统计和概率专题37页PPT
合集下载
《统计与概率》课件
概率基础
1 概率定义
概率是事件发生的可能性,介于0和1之间。 通过概率可以评估随机事件的发生概率。
2 概率规则
概率规则包括加法规则、乘法规则和条件概 率等,用于计算复杂事件的概率。
数据收集和分析
1 数据收集方法
数据收集可以通过实验、调查、观察等方式 进行,确保数据的准确性和可靠性。
2 数据分析技术
《统计与概率》PPT课件
欢迎来到《统计与概率》的PPT课件!在这个课件中,我们将一起探索统计学 和概率论的基本概念、方法以及它们在实际应用中的重要性。
什么是统计与概率
统计与概率是数据分析和决策支持的基石。统计学关注数据的收集、整理和 解释,而概率论关注不确定性和随机事件的概率分布。
基本概念:统计学和概率论
总结和提高建议
通过本课件的学习,你将了解统计与概率的基本概念和方法,以及它们在实 际应用中的重要性。掌握这些知识将有助于你在数据分析和决策过设检验、回 归分析等,帮助我们从数据中提取有用信息 和洞察。
统计与概率的应用
1 实际应用案例
统计与概率在医学研究、市场调查、金融风 险评估等领域有广泛的应用。
2 统计与概率的重要性
统计与概率的应用可以为决策制定提供科学 依据,并预测事件的可能结果,帮助我们做 出更明智的选择。
统计学
通过收集和分析数据来描述和理解现象,帮助 我们揭示数据背后的规律和趋势。
概率论
研究随机现象的可能性和概率,为我们预测和 评估事件的发生提供基础。
统计方法
1 描述统计
2 推断统计
通过图表、概括统计量等方法,对数据进行 整理、总结和描述,揭示数据的特征和趋势。
基于样本数据,利用统计方法进行推断,对 总体的特征和参数进行估计和判断。
《概率论与数理统计》全套课件PPT(完整版)
m?????若对于一随机试验每个样本点出现是等可能的样本空间所含的样本点个数为无穷多个且具有非零的有限的几何度量即则称这一随机试验是一几何概型的20义定义当随机试验的样本空间是某个区域并且任量意一点落在度量长度面积体积相同的子区域是等可能的则事件a的概率可定义为?mamap??说明当古典概型的试验结果为连续无穷多个时就归结为几何概率
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
《统计》统计与概率PPT课件(数据的数字特征)
栏目 导引
第五章 统计与概率
判断正误(正确的打“√”,错误的打“×”)
(1)中位数是一组数据中间的数.( × ) (2)众数是一组数据中出现次数最多的数.( √ )
(3) 一 组 数 据 的 标 准 差 越 小 , 数 据 越 稳 定 , 且 稳 定 在 平 均 数 附
近.(√ )
栏目 导引
第五章 统计与概率
奥运会体操比赛的计分规则为:当评委亮分后,其成绩先去掉
一个最高分,去掉一个最低分,再计算剩下分数的平均值,这是因
为( )
A.减少计算量
B.避免故障
C.剔除异常值
D.活跃赛场气氛
解析:选 C.因为在体操比赛的评分中使用的是平均分,记分过程中
采用“去掉一个最高分,去掉一个最低分”的方法,就是为了防止
个别裁判的人为因素给出过高或过低的分数对选手的得分造成较
栏目 导引
第五章 统计与概率
解:(1) -x 甲=18(95+82+88+81+93+79+84+78)=85(分), -x 乙=18(83+75+80+80+90+85+92+95)=85(分). 甲、乙两组数据的中位数分别为 83 分、84 分.
栏目 导引
第五章 统计与概率
(2)由(1)知-x 甲=-x 乙=85 分,所以 s2甲=18[(95-85)2+(82-85)2+…+(78-85)2]=35.5, s2乙=18[(83-85)2+(75-85)2+…+(95-85)2]=41. ①从平均数看,甲、乙均为 85 分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲; ③从方差来看,因为-x 甲=-x 乙,s2甲<s2乙,所以甲的成绩较稳定;
栏目 导引
第五章 统计与概率
第五章 统计与概率
判断正误(正确的打“√”,错误的打“×”)
(1)中位数是一组数据中间的数.( × ) (2)众数是一组数据中出现次数最多的数.( √ )
(3) 一 组 数 据 的 标 准 差 越 小 , 数 据 越 稳 定 , 且 稳 定 在 平 均 数 附
近.(√ )
栏目 导引
第五章 统计与概率
奥运会体操比赛的计分规则为:当评委亮分后,其成绩先去掉
一个最高分,去掉一个最低分,再计算剩下分数的平均值,这是因
为( )
A.减少计算量
B.避免故障
C.剔除异常值
D.活跃赛场气氛
解析:选 C.因为在体操比赛的评分中使用的是平均分,记分过程中
采用“去掉一个最高分,去掉一个最低分”的方法,就是为了防止
个别裁判的人为因素给出过高或过低的分数对选手的得分造成较
栏目 导引
第五章 统计与概率
解:(1) -x 甲=18(95+82+88+81+93+79+84+78)=85(分), -x 乙=18(83+75+80+80+90+85+92+95)=85(分). 甲、乙两组数据的中位数分别为 83 分、84 分.
栏目 导引
第五章 统计与概率
(2)由(1)知-x 甲=-x 乙=85 分,所以 s2甲=18[(95-85)2+(82-85)2+…+(78-85)2]=35.5, s2乙=18[(83-85)2+(75-85)2+…+(95-85)2]=41. ①从平均数看,甲、乙均为 85 分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲; ③从方差来看,因为-x 甲=-x 乙,s2甲<s2乙,所以甲的成绩较稳定;
栏目 导引
第五章 统计与概率
《概率与统计》PPT课件
概率知识
2Байду номын сангаас
抽扑克牌,并回答问题。
这副牌已经去掉了 J,Q,K和大小王,A看成 1.
可能会抽到 什么呢?
从例2中你获得了哪些信息?
合作交流,取长补短。
解决问题(1)
将这副牌洗好后从中任意抽取一张,以花色分有几 种可能的结果呢?以数字分呢?
解决问题(2)
请判断下列事件是“必然发生”、“可能发生”、 还是 “不可能发生”。 (1)抽到的牌上的数比11小。 (2)抽到的牌是黑桃Q。 (3)抽到的牌是方块2。
解决问题(3):算一算,议一议。
1 ①抽到黑桃的可能性是( )。 4 1 ②抽到5的可能性是( )。 10
1 ③抽到梅花A的可能性是( 40)。
④抽到A和梅花A的可能性一样大吗?为什么?
1 ( 不一样大 ,因为 10
≠
1 ) 40
⑤在40张牌中任意抽取1张与在10张黑桃中任意抽 取1张,两种抽法抽到5可能性各是多少? 1 1 ( 10 10 )
课堂检测(一)
把1--20这20个数分别写在20张完全相同的纸条上,做 成团放在盒中混合,然后从中任意摸出一个纸团。
摸到奇数、偶数、质数、 合数的可能性各是多少? 摸到奇数的可能 性是
1 2
1 1 奇数( ) 偶数( ) 2 2
11 2 质数( ) 合数( ) 20 5
课堂检测(二)
根据下面提供的图片,你能提出哪些可能性的问题 并找你的好朋友来解决。
1
2
3
4
3、 有一些红球和绿球,按要求 在袋子里一共放8个球。
①任意摸一个,不可能是红球。
②要使摸出红球的可能性大。
③每次任意摸一个,摸50次,摸到红球和绿球的 次数差不多。
概率论与数理统计-第37讲
2
n个独立 同分布的 均匀分布 随机变量 的和:
X1 X1 X2 X3
X1 X2 X1 X2 X3 X4
3
定理 (独立同分布的中心极限定理(CLT )):
设随机变量X1, X 2 ,, X n ,,相互独立且同分布,
E Xi ,D Xi 2,i
E Xi , D Xi 2, i 1, 2,,
n
n
E( Xi ) E(Xi ) n.
i 1
i 1
n
n
D( Xi ) D( Xi ) n 2.
i 1
i 1
n
近似
据CLT,有 Xi ~ N (n, n 2 ).
i 1
故CLT仅仅是分布类型上的一种近似.("万物归一")
5
定理 (德莫弗-拉普拉斯中心极限定理):
记nA为n重贝努里试验中事件A发生的次数, 并记事件A在每次试验中发生的概率为p (0 p 1).
近似
则对于充分大的n有 nA ~ N(np,np(1 p)).
即, 对于二项分布B(n, p),当n充分大时, 可用正态分布来近似.
分布相同,且E( Xi ) 100, D( Xi ) 322,i 1, 2,,55.
55
P{倒了55次后该瓶红酒仍有剩余} P{ Xi 6000}
根据独立同分布的CLT ,可知
i1
55
近似
Xi ~ N (55100,55 322 ).
i 1
55
P{
i1
Xi
6000}
600055100 32 55
2.11
0.9826.
n个独立 同分布的 均匀分布 随机变量 的和:
X1 X1 X2 X3
X1 X2 X1 X2 X3 X4
3
定理 (独立同分布的中心极限定理(CLT )):
设随机变量X1, X 2 ,, X n ,,相互独立且同分布,
E Xi ,D Xi 2,i
E Xi , D Xi 2, i 1, 2,,
n
n
E( Xi ) E(Xi ) n.
i 1
i 1
n
n
D( Xi ) D( Xi ) n 2.
i 1
i 1
n
近似
据CLT,有 Xi ~ N (n, n 2 ).
i 1
故CLT仅仅是分布类型上的一种近似.("万物归一")
5
定理 (德莫弗-拉普拉斯中心极限定理):
记nA为n重贝努里试验中事件A发生的次数, 并记事件A在每次试验中发生的概率为p (0 p 1).
近似
则对于充分大的n有 nA ~ N(np,np(1 p)).
即, 对于二项分布B(n, p),当n充分大时, 可用正态分布来近似.
分布相同,且E( Xi ) 100, D( Xi ) 322,i 1, 2,,55.
55
P{倒了55次后该瓶红酒仍有剩余} P{ Xi 6000}
根据独立同分布的CLT ,可知
i1
55
近似
Xi ~ N (55100,55 322 ).
i 1
55
P{
i1
Xi
6000}
600055100 32 55
2.11
0.9826.
《概率》统计与概率PPT(频率与概率)
700÷0.95≈1 789.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率的应用——数学建模
典例为了估计水库中鱼的尾数,可以使用以下的方法:先从水库
中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.
经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕
出500尾,查看其中有记号的鱼,有40尾,试根据上述数据,估计水库
定义
表示法
一般地,对于事件 A 与事件
包含
关系
B,如果事件 A 发生,则事件
一定发生
B⊇A
________
B__________,称事件 B 包含
(或
事件 A(或事件 A 包含于事件
A⊆B
_______)
B)
图示
定义
表示法
给定事件 A,B,由所
有 A 中的样本点与 B
并事件
中的样本点组成的事
和
件称为 A 与 B 的_____
合格产品
D.该厂生产的产品合格的可能性是99.99%
答案:D
解析:合格率是99.99%,是指该工厂生产的每件产品合格的可能
性大小,即合格的概率.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率与频率的关系及求法
例2下面是某批乒乓球质量检查结果表:
抽取球数
优等品数
优等品出
现的频率
50
45
100
92
200
概率为78%”,这是指(
)
A.明天该地区有78%的地区降水,其他22%的地区不降水
B.明天该地区降水的可能性大小为78%
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率的应用——数学建模
典例为了估计水库中鱼的尾数,可以使用以下的方法:先从水库
中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.
经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕
出500尾,查看其中有记号的鱼,有40尾,试根据上述数据,估计水库
定义
表示法
一般地,对于事件 A 与事件
包含
关系
B,如果事件 A 发生,则事件
一定发生
B⊇A
________
B__________,称事件 B 包含
(或
事件 A(或事件 A 包含于事件
A⊆B
_______)
B)
图示
定义
表示法
给定事件 A,B,由所
有 A 中的样本点与 B
并事件
中的样本点组成的事
和
件称为 A 与 B 的_____
合格产品
D.该厂生产的产品合格的可能性是99.99%
答案:D
解析:合格率是99.99%,是指该工厂生产的每件产品合格的可能
性大小,即合格的概率.
课堂篇探究学习
探究一
探究二
思维辨析
当堂检测
概率与频率的关系及求法
例2下面是某批乒乓球质量检查结果表:
抽取球数
优等品数
优等品出
现的频率
50
45
100
92
200
概率为78%”,这是指(
)
A.明天该地区有78%的地区降水,其他22%的地区不降水
B.明天该地区降水的可能性大小为78%
小学数学课程与教学论:第5章《统计与概率》PPT教学课件
三 年 级 下
2、经历简单的数据收集和整理 过程,了解调查、测量等收集 数据的简单方法,并运用自己 的方式(文字、图画、表格等) 呈现整理数据的结果。
3、通过对数据的简单分析,体 会运用数据进行表达与交流的 作用,感受数据蕴涵信息。
三 年 级 下
例20:对全班同学的身高进行调查分析。
[说明]学校一般每年都要测量学生的身高,这为学习统 计提供了很好的数据资源,因此这个问题可以贯穿第一学 段和第二学段,根据不同学段的学生特点,要求可以有所 不同。希望学生把每年测量身高的数据都保留下来,养成 保存资料的习惯。在第一学段,主要让学生感悟可以从数 据中得到一些信息。
一 年 级 上
1、能根据给定的标准或者自 己选定的标准,对事物或数据 进行分类,感受分类与分类标 准的关系。
一 年 级 上
2、经历简单的数据收集和整理 过程,了解调查、测量等收集 数据的简单方法,并运用自己 的方式(文字、图画、表格等) 呈现整理数据的结果。
二 年 级 下
2、经历简单的数据收集和整理 过程,了解调查、测量等收集 数据的简单方法,并运用自己 的方式(文字、图画、表格等) 呈现整理数据的结果。
《小学数学课程与教学论》
第五章 统计与概率
老师
内容结构
• 第一学段
初步的数据统计活动
• 第二学段
简单数据统计过程 随机现象发生的可能性
01
统计教学
一、内容标准 二、教学建议
初步的数据统计活动:第一学段
1. 能根据给定的标准或者自己选定的标准,对事物或数据进行分类, 感受分类与分类标准的关系。(例18)
例2:将数50,98,38,10,51排序,用“>”或“<”表示。
用大得多、大一些、小一些、小得多等语言进一步描述它们之间关系。
2、经历简单的数据收集和整理 过程,了解调查、测量等收集 数据的简单方法,并运用自己 的方式(文字、图画、表格等) 呈现整理数据的结果。
3、通过对数据的简单分析,体 会运用数据进行表达与交流的 作用,感受数据蕴涵信息。
三 年 级 下
例20:对全班同学的身高进行调查分析。
[说明]学校一般每年都要测量学生的身高,这为学习统 计提供了很好的数据资源,因此这个问题可以贯穿第一学 段和第二学段,根据不同学段的学生特点,要求可以有所 不同。希望学生把每年测量身高的数据都保留下来,养成 保存资料的习惯。在第一学段,主要让学生感悟可以从数 据中得到一些信息。
一 年 级 上
1、能根据给定的标准或者自 己选定的标准,对事物或数据 进行分类,感受分类与分类标 准的关系。
一 年 级 上
2、经历简单的数据收集和整理 过程,了解调查、测量等收集 数据的简单方法,并运用自己 的方式(文字、图画、表格等) 呈现整理数据的结果。
二 年 级 下
2、经历简单的数据收集和整理 过程,了解调查、测量等收集 数据的简单方法,并运用自己 的方式(文字、图画、表格等) 呈现整理数据的结果。
《小学数学课程与教学论》
第五章 统计与概率
老师
内容结构
• 第一学段
初步的数据统计活动
• 第二学段
简单数据统计过程 随机现象发生的可能性
01
统计教学
一、内容标准 二、教学建议
初步的数据统计活动:第一学段
1. 能根据给定的标准或者自己选定的标准,对事物或数据进行分类, 感受分类与分类标准的关系。(例18)
例2:将数50,98,38,10,51排序,用“>”或“<”表示。
用大得多、大一些、小一些、小得多等语言进一步描述它们之间关系。
《统计与概率》教学课件
重点复习,强化提高
六(1)班男、女生人数统计表
性别 男生 女生 合计
人数 22
18
40
2、如果要反映六(1)班男、女生人数占全班
人数的百分比,应选用什么统计图合适?
根据以上统计表和统计图, 你得到了哪些信息?
六(1)班同学最喜欢的运动项目统计表
男生 女生
足球 12 3
跳绳 2 6
乒乓球 5 5
其他 3 4
枚数 届数
9
国家
中国
61
韩国
28
10 11 12 13 14
复式统计表
94 183 137 129 150
93 54 63 65 96
重点复习,强化提高 1、你学过几种统计图?各有什么特征?
(1)条形统计图:清楚地表示出各种数量的多少。 (2)折线统计图:清楚地表示数量的变化情况。 (3)扇形统计图:清楚地表示各种数量的占有率。
身高/m 1.40 1.43 1.46 1.49 1.52 1.55 1.58 人数 1 3 5 10 12 6 3
体重/kg 30 33 36 39 42 45 48 人数 2 4 5 12 10 4 3
(1)在上面两组数据中,平均数、中位数和众数各是什么?
身高:
平均数: (1.4+1.43×3+1.46×5+1.49×1 0+1.52×12+1.55×6+1.58×3) ÷40 =60.17 ÷40 ≈1.50(m)
重点复习,强化提高
2、统计表的组成部分:
一般分为表格外和表格内两部分。表格外部分 包括表的名称,单位说明和
制表日期;表格内部包括表头、横表目、纵 表目和数据四个方面
相关主题