反激式开关电源初讲义级侧部分详解(上)

合集下载

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波
形分析(总1页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
反激式开关电源工作时可以简化为下图所示电路:
Mos管控制原边(左侧)电流的通断。

Mos管导通时:
电感充电(实则为建立磁通),副边二极管截止,无电流。

Mos管断开时:
由于电流不同突变(实际上是磁通不能突变),于是在副边形成感应电流,二极管导通。

原边反射电压:
副边有电流流通时,会在原边感应出一个电压(下+上-),叠加在输入电压上。

原边的尖峰电压:
由于漏电感的存在,该部分的磁通没有通过磁芯耦合到副边,因此mos管断开时,会产生很大的电压来维持电流,从而达到维持磁通的目的。

振荡波形:
Mos管关断时尾部有振荡,是由于开关电流工作在断续模式时,能量释放完全后,原边、副边无电流。

此时原边的电路可以等效为电源+电感+电容(Mos 管输入电容),发生谐振。

实测波形如下:
(黄色为mos驱动,绿色为mos管的VDS,粉色是原边线圈的电流)。

反激式开关电源设计培训教材(第一节)

反激式开关电源设计培训教材(第一节)

5、开关管峰值电流Ip
6、初级绕组匝数Np 天通TP4/TP4A的磁芯Bs为5100GS,FSDM0265R有过温保护,因 此Bw可选0.6Bs,则Bw=3060GS,如IC无过温保护,则要留一定
的裕量,否则,在过载状态时,变压器易饱和,在饱和状态,
易发生故障损坏开关管,Bw要选低一点,选(0.3-0.5)Bs; 气隙Lg选0.025cm
• 参数计算 1、最大允许的反激电压
Vf=650V-373V-32.5V –100V=144.5V 选反激电压Vf为75V,则Mosfet的漏极最高电压为: 373V+100V+75V=548V<617.5V,是比较安全的。
2、原、副边的匝比n 次级选用3A/100V肖特基整流,则1.25A输出电流时的
输入过流保护主要是靠保险管、保险丝绕线电阻的过电流过功 率熔断特性。保险管主要用在高输出功率的电源上,绕线电阻用 在低输出功率的电源上。保险管重要的参数有额定电流、熔断时 间、分断能力,额定电流大、熔断时间长、分断能力低,容易炸 裂管壁,这在安全认证时是不允许的,因此,要尽量选择分断能 力高的保险管;保险丝绕线电阻重要的参数主要是过功率熔断时 间,一般加在电阻两端的电压与电流的乘积为电阻标称功率的25 倍时,要在60S内熔断
•PWM控制芯片(Fairchildsemi的FSDM0265R)
第二章、变压器设计
单端反激开关电源的变压器实质上是一个耦合电感, 它要承担着储能、变压、传递能量等工作。下面对工 作于连续模式和断续模式的单端反激变换器的变压器 设计进行总结。 • 1、已知的参数 根据需求和电路的特点确定,包括:输入电压Vin、输
S012B系列变压器设计步骤
• 已知条件 1、输入电压Vin:90Vac-264Vac 2、输出电压Vout:12V 3、输出电流Iout:1.25A 4、Mosfet耐压Vmos:650V 5、开关频率f:67KHz 6、FSDM0265R最大输出功率:

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)环路设计基础

反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。

它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。

本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。

一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。

其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。

1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。

在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。

通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。

二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。

2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。

反激式变压器开关电源课件

反激式变压器开关电源课件
反激式变压器开关电源课件
• 反激式变压器开关电源概述 • 反激式变压器开关电源的设计与
优化 • 反激式变压器开关电源的特性与
性能指标
• 反激式变压器开关电源的调试与 测试
• 反激式变压器开关电源的常见问 题与解决方案
01 反激式变压器开关电源概述
定义与工作原理
定义
反激式变压器开关电源是一种通过控制开关管通断来调节输出电压的电源供应 器。
选择低损耗的开关管 和二极管,降低能量 损耗。
根据实际需求,选择 适当的保护电路和辅 助电路元器件。
选择合适的电容和电 感,以满足电源的稳 定性和效率要求。
变压器设计
确定变压器的匝数比和磁芯材料 ,以实现所需的电压和电流转换

考虑变压器的绝缘材料和结构, 确保安全可靠。
根据实际需求,优化变压器的体 积和重量。
1. 磁芯损耗过大
反激式变压器开关电源中的磁芯在工作过程中会产生损耗 ,若损耗过大,会导致效率降低。需要优化磁芯材料和结 构,降低损耗。
3. 散热不良
电源在工作过程中会产生热量,若散热不良,会导致效率 降低。需要加强散热设计,如增大散热面积、优化散热风 道等。
保护功能问题
总结词
保护功能问题表现为电源的保护功能 失效或误动作。
THANKS 感谢观看
可靠性分析
平均无率
失效率越低,电源的可靠性越高。
04 反激式变压器开关电源的调试与测试
调试步骤与注意事项
调试步骤 检查电路连接是否正确,确保所有元件都已正确安装。
接通电源,观察电源是否正常启动。
调试步骤与注意事项
01
调整变压器和开关管的工作参数 ,确保其在正常范围内。
当输入电压低于正常值时,电源可能无法 启动。解决方案是确保输入电压在正常范 围内。

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波
形分析(总1页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
反激式开关电源工作时可以简化为下图所示电路:
Mos管控制原边(左侧)电流的通断。

Mos管导通时:
电感充电(实则为建立磁通),副边二极管截止,无电流。

Mos管断开时:
由于电流不同突变(实际上是磁通不能突变),于是在副边形成感应电流,二极管导通。

原边反射电压:
副边有电流流通时,会在原边感应出一个电压(下+上-),叠加在输入电压上。

原边的尖峰电压:
由于漏电感的存在,该部分的磁通没有通过磁芯耦合到副边,因此mos管断开时,会产生很大的电压来维持电流,从而达到维持磁通的目的。

振荡波形:
Mos管关断时尾部有振荡,是由于开关电流工作在断续模式时,能量释放完全后,原边、副边无电流。

此时原边的电路可以等效为电源+电感+电容(Mos 管输入电容),发生谐振。

实测波形如下:
(黄色为mos驱动,绿色为mos管的VDS,粉色是原边线圈的电流)。

超详细的反激式开关电源电路图讲解

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解一,先分类开关电源的拓扑结构按照功率大小的分类如下:10W以内常用RCC(自激振荡)拓扑方式10W-100W以内常用反激式拓扑(75W以上电源有PF值要求)100W-300W 正激、双管反激、准谐振300W-500W 准谐振、双管正激、半桥等500W-2000W 双管正激、半桥、全桥2000W以上全桥二,重点在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。

优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出.缺点:输出纹波比较大。

(输出加低内阻滤波电容或加LC噪声滤波器可以改善)今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。

给大家讲解如何读懂反激开关电源电路图!三,画框图一般来说,总的来分按变压器初测部分和次侧部分来说明。

开关电源的电路包括以下几个主要组成部分,如图1图1,反激开关电源框图四,原理图图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。

下面会根据这个原理图进行各个部分的设计说明。

图2 典型反激开关电源原理图五,保险管图3 保险管先认识一下电源的安规元件—保险管如图3。

作用:安全防护。

在电源出现异常时,为了保护核心器件不受到损坏。

技术参数:额定电压 ,额定电流 ,熔断时间。

分类:快断、慢断、常规计算公式:其中:Po:输出功率η效率:(设计的评估值)Vinmin :最小的输入电压2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。

0.98: PF值六,NTC和MOVNTC 热敏电阻的位置如图4。

图4 NTC热敏电阻图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

图4中RV为MOV压敏电阻,压敏电阻是一种限压型保护器件,过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等七,XY电容图5 X和Y电容如图X电容,Y电容。

反激ACDC开关电源设计解析(上)

反激ACDC开关电源设计解析(上)

(上)彭磊•10W以内常用RCC(自激振荡)拓扑方式•10W-100W以内常用反激式拓扑(75W以上电源有PF值要求)•100W-300W 正激、双管反激、准谐振•300W-500W 准谐振、双管正激、半桥等•500W-2000W 双管正激、半桥、全桥•2000W以上全桥•在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。

优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出.缺点:输出纹波比较大。

(输出加低内阻滤波电容或加LC噪声滤波器可以改善)•今天以自行车充电器为例,详细讲解反激开关电源的设计流程及元器件的选择方法。

EMI整流滤波变压器次级整流滤波开关器件PWM 控制IC隔离器件采样反馈输出高压区域低压区域—保险管•作用:安全防护。

在电源出现异常时,为了保护核心器件不受到损坏。

•技术参数:额定电压V、额定电流I、熔断时间I^2RT。

•分类:快断、慢断、常规•0.6为不带功率因数校正的功率因数估值•Po输出功率•η 效率(设计的评估值)•Vinmin 最小的输入电压•2为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。

•0.98 PF值相关知识•大部分用电设备中,其工作电压直接取自交流电网。

所以电网中会有许多家用电器、工业电子设备等等非线性负载,这些用电器在使用过程中会使电网产生谐波电压和电流。

没有采取功率因数校正技术的AC-DC整流电路,输入电流波形呈尖脉冲状。

交流网侧功率因数只有0.5~0.7,电流的总谐波畸变(THD)很大,可超过100%。

采用功率因数校正技术,功率因数值为0.999时,THD约为3%。

为了防止电网的谐波污染,或限制电子设备向电网发射谐波电流,国际上已经制定了许多电磁兼容标准,有IEEE519、IEC1000-3-2等。

•功率因数的校正(PFC)主要有两种方法:无源功率因数校正和有源功率因数校正。

反激式开关电源设计详解(上)教材

反激式开关电源设计详解(上)教材

NTC的选择依据
Rt Rne
1 1 [ B ( )] T1 Tn
公式中: 1. Rt 是热敏电阻在T1温度下的阻值; 2. Rn是热敏电阻在常温Tn下的标称阻值; 3. B是材质参数(常用范围2000K~6000K); 4. exp是以自然数 e 为底的指数( e =2.71828 ); 5. T1和Tn为绝对温度K(即开尔文温度),K度 =273.15(绝对温度)+摄氏度;
安规电容之--X电容
• X电容多选用耐纹波电流比较大的聚脂薄膜类电容。这种 类型的电容,体积较大,但其允许瞬间充放电的电流也很大, 而其内阻相应较小。 • X电容容值选取是μF级,此时必须在X电容的两端并联一 个安全电阻,用于防止电源线拔掉时,由于该电容被充电荷 没泄放而致电源线插头长时间带电。 安全标准规定,当正 在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插 头两端带电的电压(或对地电位)必须小于原来额定工作电 压的30%。 • 作为安全电容之一的X电容,也要求必须取得安全检测机构 的认证。X电容一般都标有安全认证标志和耐压AC250V 或AC275V字样,但其真正的直流耐压高达2000V以上,使用 的时候不要随意使用标称耐压AC250V或者DC400V之类 的普通电容来代用。
aVrms bc
2,V1mA 488.042 V
a 为电路电压波动系数,一般取值1.2; Vrms 为交流输入电压有效值; b 为压敏电阻误差,一般取值0.85; C 为元件的老化系数,一般取值0.9; √2 为交流状态下要考虑峰峰值; V1mA 为压敏电阻电压实际取值近似值; 通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规 定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超 过± 10%时的最大脉冲电流值。

反激式开关电源设计详解

反激式开关电源设计详解

压敏电阻的作用
• 压敏电阻是一种限压型保护器件。利用压敏电阻的非线性 特性,当过电压出现在压敏电阻的两极间时,压敏电阻可 以将电压钳位到一个相对固定的电压值,从而实现对后级 电路的保护。 • 主要作用:过电压保护、防雷、抑制浪涌电流、吸收尖峰 脉冲、限幅、高压灭弧、消噪、保护半导体元器件等。 • 主要参数有:压敏电压、通流容量、结电容、响应时间等。 • 压敏电阻的响应时间为ns级,比空气放电管快,比TVS 管(瞬间抑制二极管)稍慢一些,一般情况下用于电子电 路的过电压保护,其响应速度可以满足电路要求。
选取压敏电阻的方法
• 结合前面所述,来看一下本电路中压敏电 阻的型号所对应的相关参数。
EMI电路
• X电容,共模电感(也叫共模扼流圈 ),Y 电容
– 根据IEC 60384-14,安规电容器分为X电容及Y 电容:
• 1. X电容是指跨与L-N之间的电容器, • 2. Y电容是指跨与L-G/N-G之间的电容器.
相关知识
关于功率因数
• 大部分用电设备,其工作电压直接取自交流电网。 所以电网中会有许多家用电器、工业电子设备等 非线性负载,这些用电器在使用过程中会使电网 产生谐波电压和电流。没有采取功率因数校正技 术的AC-DC整流电路,输入电流波形呈尖脉冲状。 交流网侧功率因数只有0.5~0.7,电流的总谐波畸 变(THD)很大,可超过100%。采用功率因数校 正技术后,功率因数值为0.999时,THD约为3%。 为了防止电网的谐波污染,或限制电子设备向电 网发射谐波电流,国际上已经制定了许多电磁兼 容标准,如IEEE519、IEC1000-3-2等。
反激开关电源特点
• 在开关电源市场中,400W以下的电源大约占了市 场的70-80%,而其中反激式电源又占大部分,几乎 常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电 压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容 或加LC噪声滤波器可以改善) • 今天以自行车充电器为例,详细讲解反激开关电 源的设计流程及元器件的选择方法。

反激开关电源各部分单元详细介绍---初级侧部分(上)

反激开关电源各部分单元详细介绍---初级侧部分(上)

压敏电阻的作用
• 压敏电阻是一种限压型保护器件。利用压敏电阻的非 线性特性,当过电压出现在压敏电阻的两极间,压敏 电阻可以将电压钳位到一个相对固定的电压值,从而 实现对后级电路的保护。 • 主要作用:过电压保护、防雷、抑制浪涌电流、吸收 尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器 件等。 • 主要参数有:压敏电压、通流容量、结电容、响应时 间等。 • 压敏电阻的响应时间为ns级,比空气放电管快,比 TVS管(瞬间抑制二极管)稍慢一些,一般情况下用 于电子电路的过电压保护其响应速度可以满足要求。
保险管的计算方法
• • • • •
0.6为不带功率因数校正的功率因数估值 Po输出功率 η 效率(设计的评估值) Vinmin 最小的输入电压 2为经验值,在实际应用中,保险管的取值范围是 理论值的1.5~3倍。 • 0.98 PF值
相关知识
关于功率因数
• 大部分用电设备中,其工作电压直接取自交流电网。所以电网中会 有许多家用电器、工业电子设备等等非线性负载,这些用电器在使用 过程中会使电网产生谐波电压和电流。没有采取功率因数校正技术的 AC-DC整流电路,输入电流波形呈尖脉冲状。交流网侧功率因数只 有0.5~0.7,电流的总谐波畸变(THD)很大,可超过100%。采用功 率因数校正技术,功率因数值为0.999时,THD约为3%。为了防止电 网的谐波污染,或限制电子设备向电网发射谐波电流,国际上已经制 定了许多电磁兼容标准,有IEEE519、IEC1000-3-2等。 • 功率因数的校正(PFC)主要有两种方法:无源功率因数校正和有源 功率因数校正。无源功率因数校正利用线性电感器和电容器组成滤波 器来提高功率因数、降低谐波分量。这种方法简单、经济,在小功率 中可以取得好的效果。但是,在较大功率的供电电源中,大量的能量 必须被这种滤波器储存和管理,因此需要大电感器和电容器,这样体 积和重量就比较大也不太经济,而且功率因数的提高和谐波的抑制也 不能达到理想的效果。有源功率因数校正是使用所谓的有源电流控制 功率因数的校正方法,可以迫使输入电流跟随供电的正弦电压变化。 这种功率因数校正有体积小、重量轻、功率因数可接近1等优点。

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析
1.正半周期:当输入电源正半周电压大于输出电压时,开关管导通,此时电流从输入电源通过开关管,经过输出电感滤波电路,最终输出给负载。

2.负半周期:当输入电源负半周电压大于输出电压时,开关管关断,此时开关管两端的电感储能。

在每个周期的正半周期和负半周期之间,开关管的导通和关断交替进行,实现了输入到输出的电压变换。

1.输入电压波形:输入电压通常为交流电源,波形为正弦波。

在正半周,当开关管导通时,输入电压通过开关管正向通流。

在负半周,当开关管关断时,输入电压不能通过开关管。

2.开关电流波形:反激式开关电源的开关管导通时,开关电流呈现方波形式,开关管关断时,开关电流为零。

由于开关电流的突变,会引起较大的干扰和损耗,因此需要设计合适的控制电路来控制开关管的导通和关断。

3.输出电压波形:输出电压可以通过输出电感滤波电路平滑得到。

输出电压在开关管导通时,随着负载的需求,可以稳定输出。

输出电压在开关管关断时,输出电容滤波电路会维持输出电压的稳定。

4.输出电流波形:输出电流波形与负载的需求有关。

在电源供电正常的情况下,输出电流总是保持稳定。

通过对反激式开关电源的工作原理及波形分析,可以了解到其有效地实现了输入到输出的电压变换。

通过合适的控制电路设计,可以实现开关
管的精确控制,从而提高电源的效率和稳定性。

相比传统的线性电源,反激式开关电源具有体积小、效率高等优点,在实际应用中有着广泛的应用前景。

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波形分析

反激式开关电源工作原理及波
形分析(总1页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
反激式开关电源工作时可以简化为下图所示电路:
Mos管控制原边(左侧)电流的通断。

Mos管导通时:
电感充电(实则为建立磁通),副边二极管截止,无电流。

Mos管断开时:
由于电流不同突变(实际上是磁通不能突变),于是在副边形成感应电流,二极管导通。

原边反射电压:
副边有电流流通时,会在原边感应出一个电压(下+上-),叠加在输入电压上。

原边的尖峰电压:
由于漏电感的存在,该部分的磁通没有通过磁芯耦合到副边,因此mos管断开时,会产生很大的电压来维持电流,从而达到维持磁通的目的。

振荡波形:
Mos管关断时尾部有振荡,是由于开关电流工作在断续模式时,能量释放完全后,原边、副边无电流。

此时原边的电路可以等效为电源+电感+电容(Mos 管输入电容),发生谐振。

实测波形如下:
(黄色为mos驱动,绿色为mos管的VDS,粉色是原边线圈的电流)。

反激开关电源简介及基本设计方法

反激开关电源简介及基本设计方法

13
初级功率回路器件选择
• 开关mos管选择及其驱动设计。 • 电流采样电阻计算及其尖峰抑制rc。 • 初级漏感吸收电路参数设计。 • 初级滤波电容选择。
可整理ppt
14
Mos管及其驱动以电流采样
• 当驱动高mos打开,驱动低mos关断。 • 采样电阻选择0.8v>(4*Pin/Uinmin)*R。 • 加入r121 c8 组成rc滤波器,去除电流尖峰,R*C小于
• 电流型每个开关周期都对变压器初级电流 监控,其安全性比电压型好,由于增加了 电流内环,动态反应快线性调整率好。
• 电流型缺点在于当占空比大于50%会带来 不稳定性,另外电流型比较敏感抗干扰差
可整理ppt
11
设计举例分析
• 以公司常用驱动板电源为例,讲解PWM控 制方式的 单端 DCM 电流型反激电源设计
• PWM反激电源是大家比较熟悉的反激电源, 其通过控制开关管占空比来调节电源输出
• PFM为准谐振反激电源,其通过调节开关 频率来调节输出。
• 准谐振反激电源效率一般比pwm模式效率 高,EMI/EMC处理的比较好。但是PFM在 于高输入电压轻载时开关频率飘高,稳定 性差,损耗加大。
可整理ppt
8
• 电容电阻选择RC,R*C>10Tsw~20Tsw
• 电容电压波动小于10%
• 电容值电阻值选择保证Vrcd电压满足1.2* (Uinmax+Vrcd)<Vd,如果Vrcd电压太高, 就减小R,如果Vrcd太小,会影响效率,所 以需要折中选择。
可整理ppt
22
整流滤波
• 设计次级主要是整流二极管选择,滤波电 容选择
PFM与PWM反激电源
• PWM模式,变压器可连续可断续,而PFM 模式变压器工作在临界连续模式。

反激电源讲义

反激电源讲义

绕组紧密的绕制在变压器的中间 或两边;绕制工艺简单,有利于 后续绕组的平整度控制。但匝间 电容与漏感稍大,在输出电压较 低,电流小的场合对输出电压有 一定影响。
变压器的绕制技术
• 单层圈数的计算:
在计算单层圈数时,是通过 骨架宽度除以漆包线的外径, 得到的值需要将小数点以后 的数值舍去,并需要减去一 圈作为进出线的余量。
解决措施:
a.增加Snubber电路,钳位峰值电压,并将 部分的损耗转移 。 b.优化变压器的绕制工艺,调整PCB Layout,达到漏感最小化的目的。 c.选用窗口面积宽的磁芯骨架。
漏感与分布电容
• 变压器分布电容的危害: A:可能使变压器谐振(主要是LC振荡) B:在方波驱动的变压器中,会产生很大的一次电流尖峰 C:可能与其他的电路产生静电耦合,影响EMI
匝比的选取
• 匝比决定着初级的MOSFET的电压应力 Vmos = Vin(max) + n*(Vo + Vf)
由左图可知,增 大匝比会使开关 MOSFET的Vds电 压应力增大, Snubber电路的 损耗也加大,从 而影响电源的整 体效率。
漏感与分布电容
• 漏磁通:
耦合电感或变压器中, 由一次绕组产生,且不 能匝链到二次绕组的部 分磁通。(如右图)
气隙的作用与选取
• 开气隙的方法:
磨气隙:加工简单,量产一致性好;中柱处由于边缘磁通 影响易发热
垫气隙:工艺复杂,不易控制一致性,易散磁;磁通分布 均匀
变压器的绕制技术
• 三明治绕法的是与非
三明治绕法的好处主要是增加初次级 的耦合面积,降低漏感,从而可以降 低MOSFET关断时的漏感尖峰电压,降 低MOSFET的电压应力,在低压输出时 可以提升效率。 但在增加耦合面积的同时,使绕 组间的分布电容加大,而绕组间电容 是共模干扰信号主要的传递路径,故 三明治绕法会使EMI性能变差。

关于开关电源的正激式和反激式

关于开关电源的正激式和反激式

关于开关电源的正激式和反激式
讲一下对开关电源中正激和反激的理解。

所谓反激,就是开关管Q开通时,变压器原边积累能量;当Q关断时,Q的漏极的电势应该>+Vin,由同名端的定义——同名端应该电势相同,所以,变压器副边D1左侧电势应该大于地。

故,D1导通,副边输出能量。

所谓正激,就是Q开通时,正常输出电能;Q关断时,变压器不工作,副边当然也没有电能输出。

但是此时,L0起到续流电感的作用,用来平滑C0上的电流。

正激式,变压器就是纯粹的变压用途;反激式,变压器除了变压还有储存能量的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档