第四章 液压缸
第四章:液压缸(含习题答案)
d D 1 1
v
(3)活塞杆直径d也可按受力情况初选,然后根据校核最后确定。 表4-4 活塞杆直径的选取 活塞杆受力情况 受 拉 受压及拉 受压及拉 受压及拉 工作压力p/MPa — p≤5 5<p≤7 p>7 活塞杆直径d d = (0.3~0.5) D d = (0.5~0.55) D d = (0.6~0.7) D d = 0.7D
38-30
第三节 液压缸的设计和计算
液压缸设计步骤
一、液压缸工作压力的确定 根据负载计算工作压力,也可根据用途查表。 二、液压缸内径和活塞杆直径的确定 内径根据工作负载和工作压力确定。必要时校核强度。 三、液压缸其他部位尺寸的确定 四、液压缸的强度和刚度校核
38-31
第三节 液压缸的设计和计算
一、液压缸工作压力p的确定 F=pA
注意: ① v3>v1, v3>v2 ; F3<F1 ,F3<F2 ,差 动连接是一种减小推力而获得较高 速度的方法。 ② A1=2A2,则差动液压缸在左右两个 运动方向上速度相等时,推力也相 等。(向左运动:有杆腔通压力油 ,无杆腔排油回油箱)
q 4qVV v1 A1 πD 2
v2
4qVV q A2 π D 2 d 2
38-10
第一节 液压缸的类型及特点
二、柱塞式液压缸 单作用式液压缸大多是柱塞式的,单向液压驱动,靠外力回程。
推力:
π 2 F pA m p d m 4
输出速度:
qV V 4 qV V v A πd 2
第4章液压缸
第4章液压缸液压缸是液压系统的执行元件,它将液体的压力能转换成工作机构的机械能,用来实现直线往复运动或小于300o的摆动。
液压缸结构简单,配置灵活,设计、制造比较容易,使用维护方便,被广泛应用于各种机械设备中。
4.1 液压缸的类型、特点和基本参数计算液压缸按结构特点,分为活塞缸、柱塞缸、组合缸和摆动缸四类。
其中,活塞缸和柱塞缸用以实现直线运动,输出推力和速度;摆动缸用以实现小于300°的转动,输出转矩和角速度。
组合缸具有较特殊的结构和功用。
工程中以活塞缸应用最为广泛。
液压缸按作用方式和供油方向不同,可分为单作用式和双作用式两种。
单作用液压缸只能从一个方向供油,液压作用力只能使活塞(或柱塞)作单方向运动,反方向运动必须靠外力(如弹簧力或自重等)实现,如图4.1所示;双作用液压缸可从两个方向供油,由液压作用力实现两个方向的运动,如图4.2所示。
图4.1 单作用液压缸(a)无弹簧式(b)弹簧式(c)柱塞式图4.2 双作用液压缸(a)单杆式(b)双杆式4.1.1活塞式液压缸在缸体内作相对往复运动的组件为活塞的液压缸,称活塞缸。
活塞缸可分为双杆式和单杆式两种结构。
按其安装方式的不同,又分为缸体固定式和活塞杆固定式两种。
1.双杆活塞缸双杆活塞缸是活塞两端都带有活塞杆的液压缸,其工作原理如图4.3所示。
双杆活塞缸的特点是当两活塞杆直径相同,分别向两腔的供油压力和流量都相等时,活塞(或缸体)两个方向的运动速度和推力也都相等,即具有等推力、等速度特性。
因此,这种液压缸常用于要求往复运动速度和负载相同的场合,如各种磨床。
(a)(b)(c)图4.3双杆活塞缸(a)缸体固定(b)活塞杆固定(c)职能符号1-缸体2-活塞3-活塞杆4-工作台图4.3(a)为缸体固定式结构简图。
缸体1固定在机床床身上,工作台4与活塞杆3相连。
缸体的两端设有进、出油口,动力由活塞杆传出,进油腔位置与活塞运动方向相反。
当油液从a口进入缸左腔时,推动活塞2带动工作台向右运动,缸右腔中的油液从b口回油;反之,右腔进压力油,左腔回油时,活塞带动工作台向左运动。
第四章 液压缸
(D -d )/d =2
D=
2
2
2
3d
第二节
液压缸的结构
一、液压缸的典型结构和组成
1.液压缸的典型结构举例
1—耳环 2—螺母 3—防尘圈 4.17—弹簧挡圈 5—套 6.15—卡键 7.14—O形密封圈 8.12—Y形密封圈 9—缸盖兼导向套 10—缸筒 11—活塞 13—耐磨环 16—卡键帽 18—活塞杆 19—衬套 20—缸底
① 首先是最大直径的缸筒开始外伸,直径最小的末级最后伸出。 ② 推力一定时,随着工作级数变大,外伸缸筒直径越来越小,工作油液压 力随之升高,工作速度变快。 ③ 在输入压力和流量不变前提下,其值为:
1 Fi p1 Di2 4
式中: i 指 i 级活塞缸。
4q vi Di2
④在输入压力不变前提下,随着行程逐级增大,推力逐渐减小,这种推力 的变化正好适合于自动装卸车对推力的要求。
3、液压缸缸筒壁厚和外径的计算
缸筒最薄处壁厚:δ ≥pyD/2(σ ) δ —缸筒壁厚; D—缸筒内径;py—缸筒度验压力,当额定压Pn>160x105Pa时, Py=1.25Pn ;(σ )—缸筒材料许用应力。(σ )=σ b/n。
4、活塞杆的计算
直径强度校核:d≥[4F/π (σ )]1/2
d—活塞杆直径;F—液压缸的负载; 料许用应力,(σ )=σ b/n。
D 2d
(二)双杆活塞缸
双杆式活塞缸:活塞两端都 有一根直径相等的活塞杆的 液压缸。 根据安装方式:缸筒固定式 (实心双出杆)、活塞杆固
定式(空心双出杆)两种。
工作特点:
(1)当分别向左、右腔输入相同压力和相同流量的油液时,液压缸左、右 两个方向的推力和速度相等。
液压传动第四章 液压缸
第四章 液 压 缸
3.齿条活塞缸 齿条活塞缸由带齿条杆身的双活塞缸及齿轮齿条机构组成,如图4 ⁃8所示。
图4-8 齿条活塞缸 1—调节螺钉 2—端盖 3—活塞 4—齿条活塞杆 5—齿轮 6—缸体
第四章 液 压 缸
4.多位液压缸 多位液压缸通常为杆径相等的双杆活塞缸,如图4⁃9所示。
图4-9 多位液压缸工作原理图
第四章 液压缸
第四章 液 压 缸
第四章 液 压 缸 第一节 液压缸的分类和特点 液压缸按结构特点的不同可分为活塞缸、柱塞缸和摆动缸三类。 一、活塞缸 活塞缸可分为双杆式和单杆式两种结构,其固定方式有缸体固定 和活塞杆固定两种。 1.双杆活塞缸 图4⁃1为双杆活塞缸原理图。
第四章 液 压 缸
图4-1 双杆活塞缸
第四章 液 压 缸
四、其它液压缸 1.增压器(俗称增压缸) 增压器能将输入的低压油转变为高压油,供液压系统中的某一支 油路使用。
图4-6 增压器
第四章 液 压 缸
2.伸缩缸 伸缩缸由两级或多级活塞缸套装而成,如图4⁃7所示。
图4-7 伸缩缸 1—一级缸筒 2—一级活塞 3—二级缸筒 4—二级活塞
第四章 液 压 缸
二、液压缸端部与端盖的连接 液压缸端部与端盖的连接方式很多。 三、活塞与活塞杆的连接
图4-13 活塞与活塞杆的连接 a)、b)、c)螺纹连接 d)、e)、f)半环式连接
1—半环 2—半环
第四章 液 压 缸
四、液压缸的密封装置 液压缸的密封装置用以防止油液的泄漏(液压缸一般不允许外泄漏, 其内泄漏也应尽可能小),其设计的好坏对液压缸的工作性能和效 率有直接的影响。
第四章 液 压 缸
五、液压缸的缓冲装置 (1)环状间隙式缓冲装置 图4-14a为圆柱形环隙式缓冲装置。 (2)可变节流式缓冲装置 图4-14c为可变节流式缓冲装置。 (3)可调节流式缓冲装置 图4-14d为可调节流式缓冲装置。
第4章-液压缸-用.
2.双叶片式摆动缸 在径向尺寸和工作压力相同的条件下,是单叶片式摆动缸输出转矩 的2倍,但回转角度相应减少,一般不超过150°。
特点和应用: 结构紧凑、输出转矩大,但密封困难。 一般只用于中、低压系统中的往复摆动, 转位或间歇运动的场合。 如:机床回转夹具、送料装置等。
1A 2
18 0
A 1
1 0 0
2.速度计算
缸1 q v1A1
v1A q11 1 0 6 0 1 1 0 0 341.6m/m in
缸2 q1出v1A2 q2进 v2A1
v 2 v 1 A A 1 2 A A 1 2v 1 1 8 0 0 0 1 .6 m /m in 1 .2 8 m /m in
(3)柱塞重量往往比较大,水平放置时容易因自重而下 垂,造成密封件和导向件单边磨损,故柱塞式液压缸垂直使 用较为有利;
(4)当柱塞行程特别长时,仅靠导向套导向不够,可在 缸筒内设置各种不同形式的辅助支承,起到辅助导向的作用。
推力F F=pA=p4 d2
速度v v=q= 4q A d2
2.应用 柱塞式液压缸的主要特点是柱塞与缸筒无配合要求,缸筒 内孔不需精加工,甚至可以不加工。 运动时由缸盖上的导向套来导向,所以它特别适用在行程 较长的场合。
三、摆动式液压缸 摆动式液压缸是输出转矩并实现往复摆动的执行元件。 当通入压力油时,它的主轴能输出小于3600的摆动运动。
单叶片式 双叶片式
1-定子块;2-缸体;3-摆动轴;4-叶片
1.单叶片式摆动缸
当摆动缸进出油口压力为p1和p2,输入流量为 q时,输出转矩T和角速度ω各为
T= b 8(D2- d2)(p1- p2)m
教学课件第四章液压缸new
四、缓冲装置 当液压缸拖动质量较大的部件快速运动到缸的终端时,会与端盖 发生机械碰撞,产生很大的冲击和噪声,会引起液压缸的损坏。故一 般应在液压缸内设置缓冲装置,或在液压系统中设置缓冲回路。 缓冲的一般原理是:当活塞快速运动到接近缸盖时,通过节流的 方法增大了回油阻力,使液压缸的排油腔产生足够的缓冲压力,活塞 因运动受阻而减速,从而避免与缸盖快速相撞。常见的缓冲装置如图 4-18所示。 1.圆柱形环隙式缓冲装置(图4-18a) 2.圆锥形环隙式缓冲装置(图4-18b) 3.可变节流槽式缓冲装置(图4-18c) 4. 可调节流孔式缓冲装置(图4-18d)
系列值(可查液压设计手册) 。
(二)活塞杆直径d
活塞杆直径d可根据工作压力或设备类型选取,见表4-1和表4-2。
计算所得活塞杆直径d 亦应圆整为标准系列值(可查液压设计手册)。
(三)液压缸缸筒长度L 液压缸的缸筒长度L由液压缸最大行程、活塞宽度、活塞杆导向
套长度、活塞杆密封长度和特殊要求的其它长度确定。其中,活塞
中、高压缸一般用无缝钢管作缸筒,属薄壁筒(δ/D ≤0.08),
可按材料力学薄壁圆筒公式验算壁厚:
当液压缸采用铸造缸筒时,壁厚由铸造工艺确定,这时应按厚 壁圆筒公式验算壁厚。
当δ/D = 0.08~0.3时,可用实用公式验算:
当δ/D≥0.3时,可用下式验算:
式中 D ——缸筒内径; pmax——缸筒内的最高工作压力; [σ]——缸筒材料的许用应力。[σ]=σb/n,σb为缸筒材
3.V形密封圈 (1) 密封原理 V形圈的截面为V形, 如图4-15所示。 V形密封装置是由压环、V 形圈和支承环组成。所采用的V形圈的数量 可根据工作压力来选定。安装时,V形圈的 开口应而向压力高的一侧。 (2) 特点及应用 V形圈密封性能良好, 耐高压,寿命长,通过选择适当的V形圈个 数和调节压紧力,可获得最佳的密封效果; 但V形密封装置的摩擦阻力及轴向结构尺寸 较大。它主要用于活塞及活塞杆的往复运动 密封。
第四章液压缸
4.1液压缸的工作原理
一、液压缸的组成
液压缸组成:活塞2、缸体1、活塞杆3、端盖4、 密封5
二、液压缸的工作原理
缸筒固定,一腔连续地输入压力油,当油的 压力足以克服活塞杆上的所有负载时,活塞以速 度连续向另一腔运v 1 动,活塞杆对外界做功;反之 亦然。
活塞杆固定,一腔连续地输入压力油时,则 缸筒向另一方向运动;反之亦然。
柱塞缸只能作单作用缸,要求往复运动时,需 成对使用。柱塞缸能承受一定的径向力。
(1)单柱塞缸
●单向液压驱动,回程靠外力。
(2)双柱塞缸
●双向液压驱动
(3)参数计算
推力:F pApd2
4
速度:v
q A
4q
d2
●柱塞粗、受力好。
●简化加工工艺(缸体内孔和柱塞没有配合,不 需精加工;柱塞外圆面比内孔加工容易。)
由两个或多个活塞式缸套装而成,前一级活塞 缸的活塞杆是后一级活塞缸的缸筒。各级活塞依次 伸出可获得很长的行程,当依次缩回时缸的轴向尺 寸很小。
除双作用伸缩液压缸外,还有单作用伸缩液压 缸,它与双作用不同点是回程靠外力,而双作用靠 液压作用力。
4.3液压缸的结构
液压缸按结构组成可以分为缸体组件、活塞 组件、密封装置、缓冲装置和排气装置等
1、缸体组件
缸体组件包括缸筒 、缸盖和一些连接零 件。缸筒可以用铸铁 (低压时)和无缝钢 管(高压时)制成。
缸筒和缸盖的常见连接方式如图所示。从加工的工艺 性、外形尺寸和拆装是否方便不难看出各种连接的特点。图 a)是法兰连接,加工和拆装都很方便,只是外形尺寸大些。 图b)是半环连接,要求缸筒有足够的壁厚。图 c)是拉杆式 连接,拆装容易,但外形尺寸大。图d)是螺纹连接,外形 尺寸小,但拆装不方便,要有专用工具。图 e)是焊接连接 ,结构简单,尺寸小,但可能会有因焊接有一些变形。
第四章 液压缸
πd2
4
q 4q 速度: 速度:v = = 2 A πd
●柱塞粗、受力好。柱塞重量大自重造成单边磨损,
组合式液压缸
伸缩缸工作原理: 伸缩缸工作原理: 活塞或柱塞伸出时,从大到小, 活塞或柱塞伸出时,从大到小, 速度逐渐增大,推力逐渐减小。 速度逐渐增大,推力逐渐减小。 活塞或柱塞缩回时,从小到大。 活塞或柱塞缩回时,从小到大。
得: D=√4q/ΠV2+d2 ※求出D后,按国标圆整为标准尺寸。
52
液压缸活塞杆直径d的计算( 液压缸活塞杆直径d的计算(二)
(1)按工作压力和设备类型确定: 按工作压力和设备类型确定:
表4-1、表4-2
(2)按液压缸的往复速度比λv 确定: 确定:
v2 D2 λv = = 2 2 v1 D − d
34
35
36
37
38
39
40
41
42
缓冲装置
缓冲的必要性: 缓冲的必要性: ∵ 在质量较大、速度较高(v>12m/min),由于 惯性力较大,活塞运动到终端时会撞击缸盖, 产生冲击和噪声,严重影响加工精度,甚至 使液压缸损坏。 ∴ 常在大型、高速、或高精度液压缸中设置缓 冲装置或在系统中设置缓冲回路。
12
有杆腔进油参数计算
1)推力 )
F2 = ( p1 A2 − p2 A1 ) = [ p1 (
π D2
4
−
πd2
4
) − p2
π D2
4
]
=[
π D2
4
( p1 − p2 ) −
πd2
4
p1 ]
2)运动速度 )
qv 4 qv v2 = = A2 π ( D 2 − d 2 )
第四章液压缸(流体传动)
11
重庆大学机械工程学院
4.1 类型及特点
1.活塞缸 单活塞杆液压缸只有一端有活塞杆。两端进出油口A和B都
可通压力油或回油,以实现双向运动,故称为双作用缸。
1-缸底2-弹簧挡圈3-套环4-卡环5-活塞6- 型密封圈7-支承环8-挡圈9- 形密封圈 10-缸筒 11-管接头 12-导向套 13-缸盖 14-防尘圈 15-活塞杆 16-定位螺钉 17-耳环
4.2 液压缸的典型结构
径向销式连接 用锥销1把活塞2固连在活塞杆3上。特别适用于双出杆式
活塞。
32
重庆大学机械工程学院
4.2 液压缸的典型结构
缓冲装置 作用:防止活塞在行程的终点与前后端盖板发生碰撞,引起 噪音,影响工件精度或使液压缸损坏。 前后端盖上设缓冲装置 缓冲原理:
利用节流方法在液压缸的 回油腔产生阻力,减小速 度,避免撞击。
螺母连接
结构简单,适用负载较小,受力无冲击 的缸中,安装方便可靠,但在活塞杆上车 螺纹将削弱其强度。
30
重庆大学机械工程学院
4.2 液压缸的典型结构
卡环式连接 活塞杆上开有一个环形槽,槽内装有两个半圆环3以夹紧 活塞4,半环3由轴套2套住,而轴套2的轴向位置用弹簧卡 圈1来固定。
31
重庆大学机械工程学院
缸筒内要经过精细加工,表面粗糙度Ra<0.08m,以 减少密封件的摩擦。
27
重庆大学机械工程学院
4.2 液压缸的典型结构
缸盖
通常由钢材制成,有前端盖和后端盖,安装在缸筒的前后两端, 盖板和缸筒的连接方法有焊接、拉杆、法兰、罗纹连接等。
28
重庆大学机械工程学院
4.2 液压缸的典型结构
活塞 活塞的材料通常用钢或铸铁,也可采用铝合金。活塞应有一
第4章液压缸
第4章 液压缸
图4-12 伸缩缸
第4章 液压缸 2. 齿条活塞缸
第4章 液压缸
图4-5 单杆活塞缸的运动范围
第4章 液压缸
单杆活塞缸还有另外一种非常重要的工作方式,即两腔同时通入压力
油,如图4-6所示,这种油路连接方式称为差动连接。在忽略两腔连通油路 压力损失的情况下,差动连接时液压缸两腔的油液压力相等。但由于无杆 腔受力面积大于有杆腔,活塞向右的作用力大于向左的作用力,活塞杆作 伸出运动,并将有杆腔的油液挤出,流进无杆腔,加快了活塞杆的伸出速 度。 差动连接时,有杆腔排出流量 q' v3 A2 ,进入无杆腔后,无杆腔流量 为
齿条活塞缸又称无杆式液压缸,它由带有齿条杆的双活塞缸和齿轮
组成,如图4-13所示。活塞的往复移动经齿轮齿条机构转换成齿轮轴的周
期性往复转动。它多用于自动生产线、组合机床等的转位或分度机构中。
图4-13 齿条活塞缸
4.1.1 活塞式液压缸
1、双杆活塞缸
图4-1所示为双杆活塞缸的原理图。活塞两侧均装有活塞杆。当两活塞 杆直径相同,供油压力和流量不变时,活塞(或缸体)在两个方向的运动速 度和推力也都相等,即
第4章 液压缸
q 4q A (D 2 - d 2) F p1 - p 2)A (p1 - p 2)(D 2 - d 2) ( 4
第4章 液压缸
液压缸往复运动时的速度比为
v2 D2 2 2 v v1 D - d
第四章_液压缸课件
4.1 液压缸的类型和基本参数计算
多级缸
又称伸缩套筒式缸,由两个或多个活塞式缸套装而成。前 一级活塞缸的活塞杆是后一级活塞缸的缸筒。各级活塞依次伸 出可获得很长的行程,当依次缩回时缸的轴向尺寸很小。 除双作用伸缩液压缸外, 还有单作用伸缩液压缸, 它与双作用不同点是回程 靠外力,而双作用靠液压 作用力。特别适用于工程 机械及自动线步进式输送 装置。
4.1 液压缸的类型和基本参数计算
双杆活塞缸
右图所示为活塞杆固定的双杆 活塞缸。它的进、出油液可经 活塞杆内的通道输入液压缸或 从液压缸流出。也可以用软管 连接,进、出口就位于缸的两 端。其工作台移动范围为缸筒 有效行程的两倍,常用于大中 型的机械 。
4.1 液压缸的类型和基本参数计算
双杆活塞缸
FF12
5.4KN 4.5KN
4.1 液压缸的类型和基本参数计算
活塞缸串联
3) 已知F1=0,求F2?
F1 0
p1 A1
p2 A2
F1
F2
11.25KN
p2 A1 F2
总结:液压串联时,求速度时,前一液压缸的输出为后一液 压缸的输入;求力时,需对每一个液压缸进行受力平衡分析。
由上可知,差动连接时实际的有效作用面积是活塞杆的横截面积。
4.1 液压缸的类型和基本参数计算
差动液压缸
与非差动连接无杆 腔进油工况相比,在输 入油液压力和流量相同 的条件下,活塞杆伸出 速度较大而推力较小。 实际应用中,液压系统 常通过控制阀来改变单 杆缸的油路连接,使其 有不同的工作方式,从 而获得快进(差动连 接)—工进(无杆腔进 油)— 快退(有杆腔 进油)的工作循环。
第四章液压缸
第四章 液压缸第一节 液压缸的分类和特点液压缸按结构特点的不同可分为活塞缸、柱塞缸和摆动缸三类。
按作用方式不同,可分为单作用式和双作用式两种。
1.活塞式液压缸 活塞式液压缸根据其使用要求不同可分为双杆式和单杆式两种。
(1)双杆式活塞缸。
活塞两端都有一根直径相等的活塞杆伸出的液压缸称为双杆式活塞缸,它一般由缸体、缸盖、活塞、活塞杆和密封件等零件构成。
根据安装方式不同可分为缸筒固定式和活塞杆固定式两种。
如图4-5(a)所示的为缸筒固定式的双杆活塞缸。
它的进、出口布置在缸筒两端,活塞通过活塞杆带动工作台移动,当活塞的有效行程为l 时,整个工作台的运动范围为3l ,所以机床占地面积大,一般适用于小型机床,当工作台行程要求较长时,可采用图4-5(b)所示的活塞杆固定的形式,这时,缸体与工作台相连,活塞杆通过支架固定在机床上,动力由缸体传出。
这种安装形式中,工作台的移动范围只等于液压缸有效行程l 的两倍(2l),因此占地面积小。
进出油口可以设置在固定不动的空心的活塞杆的两端,但必须使用软管连接。
由于双杆活塞缸两端的活塞杆直径通常是相等的,因此它左、右两腔的有效面积也相等,当分别向左、右腔输入相同压力和相同流量的油液时,液压缸左、右两个方向的推力和速度相等。
当活塞的直径为D ,活塞杆的直径为d ,液压缸进、出油腔的压力为p 1和p 2,输入流量为q 时,双杆活塞缸的推力F 和速度v 为:F=A(p 1-p 2)=π (D 2-d 2) (p 1-p 2) /4 (4-18)v=q/A=4q/π(D 2-d 2) (4-19)式中:A 为活塞的有效工作面积。
双杆活塞缸在工作时,设计成一个活塞杆是受拉的,而另一个活塞杆不受力,因此这种液压缸的活塞杆可以做得细些。
(2)单杆式活塞缸。
如图4-6所示,活塞只有一端带活塞杆,单杆液压缸也有缸体固定和活塞杆固定两种形式,但它们的工作台移动范围都是活塞有效行程的两倍。
图4-6单杆式活塞缸由于液压缸两腔的有效工作面积不等,因此它在两个方向上的输出推力和速度也不等,其值分别为:F 1=(p 1A 1-p 2A 2)=π[(p 1-p 2)D 2-p 2d 2]/4 (4-20)F 1=(p 1A 1-p 2A 2)=π[(p 1-p 2)D 2-p 2d 2 ]/4 (4-21)v 1=q/A 1=4q/πD 2 (4-22)v 2=q/A 2=4q/π(D 2-d 2) (4-23)由式(4-20)~式(4-23)可知,由于A 1>A 2,所以F 1>F 2,v 1<v 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章液压缸
4.1液压缸
液压缸是使负载作直线运动的执行元件。
1、液压缸分类
分为单作用式液压缸和双作用式液压缸两类。
单作用式液压缸又分为无弹簧式、附弹簧式、柱塞式三种,如图3-1所示。
双作用式液压缸又分为单杆形,双杆形两种,如图3-2所示。
2、液压缸结构:图3-3为液压缸结构图,选用液压缸时,首先考虑活塞杆长度(由行程决定),再根据回路的最高压力选出适合的液压缸。
<0.08um,以减少密封1)缸筒主要是由钢材制成,缸筒内要经过精细加工,表面粗糙度R
a
件的摩擦。
2)盖板:通常由钢材制成,有前端盖和后端盖,安装在缸筒的前后两端,盖板和缸筒的连接方法有焊接、拉杆、法兰、罗纹连接等。
3)活塞的材料通常用钢或铸铁,也可采用铝合金。
活塞和缸筒内壁间需要密封,采用的密封件有O形环、V形油封、U形油封、X形油封和活塞环等。
而活塞应有一定的导向长度,一般取活塞长度为缸筒内径的(0.6~1.0)倍。
3.1液压缸
4)活塞杆:是由钢材做成实心杆或空心杆,表面经淬火再镀铬处理并抛光。
5)缓冲装置:为了防止活塞在行程的终点与前后端盖板发生碰撞,引起噪音,影响工件精度或使液压缸损坏,常在液压缸前后端盖上设有缓冲装置,以使活塞移到快接近行程终点时速度减慢下来终至停止。
如图3-3b所示前后端盖上的缓冲阀附近有单向阀的结构。
当活塞接近端盖时,缓冲环插入端盖板油出入口,强迫压油经缓冲阀的孔口流出,促使活塞的速度缓慢下来。
相反,当活塞从行程的尽头将离去时,如压油只作用在缓冲环上,活塞要移动的那一瞬间将非常不稳定甚至无足够力量推动活塞,故必须使压油经缓冲阀内的止回阀作用在活塞上,如此才能使活塞平稳的前进。
6)放气装置:在安装过程中或停止工作的一段时间后,空气将渗入液压系统内,缸筒内如存留空气,将使液压缸在低速时产生爬行、颤抖现象,换向时易引起冲击,因此在液压缸结构上要能及时排除缸内留存的气体。
一般双作用式液压缸不设专门的放气孔,而是将液压油出入口布置在前后盖板的最高处。
大型双作用式液压缸则必须在前后端盖板设放气栓塞。
对于单作用式液压缸液压油出入口一般设在缸筒底部,在最高处设放气栓塞。
7)密封装置:液压缸的密封装置用以防止油液的泄漏,液压缸的密封主要是指活塞、活塞杆处的动密封和缸盖等处的静密封。
常采用O形密封圈和Y形密封圈。
3、液压缸的参数计算
图3-4所示,液压缸缸体固定,液压油从A口进入作用在活塞上,产生一推力F,通过活塞杆以克服负荷W,活塞以速度υ向前推进,同时将活塞杆侧内的油液通过B 口流回油箱。
相反,如高压油从B口进入,则活塞后退。
3、液压缸的参数计算
1)速度和流量
若忽略泄漏,则速度和流量的关系如下:
Q =Aυ(3-1)
υ=Q/A (3-2)
式中:Q —液压缸的输入流量(m3/s或L/min ,L=1×10-3m3)
A —液压缸活塞上有效工作面积
υ—活塞移动速度
通常活塞上工作有效面积是固定的,由式(3-2)可知,活塞的速度取决于输入液压缸的流量,又由理论上可知,速度和负载无关。
2)推力和压力
推力F是压力为p的液压油作用在工作有效面积为A的活塞上,以平衡负载W,若液压缸回油接油箱,则P0 =0,故:
F = W = p.A ( N) (3-3)
式中:p —液压缸的工作压力(MPa)
A —液压缸活塞上有效工作面积(mm2)
推力F可看成是液压缸的理论推力,因为活塞的有效面积固定,压力取决于总负载。
图3-6所示为单杆活塞的另一种联结方式。
它把右腔的回油管道和左腔的进油管道接通。
这种联结方式称为差动联结。
显然,差动联结时活塞运动速度较快,产生的推力较小。
所以差动联结常用于空载快进场合。
1)摆动缸:摆动式液压缸也称摆动马达。
4、其他液压缸
1)摆动缸:摆动式液压缸也称摆动马达。
当它通入液压油时,它的主轴输出小于3600的摆动运动。
图3-7a所示为单叶片式摆动缸,它的摆动角度较大,可达3000、当摆动缸进出
油口压力为p
1和p
2
,输入流量为q时,它的输出转矩T和角速度ω
式中:b为叶片的宽度,R
1,R
2
为叶片底部、顶部的回转半径。
图3-7b所示为双叶片式摆动缸,它的摆动角度和角速度为单叶片式的一半,而输出角度是单叶片式的两倍。
2)增压缸:在某些短时或局部需要高压的液压系统中,常用增压缸与低压大流量泵配合作
用,单作用增压缸的工作原理如图3-8a所示,输入低压力p
1的液压油,输出高压力为p
2
的液压油,增大压力关系如式(3-12)。
单作用增压缸不能连续向系统供油,图3-8 b为双作用式增压缸,可由两个高压端连续向系统供油。
伸缩缸:图3-9所示,伸缩式液压缸由两个或多个活塞式液压缸套装而成,前一级活塞缸的活塞是后一级活塞缸的缸筒,可获得很长的工作行程。
伸缩缸广泛的用于起重运输车辆上。
图3-9a是单作用式,图3-9b是双作用式。
4、其他液压缸
4)齿轮缸:图3-10所示,它由两个柱塞和一套齿轮齿条传动装置组成,当液压油推动活塞左右往复运动时,齿条就推动齿轮往复转动,从而由齿轮驱动工作部件作往复旋转运动。