(完整版)ansys内部例题详解

合集下载

ANSYS实例分析75道(含结果)

ANSYS实例分析75道(含结果)

ANSYS实例分析75道(含结果)【【ANSYS算例算例】】3.4.2(1)基于图形界面的桁架桥梁结构分析基于图形界面的桁架桥梁结构分析(stepbystep)下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。

背景素材选自位于密执安的“OldNorthParkBridge“(1904-1988),见图3-22。

该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表3-6。

桥长L=32m,桥高H=5.5m。

桥身由8段桁架组成,每段长4m。

该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1,P2和P3,其中P1=P3=5000N,P2=10000N,见图3-23。

图3-22位于密执安的“OldNorthParkBridge“(1904-1988)图3-23桥梁的简化平面模型(取桥梁的一半)表3-6桥梁结构中各种构件的几何性能参数构件惯性矩m4横截面积m2顶梁及侧梁桥身弦梁底梁解答解答以下为基于ANSYS 图形界面(GraphicUserInterface,GUI)的菜单操作流程。

(1)进入进入ANSYS(设定工作目录和工作文件)(设定工作目录和工作文件)程序程序→→ANSYS→→ANSYSInteractive→→Workingdirectory(设置工作目录)→Initialjobname(设置工作文件名):TrussBridge→→Run→→OK(2)设置计算类型设置计算类型:Preferences…→→Structural→→OK(3)定义单元类型定义单元类型ANSYSMainMenu:Preprocessor→→ElementType→→Add/Edit/Delete.→→Add…→→Beam:2delastic3→→OK(返回到ElementTypes窗口)→→Close(4)定义实常数以确定梁单元的截面参数定义实常数以确定梁单元的截面参数ANSYSMainMenu:Preprocessor→→RealConstants…→→Add/Edit /Delete→→Add…→→selectType1Beam3→→OK→→RealConsta ntsSetNo.:1,AREA:2.19E-3,,Izz:3.83e-6(1号实常数用于顶梁和侧梁)→→Apply→→RealConstantsSetNo.:2,AREA:1.185E-3,,Izz:1.87E-6(2号实常数用于弦杆)→→Apply→→RealConstantsSetNo.:3,AREA:3.031E-3,,Izz:8.47E-6(3号实常数用于底梁)→→OK(backtoRealConstantswindow)→Close(theRealConstant swindow)(5)定义材料参数定义材料参数ANSYSMainMenu:Preprocessor→→MaterialProps→→MaterialMo dels→→Structural→→Linear→→Elastic→→Isotropic→→EX:2.1e11,PRXY:0.3(定义泊松比及弹性模量)→→OK→→Density(定义材料密度)→DENS:7800,→→OK→→Close(关闭材料定义窗口)(6)构造桁架桥模型构造桁架桥模型生成桥体几何模型ANSYSMainMenu:Preprocessor→→Modeling→→Create→→Keypoints→→InActive CS→→NPTKeypointnumber::1,,X,,Y,,ZLocationinactiveCS::0,,0→→Apply→→同样输入其余15个特征点坐标(最左端为起始点,坐标分别为(4,0),(8,0),(12,0),(16,0),(20,0),(24,0),(28,0),(32,0),(4,5.5),(8,5.5),(12 ,5.5),(16.5.5),(20,5.5),(24,5.5),(28,5.5))→Lines→Lines→→StraightLine→→依次分别连接特征点→→OK网格划分ANSYSMainMenu:Preprocessor→→Meshing→→MeshAttributes→→PickedLines→→选择桥顶梁及侧梁→→OK→→selectREAL:1,TYPE:1→→Apply→→选择桥体弦杆→→OK→→selectREAL:2,TYPE:1→→Apply→→选择桥底梁→→OK→→selectREAL:3,TYPE:1→→OK→→ANSYSMainMen u:Preprocessor→→Meshing→→MeshTool→→位于SizeControls 下的Lines::Set→→ElementSizeonPicked→→Pickall→→Apply→→NDIV::1→→OK→→Mesh→→Lines→→Pickall→→OK(划分网格)(7)模型加约束模型加约束ANSYSMainMenu:Solution→→DefineLoads→→Apply→→Struct ural→→Displacement→→OnNodes→→选取桥身左端节点→→OK→→selectLab2:AllDOF(施加全部约束)→→Apply→→选取桥身右端节点→→OK→→selectLab2:UY(施加Y方向约束)→→OK(8)施加载荷施加载荷ANSYSMainMenu:Solution→→DefineLoads→→Apply→→Struct ural→→Force/Moment→→OnKeypoints→→选取底梁上卡车两侧关键点(X坐标为12及20)→→OK→→selectLab:FY,,Value:-5000→→Apply→→选取底梁上卡车中部关键点(X坐标为16)→→OK→→selectLab:FY,,Value:-10000→→OK→→ANSYSUtilityMenu:→→Select→→Everything(9)计算分析计算分析ANSYSMainMenu:Solution→→Solve→→CurrentLS→→OK(10)结果显示结果显示ANSYSMainMenu:GeneralPostproc→→PlotResults→→Deedshape→→Defshapeonly →→OK(返回到PlotResults)→→ContourPlot→→NodalSolu→→DOFSolution,Y-Componentof Displacement→→OK(显示Y方向位移UY)(见图3-24(a))定义线性单元I节点的轴力ANSYSMainMenu→GeneralPostproc→→ElementTable→→Define Table→→Add→→Lab:[bar_I],Bysequencenum:[SMISC,1]→→OK →→Close定义线性单元J节点的轴力ANSYSMainMenu→→GeneralPostproc→→ElementTable→→Def ineTable→→Add→→Lab:[bar_J],Bysequencenum:[SMISC,1]→→OK→→Close画出线性单元的受力图(见图3-24(b))ANSYSMainMenu→→GeneralPostproc→→PlotResults→→ContourPlot→→LineElemRes→→LabI:[bar_I],LabJ:[bar_J],Fact :[1]→→OK(11)退出系统退出系统ANSYSUtilityMenu:File→→Exit→→SaveEverything→→OK(a)桥梁中部最大挠度值为0.003374m(b)桥梁中部轴力最大值为25380N图3.24桁架桥挠度UY以及单元轴力计算结果【【ANSYS算例算例】】3.4.2(2)基于命令流方式的桁架桥梁结构分析基于命令流方式的桁架桥梁结构分析!%%%%%[ANSYS 算例]3.4.2(2)%%%%%begin%%%%%%!------注:命令流中的符号$,可将多行命令流写成一行------/prep7!进入前处理/PLOPTS,DATE,0!设置不显示日期和时间!=====设置单元和材料ET,1,BEAM3!定义单元类型R,1,2.19E-3,3.83e-6,,,,,!定义1号实常数用于顶梁侧梁R,2,1.185E-3,1.87e-6,0,0,0,0,!定义2号实常数用于弦杆R,3,3.031E-3,8.47E-6,0,0,0,0,!定义3号实常数用于底梁MP,EX,1,2.1E11!定义材料弹性模量MP,PRXY,1,0.30!定义材料泊松比MP,DENS,1,,7800!定义材料密度!-----定义几何关键点K,1,0,0,,$K,2,4,0,,$K,3,8,0,,$K,4,12,0,,$K,5,16,0,,$K,6,20,0,,$K,7,2 4,0,,$K,8,28,0,,$K,9,32,0,,$K,10,4,5.5,,$K,11,8,5.5,,$K,12,12,5.5,,$K,13,16,5.5,,$K,14,20,5.5,,$K,15,24,5.5,,$K,16,28,5.5,,!-----通过几何点生成桥底梁的线L,1,2$L,2,3$L,3,4$L,4,5$L,5,6$L,6,7$L,7,8$L,8,9!------生成桥顶梁和侧梁的线L,9,16$L,15,16$L,14,15$L,13,14$L,12,13$L,11,12$L,10,11$L,1,10! ------生成桥身弦杆的线L,2,10$L,3,10$L,3,11$L,4,11$L,4,12$L,4,13$L,5,13$L,6,13$L,6,14 $L,6,15$L,7,15$L,7,16$L,8,16!------选择桥顶梁和侧梁指定单元属性LSEL,S,,,9,16,1,LATT,1,1,1,,,,!-----选择桥身弦杆指定单元属性LSEL,S,,,17,29,1,LATT,1,2,1,,,,!-----选择桥底梁指定单元属性LSEL,S,,,1,8,1,LATT,1,3,1,,,,!------划分网格AllSEL,all!再恢复选择所有对象LESIZE,all,,,1,,,,,1!对所有对象进行单元划分前的分段设置LMESH,all!对所有几何线进行单元划分!=====在求解模块中,施加位移约束、外力,进行求解/soluNSEL,S,LOC,X,0!根据几何位置选择节点D,all,,,,,,ALL,,,,,!对所选择的节点施加位移约束AllSEL,all!再恢复选择所有对象NSEL,S,LOC,X,32!根据几何位置选择节点D,all,,,,,,,UY,,,,!对所选择的节点施加位移约束ALLSEL,all!再恢复选择所有对象!------基于几何关键点施加载荷FK,4,FY,-5000$FK,6,FY,-5000$FK,5,FY,-10000/replot!重画图形Allsel,all!选择所有信息(包括所有节点、单元和载荷等)solve!求解!=====进入一般的后处理模块/post1!后处理PLNSOL,U,Y,0,1.0!显示Y方向位移PLNSOL,U,X,0,1.0!显示X方向位移!------显示线单元轴力------ETABLE,bar_I,SMISC,1ETABLE,bar_J,SMISC,1PLLS,BAR_ I,BAR_J,0.5,1!画出轴力图finish!结束!%%%%%[ANSYS算例]3.4.2(2)%%%%%end%%%%%%【【ANSYS算例算例】】3.2.5(3)四杆桁架结构的有限元分析四杆桁架结构的有限元分析下面针对【典型例题】3.2.5(1)的问题,在ANSYS平台上,完成相应的力学分析。

ansys实例解析SOLID45例题 手把手教你学ansys(word文档良心出品)

ansys实例解析SOLID45例题  手把手教你学ansys(word文档良心出品)

2.1 三维实体元SOLID452.1.1 单元简介1.单元形状SOLID45单元是三维实体单元,该单元在每个节点上有三个自由度(X、Y、Z方向的位移)。

SOLID45的几何形状2.单元参数输入对于SOLID45单元而言,其必须或可选的参数输入包括:●节点:I、J、K、L、M、N、O、P●自由度:UX, UY, UZ●材料参数⏹EX(弹性模量)、EY、EZ⏹PRXY, PRYZ, PRXZ (or NUXY, NUYZ, NUXZ)(泊松比)⏹ALPX, ALPY, ALPZ (or CTEX, CTEY, CTEZ or THSX, THSY,THSZ)(热膨胀系数)⏹DENS(密度)⏹其它参数3.结果的输出SOLID45单元的结果输出对于三维实体单元SOLID45而言,工程上主要关注其在荷载作用下的变形(挠度)及应力各分量等。

对于实体结构的变形,可以直接通过ANSYS中的位移来获得,而应力各分量,包括S:X, Y, Z, XY, YZ, XZ,主应力分量S:1, 2, 3,等效应力S:EQV,都可以在后处理中绘制等值线图,便于观察。

2.1.2 实例分析考虑一根10m高的混凝土柱,EX=2e10Pa,Prxy=0.167;Dens=2400;截面尺寸为B*H=0.6m×0.8m,在自由端作用100KN的水平推力,分析其变形和内力。

ANSYS的分析过程:●进入ANSYS工作界面;改变工作目录Utility Menu>Change Directory…●进入前处理模块:Main Menu>Preprocessor●定义单元类型;点击Element Type > Add/Edit/Delete,在弹出的对话框中添加;●定义材料;Material Props>Material Models,在弹出的对话框内设置;●创建八个关键点:1(0,0,0)、2(0.8,0,0)、3(0.8,0.6,0)、4(0,0.6,0)、5(0,0,10)、6(0.8,0,10)、7(0.8,0.6,10)、8(0,0.6,10);这里介绍在命令行直接创建关键点的方法:在命令行输入K,1,0,0,后回车;在命令行输入K,2,0.8,0,后回车;即可生成两个关键点。

ansys实用教程 案例分析 练习题解读

ansys实用教程 案例分析 练习题解读

目录实验一衍架的结构静力分析 (3)一、问题描述 (3)二、实训目的 (3)三、结果演示 (4)四、实训步骤 (4)实验二三维实体结构的分析 (15)一、问题描述 (15)二、实训目的 (15)三、结果演示 (16)四、实训步骤 (16)实验三变截面高速轴的最优化设计 (24)一、问题描述 (24)二、实训目的 (26)三、实验步骤 (27)实验四压杆的最优化设计 (29)一、问题描述 (29)二、实训目的 (30)三、实验步骤 (30)实验五悬臂梁的可靠度分析 (32)一、问题描述 (32)实验一衍架的结构静力分析结构静力分析是ANSYS软件中最简单,应用最广泛的一种功能,它主要用于分析结构在固定载荷(主要包括外部施加的作用力,稳态惯性力如重力和离心力,位移载荷和温度载荷等)作用下所引起的系统或部件的位移,应力,应变和力。

一般情况下,结构静力分析适用于不考虑或惯性,阻尼以及动载荷等对结构响应的影响不大的场合,如温度,建筑规范中的等价静力风载和地震载荷等在结构中所引起的响应。

结构静力分析分为线性分析和非线性分析两类,由于非线性分析涉及大变形,塑性,蠕变和应力强化等内容,较为复杂,不适于作为入门教学。

因此,本实训中只讨论ANSYS的线性结构静力分析。

一、问题描述图1所示为由9个杆件组成的衍架结构,两端分别在1,4点用铰链支承,3点受到一个方向向下的力F y ,衍架的尺寸已在图中标出,单位: m。

试计算各杆件的受力。

其他已知参数如下:弹性模量(也称扬式模量)E=206GPa;泊松比μ=0.3;作用力F y =-1000N;杆件的横截面积A=0.125m2.显然,该问题属于典型的衍架图1衍架结构简图静力分析问题,通过理论求解方法(如节点法或截面法)也可以很容易求出个杆件的受力,但这里为什么要用ANSYS软件对其分析呢?二、实训目的本实训的目的有二:一是使学生熟悉ANSYS8.0软件的用户界面,了解有限元分析的一般过程;二是通过使用ANSYS 软件分析的结果和理论计算结果进行比较,以建立起对利用ANSYS 软件进行问题根系的信任度,为以后使用ANSYS 软件进行更复杂的结构分析打基础。

ANSYS Workbench V 实例精解

ANSYS Workbench V 实例精解

ANSYS Workbench V14.0实例入门通过一个简单的分析案例,对ANSYS Workbench 有一个初步的了解,在学习时无需了解操作步骤的每一项内容,了解ANSYS Workbench有限元分析的基本流程即可。

本例题可以采用V14.0求解,和V13.0结果相比,有一定的差异。

1案例介绍某如图1-24所示不锈钢钢板尺寸为320mmX50mmX20mm,其中一端为固定,另一端为自由状态,同时在一面上分布有均布载荷q=0.2MPa,请用ANSYS Workbench求解出应力与应变的分布云图。

2启动Workbench并建立分析项目(1)在Windows系统下执行“开始”→“所有程序”→ANSYS 14.0 →Workbench命令,启动ANSYS Workbench 14.0,进入主界面。

(2)双击主界面Toolbox(工具箱)中的Component systems→Symmetry(几何体)选项,即可在项目管理区创建分析项目A,如图1-25所示。

图1-24 案例问题图1-25 创建分析项目A(3)在工具箱中的Analysis System→Static Structural上按住鼠标左键拖曳到项目管理区中,当项目A 的Symmetry红色高亮显示时,放开鼠标创建项目B,此时相关联的项数据可共享,如图1-26所示。

图1-26 创建分析项目提示:本例是线性静态结构分析,创建项目时可直接创建项目B,而不创建项目A,几何体的导入可在项目B中的B3栏Geometry中导入创建。

本例的创建方法在对同一模型进行不同的分析时会经常用到。

3导入创建几何体(1)在A2栏的Geometry上点击鼠标右键,在弹出的快捷菜单中选择Import Geometry→Browse命令,如图1-27所示,此时会弹出“打开”对话框。

(2)在弹出的“打开”对话框中选择文件路径,导入char01-01几何体文件,如图1-28所示,此时A2栏Geometry后的变为,表示实体模型已经存在。

ansys工程实例(4经典例子)

ansys工程实例(4经典例子)

输气管道受力分析(ANSYS建模)任务和要求:按照输气管道的尺寸及载荷情况,要求在ANSYS中建模,完成整个静力学分析过程。

求出管壁的静力场分布。

要求完成问题分析、求解步骤、程序代码、结果描述和总结五部分。

所给的参数如下:材料参数:弹性模量E=200Gpa; 泊松比0.26;外径R₁=0.6m;内径R₂=0.4m;壁厚t=0.2m。

输气管体内表面的最大冲击载荷P为1Mpa。

四.问题求解(一).问题分析由于管道沿长度方向的尺寸远大于管道的直径,在计算过程中忽略管道的端面效应,认为在其长度方向无应变产生,即可将该问题简化为平面应变问题,选取管道横截面建立几何模型进行求解。

(二).求解步骤定义工作文件名选择Utility Menu→File→Chang Jobname 出现Change Jobname对话框,在[/FILNAM] Enter new jobname 输入栏中输入工作名LEILIN10074723,并将N ew log and eror file 设置为YES,单击[OK]按钮关闭对话框定义单元类型1)选择Main Meun→Preprocessor→Element T ype→Add/Edit/Delte命令,出现Element T ype 对话框,单击[Add]按钮,出现Library of Element types对话框。

2)在Library of Element types复选框选择S trctural、Solid、Quad 8node 82,在Element type reference number输入栏中出入1,单击[OK]按钮关闭该对话框。

3. 定义材料性能参数1)单击Main Meun→Preprocessor→Material Props→Material models出现Define Material Behavion 对话框。

选择依次选择S tructural、Linear、Elastic、Isotropic选项,出现Linear Isotropic Material Properties For Material Number 1对话框。

ansys实例分析2

ansys实例分析2

ansys 实例分析2实验四 压杆的最优化设计一、问题描述图45所示的空心压杆两端受轴向外载荷P 。

轴的内径为1d ,外径为2d ,支承间距尺寸为l 。

试确定压杆的结构尺寸1d 、2d 和l ,以保证在压杆不产生屈服并且不破坏压杆稳定性条件下,压杆的体积和重量最小。

性条件下,压杆的体积和重量最小。

该问题的分析过程如下:该问题的分析过程如下:压杆为细长直杆,承受轴向压力,会因轴向压力达到临界值时突然弯曲而失去稳定性。

设计压杆,除应使其压力不超过材料的弹性极限外,还必须使其承受的轴向压力小于压杆的临界载荷。

临界载荷。

压杆在机械装置中应用的例子较多,例如在液压机构中当活塞的行程足够大时,会导致活塞杆足够长,这种细长的活塞杆便是压杆。

活塞杆足够长,这种细长的活塞杆便是压杆。

根据欧拉压杆公式,对与两端均为铰支的压杆,其临界载荷为根据欧拉压杆公式,对与两端均为铰支的压杆,其临界载荷为 22c P EJ l p =式中E 为压杆材料的弹性模量;J 为压杆横截面的最小惯性矩,EJ 为抗弯刚度;L 为压杆长度。

为压杆长度。

将欧拉公式推广到端部不同约束的压杆,则上式变为上式变为()22c P EJ l p m = 式中m 为长度折算系数,其值将随压杆两端约束形式的不同而异。

形式的不同而异。

当两端铰支时取当两端铰支时取1m =;一端固定,另一端自由时取2m =;一端固定,一端固定,另一端铰另一端铰支时取0.75m =;两端均固定时,取0.5m =。

由欧拉公式可知,c P 与J 成正比。

合理的设计压杆截面形状,使其材料尽量远离形心图45 压杆机构简图压杆机构简图分布,就能使J 增大而提高压更的抗弯刚度EJ ,增大临界载荷c P 。

所以在相同截面面积的条件下,管状压杆比实心压杆有更大的临界载荷。

条件下,管状压杆比实心压杆有更大的临界载荷。

以管状压杆的内径1d ,外径2d ,长度l 作为设计变量,以其体积或重量作为目标函数,以压杆不产生屈服和不破坏轴向稳定性以及其尺寸约束条件,则管状压杆最优化设计的数学模型为模型为()()()()[]()()()222122111222214422121221min 11max2min 22maxmin maxmin ,,44,0,0,64f d d l d d l P g d d d d d d g d d P EJ J l d d d d d d l l l p a s p p p b m =-=-£--=-£=££££££对圆管:式中,a b 分别为大于1的安全系数;P 为设计给定的外载荷。

ANSYS平面问题实际例题分析讲解-PPT

ANSYS平面问题实际例题分析讲解-PPT

理论值 ANSYS 比值 值
PLANE 中部最大 42(4节 应力 点)
固定端最 大应力
57、 56、 457MPa 24MPa
51、 49、 073MPa 3MPa
0、979 0、965
PLANE 中部最大 82(8节 应力 点)
固定端最 大应力
57、
57、
1、004
457MPa 666MPa
51、 51、 1、000 073MPa 083MPa
Preprocessor > Solution >Analysis Type > New Analysis,
ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →OK
上机报告要求白底; 要求作业名为自己得名字; 要求图清晰,排版清楚。
1、定义作业名
ANSYS Utility Menu: File →Change Title
2、如何查有限元模型得单元数与节点数
ANSYS Utility Menu: Utility Menu →List →Picked Entities+
input NDIV:6 →Apply →拾取短边得两条线→OK → input NDIV:1 →OK
3、划分网格 6)划分网格
Mesh Tool →Mesh : select Areas→ Shape:Quad→Free → Mesh → Pick All
→Close( the Mesh Tool window)
3、划分网格 1)定义单元类型
3、划分网格 2)定义实常数(厚度)

ANSYS温度场例题分析

ANSYS温度场例题分析

ANSYS温度场例题分析短圆柱体的热传导过程问题:一短圆柱体,直径和高度均为1m,现在其上端面施加大小为100℃的均匀温度载荷,圆柱体下端面及侧面的温度均为0℃,试求圆柱体内部的温度场分布(假设圆柱体不与外界发生热交换)。

圆柱体材料的热传导系数为30W/(m·℃)。

求解:第一步:建立工作文件名和工作标题在ANSYS软件中建立相应的文件夹,并选择Thermal复选框。

第二部:定义单元类型在单元类型(elementtype)中选择thermalolid和quad4node55,在单元类型选择数字(elementtypereferencenumber)输入框中输入1,在单元类型选择框里选择A某iymmetric,其余默认即可。

第三步:定义材料性能参数在材料性能参数对话框中输入圆柱体的导热系数30.第四步:创建几何模型、划分网格之后在plotnumberingcontrol对话框,分别打开KPKeypointnumber、LINElinenumber、AREAAreanumber,建立直线L1、L2、L3、L4线段。

生成几何模型,如下图所示:将结果进行保存。

第五步:加载求解选择分析类型Steady-State,在SelectEntitie对话框,第一个下拉列表框中选择Line,在第二个下拉列表中选择ByNum,第三个单选框中选择FromFull。

选择线段L1、L2。

重复上述操作,在SelectEntitie对话框,第一个下拉列表框中选择Node,在第二个下拉列表中选择Attachedto,第三个单选框中选择Line,all。

并在Lab2DOFtobecontrained列表中选择TEMP,在VALUELoadTEMPvalue输入框中输入0。

在SelectEntitie对话框,第一个下拉列表框中选择Line,在第二个下拉列表中选择ByNum,第三个单选框中选择FromFull选择L3线段,重复上述操作,在SelectEntitie对话框,第一个下拉列表框中选择Node,在第二个下拉列表中选择Attachedto,第三个单选框中选择Line,all。

ANSYS案例——20例ANSYS经典实例】

ANSYS案例——20例ANSYS经典实例】

ANSYS案例——20例ANSYS经典实例】针对【典型例题】3.3.7(1)的模型,即如图3-19所示的框架结构,其顶端受均布力作用,用有限元方法分析该结构的位移。

结构中各个截面的参数都为:113.010PaE=,746.510mI-=,426.810mA-=,相应的有限元分析模型见图3-20。

在ANSYS平台上,完成相应的力学分析。

图3-19框架结构受一均布力作用图3-20单元划分、节点位移及节点上的外载解答对该问题进行有限元分析的过程如下。

1.基于图形界面的交互式操作(tepbytep)(1)进入ANSYS(设定工作目录和工作文件)程序→ANSYS→ANSYSInteractive→Workingdirectory(设置工作目录)→Initialjobname(设置工作文件名):beam3→Run→OK(2)设置计算类型(3)选择单元类型(4)定义材料参数ANSYSMainMenu:Preproceor→MaterialProp→MaterialModel→Struc tural→Linear→Elatic→Iotropic:E某:3e11(弹性模量)→OK→鼠标点击该窗口右上角的“”来关闭该窗口(5)定义实常数以确定平面问题的厚度ANSYSMainMenu:Preproceor→RealContant…→Add/Edit/Delete→Add→Type1Beam3→OK→RealContantSetNo:1(第1号实常数),Cro-ectionalarea:6.8e-4(梁的横截面积)→OK→Cloe(6)生成几何模型生成节点ANSYSMainMenu:Preproceor→Modeling→Creat→Node→InActiveCS→Nodenumber1→某:0,Y:0.96,Z:0→Apply→Nodenumber2→某:1.44,Y:0.96,Z:0→Apply→Nodenumber3→某:0,Y:0,Z:0→Apply→Nodenumber4→某:1.44,Y:0,Z:0→OK生成单元ANSYSMainMenu:Preproceor→Modeling→Create→Element→AutoNum bered→ThruNode→选择节点1,2(生成单元1)→apply→选择节点1,3(生成单元2)→apply→选择节点2,4(生成单元3)→OK(7)模型施加约束和外载左边加某方向的受力ANSYSMainMenu:Solution→DefineLoad→Apply→Structural→Force/Moment→OnNode→选择节点1→apply→Directionofforce:F某→VALUE:3000→OK→上方施加Y方向的均布载荷ANSYSMainMenu:Solution→DefineLoad→Apply→Structural→Preure→OnBeam→选取单元1(节点1和节点2之间)→apply→VALI:4167→VALJ:4167→OK左、右下角节点加约束(8)分析计算(9)结果显示(10)退出系统(11)计算结果的验证与MATLAB支反力计算结果一致。

ansys workbench例题

ansys workbench例题

Ansys Workbench是一款广泛应用于工程领域的有限元分析软件,可以用于解决各种结构力学、流体动力学、电磁场等问题。

本文将以Ansys Workbench为例,介绍一个结构力学的例题,并详细讲解解题过程。

1. 问题描述假设有一个悬臂梁,在梁的自由端施加一个集中力,要求计算梁的应力分布和挠度。

2. 建模打开Ansys Workbench软件,新建一个静力学分析项目。

在几何模型中,画出悬臂梁的截面,并确定梁的长度、宽度和厚度。

在材料属性中,选择梁的材料,并输入对应的弹性模量和泊松比。

在约束条件中,将梁的支座固定,模拟悬臂梁的真实工况。

在外部荷载中,施加一个与梁垂直的集中力,确定力的大小和作用位置。

3. 网格划分在建模结束后,需要对悬臂梁进行网格划分。

在Ansys Workbench 中,可以选择合适的网格划分方式和密度,以保证计算结果的准确性和计算效率。

通常情况下,悬臂梁的截面可以采用正交结构网格划分,梁的长度方向可以采用梁单元网格划分。

4. 设置分析类型在网格划分完成后,需要设置分析类型为结构静力学。

在分析类型中,可以选择加载和约束条件,在求解器中,可以选择计算所需的结果类型,如应力、应变、位移等。

5. 求解和结果分析完成以上步骤后,可以提交计算任务进行求解。

Ansys Workbench软件会自动进行计算,并在计算完成后给出计算结果。

在结果分析中,可以查看悬臂梁的应力分布图和挠度图,进一步分析梁的受力情况和变形情况。

6. 参数化分析除了单一工况下的分析,Ansys Workbench还可以进行参数化分析。

用户可以改变材料属性、外部加载、几何尺寸等参数,快速地进行批量计算和结果对比分析,以得到最优的设计方案。

7. 结论通过Ansys Workbench对悬臂梁的结构分析,可以得到悬臂梁在外部加载下的应力分布和挠度情况,为工程设计和优化提供重要参考。

Ansys Workbench还具有丰富的后处理功能,可以绘制出直观的分析结果图,帮助工程师和研究人员更好地理解和使用分析结果。

ansys有限元经典例题 1 全面剖析

ansys有限元经典例题  1  全面剖析
进入Main Menu: Solution > define Loads->Apply > Structural>Displacement >on area 选择四个 螺纹孔的内表面,如下图所示,点击OK ,进入如图所示对话框,选择all DOF,点OK退出
进入Main Menu: Solution > define Loads->Apply > Structural>Pressure >on area 选择盖零件的内表面如下图所示,弹出如图所示的对话框,填入如图所示的值,点Ok退出 对话框
2.节点应力云图 进入Main Menu: General Postproc >plot result>contour Plot >Nodal solu 在弹出对话框中选择stress-von Mises stress 点OK确定,弹出结果如下图所示
3.输出节点应力结果数据 进入Main Menu: General Postproc >list result>Nodal solution,在弹出的对话框中选择 stress-von Mises stress ,点OK确定,弹出结果部分如下图所示
一. 建立几何模型
先在SolidWorks软件中上图盖零件的三维模型,然后另存为 parasolid(*.x.t)格式 然后Utility Menu>File>import>PARA将上一步创建的模型导入 到ansys中,结果如下图所示
• 二 .设定单元类型相应选项.
1 .进入Main Menu: Preprocessor > Element Type > Add/Edit/Delete 2.选择 Add . . . 3.左边单元库列表中选择 solid 4.在 接受单元类型并关闭对话框. 6.选择 Close 关闭单元类型对话框.

ANSYS经典案例分析

ANSYS经典案例分析

ANSYS相关问题分析作者:***学号:**********学院:机电学院班级:2015级2班专业:工程力学目录第一章二维静力学分析 (1)第二章三维静力学分析 (7)第三章材料非线性分析 (17)第四章模态分析 (24)第五章谐响应分析 (37)第六章瞬态动力学分析 (46)第七章三维建模1 (63)第八章三维建模2 (74)第一章二维静力学问题分析——悬臂梁受力分析1.1分析问题有一工字梁,已知截面各尺寸为H=50mm,h=43mm,B=35mm,b=32mm,梁长度为L=1m,集中力P=1000N,钢的弹性模量E=2e11,泊松比μ=0.3。

1.2建立模型1.修改任务名和过滤界面1)从实用菜单中选择Utility Menu: File>Change Jobname 命令,将打开Change Jobname(修改文件名)对话框,如图1-1所示。

图1-12)在Enter new jobname(输入新的文件名)文本框中输入文字“ERWEIJINGLIXUEFENXI”,为本分析实例的数据库文件名。

3)单击Add...按钮,完成文件名的修改。

4)从主菜单中选择Utility Menu:Preference命令,将打开Preference of GUI Filtering(菜单过滤参数选择)对话框,选中Structural复选框,单击0K按钮确定。

2.定义单元类型1)从主菜单中选择Main Menu:Preprocessor>Element Type>Add/Edit/Delete 命令,将打开Element Type(单元类型)对话框。

2)单击Add...按钮,将打开Library of Element Type(单元类型库),如图1-2所示图1-23)在中选择Beam 选项,选择实体单元类型。

4)在右边的列表框中选择“2 node 188”选项,单击OK按钮。

5)返回到第1步打开的单元类型对话框如图1-3所示。

(完整word版)Ansys-综合实例(含40例)

(完整word版)Ansys-综合实例(含40例)

第一章前处理第1例 关键点和线的创建实例—正弦曲线FINISH/CLEAR, NOSTART /PREP7K,100,0,0,0CIRCLE,100,1,,,90 CSYS,1KFILL,2,1,4,3,1K,7,1+3.1415926/2,0,0 CSYS,0KFILL,7,1,4,8,1 KGEN,2,7,11,1,,1 LSTR,8,13 LSTR,9,14 LSTR,10,15 LSTR,11,16 LANG,5,6,90,,0 LANG,4,5,90,,0 LANG,3,4,90,,0 LANG,2,3,90,,0BSPLIN,1,17,18,19,20,12 LSEL,U,,,14LDELE,ALL LSEL,ALL KWPAVE,12 CSYS,4LSYMM,X,14NUMMRG,KP,,,,LOWLCOMB,ALL,,0FINISH/CLEAR, NOSTART /PREP7 PI=3.14159 J=0*DO,I,0,PI,PI/10.0 J=J+1 X=IY=SIN(I) I=I+1 K,J,X,Y *ENDDOBSPLIN,1,2,3,4,5,6 BSPLIN,6,7,8,9,10,11 csys,4 KWPAVE,11LSYMM,y,1,2,,,,0 KWPAVE,11LSYMM,x,3,4,,,,1以上程序有意没算到2 为了使用几个命令第2例工作平面的应用实例—相交圆柱体[本例提示]通过相交圆柱体的创建,本例主要介绍了工作平面的使用方法。

通过本例,读者可以了解并掌握工作平面与所创建体的位置、方向的关系,学习工作平面的设置、偏移、旋转和激活为当前坐标系的方法。

FINISH/CLEAR,NOSTART/PREP7CYLIND,0.015,0,0,0.08,0,360CYLIND,0.03,0,0,0.08,0,360/VIEW,1,1,1,1/PNUM,VOLU,1WPOFF,0,0.05,0.03WPROT,0,60CYLIND,0.012,0,0,0.055,0,360CYLIND,0.006,0,0,0.055,0,360VSEL,S,,,2,3,1CM,VV1,VOLUVSEL,INVECM,VV2,VOLUVSEL,ALLVSBV,VV1,VV2BLOCK,-0.002,0.002,-0.013,-0.009,0,0.008WPSTYLE,,,,,,1CSYS,4VGEN,3,1,,,,120VSBV,5,1VSBV,4,2VSBV,1,3WPROT,0,0,90VSBW,ALLVDELE,1,4,3VADD,ALLVPLOT/REPLOT第3例复杂形状实体的创建实例—螺栓[本例提示]在使用ANSYS软件进行结构分析时,建立实体模型是最复杂最难以掌握的一个过程。

ANSYS案例——20例ANSYS经典实例】

ANSYS案例——20例ANSYS经典实例】

三梁平面框架结构的有限元分析针对【典型例题】3.3.7(1)的模型,即如图3-19所示的框架结构,其顶端受均布力作用,用有限元方法分析该结构的位移。

结构中各个截面的参数都为:113.010Pa E =⨯,746.510m I -=⨯,426.810m A -=⨯,相应的有限元分析模型见图3-20。

在ANSYS 平台上,完成相应的力学分析。

图3-19 框架结构受一均布力作用(a ) 节点位移及单元编号 (b ) 等效在节点上的外力图3-20 单元划分、节点位移及节点上的外载解答 对该问题进行有限元分析的过程如下。

1.基于图形界面的交互式操作(step by step)(1) 进入ANSYS(设定工作目录和工作文件)程序 →ANSYS → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname (设置工作文件名): beam3→Run → OK(2) 设置计算类型ANSYS Main Menu: Preferences… → Structural → OK(3) 选择单元类型ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete… →Add… →beam :2D elastic 3 →OK (返回到Element Types 窗口) →Close(4) 定义材料参数ANSYS Main Menu:Preprocessor →Material Props →Material Models→Structural →Linear →Elastic→Isotropic: EX:3e11 (弹性模量) →OK →鼠标点击该窗口右上角的“ ”来关闭该窗口(5) 定义实常数以确定平面问题的厚度ANSYS Main Menu: Preprocessor →Real Constant s… →Add/Edit/Delete →Add →Type 1 Beam3→OK→Real Constant Set No: 1 (第1号实常数), Cross-sectional area:6.8e-4 (梁的横截面积) →OK →Close(6) 生成几何模型生成节点ANSYS Main Menu: Preprocessor →Modeling →Creat→Nodes→In Active CS→Node number 1 →X:0,Y:0.96,Z:0 →Apply→Node number 2 →X:1.44,Y:0.96,Z:0 →Apply→Node number 3 →X:0,Y:0,Z:0→Apply→Node number 4 →X:1.44,Y:0,Z:0→OK生成单元ANSYS Main Menu: Preprocessor →Modeling →Create →Element →Auto Numbered →Thru Nodes →选择节点1,2(生成单元1)→apply →选择节点1,3(生成单元2)→apply →选择节点2,4(生成单元3)→OK(7)模型施加约束和外载左边加X方向的受力ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Force/Moment →On Nodes →选择节点1→apply →Direction of force: FX →V ALUE:3000 →OK→上方施加Y方向的均布载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Beams →选取单元1(节点1和节点2之间)→apply →V ALI:4167→V ALJ:4167→OK左、右下角节点加约束ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement →On Nodes →选取节点3和节点4 →Apply →Lab:ALL DOF →OK(8) 分析计算ANSYS Main Menu:Solution →Solve →Current LS →OK →Should the Solve Command be Executed? Y→Close (Solution is done! ) →关闭文字窗口(9) 结果显示ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape … →Def + Undeformed →OK (返回到Plot Results)(10) 退出系统ANSYS Utility Menu: File→Exit …→Save Everything→OK(11) 计算结果的验证与MA TLAB支反力计算结果一致。

ANSYS案例

ANSYS案例

案例库目录一、圆轴的简单拉伸数值试验二、圆轴的简单扭转数值试验三、销钉的剪切数值试验四、三角架的受力分析,与其变形结构的力学性能比较五、应力集中现象六、圣维南原理的直观显示七、弯矩应力的分析计算八、结构基本动力特性分析案例一、圆轴的简单拉伸数值试验条件:圆轴直径D=300mm,长度L=3000mm,F=5000N,材料为钢材(弹性模量E= 2.06e5MPa,泊松比μ=0.3)。

要求:利用ANSYS模拟上述圆轴拉压变形。

步骤:1、定义材料2、定义单元(solid95)3、建立几何体4、施加约束与外力5、网格划分6、求解7、计算结果查看file.avi案例二、圆轴的简单扭转数值试验条件:圆轴直径D=300mm,长度L=3000mm,F=500000N.mm,材料为钢材(弹性模量E= 2.06e5MPa,泊松比μ=0.3)。

要求:利用ANSYS模拟上述圆轴拉压变形。

步骤:1.定义材料2.定义单元(solid95)3.建立几何体4.建立加载点5.施加约束与外力6.网格划分7.求解7.计算结果查看扭转.avi案例三、销钉的剪切数值试验条件:矩形截面bXh=300X600mm,长度L=2000mm,F=500000N,材料为钢材(弹性模量E= 2.06e5MPa,泊松比μ=0.3)。

要求:利用ANSYS模拟上述矩形截面梁的剪切变形。

步骤:1.定义材料2.定义单元(solid95)3.建立几何体4.建立加载面5.划分网格6.施加约束与外力(位移荷载)7.计算结果查看trim.avitrim-deform.avi例题4、三角架的受力分析,与其变形结构的力学性能比较1、建模2、计算结果1、建立一块开有小孔的薄板模型2、计算结果案例6、圣维南原理的直观显示问题描述:本例题通过一端固定约束,一端受拉的构件来展示圣维南原理1、建模与计算2、计算结果案例7、弯矩应力的分析计算L=3000mma=1000mmb=2000mmMe=5000N.mm横截面为矩形截面,截面高h=300mm、截面宽b=200mm 2、材料参数钢材:E=2.06e5见视频案例8、结构基本动力特性分析见视频。

ANSYS经典例题详细步骤(精)

ANSYS经典例题详细步骤(精)

1计算机辅助机械设计课程设计指导书机电工程学院2轴承座轴瓦轴四个安装孔径向约束 (对称轴承座底部约束 (UY=0 沉孔上的推力(1000 psi.向下作用力 (5000 psi. 第一篇练习主题:实体建模EX1:轴承座的实体建模、网格划分、加载、求解及后处理练习目的:创建实体的方法,工作平面的平移及旋转,布尔运算(相减、粘接、搭接,模型体素的合并,基本网格划分。

基本加载、求解及后处理。

问题描述:具体步骤:首先进入前处理(/PREP71.生成长方体Main Menu:Preprocessor>Create>Block>By Dimensions 输入x1=0,x2=3,y1=0,y2=1,z1=0,z2=3 平移并旋转工作平面Utility Menu>WorkPlane>Offset WP by Increments X,Y ,Z Offsets 输入2.25,1.25,.75 点击Apply XY ,YZ ,ZX Angles输入0,-90点击OK 。

创建圆柱体Main Menu:Preprocessor>Create>Cylinder> Solid Cylinder Radius输入0.75/2, Depth输入-1.5, 点击OK 。

拷贝生成另一个圆柱体Main Menu:Preprocessor>Copy>Volume 拾取圆柱体, 点击Apply, DZ输入1.5然后点击OK载荷3从长方体中减去两个圆柱体Main Menu:Preprocessor>Operate>Subtract Volumes 首先拾取被减的长方体,点击Apply, 然后拾取减去的两个圆柱体,点击OK 。

使工作平面与总体笛卡尔坐标系一致Utility Menu>WorkPlane>Align WP with> Global Cartesian2. Utility Menu: WorkPlane -> Display Working Plane (toggle onMain Menu: Preprocessor -> -Modeling-Create -> -Volumes-Block -> By 2 corners & Z 在创建实体块的参数表中输入下列数值: WP X = 0 WP Y = 1 Width = 1.5 Height = 1.75 Depth = 0.75 OKToolbar: SA VE_DB3.Utility Menu: WorkPlane -> Offset WP to -> Keypoints + 1. 在刚刚创建的实体块的左上角拾取关键点 2. OKToolbar:SAVE_DB4Main Menu: Preprocessor -> Modeling-Create -> Volumes-Cylinder -> Partial Cylinder + 1. 在创建圆柱的参数表中输入下列参数: WP X = 0 WP Y = 0 Rad-1 = 0 Theta-1 = 0 Rad-2 = 1.5 Theta-2 = 90 Depth = -0.75 2. OKToolbar: SAVE_DB45. 在轴承孔的位置创建圆柱体为布尔操作生成轴孔做准备Main Menu: Preprocessor -> Modeling-Create -> Volume-Cylinder -> Solid Cylinder + 1. 输入下列参数: WP X = 0 WP Y = 0 Radius = 1 Depth = -0.1875 2. 拾取Apply 3. 输入下列参数: WP X = 0 WP Y = 0 Radius = 0.85 Depth = -2 4. 拾取 OK6.从轴瓦支架“减”去圆柱体形成轴孔. Main Menu: Preprocessor -> Modeling-Operate -> Subtract -> Volumes +1. 拾取构成轴瓦支架的两个体,作为布尔“减”操作的母体。

弹性力学ansys求解实例详解

弹性力学ansys求解实例详解

弹性力学a n s y s求解实例详解Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】ANSYS 上机实验报告一、题目描述如图1所示,一简支梁横截面是矩形,其面积202.0m A =,对弯曲中性轴的惯性矩451067.6m I zz -⨯=,高m h 2.0=,材料的pa E 11101.2⨯=,横向变形系数3.0=μ。

该梁的自重就是均布载荷N q 4000=和梁中点处的集中力N F 2000=,试讨论在均布荷载作用下,简支梁的最大挠度。

二、问题的材料力学解答由叠加法可知:梁上同时作用几个载荷时,可分别求出每一载荷单独作用时的变形,把各个形变叠加即为这些载荷共同作用时的变形。

在只有均布载荷q 作用时,计算简支梁的支座约束力,写出弯矩方程,利用EI M dxw d =22积分两次,最后得出: 铰支座上的挠度等于零,故有0=x 时,0=w ,因为梁上的外力和边界条件都对跨度中点对称,挠曲线也应对该点对称。

因此,在跨度中点,挠曲线切线的斜率等于零,即:2l x =时,0=dx dw ,把以上两个边界条件分别代入w 和0=dxdw 的表达式,可以求出243ql C -=,0=D ,于是得转角方程及挠曲线方程为: x ql x q x ql EIw ql x q x ql EI dx dw EI 2424122464343332--=--==θ (1) 在跨度中点,挠曲线切线的斜率等于零,挠度为极值,由(1)中式子可得:即EIql w q c 3845)(4-=。

在集中力F 单独作用时,查材料力学中梁在简单载荷作用下的变形表可得EIFl w F c 48)(3-=。

叠加以上结果,求得在均布载荷和集中力共同作用下,梁中点处的挠度是EIFl EI ql w w w F c q c c 483845)()(34--=+=,将各参数代入得m w c 410769.0-⨯=三、问题的ansys 解答建立几何模型此问题为可采用Beam 分析,所以该几何模型可用线表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

郑重申明:本人能力有限,文中不可避免会有错误,欢迎朋友们批评指正,希望大家相互提高,呵呵,谢谢啦!
12.8. Sample Rigid Body Dynamic Analysis
刚体动力学分析实例
This sample analysis demonstrates how to model a flexible component in ANSYS and export the flexible body information to a file for use in ADAMS. The example also provides brief instructions on how to perform the rigid body dynamic analysis in ADAMS, and details on how to transfer the loads from ADAMS to ANSYS in order to perform a stress analysis.
该实例演示了如果在ANSYS中制作柔性部件及输出可在ADAMS中使用的柔性体信息文件。

同样该例子也提供了有关于在ADAMS中进行动力学分析的简单介绍,和如何将载荷信息从ADAMS转换到ANSYS中进行应力分析的详细介绍。

12.8.1. Problem Description
问题描述
In the linkage assembly shown below, Link3 is a flexible component. Link3 is modeled as a rectangular rod in ANSYS using SOLID45elements. The joints in ADAMS will be attached to interface points (nodes) at the middle of the holes at either end of Link3. These middle points are connected to the cylindrical joint surfaces by a spider web of BEAM4 elements.
联动装置装配如下图所示,连杆3是一个柔性部件,为矩形杆件在ANSYS中采用SOLID45单元构造。

ADAMS中连接铰将连接在位于杆两端的孔中心接触节点上。

这些节点会通过BEAM4单元构造的蜘蛛网格与圆柱铰表面连接。

Figure 12.5: Linkage Assembly联动装置转配图
12.8.2. Problem Specifications 问题说明
The figure below shows the Link3 component as it is modeled in ANSYS. Figure 12.6: Link3 Component
The following are dimensions and properties for the Link3 component. 杆3的尺寸及性能如下
Radius of holes (radh) = 6mm
孔径=6mm
Width of rectangular rod (width) = 25mm
矩形杆件宽度=25mm
Thickness of rectangular rod (thick) = 10mm
杆件厚度=10mm
Length of rectangular rod (length) = 300mm + 4*Radius of holes = 324mm
杆件长度=300+4*孔径=324mm
Young's modulus for rod = 7.22 x 104 MPa。

相关文档
最新文档