废水生物处理基本原理—生物脱氮原理

合集下载

污水生物脱氮除磷的基本原理

污水生物脱氮除磷的基本原理

污水生物脱氮除磷的基本原理

1.生物脱氮

废水中存在着有机氮、NH3-N、NxO--N等形式的氮,而其中以NH3-N和有机氮为主要形式。生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和NxO气体的过程。进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。

1.1. 氨化作用

氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。

在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨。另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应

在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。

RCH(NH2)COOH→RCH2COOH+NH1

CH3CH(NH2)COOH→CH3CH(OH)COOH+NH3

CH2(OH)CH(NH2)COOH→CH3COCOOH+NH3

1.2. 硝化作用

硝化作用是指将NH3-N氧化为NxO--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。

亚硝酸菌和硝酸菌统称为硝化菌。发生硝化反应时细菌分别从氧化NH3-N和N2O--N 的过程中获得能量,碳源来自无机碳化合物,如CO2-3、HCO-、CO2等。

硝化过程的三个重要特征:

⑴NH3的生物氧化需要大量的氧,大约每去除1g的NH3-N需要4.2gO2;

⑵硝化过程细胞产率非常低,难以维持较高物质浓度,特别是在低温的冬季;

生物脱氮基本原理

生物脱氮基本原理

生物脱氮基本原理

摘要:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。

关键词:生物脱氮基本原理氨化硝化反硝化同化

生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和NxO气体的过程[1]。

废水中存在着有机氮、NH3-N、NOx--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NOx--N,最后通过反硝化作用使NOx--N转化成N2,而逸入大气。

由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。

1. 氨化作用

氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮酸和氨:

(2-1)

丙氨酸亚氨基丙酸法丙酮酸

另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下:

(2-2)

在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。

污水脱氮原理

污水脱氮原理

污水脱氮原理

污水脱氮是指将污水中的氮化物(主要是氨氮和硝酸盐氮)转化为氮气的处理过程。污水中的氮化物来自于人类活动、农业排放、工业废水等源头。

污水脱氮常用的方法有生物法和化学法。生物法主要采用厌氧-好氧(A/O)工艺,通过厌氧反应池和好氧反应池的连续操作,使污水中的氮化物转化为氮气释放出去。其中,厌氧反应池中的硝态氮被还原为氨态氮,然后在好氧反应池中通过硝化反应转化为亚硝酸盐和硝酸盐,最后通过硝化反应进一步转化为氮气。

化学法主要采用化学药剂来进行脱氮,常用的药剂有硫酸铁和硫酸铝等。硫酸铁法利用硫酸铁作为氧化剂将氨氮氧化为氮气,同时生成硫酸亚铁;硫酸铝法则是利用硫酸铝沉淀污水中的氨氮,从而实现脱氮。

此外,还有一种新兴的脱氮技术是生物膜法。利用特殊的微生物膜来吸附和分解污水中的氮化物,将其转化为氮气释放出去。生物膜法具有体积小、处理效果好等优点。

总的来说,污水脱氮原理主要是通过生物法的硝化反应、还原反应以及化学法的氧化还原反应,将污水中的氮化物转化为氮气,从而达到去除氮化物的目的。

生物脱氮基本原理

生物脱氮基本原理

生物脱氮基本原理 Last revised by LE LE in 2021

生物脱氮基本原理

作者:weidongwin

阅读:994次

上传时间:2005-10-13

推荐人:weidongwin

简介:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施

中均能完成,故生物脱氮的关键在于硝化和反硝化。

关键字:生物脱氮基本原理氨化硝化反硝化同化

生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和N x O气体的过程[1]。

废水中存在着有机氮、NH3-N、NO x--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NO x--N,最后通过反硝化作用使NO x--N转化成N2,而逸入大气。

由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。

1.氨化作用

氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化

细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮

酸和氨:

(2-1)

丙氨酸亚氨基丙酸法丙酮酸

另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下:

污水处理中的生物脱氮技术

污水处理中的生物脱氮技术

反硝化反应
01
反硝化反应是生物脱氮技术的另一个关键环节,是指
通过反硝化细菌的作用将硝酸盐还原成氮气的过程。
02
反硝化反应需要在缺氧或厌氧的条件下进行,利用有
机物作为电子供体,将硝酸盐还原成氮气排出系统。
03
反硝化反应能够去除废水中的硝酸盐氮,从而达到脱
氮的目的。
同步硝化反硝化
同步硝化反硝化是指在同一个反应器内同时进行硝化反应和反硝化反应的 过程。
开发新型生物脱氮技术
针对不同水质、不同处理要求的污水处理场景,开发新型、高效的 生物脱氮技术,以满足不断变化的污水处理需求。
强化实际应用研究
加强生物脱氮技术在污水处理厂的实际应用研究,积累运行数据, 为技术的推广应用提供实践依据。
THANKS
THANK YOU FOR YOUR WATCHING
通过控制反应条件,如溶解氧的浓度和有机物的投加量,可以实现同步硝 化反硝化,提高脱氮效率。
同步硝化反硝化可以简化工艺流程,减少设备和投资成本,因此在污水处 理领域具有广泛的应用前景。
03
生物脱氮技术的主要方法
活性污泥法
总结词
一种常用的生物脱氮技术,通过微生物的作用将污水中的氨氮转化为氮气。
详细描述
污水处理中的生物脱氮技术
汇报人:可编辑 2024-01-04
目录 CONTENTS

污水处理工艺脱氮除磷基本原理

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理

国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用.从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步

实现工业化流程.目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。

➢生物脱氮原理

生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行.

由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:

硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。

反硝化阶段:硝酸盐的存在,缺氧条件DO值在0。2mg/L左右,充足碳源(能源),合适的PH条件。

生物脱氮过程如图5—1所示。

反硝化细菌

+有机物(氨化作用)(硝化作用) (反硝化作用)➢生物除磷原理

简述生物脱氮除磷的原理

简述生物脱氮除磷的原理

简述生物脱氮除磷的原理

生物脱氮除磷的原理是通过微生物在厌氧和好氧条件下的代谢作用,将废水中的氮和磷分别转化为气态和固态的形式,从而实现废水的净化。

具体来说,生物脱氮是通过硝化和反硝化过程实现的。在硝化过程中,亚硝化单胞菌将废水中的NH3-N氧化为亚硝酸盐,然后再由硝化杆菌将其转化为更加稳定的硝酸盐。在反硝化过程中,缺氧条件下污水中存在的硝酸盐被微生物还原为氮气,实现脱氮。

而生物除磷则是通过聚磷菌在厌氧条件下释放磷,有氧条件下摄取磷,通过排除富磷污泥达到除磷目的。为了保证聚磷菌的繁殖以及有效的生物除磷作用,需要有充足的挥发性脂肪酸。

在污水处理厂的生物脱氮除磷系统中,一

般会采用A/A/O方法,即厌氧池-缺氧池-好氧池组成,以达到同时脱氮、除磷和降解有机物的目的。

污水生物脱氮除磷的基本原理

污水生物脱氮除磷的基本原理

污水生物脱氮除磷的基本原理

污水生物脱氮除磷是一种利用生物的代谢能力来降低污水中氮和磷的浓度的技术。其基本原理是利用污水中的生物分解形成的氨氮,通过氨氧化、反硝化及硫酸还原这三个生物代谢过程,将氨氮转变成无害物质,并利用磷细菌将磷结合在污泥中,最终将氮和磷从污水中去除。

1、氨氧化过程

氨氧化过程是污水生物处理中脱氮的主要过程,也是把氨氮转变成无害物质的主要过程。氨氧化的具体过程是把氨氮转变成氮气的过程,真正的氨氧化过程是由被称作氨氧化菌的细菌来承担的。这些特殊的细菌需要降低水温、提高pH值和添加活性碳等外源物质的供给,才能进行氨氧化反应。

2、反硝化过程

反硝化过程是把亚硝酸氮转变成氮气的过程,它是生物处理中氮的最后一步转变过程,反硝化的最后产物是氮气,也就是说它是将氮从污水中最终去除出去的转变过程。反硝化过程受反硝化菌的影响较大,反硝化菌属于好氧细菌,反硝化条件包括高氧化性、低温度、较高的pH值等。

3、硫酸还原过程

硫酸还原过程是通过硫酸还原菌将污水中的亚硝酸氮还原成氨氮的过程,它是把水中的氮含量降低的重要手段。硫酸还原过程还可以与氨氧化过程相结合,从而提高去除氮的效率。

污水脱氮原理

污水脱氮原理

污水脱氮原理

污水脱氮是指将含氮废水中的氨氮和有机氮去除的过程。氮是生物体生长和代

谢的必需元素,但过量的氮会导致水体富营养化,引发藻类大量繁殖,进而引起水体缺氧甚至死亡。因此,对污水中的氮进行有效去除是保护水环境的重要措施之一。

污水脱氮的原理主要包括生物脱氮和化学脱氮两种方式。生物脱氮是利用好氧

和厌氧微生物将氨氮和有机氮氧化成氮气释放出去,或者转化成氮气通过反硝化作用排出。而化学脱氮则是通过添加化学药剂,如硝化细菌抑制剂、硝化细菌氧化剂等,来促使氨氮和有机氮转化成氮气或氮氧化物,从而实现脱氮的目的。

生物脱氮是目前污水处理中较为常见的一种脱氮方式。在生物脱氮过程中,首

先是氨氮通过硝化作用转化为亚硝酸盐,然后再通过反硝化作用转化为氮气释放出去。而有机氮则是通过厌氧微生物的作用,将有机氮分解成氨氮,再经过硝化和反硝化作用转化成氮气。这种生物脱氮方式具有操作简单、能耗低、处理效果好等优点,因此在实际污水处理中得到了广泛应用。

化学脱氮则是通过添加化学药剂来实现氮的去除。例如,通过添加硝化细菌抑

制剂,可以抑制硝化细菌的活性,从而减少硝化作用的产生,达到脱氮的效果。而添加硝化细菌氧化剂则是促进硝化作用的进行,加快氨氮和有机氮的转化成氮气或氮氧化物。化学脱氮的优点是处理速度快、适用范围广,但缺点是操作复杂、成本较高。

在实际污水处理过程中,生物脱氮和化学脱氮常常结合使用,以达到更好的脱

氮效果。通过合理的工艺设计和操作控制,可以实现对污水中氮的高效去除,从而保护水环境,促进水体健康。

总而言之,污水脱氮是保护水环境、改善水质的重要手段之一。了解污水脱氮

生物脱氮的原理和应用

生物脱氮的原理和应用

一、生物脱氮基本原理:

1.氨化作用:含氮有机物(动、植物和微生物残体以及它们的排泄物、代谢物所含的有机氮化物)经微生物降解放出氨的过程。(1) 蛋白质分解:环境中绝大多数异氧微生物都具有分解蛋白质、释放

出氨的能力,使蛋白质水解,生成多肽与二肽,然后由肽酶进一步水解生成氨基酸。

(2)核酸的分解:核酸的生物降解在自然界中相当普遍。76%的菌株能产生核糖核酸酶,有86%能产生脱氧核糖核酸酶。

(3)其他含氮有机物的分解:尿酸、尿素、几丁质、卵磷脂等含氮有机物都能被相应微生物分解,释放出氨。

总之,氨化作用无论在好氧还是厌氧条件下。中性、碱性或是酸性环境中都能进行,只是作用的微生物种类不同、作用强弱不已。但当环境中存在一定浓度的酚或木质素-蛋白质复合物时,会阻滞氨化作用的。2.硝化和反硝化作用:

硝化反应是由一类自养好氧微生物完成的,它包括两个步骤:第一步称为亚硝化过程,是由亚硝酸菌将氨氮转化为亚硝酸盐,亚硝酸菌中有亚硝酸单胞菌属、亚硝酸螺杆菌属和硝化球菌属;第二步称为硝化过程,由硝酸菌(包括硝酸杆菌属、螺菌属和球菌属)将亚硝酸盐进一步氧化为硝酸盐。亚硝酸菌和硝酸菌统称为硝化菌,都利用无机碳化合物如CO32-、HCO3-和CO2作为碳源,从NH3、NH4+或NO2-的氧化反应中获取能量。亚硝酸菌和硝酸菌的特性大致相似,但前者的世代期较短,

生长率较快,因此较能适应冲击负荷和不利的环境条件;当硝酸菌受到抑制时,有可能出现NO2-积累的情况。

反硝化反应是由一群异养型微生物完成的,它的主要作用是将硝酸盐或亚硝酸盐还原成气态氮或N2O,反应在无分子态氧的条件下进行。反硝化细菌在自然界很普遍,多数是兼性的,在溶解氧浓度极低的环境中可利用硝酸盐中的氧作为电子受体,有机物则作为碳源及电子供体提供能量并被氧化稳定。。当环境中缺乏有机物时,无机物如氢、Na2S等也可作为反硝化反应的电子供体,微生物还可以消耗自身的原生质进行所谓的内源反硝化。(C5H7O2N+4NO3-→5CO2+NH3+2N2↑+ 4OH- )由于内源反硝化的结果是细胞物质的减少,并会有NH3的生成,因此废水处理中均不希望此种反应占主导地位,而应提供必要的碳源。由于从反硝化获得的能量低于氧气还原所获取的能量,所以反硝化被认为仅在缺氧条件下发生。

污水生物处理原理

污水生物处理原理

污水生物处理原理

引言概述:

污水生物处理是一种常见的污水处理方法,通过利用微生物的作用来降解和去

除污水中的有机物和氮、磷等污染物。本文将从五个方面详细介绍污水生物处理的原理。

一、生物降解机理

1.1 微生物的作用:污水中的有机物主要由微生物分解降解,微生物通过吸附、降解、转化等方式将有机物转化为无机物。

1.2 降解过程:微生物首先通过吸附将有机物吸附在细胞表面,然后通过酶的

作用将有机物分解为较小的有机分子,最终转化为无机物。

1.3 降解产物:有机物的降解产物主要是二氧化碳和水,这些无害的无机物可

以被环境快速分解和吸收。

二、生物脱氮机理

2.1 反硝化作用:在污水生物处理过程中,一部分微生物可以利用硝酸盐作为

氧化剂,将有机物中的氮氧化为氮气释放到大气中。

2.2 厌氧反硝化:厌氧条件下,一些厌氧微生物可以利用有机物作为电子供体,将硝酸盐还原为氮气。

2.3 亚硝酸盐氧化:在好氧条件下,一些特定的微生物可以将亚硝酸盐氧化为

硝酸盐,从而实现氮的去除。

三、生物除磷机理

3.1 磷的吸附:在污水处理过程中,一部分微生物可以通过吸附的方式将磷离

子吸附在细胞表面。

3.2 磷的释放:当污水中的有机物浓度较低时,一些微生物会释放细胞内积累

的磷,从而实现磷的去除。

3.3 磷的沉淀:通过添加化学物质,可以将污水中的磷与其结合形成不溶性的

磷盐,沉淀下来,实现磷的去除。

四、生物处理系统

4.1 活性污泥法:活性污泥法是一种常见的污水生物处理方法,通过将污水与

活性污泥接触,利用微生物的作用将污水中的有机物降解。

4.2 人工湿地法:人工湿地法利用湿地植物和微生物的共同作用,将污水中的

生物脱氮除磷原理

生物脱氮除磷原理

生物脱氮原理

(碳源)

(碳源)图1 硝化和反硝化过程

图2 A2/O工艺流程

水体中氮的存在形态

生物脱氮原理

1、氨化作用

在好氧或厌氧条件下,有机氮化合物在氨化细菌的作用下,分解产生氨氮的过程,常称为氨化作用。 有机氮

氨氮

2、硝化作用

以A 2/O 工艺为例,硝化作用主要发生在好氧反应器中,污水中的氨氮NH 4+-N 在亚硝酸细菌的作用下

转化为亚硝酸氮NO 2--N ,亚硝酸氮NO 2--N 在硝酸细菌的作用下进一步转化为硝酸氮NO 3-

-N 。(见图

1左边)

亚硝酸细菌和硝酸细菌统称为硝化细菌,属于好氧自养型微生物,不需要有机物作为营养物质。 3、反硝化作用 反硝化作用主要发生在缺氧反应器中,好氧反应器中生成的硝酸氮NO 3--N 和亚硝酸氮NO 2--N 通过内循环回流到缺氧池中,在有一定碳源的条件下,由反硝化细菌先将硝酸氮NO 3--N 转化为亚硝酸氮NO 2--N ,亚硝酸氮再进一步转化为氮气N 2,水体中的氮从化合物转化为氮气进入到空气中,才能最终将污水中TN 降低。(见图1右边)

反硝化细菌是异养兼性缺氧型微生物,其反应需要在缺氧环境中才能进行。

生物除磷原理

磷在自然界以2 种状态存在:可溶态(正磷酸盐PO 43-)或颗粒态(多聚磷酸盐)。

氨化菌

所谓除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离。

厌氧释磷

污水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生自身生长所需的所需的能量,称该过程为磷的释放。

好氧吸磷

进入好氧环境后,聚磷菌活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程。

生物脱氮基本原理

生物脱氮基本原理

生物脱氮基本原理

摘要:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。

关键词:生物脱氮基本原理氨化硝化反硝化同化

生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和N x O气体的过程[1]。

废水中存在着有机氮、NH3-N、NO x--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NO x--N,最后通过反硝化作用使NO x--N转化成N2,而逸入大气。

由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。

1. 氨化作用

氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮酸和氨:

另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下:

在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。

2. 硝化作用

硝化作用是指将NH3-N氧化为NO x--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。该反应历程为:

废水生物处理基本原理

废水生物处理基本原理

第二章废水生物处理基本原理

第一节废水好氧生物处理原理

一、好氧生物处理的基本生物过程

所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;

所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。

好氧生物处理过程的生化反应方程式:

①分解反应(又称氧化反应、异化代谢、分解代谢)

异氧微生物

CHONS + O2 CO2 + H2O + NH3 + SO42- +⋯+能量

(有机物的组成元素)

②合成反应(也称合成代谢、同化作用)

C、H、O、N、S+ 能量C5H7NO2

③内源呼吸(也称细胞物质的自身氧化)

微生物

C5H7NO2 + O2CO2+ H2O + NH3 + SO42- +⋯+能量

在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示:细菌:C5H7NO2;真菌:C16H17NO6;藻类:C5H8NO2;原生动物:C7H14NO3

分解与合成的相互关系:

1)二者不可分,而是相互依赖的;a、分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b、分解过程是一个产能过程,合成过程则是一个耗能过程。

2)对有机物的去除,二者都有重要贡献;3)合成量的大小,对后续污泥的处理有直接影响(污泥的处理费用一般可以占整个城市污水处理厂的40~50%)。

不同形式的有机物被生物降解的历程也不同:

一方面:结构简单、小分子、可溶性物质,直接进入细胞壁;结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。

生物脱氮的原理

生物脱氮的原理

生物脱氮的原理

生物脱氮是指通过微生物的作用,将有机废水中的氨氮、亚硝酸盐氮和硝酸盐氮等形式的氮转化成氮气的过程。生物脱氮技术是目前处理高浓度氨氮废水的一种有效方法,其原理主要包括硝化和反硝化两个过程。

硝化是指氨氮通过硝化细菌氧化成亚硝酸盐氮和硝酸盐氮的过程。硝化细菌主要包括亚硝化细菌和硝化细菌两类。亚硝化细菌能够将氨氮氧化成亚硝酸盐氮,而硝化细菌则能将亚硝酸盐氮进一步氧化成硝酸盐氮。在生物脱氮过程中,硝化细菌起到了将氨氮氧化成硝酸盐氮的作用,为后续的反硝化过程提供了必要的底物。

反硝化是指硝酸盐氮通过反硝化细菌还原成氮气的过程。反硝化细菌能够在缺氧或微氧的条件下,利用硝酸盐氮作为电子受体,将有机物还原成氮气。在生物脱氮过程中,反硝化细菌起到了将硝酸盐氮还原成氮气的作用,从而实现了氮的去除。

生物脱氮技术的原理简单清晰,通过硝化和反硝化两个过程,将有机废水中的氨氮、亚硝酸盐氮和硝酸盐氮转化成氮气,达到了去除氮污染物的目的。相比传统的化学方法,生物脱氮技术具有能

耗低、操作简便、运行成本低等优点,因此在废水处理领域具有广阔的应用前景。

总的来说,生物脱氮技术是一种环保、高效的废水处理方法,其原理清晰,操作简便,具有较高的经济效益和社会效益。随着环保意识的提高和技术的不断进步,相信生物脱氮技术将在未来得到更广泛的应用和推广。

污水生物脱氮过程及原理介绍

污水生物脱氮过程及原理介绍

污水生物脱氮过程及原理介绍

①氨化作用:将有机氮转化为氨氮;

②同化作用:氨用于合成细菌并随剩余污泥排出;

③硝化作用:氨氮氧化成亚硝酸盐,之后进一步氧化为硝酸盐;④反硝化作用∶硝酸盐转化为氮气并排入大气。

(1)氨化作用

氨化作用是指有机氮在氨化菌的作用下,分解转化为氨氮。氨化速率与含碳污染物降解速率相同。多数情况下,基于有机氮的特性和污水厂的运行参数(尤其是构筑物内的水力停留时间),大部分的有机氮较易氨化。

(2)同化作用

同化作用是指细菌将一部分氨氮合成为自身组成物质的过程。在处理一些碳氮比【BOD5/(氨氮+有机氮)】较高的工业废水时,同化作用在脱氮过程中起重要作用。粗略计算,通过剩余污泥去除的氮约占剩余污泥量的5%~8%。(3)硝化作用

硝化作用是由专门的自养微生物分两个阶段进行的生物过程:

亚硝化细菌将NH4+氧化为NO2-;

硝化细菌将NO2-氧化成硝酸盐NO3-;

根据上述反应,氨氮完全氧化的需氧量为4.57g O2/g NH4+-N(不包括用于细胞合成代谢的氮)。

以下反应式可用于估算反应所需的碱度∶

NH4++2HCO3-+2O2——NO3-+2CO2+3H2O

即氧化1gNH4+-N需要7.14g碱度(以CaCO3,计算)。此外,每克NH4+-N 将合成大约0.17g 新细胞。

①生长速度和泥龄

亚硝化细菌和硝化细菌的生长速度较异养微生物更缓慢。通常来说,它是设计硝化反应器容积时最重要的限制性参数。更确切地说,主要的限制阶段是氨氮氧化生成亚硝酸盐,这与亚硝化细菌的活性有关(排除个别瞬时情况,例如水厂试运行阶段)。鉴于它们的生长速率较低,水厂在设计脱氮生物反应器负荷时通常受制于好氧污泥的泥龄。实际上,在系统中生长的硝化细菌数量必须等于或大于随剩余污泥排出的损失数量,否则将会导致硝化细菌的流失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

废水生物处理基本原理

——废水生物脱氮原理

1.1.1 废水中氮的存在形式 氮在废水中有以下几种形式 无机氮 N anorgan .: ∙ 氨氮

NH 4-N ∙ 亚硝氮

NO 2-N ∙ 硝氮 NO 3-N

有机氮

N organ .

总氮

N total = N anorgan . + N organ . 总凯氏氮

TKN = N organ . + NH 4-N

以氮的形式氮化合物的换算关系如下:

NH NH N NH NO NO N NO NO NO N NO 4128541285

4

2328523285

2

3442834428

3

++

--

--

−→−−-−→−−−→−−-−→−−−→−−-−→−−/,*,/,*,/,*,

1.1.2 废水生物脱氮的基本过程

①氨化(Ammonificaton ):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程;

②硝化(Nitrification ):废水中的氨氮在好氧自养型微生物(统称为硝化菌)的作用下被转化为NO 2- 和NO 3-的过程;

③反硝化(Denitrification ):废水中的NO 2- 和/或NO 3-在缺氧条件下在反硝化菌(异养型细菌)的作用下被还原为N 2的过程。

1.1.3 氨化作用基本原理

在废水中部分氮以无机物的形式存在。蛋白质被生化降解为氨氮

的作用成为氨化作用。尿素在酶的催化下降解也属于该作用。

举例:

COOH O

∣∣

R - C - H + H2O + 1/2 O2 ----> R - C + NH4+ + OH-∣∣

NH2COOH

NH2

C=0 + 3 H2O 尿素酶> 2 NH4++ 2 OH-+ CO2

NH2

该反应是在不需要氧的情况下进行的,因此填埋场中的垃圾中该反应居多。有该反应可以看出,该反应释放氢氧根离子 ,因此通过氨化作用可提高系统的硷度(耐酸缓冲能力)。 1.1.4 硝化反应(Nitrification ) 1.1.4.1 硝化反应的基本原理

硝化反应分为两步进行:①-+→24NO NH ; ②--→32NO NO 。 是由两组自养型硝化菌分两步完成的:① 亚硝酸盐细菌(或称为氨氧化细菌)(Nitrosomonas );② 硝酸盐细菌(或称为亚硝酸盐氧化细菌)(Nitrobacter );

到目前为止,还未发现有任何一种细菌可以直接将氨氮通过一步氧化到硝酸盐。

这两种硝化细菌的特点:① 都是革兰氏染色阴性、不生芽孢的短杆菌和球菌;② 强烈好氧,不能在酸性条件下生长;③ 无需有机物,以氧化无机含氮化合物获得能量,以无机C (CO 2或HCO 3-)为碳源;④ 化能自养型;⑤ 生长缓慢,世代时间长。 1.1.4.2 硝化反应过程及反应方程式

① 亚硝化反应:+-+++→+H O H NO O NH 25.12224

如果加上细胞合成,则:

3

22227532410457541097655CO H O H NO N O H C HCO O NH +++→++-

-+

亚硝酸盐细菌的产率是:0.146g/g NH 4+-N (113/55/14); 氧化1mg NH 4+-N 为NO 2--N ,需氧3.16mg (76⨯32/55/14);

氧化1mg NH 4+-N 为NO 2--N ,需消耗7.08mg 碱度(以CaCO 3

计)(109⨯50/55/14)

② 硝化反应: --→+3225.0NO O NO

如果加上细胞合成,则:

-

+-++→++++227523324240031954400NO

O H N O H C O HCO CO H NH NO

硝酸盐细菌的产率是:0.02g/gNO 2---N(113/400/14) 氧化1mg NO 2--N 为NO 3—N ,需氧1.11mg(195*32/400/14) 几乎不消耗碱度

③总的硝化反应: +-

+++→+H O H NO O NH 222324

如加上细胞合成,则:

3

23227532488.198.004.1)0025.00181.0(98.186.1CO H NO O H N O H C HCO O NH ++++→++-

-+ 总的细菌产率是: 0.02g/gNO 2--N(113/400/14);

氧化1mg N NH -+4为N NO --3,需氧4.27mg(1.86*32/14); 氧化1 mg N NH -+

4为N NO --3

,需消耗碱度7.07mg(以CaCO 3

计);

污水中必须有足够的碱度,否则硝化反应会导致pH 值下降,使反应速率减缓或停滞;

如果不考虑合成,则:氧化 1 mg NH 4+-N 为NO 3--N ,需氧4.57mg ,其中亚硝化反应3.43mg ,硝化反应1.14mg ,需消耗碱度7.14mg(以CaCO 3计)

1.1.4.3 硝化反应所需要的环境条件

(1) 温度和微生物

与碳的氧化相比,碳在硝化反应中的生化降解能量释放(增长)较慢,这也解释了为什么硝化菌繁殖速度较慢,因此废水处理系统中活性污泥的停留时间一般比较长。其中一个比较重要的参数就是好氧泥龄,在废水处理设计中,当计算最小污泥泥龄时最需要考虑得时温度上升得影响。硝化菌在反应器内的停留时间即污泥龄,必须大于其最小的世代时间(一般为3~10天)。

微生物生活的环境温度即活性污泥的温度对污泥增长和硝化影响较大,对于硝化菌来说最佳的反应温度范围为25至35摄氏度。低于5摄氏度或高于45摄氏度将会抑制硝化菌的增长从而抑制硝化反应。

因此,温度在废水生物处理中对于反硝化和硝化水平影响较大(见下图)。而影响温度的因素有以下几个方面:废水的温度、生化反应放热、设备如水泵风机等温升、射线、散热等。

在好氧系统中微生物的浓度是计算反应器体积所需的一个重要参数(见下图)。由图可以看出,污泥浓度增越高所需要的反应器容积越小。传统的市政污水厂的污泥浓度一般为3 - 6 kg MLSS/m3.

而膜生化反应器作为一种高效的废水处理工艺,其污泥浓度可以达到35kgMLSS/m3,生化反应器所需的容积大大的缩小。

相关文档
最新文档