35,25B G D ∠=︒∠=∠=︒.则E F ∠+∠= 度方法与实践:如图③,直线//AB CD ,若60,80E B F ∠=∠=︒∠=︒,则D ∠= 度.24.为了探究n 条直线能把平面最多分成几部分,我们从最简单的情形入手:①一条直线把平面分成2部分;②两条直线可把平面最多分成4部分;③三条直线可把平面最多分成7部分;④四条直线可把平面最多分成11部分;……把上述探究的结果进行整理,列表分析:直线条数把平面最多 分成的部分数 写成和的形式 12 1+1 24 1+1+2 37 1+1+2+3 411 1+1+2+3+4 … … …(1)当直线条数为5时,把平面最多分成____部分,写成和的形式:______;(2)当直线条数为10时,把平面最多分成____部分;(3)当直线条数为n 时,把平面最多分成多少部分?25.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明;(2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数. 26.[感知发现]:如图,是一个“猪手”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE ,我们发现:∠E=∠B+∠D证明如下:过E 点作EF ∥AB .∴∠B=∠1(两直线平行,内错角相等.)又AB ∥CD(已知)∴CD ∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.) ∴∠2=∠D(两直线平行,内错角相等.)∴∠1+∠2=∠B+∠D(等式的性质1.)即:∠E=∠B+∠D[类比探究]:如图是一个“子弹头”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE .试探究∠E+∠B+∠D=360°.写出证明过程.[创新应用]:(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.(2).如图二,将一个长方形ABCD 按如图的虚线剪下,使∠1=120o ,∠FEQ=90°. 请直接写出∠2的度数.27.如图,已知直线12//l l ,直线3l 交1l 于C 点,交2l 于D 点,P 是线段CD 上的一个动点,(1)若P 点在线段CD (C 、D 两点除外)上运动,问PAC ∠,APB ∠,PBD ∠之间的关系是什么?这种关系是否变化?(2)若P 点在线段CD 之外时,PAC ∠,APB ∠,PBD ∠之间的关系怎样?说明理由28.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:D 选项中缺少先要条件,就是在同一平面内故选:D2.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.【详解】解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C.【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.3.B解析:B【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【详解】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴22-22AB BC-(cm),53∴平行线a、b之间的距离是:AC=4cm.故选:B.【点睛】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.4.B解析:B【解析】分析:根据直线公理对①进行判断;根据两点之间的距离的定义对②进行判断;根据线段公理对③进行判断;根据角的定义对④进行判断;根据线段的中点的定义对⑤进行判断.详解:根据直线公理:两点确定一条直线,所以①正确;连接两点的线段的长度叫做两点的距离,所以②错误;两点之间,线段最短,所以③正确;有一个公共端点的两条射线组成的图形叫做角,所以④错误;若AB=BC,且B点在AB上,则点B是AC的中点,所以⑤错误.故选B.点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.D解析:D【解析】试题分析:根据平行线的判定,内错角相等,两直线平行,由∠1=∠2得到AB∥CD,然后根据平行线的性质可知∠A+∠ADC=180°,可求得∠ADC=120°.故选:D.6.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行,∴∠B和∠A可能相等也可能互补,即∠B的度数是20°或160°,故选:D.7.D解析:D【解析】图案横向拉长2倍就是纵坐标不变,横坐标乘以2,又向右平移2个单位长度,就是纵坐标不变,横坐标加2,应该利用逆向思维纵坐标不变,横坐标先减2,再均除以2.故选:D.点睛:此题主要考查了坐标与图形变化-平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减8.B解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B.【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.9.B解析:B【分析】根据全等三角形的判断定理逐项判断即可.【详解】解:①两边及其夹角对应相等的两个三角形全等,故该项错误;②两角及其中一角的对边对应相等的两个三角形全等,符合AAS定理,故该项正确;③有两条边和第三条边上的高对应相等的两个三角形不一定全等,有可能是锐角三角形,也有可能是钝角三角形,故该项错误;④面积相等的两个三角形不一定全等,因为形状可能不相同,故该项错误;⑤有两条直角边对应相等的两个直角三角形全等,符合ASA定理,故该项正确.故选:B.【点睛】此题主要考查对全等三角形的判定定理的掌握,正确理解判定定理是解题关键.10.C解析:C【分析】延长BE交CD于点F,利用三角形外角的性质可得出∠BEC=∠EFC+∠C,结合∠BEC=∠B+∠C可得出∠B=∠EFC,利用“内错角相等,两直线平行”可证出AB∥CD,找出各符号代表的含义,再对照四个选项即可得出结论.【详解】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C.又∵∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD(内错角相等,两直线平行).∴※代表CD,⊙代表∠EFC,▲代表∠EFC,□代表内错角.故选:C.【点睛】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B=∠EFC 是解题的关键.11.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,∵AB//EF ,∴AB//CM //DN //EF ,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++,又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .12.D解析:D【分析】根据同位角、同旁内角.内错角的定义进行判断.【详解】A .1∠与2∠不是同位角,故选项A 错误;B .1∠与3∠是内错角,故该选项错误;C .2∠与3∠是同旁内角,故选项C 错误,选项D 正确.故选:D .【点睛】本题考查了同位角、同旁内角、内错角的定义.熟记同位角、同旁内角、内错角的定义是解答此题的关键.二、填空题13.4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;同理,点M在与2l的距离是1的点,在与2l平行,且到2l的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.14.68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.15.24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和解析:24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A和点B,同旁内角有2对;A和C有2对;A和D,没有同旁内角;A和E有2对;A和F有2对.B和C有2对;B和D有2对;B和E有2对;B和F没有同旁内角.C和D有2对,C和E没有同旁内角,C和F有2对.D和E有2对;D和F有2对.E和F有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键.16.【解析】【分析】根据平行线的性质:两直线平行,内错角相等,可得答案.【详解】如图,作,,,,故答案为:.【点睛】本题考查了方向角,利用平行线的性质两直线平行内错角相等是解题 解析:110【解析】【分析】根据平行线的性质:两直线平行,内错角相等,可得答案.【详解】如图,作CF //AD //BE ,FCA DAC 50∠∠∴==,BCF CBE 60∠∠==,ACB ACF FCB 5060110∠∠∠∴=+=+=,故答案为:110.【点睛】本题考查了方向角,利用平行线的性质两直线平行内错角相等是解题关键.17.平行 平行 垂直【解析】根据平行公理的推论,可由,得出a∥c;根据垂直的性质以及平行线的判定,可由,得到a∥c;根据,,得到a⊥c.故答案为平行,平行,垂直.点睛:由平解析:平行 平行 垂直【解析】根据平行公理的推论,可由//,//a b b c ,得出a ∥c ;根据垂直的性质以及平行线的判定,可由,a b b c ⊥⊥,得到a∥c;根据//a b ,b c ⊥,得到a⊥c.故答案为平行,平行,垂直.点睛:由平行于同一条直线的两条直线互相平行,可求解(1),因为在同一平面内,垂直于同一条直线的两条直线互相平行,可求解(2),再根据平行线的性质可求解(3). 18.45︒【分析】先根据邻补角求出∠3的度数,再根据“两直线平行,同位角相等”求出∠2即可.【详解】如图,∵∠1+∠3=180︒∴∠3=180︒-∠1∵∠1=135︒∴∠3=45︒∵解析:45︒【分析】先根据邻补角求出∠3的度数,再根据“两直线平行,同位角相等”求出∠2即可.【详解】如图,∵∠1+∠3=180︒∴∠3=180︒-∠1∵∠1=135︒∴∠3=45︒∵a//b∴∠2=∠3=45︒.故答案为:45︒【点睛】此题主要考查了平行线的性质以及邻补角的定义,熟练掌握“两直线平行,同位角相等”是解此题的关键.19.120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.20.50【分析】根据平行线的性质解答即可.【详解】解:∵AB∥CD,∴ =∠1,∵∠1+=180°,∠=130°,∴∠1=180°-=180°-130°=50°,∴=50°,故答案为:5解析:50【分析】根据平行线的性质解答即可.【详解】解:∵AB ∥CD ,∴α∠ =∠1,∵∠1+β∠=180°,∠β=130°,∴∠1=180°-β∠=180°-130°=50°,∴α∠=50°,故答案为:50.【点睛】本题考查了平行线的性质和平角的定义,解题的关键掌握平行线的性质和平角的定义.三、解答题21.(1)4;(2)45°;(3)P (0,-1)或(0,3)【分析】(1)根据非负数的性质得到a =−b ,a−b +4=0,解得a =−2,b =2,则A (−2,0),B (2,0),C (2,2),即可计算出三角形ABC 的面积=4;(2)由于CB ∥y 轴,BD ∥AC ,则∠CAB =∠ABD ,即∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,则BD ∥AC ∥EF ,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED =∠1+∠2=12×90°=45°; (3)先根据待定系数法确定直线AC 的解析式为y =12x +1,则G 点坐标为(0,1),然后利用S △PAC =S △APG +S △CPG 进行计算.【详解】解:(1)由题意知:a =−b ,a−b +4=0,解得:a =−2,b =2,∴ A (−2,0),B (2,0),C (2,2),∴S △ABC =1AB BC=42⋅; (2)∵CB ∥y 轴,BD ∥AC ,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=12×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(−2,0)、C(2,2)代入得:-2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩,∴直线AC的解析式为y=12x+1,∴G点坐标为(0,1),∴S△PAC=S△APG+S△CPG=12|t−1|•2+12|t−1|•2=4,解得t=3或−1,∴P点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.22.(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1(2)理由如下:如图2. 过点B 作//BD a ,图22180ABD ∴∠+∠=︒,//a b ,//b BD ∴,1∴∠=∠DBC ,601ABD ABC DBC ∴∠=∠-∠=︒-∠,2601180∴∠+︒-∠=︒,21120∴∠-∠=︒;(3)12∠=∠,图3理由如下:如图3,过点C 作//CP a , AC 平分BAM ∠,30CAM BAC ∴∠=∠=︒,260BAM BAC ∠=∠=︒,又//a b ,//CP b ∴,160BAM ∠=∠=︒,30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.23.两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;82;20【分析】感知与填空:根据平行公理及平行线的性质即可填写;应用与拓展:根据感知与填空的方法添加辅助线即可得到∠E+∠F=∠B+∠G+∠D ,即可得到答案;方法与实践:过点F 作平行线,用同样的思路证明即可得到∠D 的度数.【详解】感知与填空:两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换,应用与拓展:如图,作GM ∥AB ,由感知得:∠E=∠B+∠EGM,∵AB ∥CD,GM ∥AB,∴GM ∥CD,∴∠F=∠D+∠FGM,∴∠E+∠F=∠B+∠D+∠EGF,∵22,35,25B EGF D ∠=︒∠=∠=︒,∴∠E+∠F=82︒,故答案为:82.方法与实践:如图:作FM ∥AB ,∴∠MFB+∠B=180︒,∵60B ∠=︒,∴∠MFB=180︒-∠B=120︒,∵80F ∠=︒,∴∠MFE=40︒,∵∠E=∠MFE+∠D, 60E ∠=︒,∴∠D=20︒,故答案为:20.【点睛】此题考查平行公理的运用及平行线的性质定理,解此题的关键是理解感知部分的作线方法,得到的方法的总结,由此才能正确解答后面的问题.24.(1) 16; (2) 56; (3)(1)12n n +⎡⎤+⎢⎥⎣⎦部分 【分析】(1)根据已知探究的结果可以算出当直线条数为5时,把平面最多分成16部分; (2)通过已知探究结果,写出一般规律,当直线为n 条时,把平面最多分成1+1+2+3+…+n ,求和即可.【详解】(1)16;1+1+2+3+4+5.(2)56.根据表中规律知,当直线条数为10时,把平面最多分成56部分,即1+1+2+3+…+10=56.(3)当直线条数为n 时,把平面最多分成1+1+2+3+…+n=(1)12n n +⎡⎤+⎢⎥⎣⎦部分. 【点睛】本题考查了图形的变化,通过直线分平面探究其中的隐含规律,运用了从特殊到一般的数学思想,解决此题关键是写出和的形式.25.(1)AD BC ∥,见解析;(2)108°【分析】(1)//AD BC ,根据角平分线的性质可知EDF FDC ∠=∠,又因为//AB ED ,因此EDF DAB ∠=∠,推出FDC DAB ∠=∠,再结合已知条件即可得出结论;(2)设DCF x ,则32CFB x ∠=,根据平行线的的性质有32ABF CFB x ∠=∠=,再根据角平分线性质可得23ABC ABF x ∠=∠=,又因为//AD BC ,推出3BCD ABC x ∠=∠=,2BCF x ∠=,由//CF AB 得180ABC BCF ∠+∠=︒,从而可解得x 的值,即可得出答案.【详解】解:(1)//AD BC .证明如下:∵//AB ED ,∴EDF DAB ∠=∠,∵DF 平分EDC ∠,∴EDF FDC ∠=∠,∴FDC DAB ∠=∠,∵180FDC ABC ∠+∠=︒,∴180DAB ABC ∠+∠=︒,∴//AD BC .(2)∵32CFB DCF ∠=∠, ∴设DCF x ,则32CFB x ∠=, ∵//CF AB , ∴32ABF CFB x ∠=∠=, ∵BE 平分ABC ∠,∴23ABC ABF x ∠=∠=,由(1)得//AD BC ,∴180FDC BCD ∠+∠=︒,∵180FDC ABC ∠+∠=︒,∴3BCD ABC x ∠=∠=,∴2BCF x ∠=,∵//CF AB ,∴180ABC BCF ∠+∠=︒,即32180x x +=︒,解得36x =︒,∴3108BCD x ∠==︒.【点睛】本题考查的主要知识点是平行线的判定及性质以及角平分线的性质,根据图形找准角与角之间的关系 是解此题的关键.26.类比探究:见解析;创新应用:(1):1105.∠=︒创新应用:(2):2150.∠=︒【分析】[类比探究]:如图,过E 作//,EF AB 结合已知条件得//,FE CD 利用平行线的性质可得答案,[创新应用]:(1):由题意得://,AB CD 过E 作//,EF AB 得到//,CD EF 利用平行线的性质可得答案,(2):由题意得://,AB CD 过E 作//,EG AB 得到 //,EG CD 利用平行线的性质可得答案.【详解】解:类比探究:如图,过E 作//,EF AB//,AB CD//,FE CD ∴//,EF AB180,B BEF ∴∠+∠=︒//,FE CD180,D DEF ∴∠+∠=︒360,B BEF DEF D ∴∠+∠+∠+∠=︒360.B BED D ∴∠+∠+∠=︒[创新应用]:(1):由题意得://,AB CD 过E 作//,EF AB//,CD EF ∴//,EF AB,B BEF ∴∠=∠//,CD EF,D DEF ∴∠=∠,B D BEF DEF BED ∴∠+∠=∠+∠=∠30,45,B D ∠=︒∠=︒75,BED ∴∠=︒90,AEB DEC ∠=∠=︒1360909075105.∴∠=︒-︒-︒-︒=︒(2):由题意得://,AB CD 过E 作//,EG AB//,EG CD ∴2180,GEQ ∴∠+∠=︒//,EG AB1180,GEF ∴∠+∠=︒1212360GEF GEQ FEQ ∴∠+∠+∠+∠=∠+∠+∠=︒ ,∠1=120o ,∠FEQ=90°,2150.∴∠=︒【点睛】本题考查平行公理及平行线的性质,掌握平行公理及平行线的性质是解题关键.27.(1)∠APB=∠PAC +∠PBD ,不会变化;(2)∠PBD=∠PAC+∠APB 或∠PAC=∠PBD+∠APB,理由见解析.【分析】(1)当P 点在C 、D 之间运动时,首先过点P 作PE ∥l 1,由l 1∥l 2,可得PE ∥l 2∥l 1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD ,即∠APB 、∠PAC 、∠PBD 之间的关系不发生变化;(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等以及三角形外角的性质,即可求得∠PAC,∠APB,∠PBD之间的关系.【详解】(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)如图②,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下:∵l1∥l2,∴∠PEC=∠PBD,∵∠PEC=∠PAC+∠APB,∴∠PBD=∠PAC+∠APB.当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.如图③,理由如下:∵l1∥l2,∴∠PED=∠PAC,∵∠PED=∠PBD+∠APB,∴∠PAC=∠PBD+∠APB.【点睛】本题主要考查平行线的性质与三角形外角的性质.解题的关键是掌握:两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.28.(1)120°;(2)2∠AQB+∠C=180°;(3)∠DAC=60°,∠ACB=120°,∠CBE=120°.【分析】(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°-∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出∠AQB=12(∠CBE-∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD=12∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB的度数.【详解】解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°-∠B,∴∠ACB=∠ACF+∠BCF=180°-(∠B-∠A)=180°-(118°-58°)=120°.(2)在图2中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=12∠CAD,∠EBQ=12∠CBE,∴∠AQB=∠BQM-∠AQM=12(∠CBE-∠CAD).∵∠C=180°-(∠CBE-∠CAD)=180°-2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=12∠CAD,∠ACP=∠PBQ=12∠CBE,∴∠ACB=180°-∠ACP=180°-12∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=12∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°-(∠CBE-∠CAD)=120°,故∠DAC=60°,∠ACB=120°,∠CBE=120°.【点睛】本题考查了平行线的性质、邻补角、角平分线以及垂线,解题的关键是:(1)根据平行线的性质结合角的计算找出∠ACB=180°-(∠B-∠A);(2)根据平行线的性质、角平分线的定义找出∠AQB=12(∠CBE-∠CAD);(3)由AC∥QB、QP⊥PB结合(1)(2)的结论分别求出∠DAC、∠ACB、∠CBE的度数.。

相交线与平行线易错题非常的好

相交线与平行线易错题非常的好

第五章《相交线与平行线》易错题一.填空题1.如图1,∠AOC=0.5∠BOC+30°,OE平分∠BOE=图1 图22.同一平面内n条直线最多把平面分成部分。

3.n条直线相交有对对顶角,对邻补角;4.判断:在同一平面内,有且只有一条直线与已知直线垂直();在同一平面内,过一点任画一条直线都与已知直线垂直()5. 如图2,AB⊥AC,AD⊥BC,点B到AC的垂线段;点C到AB的垂线段是线段;点D到BC的垂线段是线段;6.如图3,AO⊥BC,OM⊥ON,则图中互余的角有对图3 图47.到直线m的距离等于3的点有个8.点P为直线m外一点,点A,B,C为直线m上的三点,PA=4,PB=5,PC=2,则点P到直线m的距离。

9.在下图中∠1是同位角的有(填序号)①②③10.如图4,∠1的同位角有个11.如图5:∠1和∠2是和被所截形成的;∠3和∠4是和被所截形成的图5 图6 图812.在同一平面内的三条直线,它们的交点的个数为13.在同一平面内互不重合的四条直线的交点的个数是14.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边的位置关系是EAAB等(2)等角的余角相等(3)直角都相等 16.如图6,如果AB ∥DE,那么∠BCD= (用∠1和∠2表示)17.如图8,AB ∥CD,∠BCD=90°,如果∠B=x, ∠D=y, ∠E=z,那么x,y,z 的关系是图9 图10图11 18.如图9,直线a ∥b,∠1=40°,∠2=50°,则∠3= 19.如图10,将一块直角三角板和一把直尺如图放置,则∠1与∠2的关系是。

20.如图11,AB ∥CD ∥EF ,则∠1,∠2,∠3的关系是21.垂直公理: 22.平行公理: 二、选择题1.下列语句正确的是( )那么这两个角互为邻补角B.如果两条直线相交,那么所成的角互为邻补角C.如果两个角有公共顶点,且有一边在同一直线上,那么这两个角互为邻补角如果两个角有公共顶点和一公共边,且不为公共边的两边在同一直线上,那么这两个角互为邻补角 三、解答题1.如图,过点A 作BC 边上的垂线,过点B 作AC 边上的垂线;过点C 作AB 边上的垂线。

相交线与平行线易错题汇编附答案解析

相交线与平行线易错题汇编附答案解析
详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.
故选A.
点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.
7.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )
A.y=x+zB.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°
A.81°B.99°C.108°D.120°
【答案】B
【解析】
试题解析:过B作BD∥AE,
∵AE∥CF,
∴BD∥CF,

∵ ,


故选B.
6.如图,将一张含有 角的三角形纸片的两个顶点叠放在矩形的两条对边上,若 ,则 的大小为()
A. B. C. D.
【答案】A
【解析】
分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.
【答案】B
【解析】
【分析】
过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.
【详解】
解:过C作CM∥AB,延长CD交EF于N,
则∠CDE=∠E+∠CNE,
即∠CNE=y﹣z
∵CM∥AB,AB∥EF,
∴CM∥AB∥EF,
A. B. C. D.
【答案】B
【解析】
【分析】
先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.
【详解】
∵AB∥CD,

数学数学第五章 相交线与平行线的专项培优易错试卷练习题附解析

数学数学第五章 相交线与平行线的专项培优易错试卷练习题附解析

数学数学第五章 相交线与平行线的专项培优易错试卷练习题附解析一、选择题1.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º2.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ; ④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个3.将一副三角板按如图放置,则下列结论①13∠=∠;②如果230∠=,则有//AC DE ;③如果245∠=,则有//BC AD ;④如果4C ∠=∠,必有230∠=,其中正确的有( )A .①②③B .①②④C .③④D .①②③④4.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB =BC ,则点B 是线段AC 的中点.其中正确的有( )A .1个B .2个C .3个D .4个5.下列命题中,假命题的个数为( )(1)“是任意实数,”是必然事件; (2)抛物线的对称轴是直线;(3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为; (4)某件事情发生的概率是1,则它一定发生;(5)某彩票的中奖率为10%,则买100张彩票一定有1张会中奖;(6)函数与轴必有两个交点.A .2B .3C .4D .56.已知两个角的两边两两互相平行,则这两个角的关系是( )A .相等B .互补C .相等或互补D .相等且互补7.已知:点A ,B ,C 在同一条直线上,点M 、N 分别是AB 、BC 的中点,如果AB =10cm ,AC =8cm ,那么线段MN 的长度为( )A .6cmB .9cmC .3cm 或6cmD .1cm 或9cm8.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D .9.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF 的长度.A .1B .2C .3D .410.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行二、填空题11.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;12.如图,//AB CD ,FN AB ⊥,垂足为点O ,EF 与CD 交于点G ,若130∠=︒,则2∠=______.13.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为_______.14.如图,请你添加一个条件....使得AD ∥BC ,所添的条件是__________.15.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___16.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.17.如图,AB ∥CD ,∠B =75°,∠E =27°,则∠D 的度数为_____.18.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.19.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.20.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题21.已知AB ∥CD(1)如图1,求证:∠ABE +∠DCE -∠BEC =180°(2)如图2,∠DCE 的平分线CG 的反向延长线交∠ABE 的平分线BF 于F①若BF ∥CE ,∠BEC =26°,求∠BFC②若∠BFC -∠BEC =74°,则∠BEC =________°22.问题情境(1)如图①,已知360B E D ∠+∠+∠=︒,试探究直线AB 与CD 有怎样的位置关系?并说明理由.小明给出下面正确的解法:直线AB 与CD 的位置关系是//AB CD .理由如下:过点E 作//EF AB (如图②所示)所以180B BEF ∠+∠=︒(依据1)因为360B BED D ∠+∠+∠=︒(已知)所以360B BEF FED D ∠+∠+∠+∠=︒所以180FED D ∠+∠=︒所以//EF CD (依据2)因为//EF AB所以//AB CD (依据3)交流反思上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?“依据1”:________________________________;“依据2”:________________________________;“依据3”:________________________________.类比探究(2)如图,当B 、E ∠、F ∠、D ∠满足条件________时,有//AB CD .拓展延伸(3)如图,当B 、E ∠、F ∠、D ∠满足条件_________时,有//AB CD .23.如图1,直线AB 与直线OC 交于点O ,()090BOC αα∠=︒<<.小明将一个含30的直角三角板PQD 如图1所示放置,使顶点P 落在直线AB 上,过点Q 作直线MN AB 交直线OC 于点H (点H 在Q 左侧).(1)若PD OC ∥,45NQD ∠=︒,则α=__________︒.(2)若PQH ∠的角平分线交直线AB 于点E ,如图2.①当QE OC ∥,60α=︒时,求证:OC PD .②小明将三角板保持PD OC ∥并向左平移,运动过程中,PEQ ∠=__________.(用α表示).24.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点.(1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.25.直线AB ∥CD ,点M ,N 分别在直线AB ,CD 上,点E 为平面内一点.(1)如图①,探究∠AME ,∠MEN ,∠ENC 的数量关系,并说明理由;(2)如图②,∠AME =30°,EF 平分∠MEN ,NP 平分∠ENC ,EQ ∥NP ,求∠FEQ 的度数; (3)如图③,点G 为CD 上一点,∠AMN =m ∠EMN ,∠GEK =m ∠GEM ,EH ∥MN 交AB 于点H ,直接写出∠GEK ,∠BMN ,∠GEH 之间的数量关系(用含m 的式子表示).26.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;等于多少度时(3)若按住三角板ABC不动,绕顶点C转动三角DCE,试探究BCDCE AB,并简要说明理由.//【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由AO⊥CO和∠1=20º求得∠BOC=70º,再由邻补角的定义求得∠2的度数.【详解】∵AO⊥CO和∠1=20º,∴∠BOC=90 º-20 º=70º,又∵∠2+∠BOC=180 º(邻补角互补),∴∠2=110º.故选:C.【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.2.C解析:C【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.3.D解析:D【分析】根据∠1+∠2=∠3+∠2即可证得①;根据230∠=求出∠1与∠E 的度数大小即可判断②;利用∠2求出∠3,与∠B 的度数大小即可判断③;利用4C ∠=∠求出∠1,即可得到∠2的度数,即可判断④.【详解】∵∠1+∠2=∠3+∠2=90︒,∴∠1=∠3,故①正确;∵230∠=,∴190260∠=-∠=∠E=60︒,∴∠1=∠E ,∴AC ∥DE ,故②正确;∵245∠=,∴345∠=,∵45B ∠=,∴∠3=∠B,∴//BC AD ,故③正确;∵4C ∠=∠45=,∴∠CFE=∠C 45=,∵∠CFE+∠E=∠C+∠1,∴∠1=∠E=60,∴∠2=90︒-∠1=30,故④正确,故选:D.【点睛】此题考查互余角的性质,平行线的判定及性质,熟练运用解题是关键.4.B解析:B【解析】分析:根据直线公理对①进行判断;根据两点之间的距离的定义对②进行判断;根据线段公理对③进行判断;根据角的定义对④进行判断;根据线段的中点的定义对⑤进行判断.详解:根据直线公理:两点确定一条直线,所以①正确;连接两点的线段的长度叫做两点的距离,所以②错误;两点之间,线段最短,所以③正确;有一个公共端点的两条射线组成的图形叫做角,所以④错误;若AB=BC,且B点在AB上,则点B是AC的中点,所以⑤错误.故选B.点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.C解析:C【解析】试题解析:(1)“a是任意实数,|a|-5>0”是不确定事件,是假命题;(2)抛物线y=(2x+1)2的对称轴是直线x=-,是假命题;(3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为,是假命题;(4)某件事情发生的概率是1,则它一定发生,是真命题;(5)某彩票的中奖率为10%,则买100张彩票中奖的可能性很大,但不是一定中奖,是假命题;(6)函数y=-9(x+2014)2+与x轴必有两个交点,是真命题,则假命题的个数是4;故选C.考点:命题与定理.6.C解析:C【解析】分类讨论:两个角的两边方向是否相同.若相同,则相等;否则互补.故选C. 7.D解析:D【解析】试题分析:有两种情况:①点C在AB上,②点C在AB的延长线上,这两种情况根据线段的中点的性质,可得BM、BN的长,再利用线段的和、差即可得出答案.解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=12AB=5,BN=12CB=4,MN=BM-BN=5-4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=12AB=5,BN=12CB=4,MN=MB+BN=5+4=9cm,故选D.点睛:本题考查了两点间的距离. 解题的关键在于要利用分类讨论思想结合线段中点的性质、线段的和差进行解答.8.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都是由旋转得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.9.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.二、填空题11.62【详解】∵,,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.解析:62【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.12.120°【分析】过点F 作PT//AB ,则有PT//CD ,根据平行线的性质可得∠GFP=30゜,∠OFP=90゜,从而可求出∠2的度数.【详解】过点F 作PT//AB ,如图,∴∠OFP=∠N解析:120°【分析】过点F作PT//AB,则有PT//CD,根据平行线的性质可得∠GFP=30゜,∠OFP=90゜,从而可求出∠2的度数.【详解】过点F作PT//AB,如图,∴∠OFP=∠NOA⊥∵FN AB∴∠NOA=90゜∴∠OFP=90゜∵AB//CD∴CD//PT∴∠DGF=∠GFP∵∠DGF=∠1=30゜∴∠GFP=30゜∴∠2=∠OFP+∠GFP=90゜+30゜=120゜故答案为:120゜【点睛】此题主要考查了平行线的判定与性质,关键是掌握两直线平行,内错角相等,同位角相等.13.或【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少,可得出答案.【详解】解:设为x,则为,若两角互补,则,解得,;若两角相等,则,解得,.故答案解析:125︒或20︒【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40︒,可得出答案.【详解】解:设β∠为x ,则α∠为340x -︒,若两角互补,则340180x x +-︒=︒,解得55x =︒,125α∠=︒;若两角相等,则340x x =-︒,解得20x =︒,20α∠=︒.故答案为:125︒或20︒.【点睛】本题考查了平行线的性质,解题的关键是注意若∠α与∠β的两边分别平行,即可得∠α与∠β相等或互补,注意方程思想与分类讨论思想的应用.14.∠EAD=∠B 或∠DAC=∠C【解析】当∠EAD=∠B 时,根据“同位角相等,两直线平行”可得AD//BC ;当∠DAC=∠C 时,根据“内错角相等,两直线平行”可得AD//BC ;当∠DAB+∠B解析:∠EAD =∠B 或∠DAC =∠C【解析】当∠EAD =∠B 时,根据“同位角相等,两直线平行”可得AD//BC ;当∠DAC =∠C 时,根据“内错角相等,两直线平行”可得AD//BC ;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC ,故答案是:∠EAD =∠B 或∠DAC =∠C 或∠DAB+∠B=180°(答案不唯一).15.130cm2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD ,那么GH=CD ,BC=FG ,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD ,再根据梯形的面积计解析:130cm 2.【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD ,那么GH=CD ,BC=FG ,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD ,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH 是由直角梯形ABCD 平移得到的,∴梯形EFGH ≌梯形ABCD ,∴GH=CD ,BC=FG ,∵梯形EFMD 是两个梯形的公共部分,∴S 梯形ABCD -S 梯形EFMD =S 梯形EFGH -S 梯形EFMD ,∴S阴影=S梯形MGHD=12(DM+GH)•GM=12(28-4+28)×5=130(cm2).故答案是130cm2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.16.70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:,∴∠解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.17.48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°解析:48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.18.120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC =90°,所以∠GEB =90°﹣30°=60°,因为EG ∥AB ,所以∠ABE =180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.19.【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2解析:55︒【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.20.12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.(1)详见解析;(2)①103°;②32°【分析】(1)过E作EF∥AB,根据平行线的性质可求∠B=∠BEF,∠C+∠CEF=180°,进而可证明结论;(2)①易求∠ABE=52°,根据(1)的结论可求解∠DCE=154°,根据角平分线的定义可得∠DCG=77°,过点F作FN∥AB,结合平行线的性质利用∠BFC=∠BFN+∠NFC可求解;②根据平行线的性质即角平分线的定义可求解∠BFC=∠FCE=180°-∠ECG=180°-(90°12∠BEC)=90°+12∠BEC,结合已知条件∠BFC-∠BEC=74°可求解∠BEC的度数.【详解】(1)证明:如图1,过E作EF∥AB,∵AB∥CD,∴DC∥EF,∴∠B=∠BEF,∠C+∠CEF=180°,∴∠C+∠B-∠BEC=180°,即:∠ABE+∠DCE-∠BEC=180°;(2)解:①∵FB∥CE,∴∠FBE=∠BEC=26°,∵BF平分∠ABE,∴∠ABE=2∠FBE=52°,由(1)得:∠DCE=180°-∠ABE+∠BEC=180°-52°+26°=154°,∵CG平分∠ECD,∴∠DCG=77°,过点F作FN∥AB,如图2,∵AB∥CD,∴FN∥CD,∴∠BFN=∠ABF=26°,∠NFC=∠DCG=77°,∴∠BFC=∠BFN+∠NFC=103°;②∵BF∥CE,∴∠BFC=∠ECF,∠FBE=∠BEC,∵BF平分∠ABE,∴∠ABE=2∠FBE=2∠BEC,由(1)知:∠ABE+∠DCE-∠BEC=180°,∴2∠BEC+∠DCE-∠BEC=180°,∴∠DCE=180°-∠BEC,∵CG平分∠DCE,∴∠ECG=12∠DCE=12(180°-∠BEC)=90°-12∠BEC,∴∠BFC=∠FCE=180°-∠ECG=180°-(90°-12∠BEC)=90°+12∠BEC,∵∠BFC-∠BEC=74°,∴∠BFC=74°+∠BEC,即74°+∠BEC=90°+12∠BEC,解得∠BEC=32°.故答案为:32°.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.22.(1)两直线平行,同旁内角互补;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)∠B+∠E+∠F+∠D=540°;(3)∠B +∠E+∠D-∠F=180°.【分析】(1)根据平行线的性质和判定,平行公理的推论回答即可;(2)过点E、F分别作GE∥HF∥CD,根据两直线平行,同旁内角互补及已知条件求得同旁内角∠ABE+∠BEG=180°,得到AB∥GE,再根据平行线的传递性来证得AB∥CD;(3)过点E、F分别作ME∥FN∥CD,根据两直线平行,内错角相等及已知条件求得同旁内角∠B+∠BEM=180°,得到AB∥ME,再根据平行线的传递性来证得AB∥CD.【详解】解:(1)由题意可知:“依据1”:两直线平行,同旁内角互补;“依据2”:同旁内角互补,两直线平行;“依据3”:如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)当∠B、∠E、∠F、∠D满足条件∠B+∠E+∠F+∠D=540°时,有AB∥CD.理由:如图,过点E、F分别作GE∥HF∥CD,则∠GEF+∠EFH=180°,∠HFD+∠CDF=180°,∴∠GEF+∠EFD+∠FDC=360°;又∵∠B+∠BEF+∠EFD+∠D=540°,∴∠ABE+∠BEG=180°,∴AB∥GE,∴AB∥CD;(3)当∠B、∠E、∠F、∠D满足条件∠B+∠E+∠D-∠F=180°时,有AB∥CD.如图,过点E、F分别作ME∥FN∥CD,则∠MEF=EFN,∠D=∠DFN,∵∠B+∠BEF+∠D-∠EFD=180°,∴∠B+∠BEM+∠MEF+∠D-∠EFN-∠DFN=180°,∴∠B+∠BEM=180°,∴AB∥ME,∴AB∥CD.【点睛】本题考查平行线的判定和性质的综合应用,作出合适的辅助线,灵活运用平行线的性质定理和判定定理是解题的关键.23.(1)45;(2)①详见解析;②302α︒+或602α︒-; 【分析】 (1)根据平行线性质可得180********BPD ∠=︒-︒-︒-︒=︒,再根据平行线性质得BOC BPD ∠=∠;(2)①根据平行线性质得160BOC ∠=∠=︒,2160∠=∠=︒,结合角平分线定义可证180DQE PDQ ∠+∠=︒,得PD QE ∥,根据平行线传递性可再证PD OC ∥; ②分两种情况分析:当Q 在H 的右侧时,根据平行线性质可得∠BPD=∠BOC=α,∠MQP=∠QPB=60°+α,根据角平分线性质∠MQE=12(60°+α),故∠PEQ=∠MQE ;当Q 在H 的右侧时,与上面同理,∠NQE=12(180°-60°-α),∠PEQ=∠NQE . 【详解】(1)由45NQD ∠=︒,MNAB ,可得180********BPD ∠=︒-︒-︒-︒=︒, 而PD OC ∥,则有BOC BPD ∠=∠.故45BPD α=∠=︒ (2)∵QE OC ∥,60BOC α∠==︒,∴160BOC ∠=∠=︒,又∵MN AB ,∴2160∠=∠=︒,又∵QE 平分PQH ∠,∴3260∠=∠=︒,又∵430∠=︒,∴4390DQE ∠=∠+∠=︒,且90PDQ ∠=︒,∴180DQE PDQ ∠+∠=︒,∴PD QE ∥,∵QE OC ∥,∴PD OC ∥.②当Q 在H 的右侧时,∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠MQP=∠QPB=60°+α又∵QE 平分∠MQP∴∠MQE=12(60°+α)=30°+12α ∴∠PEQ=∠MQE=30°+12α 当Q 在H 的左侧时∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠NQP=180°-60°-α又∵QE 平分∠NQP∠NQE=12(180°-60°-α)=60°-12α ∴∠PEQ=∠NQE=60°-12α∴302PEQ α∠=︒+或602α︒-.【点睛】 考核知识点:平移、平行线判定和性质综合运用.熟练运用平行线性质和判定,分类讨论问题是关键.24.(1)∠A +∠C +∠APC =360°,证明详见解析;(2)∠APC =∠A −∠C ,证明详见解析;(3)55°.【分析】(1)首先过点P 作PQ ∥AB ,结合题意得出AB ∥PQ ∥CD ,然后由“两直线平行,同旁内角互补”进一步分析即可证得∠A+∠C+∠APC =360°;(2)作PQ ∥AB ,结合题意得出AB ∥PQ ∥CD ,根据“两直线平行,内错角相等”进一步分析即可证得∠APC =∠A −∠C ;(3)由(2)知,∠APC =∠PAB −∠PCD ,先利用平行线性质得出∠BEF =∠PQB =110°,然后进一步得出∠PEG =12∠FEG ,∠GEH =12∠BEG ,最后根据∠PEH =∠PEG −∠GEH 即可得出答案.【详解】(1)∠A+∠C+∠APC =360°,证明如下:如图1所示,过点P 作PQ ∥AB ,∴∠A+∠APQ=180°,又∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A−∠C,证明如下:如图2所示,过点P作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ−∠CPQ,∴∠APC=∠A−∠C;(3)由(2)知,∠APC=∠PAB−∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥PC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG−∠GEH=12∠FEG−12∠BEG=12∠BEF=55°.【点睛】本题主要考查了利用平行线性质与角平分线性质求角度的综合运用,熟练掌握相关概念是解题关键.25.(1)∠MEN=∠AME+∠ENC,见解析;(2)∠FEQ=15°;(3)∠BMN+∠GEK-m∠GEH=180°.【分析】(1)过点E作l∥AB,利用平行线的性质可得∠1=∠BME,∠2=∠DNE,由∠MEN=∠1+∠2,等量代换可得结论;(2)利用角平分线的性质可得∠NEF=12∠MEN,∠ENP=12∠END,由EQ∥NP,可得∠QEN=∠ENP=12∠ENC,由(1)的结论可得∠MEN=∠AME+∠ENC,等量代换得出结论;(3)由已知可得∠EMN=1m∠BMN,∠GEN=1m∠GEK,由EH∥MN,可得∠HEM=∠ENM=1m∠AMN,因为∠GEH=∠GEM-∠HEM,等量代换得出结论.【详解】解:(1)过点E作l∥AB,∵AB∥CD,∴l∥AB∥CD∴∠1=∠AME,∠2=∠CNE.∵∠MEN=∠1+∠2,∴∠MEN=∠AME+∠ENC;(2)∵EF平分∠MEN,NP平分∠ENC,∴∠NEF=12∠MEN,∠ENP=12∠ENC.∵EQ∥NP,∴∠QEN=∠ENP=12∠ENC.由(1)可得∠MEN =∠AME +∠ENC ,∴∠MEN -∠ENC =∠AME =30°.∴∠FEQ =∠NEF -∠NEQ =12(∠MEN -∠ENC )=12×30°=15°; (3)∠BMN +∠GEK -m ∠GEH =180°.理由如下:∵∠AMN =m ∠EMN ,∠GEK =m ∠GEM , ∴∠EMN =1m ∠AMN ,∠GEM =1m∠GEK . ∵EH ∥MN ,∴∠HEM =∠EMN =1m ∠AMN . ∵∠GEH =∠GEM -∠HEM =1m ∠GEK -1m∠AMN , ∴m ∠GEH =∠GEK -∠AMN .∵∠BMN +∠AMN =180°,∴∠BMN +∠GEK -m ∠GEH =180°.【点睛】本题主要考查了平行线的性质,平行公理以及角平分线的定义等知识点,作出适当的辅助线,结合图形等量代换是解答此题的关键.26.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.。

相交线与平行线易错题汇编含答案解析

相交线与平行线易错题汇编含答案解析
故选C.
【点睛】
本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.
5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()
A.65°B.115°C.125°D.130°
【答案】B
【解析】
试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.
③直线外一点到直线的垂线段的长度叫点到直线的距离
④| -2|=2- ,正确
正确的个数有②④两个
故选B
8.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )
A.y=x+zB.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°
【答案】B
【解析】
【分析】
过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.
18.如图, , ,则下列结论正确的个数有()
① ;② ;③ ;④
A.4个B.3个C.2个D.1个
【答案】A
【解析】
∵∠ABC=30°,∠BAC=90°,
∴∠ACB=60°,
∵直线m∥n,
∴CD∥直线m∥直线n,
∴∠1=∠ACD,∠2=∠BCD,
∵∠1=38°,
∴∠ACD=38°,
∴∠2=∠BCD=60°﹣38°=22°,
故选:B.
【点睛】
本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.

人教版七年级下册第五章相交与平行线易错题50题含参考答案

人教版七年级下册第五章相交与平行线易错题50题含参考答案

人教版七年级下册第五章相交与平行线易错题50题含答案一、单选题1.下列各图中,1∠与2∠是对顶角的是( )A .B .C .D . 2.如图, AB CD ∥,125ABE ∠=︒,30C ∠=︒,则α∠=( )A .70︒B .75︒C .80︒D .85︒ 3.下列语句中,属于命题的是( ).A .直线AB 和CD 垂直吗?B .过线段AB 的中点C 画AB 的垂线 C .同旁内角互补,两直线平行D .连接A ,B 两点4.如图,160∠=︒,下列推理正确的是( )①若260∠=︒,则AB CD ∥; ①若560∠=︒,则AB CD ∥;①若3120∠=︒,则AB CD ∥; ①若4120∠=︒,则AB CD ∥.A .①①B .①①C .①①①D .①①5.如图,AB CD ∥,一副三角尺按如图所示放置,20AEG ∠=︒,则HFD ∠的度数为( )A .40°B .35°C .30°D .25°6.如图,点E 在AB 的延长线上,下列条件中能够判定AB CD 的条件有( ) ①180BAD ABC ∠+∠=︒;①12∠=∠;①3=4∠∠;①5E ADC ∠+∠=∠.A .①①B .①①C .①①D .①① 7.如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( ) 如图,已知13∠=∠,2+3=180∠∠︒,求证:AB 与DE 平行.证明:①:AB DE ∥;①:24180∠+∠=︒,23180∠+∠=︒;①:3=4∠∠;①:14∠=∠;①:13∠=∠.A .①①①①①B .①①①①①C .①①①①①D .①①①①① 8.如图,点P 在直线AB 外,90PBA ∠=︒,3PB =,则线段PA 的值可能为( )A .1B .2C .3D .4 9.如图,AB CD ,直线EF 交AB 于点E ,交CD 于点F ,EG 平分BEF ∠,交CD 于点G ,150∠=︒,则2∠等于( )A .50︒B .60︒C .65︒D .90︒ 10.如图AB ,CD 交于点O ,OE AB ⊥,90DOF ∠=︒,OB 平分DOG ∠,则下列结论:①图中DOE ∠的余角有四个;①①AOF 的补角有2个;①OD 为EOG ∠的平分线;①COG AOD EOF ∠=∠-∠.其中结论正确的序号是( )A .①①①B .①①①C .①①D .①①① 11.将一副直角三角尺如图所示放置,已知AE BC ∥,则AFD ∠的度数是( )A .80︒B .75︒C .65︒D .60︒ 12.如图,下列条件中,能够判定AB CD ∥的是( )A .24∠∠=B .123∠=∠+∠C .35∠=∠D .45180D ∠+∠+∠=∠︒13.在下列4个判断中:①在同一平面内,不相交也不重合的两条线段一定平行;①在同一平面内,不相交也不重合的两条直线一定平行;①在同一平面内,不平行也不重合的两条线段一定相交;①在同一平面内,不平行也不重合的两条直线一定相交.正确判断的个数是( ) A .4 B .3 C .2 D .1 14.如图,在下列条件中,能够证明AD CB ∥的条件是( )A .14∠=∠B .5B ∠=∠C .12180D ∠+∠+∠=︒ D .23∠∠=15.在同一平面内,将两个完全相同的三角板按如图摆放(直角边重合),可以画出两条互相平行的直线a ,b 这样操作的依据是( )A .两直线平行,同位角相等B .同位角相等,两直线平行C .两直线平行,内错角相等D .内错角相等,两直线平行 16.在下列图中,1∠与2∠属于对顶角的是( )A .B .C .D .17.如图,12180∠+∠=︒,360∠=︒,那么4∠等于( )A .120︒B .60︒C .45︒D .140︒ 18.下列说法正确的是( )A .直线外一点到已知直线的垂线段叫做这点到直线的距离.B .过直线外一点有且只有一条直线与已知直线平行.C .三角形的三条高线交于一点.D .平面内,有且只有一条直线与已知直线垂直.19.关于命题“等角对等边”,下列说法错误的是( )A .这个命题是真命题B .条件是“一个三角形有两个角相等”C .结论是“这两个角所对的边也相等”D .可以用“举反例”的方法证明这个命题是真命题二、填空题20.如图,AB CD ∥,12∠=∠,3=4∠∠,试说明AD BE ∥解:AB CD ∥(已知)4∴∠=∠ ( )34∠∠=(已知)3∴∠=∠ ( )12∠=∠(已知)12CAF CAF ∴∠+∠=∠+∠( )即BAE ∠=∠ ( ) 3∴∠=∠AD BE ∴∥( ). 21.新世纪中学八年级共有四个班,每班各选5名同学组成一个代表队,这四支代表队(分别用A ,B ,C ,D 表示)进行数学知识应用竞赛,前三名将参加“学用杯”全国数学知识应用竞赛.甲,乙,丙三位同学预测的结果分别为:甲:C 得亚军;D 得季军;乙:D 得殿军,A 得亚军;丙:C 得冠军,B 得亚军.已知每人的预测都是半句正确,半句错误,则冠,亚,季,殿军分别为_____. 22.如图,直线AB CD ∥,40C ∠=︒,E ∠为直角,则1∠=___________.23.如图,AB CD ∥,12110∠+∠=︒,则GEF GFE ∠+∠=___________.24.如图,三角形ABC 中,90ACB ∠=︒,6AC =,8BC =,P 为直线AB 上一动点,连接PC ,则线段PC 的最小值是_____.25.如图,,,4AO BO CO DO AOD BOC ⊥⊥∠=∠,则AOD ∠=____________.26.如图,直线,,AB CD EF 相交于点O ,则AOC ∠的对顶角是____________,AOC ∠的邻补角是____________.27.在同一平面内,直线a 、b 、c 中,若a b ⊥,b c ∥,则a 、c 的位置关系是__. 28.下列命题中,是真命题的是_________.(填序号)①对顶角相等;①内错角相等;①三条直线两两相交,总有三个交点;①若a b ∥,b c ∥,则a c ∥.29.如图,将ABC 沿BC 方向平移2cm 得到DEF ,若ABC 的周长为16cm ,则四边形ABFD 的周长为__________cm .30.如图,已知直线a b ∥,将一块三角板的直角顶点放在直线a 上,如果142∠=︒,那么2∠=______度.31.光线在不同介质中传播速度不同,从一种介质射向另一种介质时会发生折射.如图,水面AB 与水杯下沿CD 平行,光线EF 从水中射向空气时发生折射,光线变成FH ,点G 在射线EF 上,已知20HFB ∠︒=,45FED ∠︒=,则GFH ∠的度数为______.32.如图,将ABC 沿BC 方向平移得到DEF ,若90B ,10AB =,2DH =,平移的距离为3,则阴影部分的面积______.33.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.若54DBC ∠=︒,则ADE ∠的度数是______.34.如图,已知a b ∥,155∠=︒,则2∠的度数为________.35.如图,已知直线AB 、CD 相交于点O ,OE CD ⊥,140BOD ∠=︒,则AOE ∠=________度.36.如图,在三角形ABC 中,点D 、E 分别在AB BC 、上,连接DE ,且DE AC ∥,12∠=∠,若50B ∠=︒,则BAF ∠的度数为______________.37.如图,若12∠=∠,则互相平行的线段是___________.38.如图,过直线AB 上一点O 作射线OC ,30BOC ∠=︒,OD 平分AOC ∠,则DOC ∠的度数为__________.三、解答题39.如图,已知AC 、BC 分别是BAD ∠、ABE ∠的平分线,且1+2=ACB ∠∠∠.求证:AD BE ∥.40.如图,在正方形网格中有一个ABC ,按要求进行下列作图.(1)过点B 画出AC 的平行线;(2)将ABC 进行平移,使点A 经平移后所得的图形是点D ,点B 与点E 是对应点请画出平移后得到的DEF .41.已知:如图,直线,AB CD 相交于点O ,EO CD ⊥于O .(1)若36AOC ∠=︒,求∠BOE 的度数;(2)若:1:5BOD BOC ∠∠=,求AOE ∠的度数;(3)在(2)的条件下,请你过点O 画直线MN AB ⊥,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出EOF ∠的度数.42.如图,线段AB ,AD 交于点A ,C 为直线AD 上一点(不与点A ,D 重合).过点C 在BC 的右侧作射线CE BC ⊥,过点D 作直线DF AB ,交CE 于点G (G 与D不重合).(1)如图,若点C 在线段AD 上,且BCA ∠为钝角.求证:90CGD B ∠-∠=︒;(2)若点C 在线段DA 的延长线上,直接写出B ∠与CGD ∠的数量关系. 43.如图,直线EF ,CD 相交于点O ,OC 平分AOF ∠,2AOE BOD ∠=∠.(1)若40AOE ∠=︒,求DOE ∠的度数;(2)猜想OA 与OB 之间的位置关系,并证明.44.如图,点E 、F 分别在AB 、CD 上,AF CE ⊥于点O ,1B ∠=∠,290A ∠+∠=︒,求证:AB CD ∥.请填空.证明:AF CE ⊥(已知)90AOE ∴∠=︒(_____)又,1B ∠=∠(已知)∴(_____)(同位角相等,两直线平行)AFB AOE ∴∠=∠(_____)90AFB ∴∠=︒(_____)又,2180AFC AFB ∠+∠+∠=︒(平角的定义)2AFC ∴∠+∠=(_____)又290A ∠+∠=︒(已知)A AFC ∴∠=∠(_____)∴AB CD ∥.(内错角相等,两直线平行)45.如图,AB EF ∥,点G 在EF 上,B 、C 、G 三点在同一条直线上,且12∠=∠.求证:CD EF ∥.46.(1)完成下面的推理说明:已知:如图,BE CF ∥,BE 、CF 分别平分ABC ∠和BCD ∠.求证:AB CD ∥.证明:BE 、CF 分别平分ABC ∠和BCD ∠(已 知) ,112∴∠=∠ ,122∠=∠ ( ). BE CF ∥( ),12∴∠=∠( ). ∴1122ABC BCD ∠=∠( ). ABC BCD ∴∠=∠(等式的性质) .AB CD ∴∥( ).(2)说出(1)的推理中运用了哪两个互逆的真命题 .47.如图,BD 平分ABC ∠,F 在AB 上,G 在AC 上,FC 与BD 相交于点H ,34180∠+∠=︒,试说明12∠=∠.(请通过填空完善下列推理过程)解:①34180∠+∠=︒(已知),4FHD ∠=∠( )①3+∠___________180=︒(等量代换).①FG BD ∥( )①1∠=______(___________).①BD 平分ABC ∠,①ABD ∠=______(___________).①12∠=∠( )48.证明:①DG BC ⊥,AC BC ⊥(已知)①90DGB ACB ∠=∠=︒(垂直定义)①DG AC ∥(同位角相等,两直线平行)①2∠=___________(___________)①12∠=∠(已知)①1ACD ∠=∠(___________)①EF CD ∥(同位角相等,两直线平行)①AEF ADC ∠=∠(___________)①FE AB ⊥(已知)①90AEF ∠=︒(垂直定义)49.如图1,AB CD ∥,直线AB 外有一点M ,连接AM ,CM .(1)证明:M A C ∠+∠=∠;(2)如图2,延长MA 至点E ,连接CE ,CM 平分ECD ∠,AF 平分EAB ∠,且AF 与CM 交于点F ,求E ∠与AFC ∠的数量关系;(3)如图3,在2的条件下,100E ∠=︒,FA AN ⊥,连接CN ,且2M N ∠=∠,30MCN ∠=︒,求M ∠的度数.50.把下面的证明过程补充完整:如图,ABO 中,90AOB ∠=︒,DE AO ⊥于点E ,CFB EDO ∠=∠.求证:CF DO ∥.证明:DE AO ⊥(已知),∴ 90=︒(垂直的定义),又90AOB ∠=︒,AOB ∴∠= (等量代换)∴ ( ).EDO ∴∠= ( ).又CFB EDO ∠=∠CFB ∴∠= (等量代换),CF DO ∴∥ ).参考答案:1.D【分析】根据对顶角的定义作出判断即可.【详解】解:根据两条直线相交,才能构成对顶角进行判断,A 、B 、C 都不是由两条直线相交构成的图形,故错误,不符合题意,D 是由两条直线相交构成的图形,故正确,符合题意故选:D .【点睛】本题主要考查了对顶角的定义,熟练掌握对顶角的定义是解题的关键. 2.D【分析】过点E 作EF CD ∥,根据两直线平行,同旁内角互补可得180B BEF ∠+∠=︒,再根据两直线平行,内错角相等得出C FEC ∠=∠,然后整理即可得解.【详解】过点E 作EF CD ∥,∴C FEC ∠=∠(两直线平行,内错角相等),∴30FEC ∠=︒,AB CD ∥(已知),∴EF AB ∥(平行于同一直线的两直线平行),∴180B BEF ∠+∠=︒(两直线平行,同旁内角互补),∴55BEF ∠=︒,∴85BEF FEC α∠=∠+∠=︒.故选:D .【点睛】本题考查了平行线的判定与性质,作辅助线构造出平行线是解题的关键. 3.C【分析】分别根据命题的定义进行判断.【详解】解:A 、直线AB 和CD 垂直吗?这是疑问句,不是命题,所以A 选项错误; B 、过线段AB 的中点C 画AB 的垂线,这是描叙性语言,不是命题,所以B 选项错误;C 、同旁内角互补,两直线平行是命题,所以C 选项正确;D 、连接A 、B 两点,这是描叙性语言,不是命题,所以D 选项错误.故选:C .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4.B【分析】根据平行线的判定定理求解即可.【详解】解:由1260∠=∠=︒,不能判定AB CD ,故①不符合题意;①1260∠=∠=︒,560∠=︒,①25∠=∠,①AB CD , 故①符合题意;由160∠=︒,3120∠=︒,不能判定AB CD ,故①不符合题意;①1260∠=∠=︒,4120∠=︒,①24180∠+∠=︒,①AB CD , 故①符合题意;故选:B .【点睛】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.5.B【分析】先求出65AEF AEG GEF ∠=∠+∠=︒,根据平行线的性质求65EFD AEF ∠=∠=︒,根据30EFH ∠=︒即可得出答案.【详解】解:①GEF △和EFH △是一幅三角尺,①45GEF GFE ∠=∠=︒,30EFH ∠=︒,①20AEG ∠=︒,①65AEF AEG GEF ∠=∠+∠=︒,①AB CD ∥,①65EFD AEF ∠=∠=︒,①35HFD EFD EFH ∠=∠-∠=︒,故B 正确.故选:B .【点睛】本题主要考查的是平行线的性质,三角板中角度的计算,掌握两直线平行,内错角相等是解题的关键.6.B【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行三种判定方法进行判定即可.【详解】解:①①180BAD ABC ∠+∠=︒,①BC AD ∥,故①不合题意;①12∠=∠,①AB CD ,故①符合题意;①3=4∠∠,①BC AD ∥,故①不合题意;①5E ADC ∠+∠=∠,5EDC ADC ∠+∠=∠,①E EDC ∠=∠,①AB CD ,故①符合题意.故本题选:B .【点睛】本题考查平行线的判定,熟练掌握三种判定方法是解题关键.7.B【分析】先证明3=4∠∠,结合13∠=∠,证明14∠=∠,从而可得结论.【详解】根据平行线的判定解答即可.证明:①24180∠+∠=︒(已知),24180∠+∠=︒(邻补角的定义),①3=4∠∠(同角的补角相等).①13∠=∠(已知),①14∠=∠(等量代换),①AB DE ∥(同位角相等,两直线平行).所以排序正确的是①①①①①,故选:B .【点睛】本题考查的是补角的性质,平行线的判定,证明14∠=∠是解本题的关键. 8.D【分析】根据连接从直线外一点到这条直线上的所有点的线段中,垂线段最短求解了可.【详解】解:①90PBA ∠=︒,①PB AB ⊥于点B ,①3PA PB >=,①可能4PA =,故选:D .【点睛】此题主要考查了垂线段最短,熟练掌握垂线段最短是解题的关键.9.C【分析】由AB CD ,1=50∠︒,根据两直线平行,同旁内角互补,即可求得BEF ∠的度数,又由EG 平分BEF ∠,求得BEG ∠的度数,然后根据两直线平行,内错角相等,即可求得2∠的度数.【详解】解:∥AB CD ,1180BEF ∴∠+∠=︒,1=50∠︒,130BEF ∴∠=︒, EG 平分BEF ∠,1652BEG BEF ∴∠=∠=︒, 265BEG ∴∠=∠=︒,故选:C .【点睛】此题考查了平行线的性质与角平分线的定义,注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用.10.C【分析】①根据余角的定义可求解.①根据补角的定义可求解.①根据角平分线的定义无法证明.①根据对顶角及余角性质可求解.【详解】①①OE AB ⊥,①90BOE ∠=︒,①90DOF ∠=︒,①EOF BOD ∠=∠,①OB 平分DOG ∠,①GOB BOD ∠=∠,①BOD AOC ∠=∠,①DOE ∠余角有EOF BOD BOG AOC ∠∠∠∠,,,,故①正确.①根据补角的定义可知AOF ∠的补角为BOF EOG COE ∠∠∠,,,故①错误.①①不能证明GOD EOD ∠=∠,①无法证明OD 为①EOG 的平分线.①根据对顶角以及余角的性质可知AOD BOC ∠=∠,由①得EOF BOG ∠=∠,①COG AOD EOF ∠=∠-∠,故①正确.故选C .【点睛】本题考查了余角、补角、对顶角以及角平分线的性质,注意结合图形,发现角与角之间的联系是解题关键.11.B【分析】根据平行线的性质及三角形内角定理解答.【详解】解:由三角板的性质可知45,30,90EAD C BAC ADE ︒︒︒∠=∠=∠=∠=. ①AE BC ∥,①30EAC C ∠=∠=︒,①453015DAF EAD EAC ∠=∠-∠=︒-︒=︒.①180180901575AFD ADE DAF ︒︒︒︒︒∠=-∠⋅∠=--=.故选:B .【点睛】本题考查的是平行线的性质及三角形内角和定理,平行线的性质:两直线平行同位角相等,同旁内角互补.三角形内角和定理:三角形的内角和等于180︒.12.C【分析】根据平行线的判定方法,逐一进行判定即可.【详解】解:A 、①24∠∠=,①AD BC ∥,不能判定AB CD ∥,不符合题意; B 、①123∠=∠+∠,①AD BC ∥,不能判定AB CD ∥,不符合题意;C 、①35∠=∠,①AB CD ∥,符合题意;D 、①45180D ∠+∠+∠=∠︒,①AD BC ∥,不能判定AB CD ∥,不符合题意; 故选C .【点睛】本题考查平行线的判定.熟练掌握平行线的判定方法,是解题的关键.注意区分截线.13.C【分析】根据平面内两条直线的三种位置关系:平行或相交或重合进行判断.【详解】解:在同一平面内,不相交也不重合的两条直线一定平行,故①错误,①正确;在同一平面内,不平行也不重合的两条直线一定相交,故①错误,①正确.故正确判断的个数是2.故选:C .【点睛】本题考查了平面内两条直线的三种位置关系,平行、相交或重合,熟练掌握这三种位置关系是解题的关键.14.D【分析】根据平行线的判定定理逐项分析判断即可求解.【详解】解:A . 14∠=∠,内错角相等两直线平行,能判定AB DE ∥;故A 不符合题意;B . 5B ∠=∠,同位角相等两直线平行,能判定AB DE ∥;故B 不符合题意;C . 12180D ∠+∠+∠=︒,同旁内角互补两直线平行,能判定AB DE ∥;故C 不符合题意;D . 32∠=∠,内错角相等两直线平行,能判定AD BC ∥,故D 符合题意.故选:D .【点睛】本题考查了平行线的判定方法,掌握平行线的判定方法“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行”是解题的关键.15.D【分析】根据内错角相等,两直线平行直接得到答案.【详解】解:如图,由题意得12∠=∠ ,根据内错角相等,两直线平行可得//a b .故选:D .【点睛】本题考查平行线的判定,解题的关键是掌握内错角的定义及平行线的判定定理. 16.C【分析】根据对顶角的定义:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,可得结论.【详解】解:在选项B 、D 中,1∠与2∠的两边都不互为反向延长线,A 选项没有公共点,所以不是对顶角,是对顶角的只有选项C .故选:C .【点睛】本题主要考查了对顶角的定义,熟记有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角是解答此题的关键.17.A【分析】先根据补角的性质求出260∠=︒,再根据邻补角的定义求解即可.【详解】解:①12180∠+∠=︒,13180∠+∠=︒,①23∠∠=.①360∠=︒,①260∠=︒,①418060120∠=︒-︒=︒.故选A .【点睛】本题考查了补角的性质,以及邻补角的定义,熟练掌握同角的补角相等是解答本题的关键.18.B【分析】根据三角形的高、点到直线的距离定义、平行公理、平行线定义进行分析即可.【详解】解:A .直线外一点到已知直线的垂线段的长度叫做这点到直线的距离,故原题说法错误,该选项不符合题意;B .过直线外一点有且只有一条直线与已知直线平行,正确,该选项符合题意;C .三角形的三条高线所在直线交于一点,故原题说法错误,该选项不符合题意;D .平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误,该选项不符合题意;故选:B .【点睛】此题主要考查了三角形的高、平行线,关键是注意点到直线的距离的定义. 19.D【分析】分析原命题,找出其条件与结论,然后写成“如果…那么…”形式即可.【详解】解:在三角形中,如果有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”,则选项A 、B 、C 正确,不符合题意,不可以用“举反例”的方法证明这个命题是真命题.故选:D .【点睛】本题考查了命题与定理的知识,正确理解定义是关键.20.EAB ;两直线平行,同位角相等;EAB ;等量代换;等式的性质;CAD ;角的和差;CAD ;内错角相等,两直线平行【分析】首先根据平行线的性质,可证得4EAB ∠=∠,可得3EAB ∠=∠,再根据角的和差,可得EAB CAD ∠=∠,可得3CAD ∠=∠,据此即可证得结论.【详解】解:AB CD ∥(已知)4EAB ∴∠=∠(两直线平行,同位角相等)34∠∠=(已知)3EAB ∴∠=∠(等量代换)12∠=∠(已知)12CAF CAF ∴∠+∠=∠+∠(等式的性质).即EAB CAD ∠=∠(角的和差)3CAD ∴∠=∠.①AD ∥BF (内错角相等,两直线平行).故答案为:EAB ;两直线平行,同位角相等;EAB ;等量代换;等式的性质;CAD ;角的和差;CAD ;内错角相等,两直线平行.【点睛】本题考查了平行线的性质与判定,熟练掌握和运用平行线的性质与判定是解决本题的关键.21.C ,A ,D ,B【分析】根据题意,先假设甲说的前半句正确,进行推理,看后面说法是否矛盾,若有矛盾,则错误,否则正确.【详解】解:①假设甲说的:C 是亚军正确,则他说D 是季军错误,于是乙说:D 是殿军正确,则乙说的A 得亚军就错误,故丙说:B 得亚军正确,与假设甲说的:C 是亚军正确互相矛盾,所以:甲说的:C 是亚军错误;①假设甲说的:C 是亚军错误,则他说D 是季军正确,于是乙说:D 是殿军错误,则乙说的A 得亚军就正确,故丙说:B 得亚军错误,C 是冠军正确;没有矛盾,故:冠,亚,季,殿军分别为:C ,A ,D ,B .故答案为:C ,A ,D ,B .【点睛】本题主要考查了推理论证,解题的关键是退出矛盾得出结论.22.130︒【分析】过点E 作EF CD ∥,根据平行线的性质,求解即可.【详解】解:过点E 作EF CD ∥,如下图:则EF CD AB ∥∥,①40FEC DCE ∠=∠=︒,BAE FEA ∠=∠①9050BAE FEA FEC ∠=∠=︒-∠=︒,①1180130BAE ∠=︒-∠=︒,故答案为:130︒【点睛】此题考查了平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质. 23.70︒##70度【分析】根据平行线的性质得出180BEF DFE ∠+∠=︒,再根据角的和差关系即可求解.【详解】∵AB CD ∥,180BEF DFE ∴∠+∠=︒,12110∠+∠=︒,18011070GEF GFE ∴∠+∠=︒-︒=︒.故答案为:70︒.【点睛】本题考查了平行线的性质,关键是熟悉两直线平行,同旁内角互补的知识点. 24.245【分析】当PC AB ⊥时,PC 的值最小,利用等面积法求解即可.【详解】解:在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,①10AB =,①点到直线,垂线段最短,①当PC AB ⊥时,PC 的值最小, 此时:1122AB PC AC BC ⋅=⋅,即:11106822PC ⨯=⨯⨯, ①245PC =, 故答案为245. 【点睛】本题考查垂线段最短.熟练掌握点到直线,垂线段最短,利用等积法求斜边上的高,是解题的关键.25.144︒##144度【分析】根据垂直的性质,可得AOB ∠和COD ∠的度数,根据4AOD BOC ∠=∠,可得答案.【详解】解:①,AO BO CO DO ⊥⊥,①90AOB COD ∠=∠=︒,①4AOD BOC ∠=∠,设BOC ∠为x ,则4AOD x ∠=,可得:90904360x x ++=︒+︒︒,解得:36x =︒,①144AOD ∠=︒.故答案为:144︒.【点睛】本题考查了垂线,利用了垂线的定义,角的和差计算是关键.26. BOD ∠##DOB ∠ AOD ∠和COB ∠【分析】对顶角:有公共顶点且两条边都互为反向延长线的两个角称为对顶角.邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,叫做邻补角.根据这两个定义求解即可.【详解】解:AOC ∠的对顶角是BOD ∠;AOC ∠的邻补角是AOD ∠,COB ∠;故答案为:BOD ∠;AOD ∠,COB ∠.【点睛】此题主要考查了对顶角和邻补角,关键是掌握定义,邻补角有两个,不要漏解.27.c a ⊥##a c ⊥【分析】根据平行线的性质进行解答即可.【详解】解:如图所示:同一平面内,已知直线a 、b 、c ,且b c ∥,a b ⊥,①b c ∥,①12∠=∠,①a b ⊥,①190∠=︒,①1290∠=∠=︒,①c a ⊥.故答案为:c a ⊥.【点睛】本题考查的是平行公理及其推论,即若两条平行线中的一条垂直于另一条直线,那么另一条也垂直于这条直线.28.①①##①①【分析】根据对顶角相等可判断①;根据平行线的性质可判断①;根据两条直线相交的定义可判断①;根据平行于同一条直线的两条直线平行可判断①,据此可作出判断.【详解】解:①对顶角相等,正确,是真命题,符合题意;①两直线平行,内错角相等,故原命题错误,不符合题意;①三条直线两两相交,总有三个或一个交点,故原命题错误,不符合题意;①若a b ∥,b c ∥,则a c ∥,正确,是真命题,符合题意,正确的有①①.故答案为:①①.【点睛】本题考查判断命题真假,涉及对顶角相等、平行线的性质、直线相交的交点问题,解答的关键是在判断一个命题的真假时,需要熟知涉及到的相关数学知识,并对每一个命题作出正确的判断.29.20【分析】根据平移的性质得到线段相等及2AD BE ==,即可得到答案.【详解】解:由题意可得,2AD BE ==,AB DE =,AC DF =,BC EF =,①ABC 的周长为16cm ,①四边形ABFD 的周长为:162220++=,故答案为:20.【点睛】本题考查平移的性质:图形平移大小形状不改变,只是位置发生改变,对应点连线等于平移距离.30.48【分析】根据平行线得到内错角相等,在根据直角即可得到答案.【详解】解:①a b ∥,①23∠∠=,①1+3=90∠∠︒,142∠=︒,①3904248∠=︒-︒=︒故答案为48.【点睛】本题考查平行线性质:两直线平行内错角相等.31.25︒##25度【分析】根据平行线的性质求得GFB ∠,根据GFH GFB HFB ∠=∠-∠即可求解.【详解】解:①AB CD ∥,①45GFB FED ∠=∠=︒.①20HFB ∠=︒,①452025GFH GFB HFB ∠=∠-∠=︒-︒=︒;故答案为25°.【点睛】本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键. 32.27【分析】根据平移的性质得到8HE DE DH =-=,根据ABEH S S =阴影梯形计算即可.【详解】解:由平移的性质可知,10DE AB ==,EF BC =,3BE =,8HE DE DH ∴=-=,ABC DEF SS =, ①HEC HEC ABEH S S S S +=+阴影梯形,①()8103272ABEH S S +⨯===阴影梯形. 故答案为:27. 【点睛】本题主要考查的是平移的性质,判断出ABEH S S =阴影梯形是解题的关键. 33.126︒##126度【分析】根据平行线的性质及邻补角的性质作答.【详解】解:①AD BC ∥,①54ADF CBD ∠=∠=︒,①180ADE ADF ∠+∠=︒,①180********ADE ADF ∠=-∠=︒-=︒︒︒.故答案为:126︒.【点睛】本题考查平行线的性质,解题关键是熟练掌握两直线平行,内错角相等. 34.55︒【分析】根据a b ∥,即可得到1355∠=∠=︒,再根据对顶角的关系即可得到答案.【详解】解:①a b ∥,155∠=︒,①1355∠=∠=︒,①2355∠=∠=︒,故答案为55︒.【点睛】本题考查平行线的性质及对顶角相等,解题的关键是根据平行得到1355∠=∠=︒. 35.50【分析】先根据平角的定义得到40AOD ∠=︒,再根据垂线的定义得到90EOD ∠=︒,则50AOE EOD AOD ∠=-=︒∠∠.【详解】解;①140BOD ∠=︒,①18040AOD BOD =︒-∠=︒∠,①OE CD ⊥,①90EOD ∠=︒,①50AOE EOD AOD ∠=-=︒∠∠,故答案为;50.【点睛】本题主要考查了几何中角度的计算,垂线的定义,熟知相关知识是解题的关键. 36.130︒##130度【分析】根据平行线的性质得出2C ∠=∠,求出1C ∠=∠,再根据平行线的判定得出180B BAF ∠+∠=︒,求出BAF ∠即可.【详解】解:①DE AC ∥,①2C ∠=∠,①12∠=∠,①1C ∠=∠,①AF BC ∥;①180B BAF ∠+∠=︒,①50B ∠=︒,①18050130BAF ∠=-=︒︒︒.故答案为:130︒.【点睛】本题考查了平行线的判定和性质等知识点,能熟记平行线的性质和判定定理是解此题的关键.37.AB CD【分析】因为12∠=∠,所以AB CD ∥(内错角相等,两直线平行).【详解】解:①12∠=∠,①AB CD ∥(内错角相等,两直线平行).故答案为:AB CD ∥.【点睛】本题主要考查平行线的判定,熟练掌握平行线判定的几种判定方法是解题的关键.38.75︒##75度【分析】先根据30BOC ∠=︒,求出150AOC ∠=︒,再根据OD 平分AOC ∠,即可得出答案.【详解】解:①30BOC ∠=︒,①180********AOC BOC ∠=︒-∠=︒-︒=︒,①OD 平分AOC ∠, ①111507522DOC AOC ∠=∠=⨯︒=︒. 故答案为:75︒.【点睛】本题主要考查了角平分线的有关计算,领补角的计算,解题的关键是根据邻补角求出150AOC ∠=︒.39.见解析【分析】根据1+2=ACB ∠∠∠,1+2+=180ACB ∠∠∠︒得1+2=90∠∠︒,根据AC 、BC 分别是BAD ∠、ABE ∠的平分线得11=2BAD ∠∠,12=2ABE ∠∠,可得+180BAD ABE ∠∠=︒, 即可得.【详解】证明:①1+2=ACB ∠∠∠,1+2+=180ACB ∠∠∠︒, ①11+2=180=902∠∠⨯︒︒, ①AC 、BC 分别是BAD ∠、ABE ∠的平分线, ①11=2BAD ∠∠,12=2ABE ∠∠, ①+=2(12)180BAD ABE ∠∠⨯∠+∠=︒,①AD BE ∥.【点睛】本题考查角平分线,平行线的判定,解题的关键是理解题意,掌握这些知识点. 40.(1)见解析(2)见解析【分析】(1)根据平行线的性质结合网格即可求解;(2)根据平移的性质找出对应点即可求解.【详解】(1)解:(1)如图所示,直线HB 即为所求;(2)解:如图所示,DEF 即为所求.【点睛】本题考查了平移变换的性质,平行线的性质,熟练掌握平移变换的性质是解题的关键.41.(1)54︒(2)120︒(3)图见解析;EOF ∠的度数为30︒或150︒【分析】(1)依据垂线的定义以及对顶角相等,即可得∠BOE 的度数;(2)依据平角的定义以及垂线的定义,即可得到AOE ∠的度数;(3)分两种情况:若F 在射线OM 上,则30EOF BOD ∠=∠=︒;若F '在射线ON 上,则150EOF DOE BON BOD '∠=∠+∠-∠=︒.【详解】(1)解:①EO CD ⊥,①90DOE ∠=︒,又①36BOD AOC ∠=∠=︒,①903654BOE ∠=︒-︒=︒;(2)①:1:5BOD BOC ∠∠=, ①1180306BOD ∠=⨯︒=︒, ①30AOC ∠=︒,又①EO CD ⊥,①90COE ∠=︒,①9030120AOE ∠=︒+︒=︒;(3)分两种情况:若F 在射线OM 上,则30EOF BOD ∠=∠=︒;若F '在射线ON 上,则150EOF DOE BON BOD '∠=∠+∠-∠=︒;综上所述,EOF ∠的度数为30︒或150︒.【点睛】本题考查了角的计算,对顶角的性质,垂线的意义,关键是分类讨论思想的运用.42.(1)见解析(2)90B CGD ∠+∠=︒【分析】(1)依据过点C 在BC 的右侧作射线CE BC ⊥,过点D 作直线DF AB ∥,交CE 于点G ,画出图形,根据平行线的性质,即可得出2180HCG ∠∠+=︒,进而得出90CGD B ∠-∠=︒;(2)过点C 作CH AB ∥,根据平行线的性质即可得到B BCH ∠=∠,再根据平行线的性质即可得到180CGD HCG ∠∠+=︒,进而得出90B CGD ∠+∠=︒.【详解】(1)证明:如图,过点C 作CH AB ∥,①1B ∠=∠,①AB DF ∥,①CH DF ∥,①2180HCG ∠∠+=︒,①CE BC ⊥,①190HCG ∠∠+=︒,①90180CGD B ∠∠+︒-=︒(),即90CGD B ∠-∠=︒;(2)90CGD B ∠∠+=︒,理由:如图,过点C 作CH AB ∥,①B BCH ∠=∠,①AB DF ∥,①CH DF ∥,①180CGD HCG ∠∠+=︒,又①CE CB ⊥,①90BCG ∠=︒,①90180BCH CGD ∠∠+︒+=︒,即90B CGD ∠+∠=︒.【点睛】本题主要考查了平行线的性质与运用,解题时注意:两直线平行,内错角相等:两直线平行,同旁内角互补.43.(1)70DOE ∠=︒(2)OA OB ⊥,见解析【分析】(1)根据平角的定义以及角平分线的定义即可得出答案;(2)根据平角的定义,角平分线的定义以及对顶角,设未知数表示图形中的各个角,再根据角之间的和差关系得出结论.【详解】(1)解:40AOE ∠=︒,18040140AOF ∴∠=︒-︒=︒, OC 平分AOF ∠,12AOC COF AOF ∴∠=∠=∠, 1140702COF DOE ∴∠=⨯︒=︒=∠, 即70DOE ∠=︒;(2)OA OB ⊥,证明:设BOD α∠=,则22AOE BOD α∠=∠=,180AOE AOF ∠+∠=︒,1802AOF α∴∠=︒-,又OC 平分AOF ∠,1802902AOC COF αα︒-∴∠=∠==︒-, 又90DOE COF α∠=∠=︒-,902BOE DOE BOD α∴∠=∠-∠=︒-,AOB AOE BOE ∴∠=∠+∠()2902αα=+︒-90=︒,即OA OB ⊥.【点睛】本题考查对顶角、邻补角以及角平分线,掌握对顶角、邻补角以及角平分线的定义是正确解答的前提.44.见解析【分析】根据题意以及证明的过程,依次得出每一步的结论或结论的依据即可.【详解】证明:AF CE ⊥(已知),90AOE ∴∠=︒(垂直的定义).又1B ∠=∠(已知),CE BF ∴∥(同位角相等,两直线平行),AFB AOE ∴∠=∠(两直线平行,同位角相等),90AFB ∴∠=︒(等量代换).又2180AFC AFB ∠+∠+∠=︒(平角的定义),290AFC ∴∠+∠=︒.又290A ∠+∠=︒(已知),A AFC ∴∠=∠(同角的余角相等),//AB CD ∴(内错角相等,两直线平行).故答案为:垂直的定义;CE BF ∥;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.【点睛】此题考查了两直线平行的判定与性质、同角的余角相等、垂直的意义、等量代换等知识,熟练掌握两直线平行的判定与性质是解答此题的关键.45.见解析【分析】根据AB EF ∥,可得1BGF ∠=∠,进而得出2BGF ∠=∠,再根据平行线的判定方法可得CD EF ∥.【详解】证明:①AB EF ∥,①1BGF ∠=∠,①12∠=∠,①2BGF ∠=∠,①CD EF ∥.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定和性质是解题的关键. 46.(1)ABC ;BCD ;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行;(2) 两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行【分析】(1)根据平行线的性质,可得12∠=∠,根据角平分线的定义,可得ABC BCD ∠=∠,再根据平行线的判定,即可得出AB CD ∥;(2)在两个命题中,如果一个命题的结论和题干是另一个命题的题干和结论, 则称它们为互逆命题.【详解】解: (1)BE 、CF 分别平分ABC ∠和BCD ∠(已知),112ABC ∴∠=∠,122BCD ∠=∠(角平分线的定义), BE CF ∥(已知),12∴∠=∠(两直线平行,内错角相等), ∴1122ABC BCD ∠=∠(等量代换), ABC BCD ∴∠=∠(等式的性质),AB CD ∴∥(内错角相等,两直线平行),故答案为:ABC ;BCD ;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等, 两直线平行;(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行.。

相交线与平行线易错题汇编及解析

相交线与平行线易错题汇编及解析
【详解】
解:如图,延长CE交AB于点F,
∵AB∥CD,
∴∠AFE=∠C=60°,
在△AEF中,由三角形的外角性质得,∠AEC=∠A+∠AFE=45°+60°=105°.
故选:C.
【点睛】
本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.
故选:C.
【点睛】
此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.
11.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为( )
A.34°B.56°C.66°D.54°
【答案】B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
【解析】
【分析】
利用平行线定理即可解答.
【详解】
解:根据∠1=∠F,
可得AB//EF,
故∠2=∠A=50°.
故选A.
【点睛】
本题考查平行线定理:内错角相等,两直线平行.
5.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是( )
A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补
故选:D.
【点睛】
本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.
13.若∠A与∠B是对顶角且互补,则它们两边所在的直线( )
A.互相垂直B.互相平行
C.既不垂直也不平行D.不能确定
【答案】A
【解析】
∵∠A与∠B是对顶角,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1l 1 l 212 3 ADCBA B CDE FABC D EEDCBAOFE DCB ADC B AD CBA GFEDCBA 1234l 3l 2l 112EDBC ′FCD ′A 21E DCBA54321G FED CBA A BCE FDABC E D相交线与平行线综合演练一、选择题1、到直线L 的距离等于2cm 的点有( )A.0个 B.1个 C.无数个 D.无法确定2、过一点画已知直线的平行线,则( )A.有且只有一条B.有两条C. 不存在或只有一条D.不存在 3、如图所示,能判断AB ∥CE 的条件是( )A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE(第3题图) (第4题图)4、如图所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62°B.118°C.72°D.59°5、如图1所示,下列说法正确的是( )A.点B 到AC 的垂线段是线段AB B.点C 到AB 的垂线段是线段AC C.线段AD 是点D 到BC 的垂线段; D.线段BD 是点B 到AD 的垂线段(第5题图) (第6题图)6、如图,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条7、如图,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG•平分∠BEF,若∠1=72°,则∠2=( )A. 72°B. 54° C.45° D.55° (第7题图) (第8题图)8、如图所示,直线L1,L2,L3相较于一点,交点为O,∠1=∠2,∠3:∠1=8:1,则∠4=( )A. 36°B. 72 C.40° D.45° 9、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置.若∠EFB =65°,则∠AED′=( ) A .70° B .65° C .50° D .25°(第9题图) (第10题图)10、如图,已知 90ACB ∠=°,DE 过点C ,且DE AB ∥,若55ACD ∠=°则∠B 的度数是()A.35°B.45° C .55° D .65°11.如图,已知AB CD ∥,若20A ∠=°,35E∠=°,则∠C=12.如图,AD ∥BC ,BD 平分∠ABC ,且︒=∠110A ,则=∠D13.如图,直线1l ∥2l ,则∠α=(第13题图) (第14题图) 14.如图,12//l l ,∠1=120°,∠2=100°,则∠3= 15.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =30o 时,∠BOD = 16.下列说法正确的有 (填序号)①平面内,过直线上一点有且只有一条直线垂直于已知直线;②平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.17.两条非平行的直线被第三条直线所截,那么这3条直线将所在平面分成 部分。

三、解答题18.如图,已知12∠=∠,34∠=∠,5C ∠=∠,求证:AB DE ∥.19.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线,求证: ∠EDF=∠BDF.20、如图所示,已知DE BC ∥,12∠=∠,试说明CD 是ECB ∠的平分线.22、如图,AB ∥ED,α=∠A+∠E,β=∠B+∠C+∠D,求证:β=2α.23、如图,AB ∥A ′B ′,BC ∥B ′C ′,BC 交A ′B ′于点D ,∠B 与∠B•′有什么关系?为什么?24、如图,CD ⊥AB 于D ,点F 是BC 上任意一点,FE ⊥AB 于E ,且∠1=∠2,•∠3=80°.求∠BCA 的度数.1.(2000•荆门)如图所示,AB∥EF ∥DC ,EG ∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.2个2.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3对B.4对C.5对D.6对4.如图,若AB∥CD,则有①∠A+∠B=180°②∠B+∠C=180°③∠C+∠D=180°.上述结论正确的是()A.只有①B.只有②C.只有③D.只有①和③5.下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行.(2)在同一平面内,不相交的两条线段必平行.(3)相等的角是对顶角.(4)两条直线被第三条直线所截,所得到同位角相等.(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A.1个B.2个C.3个D.4个6.两条相交直线所成的角中()A.必有一个钝角B.必有一个锐角C.必有一个不是钝角 D.必有两个锐角7.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直D.两点之间的所有连线中,线段最短8.(2006•河南)两条直线相交所成的四个角中,下列说法正确的是()A.一定有一个锐角B.一定有一个钝角C.一定有一个直角D.一定有一个不是钝角9.如图,能表示点到直线的距离的线段共有()A.2条B.3条C.4条D.5条10.如图所示,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点D到BC的距离是线段AD的长度;⑤线段AB的长度是点B到AC的距离;⑥线段AB是点B到AC的距离;⑦AD>BD.A.2个B.4个C.7个D.0个11.同一平面内有三条直线,如果只有两条平行,那么它们交点的个数为()A.0 B.1 C.2 D.312.如图所示,将一张长方形纸的一角斜折过去,使顶点A落在A′处,BC为折痕,如果BD为∠ABE的平分线,则∠CBD=()A.80°B.90°C.100°D.70°13.如图,直线AB∥CD,直线EF分别与AB、CD相交,则有()A.∠1+∠2﹣∠3=180°B.∠1﹣∠2+∠3=180°C.∠3+∠2﹣∠1=180°D.∠1+∠2+∠3=180°二.填空题(共17小题)14.已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为_______15.如图所示,已知∠AOB=50°,PC∥OB,PD平分∠OPC,则∠APC=_________度,∠PDO=_________度.16.如图所示,OP∥QR∥ST,若∠2=110°,∠3=120°,则∠1= _________度.17.如图,将长方形纸片的一角折叠,使顶点A落在A′处,EF为折痕,再将另一角折叠,使顶点B落在EA′上的B′点处,折痕为EG,则∠FEG等于_________.18.在同一平面内,如果有两条直线都与第三条直线垂直,那么这两条直线的位置关系是_________.19.已知,如图,AB∥CD,则∠α、∠β、∠γ之间的关系为20.如图,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是_________.21.如图,已知AB∥CD,则∠1与∠2,∠3的关系是____ 22.如图,光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角.若已知∠1=50°,∠2=55°,则∠3=_________°.24.(2011•西宁)如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=_________.25.(2010•宁德)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是_________度.226.将一个直角三角板和一把矩形直尺按如图放置,若∠α=54°,则∠β的度数是_________.27.(2009•邵阳)如图,AB∥CD,直线EF与AB,CD分别相交于E,F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30°,则∠PFC=_________度.28.如图AB∥CD,直线EF分别交AB、CD于E、F,且EG 平分∠AEF,∠1=34°,则∠2=_________.29.(2009•常德)如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=_________度.30.如图,△ABC中,∠ABC与∠ACB的平分线相交于D,若∠A=50°,则∠BDC=_________度.1.如图所示,是用一张长方形纸条折成的.如果∠1=100°,那么∠2=_________度.2.将一长方形纸条按如图所示折叠,∠2=54°,则∠1=_________3.一个角的余角的2倍和它的补角的互为补角,那么这个角的度数为_________.4.如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=___ 5.如图,AB∥EF∥CD,∠ABC=50°,∠CEF=145°,则∠BCE= _________°.6.如图是一个破损的梯形零件,只有上底一部分,已经量得∠A=115°,∠D=100°,则梯形的另外两个角∠B=_________,∠C=_________.7.8条直线两两相交,且任3条直线不交于同一点,则共可形成()对内错角8.平面内5条直线两两相交,且没有3条直线交于一点,那么图中共有_________对同旁内角.9.四条直线两两相交,且任意三条不相交于同一点,则四条直线共可构成的同位角有()A24组B48组C12组D16组10.如果∠A与∠B的两边分别垂直,那么∠A与∠B的关系是_________.11.在直线AB上任取一点O,过点O作射线OC,OD,使OC ⊥OD,当∠AOC=30°时,∠BOD的度数是()12.若点A到直线l的距离为7cm,点B到直线l的距离为3cm,则线段AB的长度为()A.10cm B.4cm C.10cm或4cm D.至少4cm 13.如果平行直线EF、MN与相交直线AB、CD相交如图所示的图形,则共得同旁内角为()A.4对B.8对C.12对D.16对14.如图:两条直线相交于一点形成_________对对顶角,三条直线相交于一点形成_________对对顶角,四条直线相交于一点形成_________对对顶角,请你写出n条直线相交于一点可形成_________对对顶角.15.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个16.如图,P为直线l外一点,A、B、C在l上,且PB⊥l,有下列说法:①PA,PB,PC三条线段中,PB最短;②线段PB 的长叫做点P到直线l的距离;③线段AB的长是点A到PB 的距离;④线段AC的长是点A到PC的距离.其中正确的个数是()A.1个B.2个C.3个D.4个18.(本题满分15分)已知,AB∥CD,(1)如图①,求∠1+∠2+∠3.(2)如图②,求∠1+∠2+∠3+∠4+∠5+∠6.(3)如图③,求∠1+∠2+…+∠n.3。

相关文档
最新文档