05年河南专升本高数真题
2005年河南省普通高等学校
2005年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试Part I Structure and Vocabulary(30points)Directions: In this part, there are 30 incomplete sentences. You are required to complete each one by deciding on themost appropriate word or expression from the four choices marked A, B, C and D, and write the choice A, B, C or D in the brackets “【】”.【】1. A new analysis indicates that the output of cotton ________by 20% by now.A.will have gone upB. would go upC. will go upD. has gone up【】2.He wanted to become a cleaner, but his father didn’t think it was a ________ profession.A. respectfulB. respectiveC. respectingD. respectable【】3.It is very convenient for me to go to work every day because the bus runs ________.A. every-ten-minuteB. every tenth minuteC. every tenth minutesD. every ten minute【】4.________ out of the taxi, he was seized by the police.A. To stepB. When steppedC. In his steppingD. On his stepping【】5.I’ve never been to Africa, but it is the place ________.A.where I most want to visitB. in which I most want to visitC. I most want to visitD. that I want to visit it most【】6.No sooner had I ________ than the play began.A. been satB. seatedC. satD. been seated【】7.He ________ killed last night if he had taken part in the surprise attack on the night.A. might beB. would beC. might have beenD. should have been【】8.They are ________ to arrive in time owing to the heavy snowstorm.A. impossibleB. unlikelyC. unseemlyD. probably【】9.His wife as well as he ________ invited to the business party.A. has beenB. have beenC. hasD. are【】10.The scientists have come to the conclusion, based on the signals and photographs sent back by the satellite, ________ there is no life on Venus.A. thatB. whichC. whatD. where【】11.They made every effort to ________ the costs of the construction project.A. bring offB. bring downC. bring backD. bring up【】12.We are all for your proposal that the discussion ________.A. be put offB. was put offC. will be put off .D. should put off【】13.His son is quite well now, ________ a slight fever.A. exceptB. besidesC. in addition to .D. except for【】14.The violinist who had been praised very highly ________ to be a great disappointment.A. turned upB. turned outC. turned in .D. turned over【】15.We don’t need heating system, ________.A. and nor we can afford itB. we don’t afford itC. nor can we afford it .D. nor can it afford【】16.________ nothing to talk about, he said good-bye and went out of the room.A. There wasB. There beingC. Being .D. There been【】17.A lot of new difficulties ________ when the tax system came into existence.A. raisedB. arousedC. aroseD. rose【】18.What you are saying has nothing to do with the question ________ discussion.A. atB. onC. inD. under【】19.“Your daughter has two children, doesn’t she?”“Yes. She ________ in 1980.”A. marriedB. had marriedC. was married .D. got married【】20.Hemingway spoke highly of such ________ as loyalty, courage and determination shown by human beings in his works.A. featuresB. AppearancesC. virtuesD. characteristics【】21.The Great Pyramid ________ nearly five thousand years ago is located on the bank of the Nile River.A. builtB. was builtC. being builtD. to be built【】22.There are fifty-five students applying for the position, ________ are girls.A. two-third of whom .B. second-thirds of themC. second-threes of whomD. two-thirds of whom【】23.The applicant felt _________ and uncomfortable when he couldn’t answer the interviewer’s questions.A. amusedB. easeC. awkwardD. alone【】24.We should value the rich legacy of literature which the old generation has ________ to us.A. handed outB. handed overC. handed inD. handed down【】25.Mr. Smith would just rather we ________ now, but we must go to work.A. not leaveB. didn’t leaveC. are not to leaveD. won’t leave【】26.He didn’t seem to mind ________ TV while he was reading.A. me to watchB. that I watchC. my watchingD. being watched【】27.The news came as a shocking blow that the young man had ________ suicide.A. actedB. committedC. performedD. made【】28.The higher you stand, ________.A. the farther you can seeB. you can see fartherC. the more farther you can see .D. the farther can you see【】29.She was so ________ in the computer games that she forgot to have class.A. attractedB. concentratedC. involvedD. drawn【】30.There is no ________ arguing about it, just do as you are told.A. reasonB. wayC. pointD. meaningPart II Part of Speech (10 points)Directions: There are ten incomplete statements here. Youshould fill in each blank with the proper form of the wordgiven in the brackets, and write the right answer in the brackets “【】” .31._____ (origin), she was a very shy person. 【】32.He is majoring in ______(politician). 【】33.Not paying attention to anything his colleagues say, he _____ (frequency) doesn’t know what’s happening in the company. 【】34.You don’t have to be (religion)____ to respect other people’s religion.【】35.Since competition is viewed as the major source of progress and prosperity by most Americans, ______ (competition) business institutions are respected. 【】36. It is (certainty)_______ that he will come tomorrow. 【】37. Correct (decide) ______________ came when the referees (裁判) were moving at a speed of about 2 meters per second. 【】38. Look! That little boy is (real)______ a gifted boy. 【】39.In Britain, water will soon be metered, like gas and _____ (electrical).【】40.The first phase involved the ______(preserve) of wild life through laws and hunting regulations. 【】Part III Reading Comprehension(60 points)Directions: There are four passages in this part. For each question or statement there are four choices marked A, B, Cand D, you should make the correct choices,and write the choice A, B, C or D in the brackets “【】”. Passage OneThe management of logistical (物流的)operation is about movement and storage of materials and finished products. Logistical operations start with the initial shipment of a material or component part from a supplier and are finished when a manufactured or processed product is delivered to a customer.From the initial purchase of a material or component, the logistical process adds value by moving inventory (移动库存) when and where needed. If all goes well, a material gains value at each step of its transformation into finished inventory. In other words, an individual part has greater value after it is put into a machine. Likewise, the machine has greater value once it is delivered to a buyer.To support manufacturing, work-in-process inventory must be moved to support final assembly. The cost of each component and its movement becomes part of the value-added process. The final or meaningful value that is added occurs only with final ownership transfer of products to customers when and where specified.For a large manufacturer, logistical operations may consist of thousands of movements, which finally develop into the delivery of products to an industrial user, retailer, wholesaler, dealer, or other customer. For a large retailer, logistical operations may start with gaining products for resale and may finish with consumer pickup or delivery. For a hospital, logistics starts with purchasing and ends with full support of patient surgery and recovery. The significant point is that regardless of the size and type of enterprise, logistics is essential and requires continuous management attention. For better understanding it is useful to divide logistical operations into three areas: physical distribution, manufacturing support, and procurement ( 筹措、采购).【】41.Logistical operations are concerned with _______________.A. transfer of materials and finished productsB. manufacturing of materials and finished productsC. inventory of materials and finished productsD.both A and C【】42.The logistical process increases value by _______________.A. manufacturingB. inventory flowC. finished productsD.operational management【】43.In the last paragraph, the writer gives the examples of logistical operations in order to show that ___________________.A. a large retailer purchases products for resaleB. a consumer has to pick up or deliver products himselfC. logistics is important to an enterprise and needs continuous managementD.a large manufacturer has to deliver products to its customer【】44.The paragraph following the last one in the passage will probably discuss ________________. A. inventory .B. manufacturing support.C. physical distribution D. procurement【】45.The main idea of the passage is about ______________.A.moving inventoryB.logistical operationsC. transformation of materials and finished productsD.storage of materials and finished productsPassage TwoNewspapers, along with reporting the news, instruct, entertain, and give opinions. An important way for reading a large, big-city newspaper is knowing how to take it apart. Can you find these separate sections: world news, national and local news, sports, business, entertainment, opinions, classified ads? Does your paper have other sections?News stories give facts, not the author’s opinions. Editorials do the opposite, you can expect an editorial to take sides. Some newspaper editorials have a by-line with the author’s name, but many newspapers have unsigned editorials. These reflect the opinions of the publisher or editor.You can be a better reader if you know what to expect in a newspaper. For example, you can expect headlines to omit unnecessary words. You can expect to find the most important facts in the lead paragraph (the first paragraph) of a news story. You can expect important news items to be on the front page. You can expect less important items to be on the inside pages.Most of all, the more you know about the current news, the more you will understand what is in the newspaper; important stories are generally presented one day and followed up on following days. So, an important way for reading newspapers is reading one frequently.【】46.A good way to read a large newspaper is __________.A.to do some paper-cuttingB.to read it from cover to coverC.to find separate sectionsD.to predict what is inside the newspaper【】47.Which of the following statements about news stories is TRUE?A. News stories reflect the opinions of the publisher and editor.B. News stories contain both facts and opinions.C. News stories tell the facts without any comments.D. News stories express the writers’ opinions.【】48.If you want to read some less important news without any details, you can read ________.A.the lead paragraphs of the news on the front pagesB.the headlines on the inside pagesC.news items on the front pagesD.the headlines of some current news on the front pages【】49.The best way for reading newspapers is to __________.A.read extensively and thoroughlyB.read often and with certain skillsC.read occasionally and carefullyD.read them in detail everyday【】50.The main idea of the passage is _________ .A.how to find important news storiesB.how to read newspapersC.how to tell apart different news sectionsD.how to read stories and editorialsPassage ThreeOnce somebody thought that air pollution affected only the area immediately around large cities with factories and heavy automobile traffic. Today, we know that although these are the areas with the worst air pollution, the problem is literally worldwide. On several occasions over the past decade, a heavy cloud of air pollution has covered the entire eastern half of the United States and led to health warnings even in rural areas away from any major concentration of manufacturing and automobile traffic. In fact, the very climate of the entire earth may be affected by air pollution. Some scientists feel that the increasing concentration of carbon dioxide in the air resulting from the burning of fossil fuels (coal and oil) is creating a greenhouse effect—holding in heat reflected from the earth and raising the world’s average temperature. If this view is correct and the world’s temperature is raised only a few degrees, much of the polar ice cap will melt and cities such as New York, Boston, Miami, and New Orleans will be under water.Another view, less widely held, is that increasing particular matter in the atmosphere is blocking sunlight and lowering the earth’s temperature—a result that would be equally disastrous. A drop of just a few degrees could create something close to a new ice age, and would make agriculture difficult or impossible in many of our top farming areas. At present we do not know for sure that either of these conditions will happen (though one recent government report prepared by experts in the field concluded that the greenhouse effect is very likely). Perhaps, if we are very lucky, the two tendencies will offset each other and the world’s temperature will stay about the same as it is now.【】51.This passage is mainly concerned with __________________.A. the greenhouse effectB. the potential effect of air pollutionC.the burning of fossil fuelsD.the probability of a new ice age【】52.As described at the beginning of the passage, people used to think that air pollution_____________.A. had damaging effects on healthB. existed merely in urban and industrial areasC. affected the entire eastern half of the United StatesD. caused widespread damage in the countryside【】53.As far as the greenhouse effect is concerned, the author _______.A. thinks that it will destroy the world soonB. rejects it as it is ungroundedC. is uncertain of its occurrenceD. shares the same view with the scientists【】54.The word “offset” in the 2nd paragraph could properly replaced by ________________.A. set upB. make up forC. slip up .D. catch up with【】55.It can be inferred from the passage that ______________.A. raising the world’s temperature only a few degrees would not do much harm to life on the earthB. almost no temperature variations have occurred over the past decadeC. lowering the world’s temperature merely a few degrees would lead many major farming areas to disaster .D. the world temperature will remain constant in the years to comePassage FourMountain climbers around the world dream about going up Mountain Everest (珠穆朗玛峰). It is the highest mountain in the world. But many people who have climbed the mountain have left waste material that is harming the environment.A team of Americans is planning the largest clean-up effort ever on Mountain Everest. They will make the risky trip up the mountain next month.The team of eight Americans will be guided by more than twenty Sherpas of Nepal (尼泊儿夏尔巴人). Their goal is to remove all the trash they see. They will spend two months cleaning up the mountain by gathering oxygen bottles, fuel containers, batteries, drink cans, human waste and other kinds of trash. They are expected to remove at least three tons of trash in large bags.Team leader Robert Hoffman is making his fourth trip up the mountain. He says he hopes to bring Everest to the condition it was in before the first successful climb fifty years ago. He says he hopes the effort will influence other people to clean up the environment closer home.Human waste on Everest is a major concern. So the clean-up team will take along newly development equipment to collect and treat human waste. Over the years, the waste articles have polluted the mountain. In the warm season when the ice melts, the polluted water flows to Nepali villages below. The problem has gotten worse in recent years because climbing Everest has become more popular.【】56.When those Americans are planning the trip up Mountain Everest, they are concerned about _______________.A. the success in climbing up the mountainB. the environment pollution of the mountainC. the equipment for their trip to the mountainD. the risks facing the mountain climbers【】57.From the passage we will learn that the clean-up effort ___________.A. is the largest one supported by Sherpas NepalB. is opposed by the local peopleC. is encouraged by the American governmentD. is the greatest one ever made in the world【】58.Team leader Mr. Hoffman hopes to turn Mountain Everest into ____________.A. a place with no pollution at allB. its former state a few years agoC. its original condition half a century agoD. the cleanest mountain in the world【】59.On the trip up the mountain, the American team plans __________.A. to tell climbers not to leave waste materialsB. to make Everest even cleaner than it wasC. to take away all the trash they could find thereD. to collect and treat human waste before the ice melted【】60.The best title for the passage is probably _____________________.A. Pollution on Mountain EverestB. A Risky Trip Up Mount EverestC. Mount Everest — Clean-up EffortD. Robert Hoffman and His Clean-up TeamPart IV Cloze (10 points)Directions: There are 10 blanks in this passage, and foreach blank there are four choices marked A, B, C and Dat the end of the passage. You should choose the ONE that best fits into the passage and write the choice A, B, C or D in the brackets “【】”.Life on MarsPerhaps more than anything else, scientists are eager to find out if Martian life existed in the past—or still exists. (61) __________ telescopes first zoomed in (62)_____ Mars in the 17th century, people have conjured up a wild (63)________ of images or what Martians might look like. But space probes like the 1997 Sojourner land rover have yielded no evidence of such alien beings.Most experts agree that if life did at one time evolve on Mars, finding evidence of that life—which would likely take the form of tiny organisms—won’t be easy. (64)________, many scientists are optimistic. “We’ve got organisms on Earth that adapted to life deep (65) ________ the surface in underground water wells,”says Stephen Clifford. “(66)_______ life like that evolved on Mars four billion years ago, there’s no reason why it (67)___________ today.(68)________last year’s disappointing losses, the future of Martian exploration looks (69)__________. This year, two major films about fictitious Mars missions—Red Planet and Missions to Mars—are certain to heighten interest in our planetary neighbour. More important, plans for new sets of NASA orbiters and landers—one to launch in 2001, the other in 2003—are already in the works. Without a doubt, each new mission will inch scientists closer to (70)_________ the mysteries of planet Mars.【】61. A. When .B. Before. . C. Ever since D. Ever【】62. A. in B. on .C in the D. on the【】63. A. varying B. various C. plenty D. variety【】64. A. Still B. Even if. . C. Though D. Although【】65. A. up B. under .C. below D. above【】66. A. When .B. What .C. That .D. If【】67. A. wouldn’t exist B. wouldn’t have existedC. doesn’t exist .D. has existed【】68. A. Even if B. DespiteC. AlthoughD. However【】69. A. promised B. being promisedC. promising .D. to be promised【】70. A. understand B. understandingC. be understood .D. the understandingPart V Translation (20 points)A. Translate the following into Chinese.71. In Britain today women make up 44% of the workhouse, and nearly half the mothers with children are in paid work.72. It is useful to be able to predict the extent to which a price change will affect supply and demand.73. We love peace, yet we are not the kind of people to yield to any military threat.74. Whenever circumstances permitted, they would come and lend us a helping hand.75. It won’t make much difference whether you leave or stay.B. Translate the following into English.76. 正式语言主要用于政府报告、考试作文和商业信函中。
2005年河南省专升本高等数学真题答案及解析
1河南省2005年普通高等学校 专科毕业生进入本科阶段学习考试高等数学 答案及解析一、单项选择题(每小题2分,共计60分) 1.答案:C【解析】:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.答案:D【解析】:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3.答案:B【解析】: ⇒-x e x~12~12x e x -,应选B.4.答案:B【解析】:2)1(2lim2)1(22121lim 21lim 21lim e n n n nn n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.答案:C【解析】:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C.6.答案:D 【解析】:41)1(21)1(22)1()21(lim 2)1()21(lim 020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.答案:A【解析】:对方程yx exy +=两边微分得)(dy dx eydx xdy yx +=++,即dy x e dx ey y x yx )()(-=-++,dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.答案:B 【解析】:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='=''⇒ΛΛ=)()(x f n 1)]([!+n x f n ,应选B.9.答案:A【解析】:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A. 10.答案:B【解析】:在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.211.答案:C 【解析】:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.答案:B【解析】:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22ta bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.答案:B【解析】:两边对x 求导 22111)()1()(xx f x e e x f xx-=⇒-⨯=,应选B. 14.答案:A【解析】:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A. 15.答案:C 【解析】:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.答案:A【解析】:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.答案:D 【解析】:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.答案:B 【解析】:x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B. 19.答案:A 【解析】:⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.答案:D【解析】:n s n s ρρρρ⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D. 21.答案:B 【解析】:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B. 22.答案:C 【解析】:dy y dx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C. 23.答案:B【解析】:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.答案:A325.答案:C【解析】:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.答案:B【解析】:L :,2⎩⎨⎧==x y xx x 从0变到1 , 1422210410310332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.答案:B【解析】:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n nn 是收敛的,但∑∞=1321n n是32=p 的级数发散的,从而级数∑∞=-1321)1(n nn条件收敛,应选B. 28. 答案:C 【解析】:正项级数∑∞=1n nu与∑∞=1n nv收敛⇒∑∞=12n nu与∑∞=12n nv收敛,而)(2)(222nnn n v u v u +≤+,所以级数21)(n n nv u+∑∞=收敛 ,应选C.29. 答案:D【解析】:注意对所给的方程两边求导进行验证,可得通解应为222C y xy x =+-,应选D. 30.答案:A【解析】:微分方程的特征方程为0βλ22=+,有两个复特征根i βλ±=,所以方程的通解为t C t C x βsin βcos 21+=,应选A.二、填空题(每小题2分,共30分) 1.答案:116)2(2+-=-x x x f【解析】:⇒+-=⇒++-+=+32)(3)1(2)1()1(22x x x f x x x f116)2(2+-=-x x x f .2.答案:1=a【解析】:因10)6(lim 0)2(lim 222=⇒=-+⇒=-→→a ax x x x x .3.答案:02π12=+--y x 【解析】:2111121=+='===x x x y k ,则切线方程为)1(214π-=-x y , 即02π12=+--y x 02π12=+--y x .44.答案:dx x xe x dy xx]1ln 1[21+-= 【解析】:dx x x e x x x x d edy ey x x x xxx xx]1ln 1[)ln (21ln ln +-=+=⇒=++ .5.答案:),21(∞+ 或),21[∞+【解析】:⇒>⇒⎪⎩⎪⎨⎧>>-⇒-='21001414x x xx x x y ),21(∞+ 或),21[∞+. 6.答案:),1(e【解析】:104)1(21=⇒=-=''⇒⨯='x xx x e y xe y x x,得拐点为),1(e .7.答案:271【解析】:等式x dt t f x ⎰=3)(两边求导有13)(23=x x f ,取3=x 有271)27(=f . 8.答案:45 【解析】:⎰⎰⎰'-'='=''10101012)2(41)2(21)2(21)2(x d x f x f x x f xd dx x f x 45)0(41)2(41)2(21)2(41)2(2110=+-'=-'=f f f x f f . 9.答案:0 【解析】:0)0(00=⇒=⇒=='-f x xey x.10.答案:C x x ++|cos |ln【解析】:⎰⎰++=++=+-C x x xx x x d dx x x x |cos |ln cos )cos (cos sin 1.11. 答案:6【解析】: 6||2210101=⨯=⇒+-=-=⨯b a S k j i k j i b a ρρρρρρρρρρ .12.答案:)()(z x y z y z ++【解析】:令y z z xy z z x F ln ln ln +-=-= ,则221,1,1zz x z z x F y F z F z y x +-=--='='='.)(;2z x y z F F y z z x z F F x z z y z x +=''-=∂∂+=''-=∂∂ ,所以)()(z x y z y z y z x z ++=∂∂+∂∂ .513.答案:821π- 【解析】:积分区域在极坐标系下表示为}10,4πθ0|)θ,{(≤≤≤≤=r r D ,则 ⎰⎰⎰⎰⎰⎰-=⎪⎭⎫ ⎝⎛=104π021024π02θ)1θ(sec θcos θsin θ)(rdr d rdr d dxdy x y D8π21)θθ(tan 21θ)1θ(sec 214π024π02-=-=-=⎰d .14.答案:)11(,21)1()2(21)()(0100<<-⎥⎦⎤⎢⎣⎡+-=+-=∑∑∑∞=+∞=∞=x x x x x f n n n nn n n n【解析】:21121112111)2)(1(323)(2x x x x x x xx x f -++=-++=-+=-+=, 所以)11(,21)1()2(21)()(0100<<-⎥⎦⎤⎢⎣⎡+-=+-=∑∑∑∞=+∞=∞=x x x x x f n n n nn n n n .15.答案:xe B Ax x 22)(+【解析】:2是特征方程04λ4λ2=+-的二重根,且)12(+x 是一次多项式,特解应设为 xe B Ax x 22)(+.三、计算题(每小题5分,共40分)1.xx x x x cos sin 1lim2-+→.【解析】:x x x x x x x xx x x x x cos sin 1)cos sin 1(limcos sin 1lim 2020-+++=-+→→ )cos sin 1(lim cos sin 1lim20x x x x x x x x x ++⨯-+=→→ xx x xx x x x x x cos sin 22lim 2cos sin 1lim 20020+=-+=→→34314sin cos 31lim4000=⨯=-=→x x x x .2.已知2arctan )(,2523x x f x x y ='⎪⎭⎫ ⎝⎛+-=,求0=x dx dy . 【解析】:令u x x =+-2523,则)(u f y = , 22)25(162523arctan 2523)(+⨯⎪⎭⎫ ⎝⎛+-='⎪⎭⎫ ⎝⎛+-'=⨯=x x x x x u f dx du du dy dx dy ,3.求不定积分⎰+dx xx 231.【解析】:⎰⎰⎰+=+=+222223111x d x dx x x x dx x x)1(11)(1122222222x d x x x x d x x x ++-+=+-+=⎰⎰C x x x ++-+=23222)1(321.4.设⎪⎩⎪⎨⎧<+≥+=0,210),1ln()(x xx x x f ,求⎰-20)1(dx x f .【解析】:令t x =-1 ,则⎰⎰-=-112)()1(dt t f dx x f⎰⎰⎰⎰+++=+=--10011001)1ln(21)()(dt t dt t dt t f dt t f ⎰+-+++=-1010011)1ln()2ln(dt tt t t t⎰+--+=10)111(2ln 2ln dt t12ln 3)1ln(2ln 21010-=++-=t t .5.设),sin (22y x y e f z x += ,其中),(v u f 可微,求yz x z ∂∂∂∂,. 【解析】:令v y x u y e x=+=22,sin ,则),(v u f z =,复合关系结构如图05-1所示,x vv z x u u z x z ∂∂⨯∂∂+∂∂⨯∂∂=∂∂),(2),(sin v u f x v u f y e v u x'+'=,yvv z y u u z y z ∂∂⨯∂∂+∂∂⨯∂∂=∂∂ ),(2),(cos v u f y v u f y e v u x'+'=.6.求⎰⎰D dxdy y x 22,其中D 是由2,1===x x y xy 及所围成的闭区域.【解析】:积分区域如图05-2所示,曲线x y xy ==,1在第一象限内的交点为(1,1),积分区域可表示为:x y xx ≤≤≤≤1,21.则⎰⎰⎰⎰⎰-==21121222122)1(dx y x dy y x dx dxdy y x x xx x D z vu x xy y 图05-1xx 图05-27⎰⎰-=⎥⎦⎤⎢⎣⎡-=213212)(1dx x x dx x x x49242124=⎪⎪⎭⎫ ⎝⎛-=x x . 7.求幂级数12012)1(+∞=∑+-n n n x n 的收敛域(考虑区间端点).【解析】: 这是缺项的标准的幂级数,因为 221232113212lim )1(1232)1(lim lim ρx n n x x n n x u u n n n n n n nn n =++=-+⋅+-==∞→+++∞→+∞→, 当1ρ<,即11<<-x 时,幂级数绝对收敛; 当1ρ>,即1>x 或1-<x 时,幂级数发散; 当1ρ=,即1±=x 时,若1=x 时,幂级数化为∑∞=+-012)1(n nn 是交错级数,满足来布尼兹定理的条件,是收敛的,若1-=x 时,幂级数化为∑∞=++-0112)1(n n n 也是交错级数,也满足来布尼兹定理的条件,是收敛的.故幂级数的收敛域为[-1,1].8.求微分方程 0cos 2)1(2=-+'+x xy y x 通解. 【解析】:微分方程可化为 1cos 1222+=++'x xy x x y ,这是一阶线性非齐次微分方程,它对应的齐次线性微分方程0122=++'y x x y 的通解为12+=x Cy . 设非齐次线性微分方程的通解为1)(2+=x x C y ,则222)1()(21)(+-+'='x x xC x x C y ,代入方程得x x C cos )(=',所以C x x C +=sin )(.故原微分方程的通解为1sin 2++=x Cx y (C 为任意常数).四、应用题(每小题7分,共计14分)1. 一房地产公司有50套公寓要出租,当月租金定为2000元时,公寓会全部租出去,当月租金每增加100元时,就会多一套公寓租不出去,而租出去的公寓每月需花费200元的维修费.试问租金定为多少可获得最大收入?最大收入是多少? 【解析】:设每套公寓租金为x 元时,所获收入为y 元,则 )2000(),200](100200050[>---=x x x y , 整理得 ),14000007200(10012-+-=x x y )72002(1001+-='x y 均有意义,8令0='y 得唯一可能的极值点3600=x ,而此时0501<-=''y ,所以3600=x 是使y 达到极大值的点,即为最大值的点.最大收入为115600340034)2003600](1002000360050[=⨯=---=y (元).故 租金定为每套3600元时,获得的收入最大,最大收入为115600元. 2.平面图形由抛物线x y 22=与该曲线在点)1,21(处法线所围成,试求: (1)该平面图形的面积;(2)该平面图形绕x 轴旋转所成的旋转体的体积.【解析】:平面图形如图05-3所示,切点)1,21(A 处的切线斜率为21='=x y k ,由x y 22=得yy 1=',故A 点处的切线斜率 1121='='===y x y y k ,从而A 点处的法线斜率为-1, 法线方程为023=-+y x . 联立方程组⎪⎩⎪⎨⎧=-+=02322y x xy 得另一交点)3,29(-B(1) 把该平面图形看作Y 型区域,其面积为316)6223(2)23(1332132=--=⎥⎦⎤⎢⎣⎡--=--⎰y y y dy y y S ;(2) 根据抛物线的对称性知,该平面图形绕x 轴旋转所成的旋转体的体积等于平面图形OBC 绕x 轴旋转所成旋转体的体积,有故 ⎰⎰+--=--=292329233229022290)312349(ππ)23(π2πx x x xdx x xdx V xπ445]9481[π=-=. 五、证明题(6分)试证:当0>x 时,有xx x x 11ln 11<+<+. 【证明】:构造函数x x f ln )(=,它在)0(∞+,内连续, 当0>x 时,函数在区间]1,[x x +上连续,且xx f 1)(='. 故)(x f 在]1,[x x +上满足Lagrange 中值定理,存在)1,(ξ+∈x x , 使得)ξ()()1(f x f x f '=-+,)1ξ(+<<x x .x图05-3023=-y9而x f x 1ξ1)ξ(11<='<+,故有xx x x 1ln )1ln(11<-+<+, 即0>x 时,xx x x 11ln 11<+<+成立.。
2002-2012年河南专升本高数试题+答案
2002年考试2005年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( ) A .x x y cos = B. 13++=x x yC. 222x x y --=D. 222xx y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3. 当0→x 时,与12-x e 等价的无穷小量是 ( ) A. x B.2x C. x 2 D. 22x解: ⇒-x e x ~12~12x e x -,应选B.4.=⎪⎭⎫⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n n n n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( )A. 1B. -1C. 21D. 21-解:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C.6.设函数)(x f 在点1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=')1(f ( )A. 1B. 21-C. 41D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim 020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.由方程y x e xy +=确定的隐函数)(y x 的导数dydx为 ( )A.)1()1(x y y x --B.)1()1(y x x y --C.)1()1(-+y x x yD.)1()1(-+x y y x 解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++,即dy x e dx e y y x y x )()(-=-++, dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( ) A. 1)]([+n x f n B. 1)]([!+n x f nC. 1)]()[1(++n x f nD. 1)]([)!1(++n x f n解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='='', ⇒ =)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-x xe x fC.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( )A.增加,曲线)(x f y =为凹的B.减少,曲线)(x f y =为凹的C.增加,曲线)(x f y =为凸的D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.11.曲线xe y 1-= ( ) A. 只有垂直渐近线 B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线 解:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.设参数方程为⎩⎨⎧==tb y t a x sin cos ,则二阶导数=22dx yd ( )A.t a b 2sinB.t a b32sin -C.t a b 2cosD.tt a b22cos sin -解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22t a bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.若⎰+=C e dx e x f xx11)(,则=)(x f ( )A. x 1-B. 21x -C. x 1D. 21x解:两边对x 求导 22111)()1()(xx f x e e x f x x -=⇒-⨯=,应选B.14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是 ( )A.⎰+∞+0211dx x B.⎰-10211dx x C.⎰+∞e dx x x ln D.⎰+∞-0dx e x解:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.=⎰-11||dx x x ( )A.0B.32 C.34 D.32- 解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.设)(x f 在],[a a -上连续,则定积分⎰-=-aa dx x f )( ( )A.0B.⎰a dx x f 0)(2 C.⎰--a adx x f )( D.⎰-aadx x f )(解:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )( ( )A.C x x +-2sin 2121B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21解: x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B. 19.设函数)(x f 在区间],[b a 上连续,则不正确的是 ( )A.⎰b a dx x f )(是)(x f 的一个原函数B.⎰xadt t f )(是)(x f 的一个原函数 C.⎰ax dt t f )(是)(x f -的一个原函数 D.)(x f 在],[b a 上可积解: ⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( ) A. 垂直 B.相交但不垂直 C. 直线在平面上 D. 平行解:n s n s⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数xz∂∂和y z ∂∂存在是它在该点处可微的( )A.充分条件B.必要条件C.充要条件D.无关条件解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln = ,则=)2,1(dz ( )A.dx x y 2B.dy dx 2121-C.dy dx 21-D.dy dx 21+ 解:dy y dx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C. 23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( ) A.)1,1(- B.)1,1(- C. )1,1(-- D. )1,1(解:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x x z,应选B.24.二次积分⎰⎰22),(x dy y x f dx 写成另一种次序的积分是 ( )A. ⎰⎰402),(y dx y x f dy B. ⎰⎰400),(ydx y x f dy C. ⎰⎰4022),(xdx y x f dy D. ⎰⎰42),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A. 25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(( )A.⎰⎰πθθθ2020)sin ,cos (a rdr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f dC.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d解:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20c o s20)s i n ,c o s (a r d rr r f d ,应选C. 26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,=+⎰Ldy x xydx 22( )A. -1B.1C. 2D. -1解:L :,2⎩⎨⎧==xy xx x 从0变到1 ,1422210410310332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n n nC .∑∞=-121)1(n nn D .∑∞=+-1)1()1(n n n n解:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n n n是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n nn条件收敛,应选B. 28. 下列命题正确的是 ( ) A .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛B .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数)(212n n nv u +∑∞=收敛 C .若正项级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛D .若级数∑∞=1n n n v u 收敛,则级数∑∞=1n n u 与∑∞=1n n v 都收敛解:正项级数∑∞=1n n u 与∑∞=1n n v 收敛⇒ ∑∞=12n nu 与∑∞=12n n v 收敛,而)(2)(222nnn n v u v u +≤+,所以级数21)(n n n v u +∑∞=收敛 ,应选C 。
河南省专升本考试高等数学真题试卷
河南省专升本考试⾼等数学真题试卷2005年河南省普通⾼等学校选拔优秀专科毕业⽣进⼊本科阶段学习考试⾼等数学⼀、单项选择题1.已知xx y --=5)1ln(的定义域为()A. x >1B. x <5C. 1D. 1A .x x y cos = B. 13++=x x y C. 222x x y --= D 222xx y -+=3.当0→x 时,与12-x e 等价的⽆穷⼩量是() A .x B. x 2 C. 2x 2 D.2x4.极限=++∞→1)21(lim n n n()A .e B. 2e C . 3e D. 4e5.设函数=≠--=0,0,11)(x a x x xx f 在x =0处连续,则常数a= () A .1 B -1 C 0.5 D -0.5 6.设函数)(x f 在x =1处可导,且2 1)1()21(lim=-+→h f h f h ,则=')1(f ( )A 0.5B -0.5C 0.25D -0.25 7、由⽅程y x e xy += 确定的隐函数)(y x 的导函数=dydx()A)1()1(x y y x -- B )1()1(y x x y -- C )1()1(-+y x x y D )1()1(-+x y y x8、设函数f (x )具有任意阶导数,且[]2)()(x f x f =',则=)()(x f n()A []1)(+n x f n B []1)(!+n x f n C []1)()1(++n x f n D []1)()!1(++n x f n9、下列函数在给定区间上满⾜罗尔定理条件的是() A 、]1,1[,12--=x y B 、]1,1[,11 2--=xy C 、]1,1[,-=x xe y D 、]1,1[,-=x y 10、曲线xex f 1)(-= ()A 、只有垂直渐近线B 、只有⽔平渐近线C 、既有⽔平渐近线、⼜有垂直渐近线D 、⽆⽔平、垂直渐近线11、设参数⽅程为==t b y t a x sin cos ,则⼆阶导数22dx yd =()A 、t a b 2sin B 、t a b 3sin 2- C 、t a b 2cos D 、tt a b12、函数),(),12)(1(+∞-∞∈+-='x x x y ,则在(0.5,1)内,f (x )单调() A 、递增且图像是凹的 B 、递增且图像是凸的曲线 C 、递减且图像是凹的 D 、递减且图像是凸的曲线 13、若=+=??dx x f C e dx e x f xx)(,)(11则()A 、x 1B 、21xC 、21x- D 、x 1-14、若=+=??dx x xf C x F dx x f )(sin cos ,)()(则() A 、C x F +)(sin B 、C x F +-)(sin C 、C x F +)(cos D 、C x F +-)(cos15、导数=?-11dx x x ()A 、2/3B 、0C 、4/3D 、-2/3 16、下列⼴义积分收敛的是() A 、dx e x ?+∞-0 B 、?+∞ex xdx ln C 、?+∞+021x dxD 、?-10211dx x17、设f (x )在[-a,a]上连续,则定积分=-?-aadx x f )(A 、0B 、?a dx x f 0)(2 C 、?--a adx x f )( D 、?-aadx x f )(18、若直线的关系是与平⾯0122113=+--+=-=-z y x z y x () A 、垂直 B 、相交但不垂直 C 、平⾏ D 、直线在平⾯上 19、设函数)(x f 的⼀个原函数是sinx ,则A 、C x x +-2sin 2121B 、C x x +--2sin 4121 C 、x 2sin 21-D 、C x +-2sin 2120、设函数f (x )在区间[a,b]上连续,则不正确的是()A 、?badx x f )(是f (x )的⼀个原函数 B 、?xadt t f )(是f (x )的⼀个原函数C 、?xadt t f )(是-f (x )的⼀个原函数 D 、f (x )在[a,b]上可积21、函数 ),(y x f z =在点(x 0,y 0)处的两个偏导数yzx z 和存在是它在该点处可微的()A 、充分条件B 、必要条件C 、充要条件D 、⽆关条件 22、下列级数中,条件收敛的是()A 、∑∞=+-11)1(n nn n B 、∑∞=-13/21)1(n n n C 、∑∞=-121)1(n n n D 、∑∞=+-1)1()1(n n n n 23、下列命题正确的是()A 、若级数收敛)(收敛,则级数与2111∑∑∑∞=∞=∞=+n n n n n n n v u v uB 、若级数收敛收敛,则级数与)(11∑∑∑∞=∞=∞=+n n nn n n n v u v u C 、若正项级数收敛)(收敛,则级数与2 111∑∑∑∞=∞=∞=+n n n n n n n v u v uD 、若级数收敛,与收敛,则级数∑∑∑∞=∞=∞=111n n n n n n n v u v u24、微分⽅程y x y y x -='-2)2(的通解为()A 、C y x =+22B 、C y x =+ C 、1+=x yD 、222C y xy x =+-25、微分⽅程022=+x dtxd x β的通解为 ( )A 、t C t C x ββsin cos 21+=B 、t t eC e C x ββ-+=21 C 、 t t x ββsin cos +=D 、t t e e x ββ-+= 26、设==)2,1(,2ln dz yxz 则()A 、dx x y 2 B 、dy dx 2121- C 、dy dx 21- D 、dy dx 21+ 27、设L :y =x 2从O(0,0)到B(1,1)的⼀段弧,则=+?L dy x xydx 22() A 、2 B 、1 C 、-1 D 、-228、交换积分次序dy y x f dx x ),(2的积分次序后可化为()A 、dx y x f dy y),(240?B 、dx y x f dy y),(040?? C 、dx y x f dy x),(2402?? D 、dx y x f dy y),(24029、设D 由上半圆周22x ax y -=和x 轴围成的闭区域,则= Ddxdy y x f ),(()A 、rdr r r f d a)sin ,cos (2020θθθπB 、dr r r f d a)sin ,cos (2020θθθπC 、rdr r r f d a )sin ,cos (cos 2020θθθθπD 、dr r r f d a )sin ,cos (cos 2020θθθθπ30、⼆元函数1),(22+-+++=y x y xy x y x f 的极⼩值点是()A 、(1,-1)B 、(-1,1)C 、(-1,-1)D 、(1,1)⼆、填空题31、设函数2)1(2+=+x x f ,则f (x-2)=32、526lim22=--+→x ax x x ,则a= 33、曲线x y arctan =在)4,1(π处的切线⽅程为34、x e y =的拐点为35、设函数xxx e x f 1)(=,则dy =36、函数x x x f ln 2)(2-=的单调递增区间是37、设函数)(x f 连续,且x dt t f x =?3)(,则)27(f =38、向量a={1,0,-1}与b={0,1,2}为邻边构成的平⾏四边形的⾯积为39、=+-?dx xx xcos sin 140、函数dt te y x t ?-=0的极⼩值是 41、设y z z x ln =,则yz x z ??+??= 42、设=≥≥==-==??Ddxdy x y y x y x y x y y x D 2)(},0,0,0,,1),{(则 43、设3)2(,2)2(,1)0(='==f f f ,则=''?1)2(dx x f x44、将223)(x x x f -+=展开为x 的幂级数是45、⽤待定系数法求⽅程x e x y y y 2)12(44+=+'-''的特解时,特解应设为三、计算题46、求xx e x xx 2sin 1lim 3202-→-- 47、求函数x x x y 2sin 2)3(+=的导数dxdy48、计算不定积分?-dx xx 22449、计算定积分dx x x ?-+102)2()1ln(50、设函数),()2(xy x g y x f z ++=,其中),(),(v u g t f 为可微函数,求yz x z , 51、计算σd y x D2,其中D 由 1,2,===x x y x y 所围成的区域52、求微分⽅程0)12(2=+-+dx x xy dy x 的通解 53、将幂级数∑∞=--+1)1()3(1n nnx n 的收敛区间(不考虑端点的情况)四、应⽤题54、某公司的甲,⼄两⼚⽣产同⼀种产品,且⽉产量分别是x,y (千件),甲⼚的⽉⽣产成本是C 1=x 2-2x+5(千元),⼄⼚的⽉⽣产成本是C 2=y 2-2y+3(千元),若要求该产品每⽉总产量为8千件,并使总成本最⼩,求甲⼄两⼯⼚的最优产量和相应的最⼩成本。
河南高等数学专升本试题
河南高等数学专升本试题班级:________________ 学号:________________ 姓名:______________一、单选题(每题3分)1.设函数(f(x)=x3−3x+2),则该函数在区间([−2,2])上的最大值为:• A. 4• B. 2• C. 6• D. 0_ 答案:A. 4_=a),则常数(a)的取值为:2.若极限(lim x→0sin(ax)x• A. 0• B. 1• C. 2• D. 不存在_ 答案:B. 1_3.设(f(x)=e x−x−1),则对于任意实数(x),函数(f(x))的符号为:• A. 恒正• B. 恒负• C. 先正后负• D. 先负后正_ 答案:A. 恒正 _4. 曲线(y =x 2)与直线(y =4)所围成的图形面积为:• A.(323)• B. 16• C.(163)• D. 8_ 答案:A.(323)_5. 若级数(∑1n p ∞n=1)收敛,则(p )的取值范围是:• A.(p >1)• B.(p <1)• C.(p >0)• D.(p <0) _ 答案:A.(p >1)_ 二、多选题(每题4分)1. 下列函数中哪些是周期函数?• (A)(f (x )=sin (2x ))• (B)(f (x )=x 2)• (C)(f (x )=cos (πx ))• (D)(f (x )=e x )答案: A, C解析: 周期函数是指存在一个非零常数(T),使得对所有定义域内的(x)都有(f(x+T)=f(x))成立。
显然,选项(A)与(C)分别是周期为(π)和2的周期函数,而(B)与(D)不是周期函数。
2.设函数(f(x)=x3−6x2+9x+1),则下列哪些点是它的极值点?•(A)(x=1)•(B)(x=3)•(C)(x=0)•(D)(x=2)答案: A, B解析: 求导得(f′(x)=3x2−12x+9),令其等于0解得(x=1)和(x=3)。
05年高数真题
专升本 高等数学一、选择题:1~10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内。
1、lim sin x xx→05等于( )A 0B 15C 1D 52、设y x=+-33,则y '等于( )A --34xB --32xC 34x -D -+-334x 3、设f x x ()cos =2,则f '()0等于( )A -2B -1C 0D 2 4. 曲线y x =3的拐点坐标是( )A (-1,-1)B (0,0)C (1,1)D (2,8) 5、sin xdx ⎰等于( )A cos xB -cos xC cos x C +D -+cos x C 6、11201+⎰x dx 等于( )A 0B π4C π2D π 7、设0()()xt x e t dt φ=+⎰,则φ'()x 等于( )A 0B e x x+22C e x x +D e x+18、设函数z e x y=+,则∂∂zx等于( ) A ex y+ B yex y+ C xex y+ D ()x y ex y++9、设函数z x y =2,则∂∂∂2zx y等于( )A x y +B xC yD 2x 10. 已知事件A 的概率P (A )=0.6,则A 的对立事件A 的概率P A ()等于( ) A. 0.3B. 0.4C. 0.6D. 0.7二、填空题:11~20小题,每小题4分,共40分。
把答案填写在题中横线上。
11、lim()x x x →-+=132____________________。
12、lim()x xx→∞-=13____________________。
13、函数y x =+ln()12的驻点为x =____________________。
14、设函数y ex=2,则y "()0=____________________。
2005年普通专升本高等数学真题
2005年普通高等学校选拔 优秀专科生进入本科阶段考试试题高等数学一、单项选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。
不选、错选或多选者,该题不得分。
1.函数xx y --=5)1ln(的定义域为( )。
A.x>1B.x<5C.1<x<5D.1<x ≤5 2.下列函数中,图形关于y 轴对称的是( )。
A.y=xcosx B.13++=x x y C.222xxy --=D. 222xxy -+=3.当x →0时,12-xe等价的无穷小量是 ( )。
A.x B.x 2 C.2x D.2x 2 4.∞→n lim 1)21(++n n=( )。
A.eB.e 2C.e 3D.e 45.设函数f(x)=⎪⎩⎪⎨⎧=≠--0,0,11x a x xx在x=0处连续,则a=( )。
A. 1 B. -1 C. 21 D. 21-6.设函数f(x)在点x=1出可导,则21)1()21(lim =--∞→hf h f h ,则=)1('f ( )。
A. 21B. 21-C.41 D. 41-7.由方程y x e xy +=确定的隐函数x(y)的导数dxdy 为( )A.)1()1(x y y x -- B.)1()1(y x x y -- C.)1()1(-+y x x y D.)1()1(-+x y y x8.设函数f(x)具有任意阶导数,且()()[]x f x f n =)('=( )。
A.()[]1+n x f n B.()[]1!+n x f n C.()[]1)1(++n x f n D.()[]1)!1(++n x f n9.下列函数在给定区间上满足罗尔定理条件的是( )。
A.[]1,1,1)(2--=x x f B.[]1,1,)(-=-xxe x fC.[]1,1,11)(2--=xx f D. []1,1,)(-=x x f10.设)12)(1()('+-=x x x f ,),(+∞-∞∈x ,则在(21,1)内,f(x)单调( )。
2005年河南省专升本(高等数学)真题试卷(题后含答案及解析)
2005年河南省专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.函数y=的定义域为( )A.x>1B.x<5C.1<x<5D.1<x≤5正确答案:C解析:x-1>0且5-x>0,解得1<x<5.2.下列函数中,图象关于y轴对称的是( )A.y=cosxB.y=x3+x+1C.D.正确答案:D解析:关于y轴对称就是要找偶函数,根据f(-x)=f(x),只有D满足条件.3.当x→0时,与-1等价的无穷小量是( )A.xB.x2C.2xD.2x2正确答案:B解析:因x→0时,ex-1~x,所以-1~x2,所以选B.4.= ( )A.eB.e2C.e3D.e4正确答案:B解析:因5.设f(x)=,在x=0处连续,则a= ( )A.1B.-1C.D.正确答案:C解析:f(0)=a=6.设函数f(x)在x=1处可导,且,则f(1)= ( )A.B.C.D.正确答案:D解析:因则f’(1)=.选D.7.由方程xy=ex+y确定的隐函数x=x(y)的导数= ( )A.B.C.D.正确答案:A解析:等号两边同时对y求导,整理得8.设函数f(x)具有任意阶导数,且f(x)=[f(x)]2,则f(n)(x)= ( )A.n[f(x)]n+1B.n![f(x)]n+1C.(n+1)[f(x)]n+1D.(n+1)![f(x)]n+1正确答案:B解析:因为f’(x)=[f(x)]2,则f’’(x)=2f(x)f’(x)=2f3(x),f’’’(x)=2.3[f(x)]2.f’(x)=3![f(x)]4;f(4)(x)=3!.4[f(x)]3.f’(x)=4![f(x)]5;…f(n)=n![f(x)]n+19.下列函数在给定区间上满足罗尔定理条件的是( )A.f(x)=1-x2,x∈[-1,1]B.f(x)=xe-x,x∈[-1,1]C.f(x)=,x∈[-1,1]D.f(x)=|x|,x∈[-1,1]正确答案:A解析:对于A,f(x)在[-1,1]上连续,在(-1,1)上可导f(-1)=f(1),满足罗尔定理的条件,所以选A.10.设f’(x)=(x-1)(2x+1),x∈(-∞,+∞),则在(,1)内,f(x)单调( ) A.增加,曲线y=f(x)为凹的B.减少,曲线y=f(x)为凹的C.增加,曲线y=f(x)为凸的D.减少,曲线y=f(x)为凸的正确答案:B解析:因f’(x)=(x-1)(2x+1)=2(x-1)(x+).所以,当x∈(,1)时,f’(x),1);所以曲线f(x)在(,1)内是凹的,综上所述,选B.11.曲线y=( )A.只有垂直渐近线B.只有水平渐近线C.既有垂直渐近线,又有水平渐近线D.无水平、垂直渐近线正确答案:C解析:因=1,所以有水平渐近线y=1;又=+∞,所以有垂直渐近线x=0.12.设参数方程,则二阶导数=( )A.B.C.D.正确答案:B解析:y’=13.若∫f(x)+C,则f(x)=( )A.B.C.D.正确答案:B解析:因为+C,两边求导,得故f(x)=,所以选B.14.若∫f(x)dx=F(x)+C,则∫cosxfsinx)dx= ( )A.F(sinx)+CB.-F(sinx)+CC.F(cosx)+CD.-F(cosx)+C正确答案:A解析:∫cosx.f(sinx)dx=∫f(sinx)dsinx=F(sinx)+C15.下列广义积分发散的是( )A.B.C.D.正确答案:C解析:对于A,对于B,对于C,对于D,所以选C.16.= ( )A.B.C.D.正确答案:A解析:因为x|x|为奇函数,所以17.设f(x)在[-a,a]上连续,则定积分f(-x)dx= ( )A.B.C.D.正确答案:D解析:令t=-x,则.所以选D 18.设f(x)的一个原函数是sinx,则∫f’(x)sinxdx= ( )A.B.C.D.正确答案:B解析:f(x)=(sinx)’=cosx,所以f’(x)=-sinx.∫f’(x)sinxdx=-∫sin2xdx=+C 故选B.19.设函数f(x)在区间[a,6]上连续,则不正确的是( )A.是f(x)的一个原函数B.是f(x)的一个原函数C.是-f(x)的一个原函数D.f(x)在[a,b]上可积正确答案:A解析:对于A,是一个常数,=0,所以选A20.直线与平面x-y-z+1=0的关系是( )A.垂直B.相交但不垂直C.直线在平面上D.平行正确答案:D解析:因的方向向量={l,-1,2},平面x-y-z+1=0的法向量={1,-1,-1},而=0,所以直线与平面平行或重合,又直线上的点(3,0,-2)不满足平面x-y-z+1=0,所以直线与平面平行,选D.21.函数z=f(x,y)在点(x0,y0)处的两个偏导数存在是它在该点处可微的( )A.充分条件B.必要条件C.充要条件D.无关条件正确答案:B解析:对于多元函数,可微必可导,而可导不一定可微,故可导是可微的必要条件.22.设z=,则dz|(1,2)=( )A.B.C.D.正确答案:C解析:应选C.23.函数f(x,y)=x2+xy+y2+x-y+1的极小值点是( )A.(1,-1)B.(-1,1)C.(-1,-1)D.(1,1)正确答案:B解析:(x,y)=2x+y+1,(z,y)=x+2y-1.令(x,y)=0,(x,y)=0,得驻点为(-1,1).又A=(x,y)=2,B=(x,y)=1,C=(x,y)=2.B2-AC=1-4=-30,所以驻点(-1,1)是函数的极小值点,选B.24.二次积分写成另一种次序的积分是( )A.B.C.D.正确答案:A解析:因积分区域D:{(x,y)10≤x≤2,0≤y≤x2}还可表示为D:{(x,y)|0≤y≤4,≤x≤2}.故原积分可表示为:25.设D是由上半圆y=和x轴所围成的闭区域,则f(x,y)dxdy= ( )A.B.C.D.正确答案:C解析:由题意,积分区域D:{(x,y)1 0≤θ≤,0≤r≤2acosθ|于是,f(x,y)dxdy =f(rcosθ,rsinθ)rdr.26.设L为y=x2/sup>从点(0,0)到点(1,1)的一段弧,则∫L2xydx+x2dy:( )A.1B.1C.2D.-2正确答案:B解析:∫L2xydx+x2dy=(2x+x2+x2.2x)dx==1.选B27.下列级数中,条件收敛的是( )A.B.C.D.正确答案:B解析:对于B,是收敛的,加绝对值后,是P级数,而k=<1所以是发散的,所以条件收敛.28.下列命题正确的是( )A.若级数收敛,则级数收敛B.若级数收敛,则级数收敛C.若正项级数收敛,则级数收敛D.若级数收敛,则级数都收敛正确答案:C解析:若取un=vn=(-1)n-1,对于A,由莱布尼兹判别法知,皆收敛,但是发散,故选项A不正确;对于B,发散,故B不正确;对于D,取un=(-1)“,vn=,显然收敛,但(-1)n发散,发散,故D不正确-综上所述,选C。
2001-2013年河南专升本高数真题及答案
2005年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试一、单项选择题(每小题2分,共计60分) 在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( )A .x x y cos = B. 13++=x x yC. 222x x y --= D. 222x x y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3. 当0→x 时,与12-x e 等价的无穷小量是 ( )A. xB.2xC. x 2D. 22x 解: ⇒-x e x ~12~12x e x -,应选B.4.=⎪⎭⎫⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n n n n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( ) A. 1 B. -1 C. 21 D. 21-解:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C. 6.设函数)(x f 在点1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=')1(f ( )A. 1B. 21-C. 41D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.由方程yx e xy +=确定的隐函数)(y x 的导数dydx为( )A.)1()1(x y y x --B.)1()1(y x x y --C.)1()1(-+y x x yD.)1()1(-+x y y x解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++,即dy x e dx e y y x y x )()(-=-++, dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( ) A. 1)]([+n x f n B. 1)]([!+n x f n C. 1)]()[1(++n x f n D. 1)]([)!1(++n x f n 解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='='', ⇒ΛΛ=)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-x xe x fC.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( )A.增加,曲线)(x f y =为凹的B.减少,曲线)(x f y =为凹的C.增加,曲线)(x f y =为凸的D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.11.曲线xe y 1-=( )A. 只有垂直渐近线B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线 解:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.设参数方程为⎩⎨⎧==t b y t a x sin cos ,则二阶导数=22dx yd ( )A.t a b 2sinB.t a b 32sin - C.t a b 2cos D.tt a b22cos sin -解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22 ta bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.若⎰+=C e dx e x f xx 11)(,则=)(x f ( )A. x 1-B. 21x- C. x 1 D. 21x解:两边对x 求导 22111)()1()(xx f x e e x f x x -=⇒-⨯=,应选B.14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是 ( )A.⎰+∞+0211dx x B.⎰-10211dx x C.⎰+∞e dx x x ln D.⎰+∞-0dx e x解:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.=⎰-11||dx x x ( )A.0B.32 C.34 D.32- 解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.设)(x f 在],[a a -上连续,则定积分⎰-=-aa dx x f )( ( )A.0B.⎰a dx x f 0)(2 C.⎰--a a dx x f )( D.⎰-aadx x f )(解:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )( ( )A.C x x +-2sin 2121B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21解: x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B.19.设函数)(x f 在区间],[b a 上连续,则不正确的是 ( )A.⎰ba dx x f )(是)(x f 的一个原函数 B.⎰xadt t f )(是)(x f 的一个原函数C.⎰axdt t f )(是)(x f -的一个原函数 D.)(x f 在],[b a 上可积解: ⎰b adx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( ) A. 垂直 B.相交但不垂直 C. 直线在平面上 D. 平行 解:n s n s ρρρρ⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数x z ∂∂和yz∂∂存在是它在该点处可微的 ( )A.充分条件B.必要条件C.充要条件D.无关条件 解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln = ,则=)2,1(dz ( )A.dx x y 2B.dy dx 2121- C.dy dx 21- D.dy dx 21+解:dy ydx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C.23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( ) A.)1,1(- B.)1,1(- C. )1,1(-- D. )1,1(解:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.二次积分⎰⎰202),(x dy y x f dx 写成另一种次序的积分是 ( )A. ⎰⎰402),(ydx y x f dy B. ⎰⎰400),(ydx y x f dy C. ⎰⎰4022),(xdx y x f dy D. ⎰⎰402),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A.25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(()A.⎰⎰πθθθ2020)sin ,cos (a rdr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f d C.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d解:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,=+⎰Ldy x xydx 22( )A. -1B.1C. 2D. -1解:L :,2⎩⎨⎧==xy xx x 从0变到1 , 142221041031332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n n nC .∑∞=-121)1(n nn D .∑∞=+-1)1()1(n n n n解:∑∞=+-11)1(n n n n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n n n是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n n n条件收敛,应选B.28. 下列命题正确的是 ( ) A .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛B .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数)(212n n n v u +∑∞=收敛C .若正项级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛D .若级数∑∞=1n n n v u 收敛,则级数∑∞=1n n u 与∑∞=1n n v 都收敛解:正项级数∑∞=1n n u 与∑∞=1n n v 收敛⇒ ∑∞=12n nu 与∑∞=12n n v 收敛,而)(2)(222n nn n v u v u +≤+,所以级数21)(n n n v u +∑∞=收敛 ,应选C 。
2005年成人高考专升本高等数学二考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题
参考答案:D
第2题
参考答案:A
第3题
参考答案:C
第4题
参考答案:B
第5题
参考答案:D
第6题
参考答案:B 第7题
参考答案:C 第8题
参考答案:A 第9题
参考答案:D 第10题
参考答案:B
二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。
第11题
参考答案:2
第12题
参考答案:e-3
第13题
参考答案:0
第14题
参考答案:4
第15题
参考答案:2
第16题
参考答案:0
第18题
参考答案:1/2
第19题
参考答案:6
第20题
三、解答题:共70分。
解答应写出推理、演算步骤。
第21题
第23题
第24题
第25题
第26题
第27题
第28题。
2005年河南省高级中等学校招生统一考试数学试卷及答案
2005 年河南省高级中等学校招生一致考试一试卷数学注意事项:1.本试卷共 8 页,三大题,满分 100 分,考试时间 100 分钟.请用钢笔或圆珠笔挺接答在试卷上.2.答题前将密封线内的项目填写清楚.题号一二三总分14 15 16 17 18 19 20 21 22分数一、选择题(每题 3 分,共 18 分)以下各小题均有四个答案,此中只有一个是正确的,请将正确答案的代号字母填人题后括号内. B1.如图,tan等于1 ( )A.1B. 222C AC.5D. 5(第 1题) 52.以下图,两温度计读数分别为我国某地今年 2 月份某天的最低气温与最高气温,那么这日的最高气温比最低气温高( ) A.5℃B.7℃C.12℃D.-12℃3.在一次科学探测活动中,探测人员发现一目标在以下图的暗影地区内,则目标的坐标可能是A.(-3,300)B.(7, -500)C.(9,600)D.(-2,-800)4.如图,点 O 在直线 AB 上, OC 为射线,1比2的3倍少10 ,设 1, 2 的度数分别为x , y ,那么以下求出这两个角的度数的方程是 C (yx O(第3题))A 1O2 B(第 4题)A .x y 180 x y 180xy10B .3y10x x y 180 3 y180C .y 10D .3 y 10x x5.以下各数中,合适方程a 3 a 2 3a 3 的一个近似值(精准到)是 ( ) A .B .C .D .6.如图,半径为 4 的两等圆相外切,它们的一条外公切线与两圆围成的暗影部分中,存在的最大圆的半径等于 []二、填空题 (每题 3 分,共 21 分)7.计算 ( x 2 ) 3 x 5 .8.函数 yx 2中,自变量 x 的取值3范围是 。
9.以下图, l 1 // l 2 ,则 1 = 度。
10.点 ( 1, 1)(填:“在”或“不在” )直线Ay2x3 上O11.如图,已知 PA 为⊙ O 的切线, PBC 为⊙ O 的 PM C割线, PA= 6 2,PB BC ,⊙O 的半径 OC 5 , B那么弦 BC 的弦心距 OM =.(第 11 题)12.从《中华人民共和国 2004 年公民经济和社会发展统计公报》 中获悉,2004 年终国家整年各项税收收入 25718 亿元,用科学记数法表 M示为元 (保存三个有效数字 )13.如图,梯形 ABCD 中, AD // BC , ABCDAD 1,A DB 60 直线 MN 为梯形 ABCD 的对称轴, P 为 MN 上一点, BC那么 PC PD 的最小值 。
25年河南专升本高数真题及答案
25年河南专升本高数真题及答案2005年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试高等数学试卷1.函数xx y --=5)1ln(的定义域为为()A. 1>xB.5<x< bdsfid="88" p=""></x<>C.51<<x< bdsfid="90" p=""></x<>D. 51≤<x< bdsfid="92" p=""></x<>解:C x x x ?<->-510501.2.下列函数中,图形关于y 轴对称的是()A .x x y cos = B. 13++=x x yC. 222x x y --=D. 222xx y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3. 当0→x 时,与12-x e 等价的无穷小量是() A. x B.2x C. x 2 D. 22x 解: ?-x e x ~12~12x e x -,应选B.4.=??++∞→121lim n n n () A. e B. 2e C. 3e D. 4e 解:2)1(2lim2)1(22121lim 21lim 21lim e n n n n n n n nn n n n n n =?+=??+=??++∞→+?∞→+∞→∞→,应选B.5.设=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则常数=a ()A. 1B. -1C. 21D. 21-解:2)11(1lim )11(lim 11lim )(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C.6.设函数)(x f 在点1=x 处可导,且21)1()21(lim 0=--→h f h f h ,则=')1(f()A. 1B. 21-C. 41D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim 020-='?='-=----=--→-→f f h f h f h f h f h h ,应选D.7.由方程y x e xy +=确定的隐函数)(y x 的导数dydx为()A.)1()1(x y y x --B.)1()1(y x x y --C.)1()1(-+y x x yD.)1()1(-+x y y x 解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++,即dy x e dx e y y x y x )()(-=-++, dy x xy dx xy y )()(-=-,所以dy dx )1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n () A. 1)]([+n x f n B. 1)]([!+n x f nC. 1)]()[1(++n x f nD. 1)]([)!1(++n x f n解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='?='''?='='', ?ΛΛ=)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是()A.]1,1[,1)(2--=x x fB.]1,1[,)(-=-x xe x fC.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( )A.增加,曲线)(x f y =为凹的B.减少,曲线)(x f y =为凹的C.增加,曲线)(x f y =为凸的D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.11.曲线xe y 1-= ()A. 只有垂直渐近线B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线解:0lim ;11lim 0=?∞==?=-→±∞→x y y y x x ,应选C.12.设参数方程为==tb y t a x sin cos ,则二阶导数=22dx yd()A.t a b 2sinB.t a b 32sin -C.t a b 2cosD.t t a b 22cos sin - 解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ?'??? ??-='??? ??-=?-=''=sin cos sin cos sin cos 22t a bt a t a b 322sin sin 1sin -=-?=,应选B. 13.若?+=C e dx e x f xx11)(,则=)(x f ()A. x 1-B. 21x -C. x 1D. 21x解:两边对x 求导 22111)()1()(xx f x e e x f x x -=?-?=,应选B.14. 若?+=C x F dx x f )()( ,则?=dx x xf )(sin cos()A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:??+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是()A.?+∞+0211dx x B.?-10211dx x C.?+∞e dx x x ln D.?+∞-0dx e x 解:2arctan 11002π==+∞++∞?x dx x ;2arcsin 1110102π==-?x dx x; ∞==+∞∞+?eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-?xx e dx e ,应选C.16.=?-11||dx x x ()A.0B.32C.34D.32-解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A.17.设)(x f 在],[a a -上连续,则定积分?-=-aadx x f )(()A.0B.?a dx x f 0)(2 C.?--a adx x f )( D.?-aadx x f )(解:??-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='?xdx x f sin )( ()A.C x x +-2sin 2121B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21解: x x f x x f x f x sin )(cos )()()(sin -='?=?='C x x dx x xdx xdx x f ++-=--=-='2sin 412122cos 1sin sin )(2,应选B.19.设函数)(x f 在区间],[b a 上连续,则不正确的是()A.?b adx x f )(是)(x f 的一个原函数 B.?xadt t f )(是)(x f 的一个原函数C.?axdt t f )(是)(x f -的一个原函数 D.)(x f 在],[b a 上可积解: ?b adx x f )(是常数,它的导数为零,而不是)(x f ,即?badx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是()A. 垂直B.相交但不垂直C. 直线在平面上D. 平行解:n s n s ρρρρ⊥?--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数x z ??和yz存在是它在该点处可微的()A.充分条件B.必要条件C.充要条件D.无关条件解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln = ,则=)2,1(dz ()A.dx x y 2B.dy dx 2121-C.dy dx 21-D.dy dx 21+ 解:dy y dx x dz y x y x z 11ln 2ln 2ln -=?-==dy dx dz 21)2,1(-=?,应选C.23.函数1),(22+-+++=y x y xy x y x f 的极小值点是() A.)1,1(-B.)1,1(-C. )1,1(--D. )1,1(解:)1,1(),(012012-==-+=??=++=??y x y x y z y x x z,应选B.24.二次积分??22),(x dy y x f dx 写成另一种次序的积分是()A. ??402),(y dx y x f dy B. ??400),(ydx y x f dy C. ??4022),(xdx y x f dy D. ??402),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A.25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则=σDd y x f ),(()A.??πθθθ2020)sin ,cos (ardr r r f d B.??πθθθ2020)sin ,cos (adr r r f dC.??πθθθθ20cos 20)sin ,cos (a rdr r r f d D.??πθθθθ20cos 20)sin ,cos (a dr r r f d解:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而??=σDd y x f ),(?πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,=+?L dy x xydx 22()A. -1B.1C. 2D. -1解:L :,2==xy xx x 从0变到1 , 14222104131332===+=+xdx x dx x dx x dy xxydx L,应选B.27.下列级数中,条件收敛的是()A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n n nC .∑∞=-121)1(n nn D .∑∞=+-1)1()1(n nn n解:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n nn 是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n n n条件收敛,应选B.28. 下列命题正确的是()A .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛B .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数)(212n n nv u +∑∞=收敛 C .若正项级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛D .若级数∑∞=1n n n v u 收敛,则级数∑∞=1n n u 与∑∞=1n n v 都收敛解:正项级数∑∞=1n n u 与∑∞=1n n v 收敛? ∑∞=12n nu 与∑∞=12n n v 收敛,而)(2)(222nnn n v u v u +≤+,所以级数21)(n n n v u +∑∞=收敛,应选C 。
05年专升本数学试题
2005年普通专升本选拔考试高等数学试题一. 单项选择题(每小题4分,共24分)1 当0x →时,下列各无穷小量与x 相比是高阶无穷小量的是_______。
.A22x x+.B 2s i n x.C sin x x+.D 2sin x x +2 下列极限中正确的是_____________。
.A sin lim 1x xx→∞= .B 01l i m s i n 1x x x →= .C 0sin 2lim 2x xx→=.D 1lim 2xx →=∞3 已知函数()f x 在点0x 处可导,且0()3f x '=,则000(5)()limh f x h f x h→+-等于_______。
.A 6 .B 0 .C 15 .D 104 如果()0,x a b ∈,()0f x '=,()0f x ''<,则0x 一定是()f x 的_______。
.A 极小值点 .B 极大值点 .C 最小值点 .D 最大值点5 微分方程0dy ydx x +=的通解为_______。
.A 22()x y c c R +=∈.B 22()x y c c R -=∈.C 222()x y c c R +=∈.D 222()x y c c R -=∈6 三阶行列式231502201298523-等于_______。
.A 82 .B 70- .C 70 .D 63二. 判断题(每小题4分,共24分)1 设,A B 为n 阶矩阵,且0AB =,则必有0A =或0B =2 若函数()y f x =在区间(),a b 内单调递增,则对于(),a b 内的任意一点x 有()0f x '>3 212101xxe dx x -=+⎰ 4 若极限0lim ()x x f x →和0lim ()x x g x →都不存在,则[]0lim ()()x x f x g x →+也不存在。
2001-2013年河南专升本高数真题及答案
4. lim1 2 n1 n n
()
A. e
B. e 2
C. e 3
D. e 4
解: lim1 n
2 n1
n
lim1 n
2 n2(n1) 2n
n
lnim1
2 n
n 2
lim
()
A. 垂直
B.相交但不垂直
C. 直线在平面上 D. 平行
解:s
{1,1,2},
n
{1,1,1)
s
n
,另一方面点 (3,0,2) 不在平面内,所以应
为平行关系,应选 D..
21.函数 z
f
(x, y) 在点 (x0 , y0 ) 处的两个偏导数
z x
和
z y
D. F(cos x) C
()
解: cos xf (sin x)dx f (sin x)d(sin x) F(sin x) C ,应选 A.
15.下列广义积分发散的是
(
)
A. 1 dx
0 1 x2
B. 1 1 dx
0 1 x2
C.
ln x dx
ex
xdx
sin 2
xdx
1
cos 2x 2
dx
1 2
x
1 4
sin
2x
C
,应选
B.
19. 设 函 数 f (x) 在 区 间 [a, b] 上 连 续 , 则 不 正 确 的 是
()
A. b f (x)dx 是 f (x) 的一个原函数 a
2005年专升本真题试卷.doc
2005年专升本真题试卷.doc哎呀,说起 2005 年专升本的真题试卷,那可真是让人回忆满满!想当年,我自己也经历过专升本的备考时光,那叫一个紧张又充实。
记得有一天,我在图书馆找了个安静的角落,准备好好攻克一套真题试卷。
那天阳光透过窗户洒在桌子上,形成一片片光斑。
我满心期待地打开试卷,心里还默默念叨着:“这可关乎我的未来啊!”咱们先来瞧瞧这 2005 年的专升本真题试卷。
数学部分,那一道道函数题就像是一个个小怪兽,等着我去打败。
有的题目看着简单,可一不留神就会掉进陷阱里。
比如说有一道求极限的题目,乍一看挺常规,可细细一算,里面的变量关系还挺复杂,需要认真分析才能得出正确答案。
英语试卷呢,阅读理解的文章篇幅可不短,得耐着性子认真读。
有一篇讲文化差异的文章,让我印象特别深刻。
文章里提到不同国家对于礼仪的理解和实践大不相同,这让我不禁想到自己在生活中遇到的一些因为文化差异而产生的有趣小插曲。
再看专业课的真题,那更是五花八门。
就拿管理学来说,有案例分析题让你根据给定的企业情况给出管理建议,这不仅考查知识掌握程度,更考验你的思维能力和实际应用能力。
做这套试卷的时候,我就像在知识的海洋里游泳,有时候顺风顺水,有时候又被浪头打得晕头转向。
做完之后对照答案,那种恍然大悟或者懊悔不已的心情,相信很多备考的同学都能体会。
总之啊,这 2005 年专升本真题试卷就像是一个宝库,里面藏着各种知识和挑战。
通过做这些真题,我们能更好地了解考试的题型、难度和重点,从而有针对性地进行复习。
如今回想起来,那段为了专升本努力奋斗的日子,虽然辛苦,但也充满了希望和乐趣。
就像做这套真题试卷一样,每一道题都是我们前进路上的一个小关卡,只要我们认真对待,努力攻克,总会迎来胜利的曙光。
所以,正在备考专升本的同学们,加油吧!相信你们一定能在真题试卷的海洋中畅游,最终成功上岸!。
专转本高数真题试卷2005
江苏省高等数学一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合要求的,请把所选项前的字母填在题后的括号内)。
1、x=0是函数xx x f 1sin)(=的 ( ) A.可去间断点 B.跳跃间断点 C.第二类间断点 D.连续点2、设x =2是函数1ln()2y x ax =-+的可导极值点,则a =( ) A 、-1 B 、12 C 、12- D 、1 3、若()(),f x dx F x C =+⎰则sin (cos )()xf x dx =⎰A. (sin )F x C +B. (sin )F x C -+C. (cos )F x C +D. (cos )F x C -+4、1lim(1)()xx kx →-= A. k e B . ke- C. 1 D. ∞5、设区域D 是xoy 平面上以点A(1,1),B(-1,1),C(-1,-1)为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰=( )A. 12cos sin D x ydxdy ⎰⎰B.12D xydxdy ⎰⎰C 14(cos sin )D xy x y dxdy +⎰⎰D. 06、设有正项级数(1)n u ∑与(2)2n u ∑,则下列说法中正确的是( ) A .若(1)发散则(2)必发散。
B.若(2)收敛,则(1)必收敛。
C.若(1)发散,则(2)可能发散也可能收敛。
D.(1),(2)敛散性一致。
二、填空题(本大题共6小题,每小题4分,共24分,请把正确答案的结果填在划线上)。
7、02lim__sin x x x e e xx x-→--=- 8、对函数()ln f x x =在闭区间[1,e]上应用Lagrange 中值定理,求得的ξ=____。
9、1211______.1x dx xπ-+=+⎰10、设向量{3,4,2},{2,1,},a b k =-=若a 与b 垂直,则k=________.11、交换二次积分的次序:11(,)x dx f x y dy -+⎰=______________.12、幂级数1(21)nn n x∞=-∑的收敛域为_____________.三、计算题(本大题共8小题,每小题8分,共64分)。
2005年河南专升本高数真题(带答案)
2005年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试高等数学 试卷一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( )A .x x y cos = B. 13++=x x yC. 222xx y --=D. 222xx y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D. 3. 当0→x 时,与12-x e等价的无穷小量是 ( )A. xB.2xC. x 2D. 22x解: ⇒-x e x~12~12x ex -,应选B.4.=⎪⎭⎫ ⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n nn n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( )A. 1B. -1C. 21D. 21- 解:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C.6.设函数)(x f 在点1=x 处可导,且21)1()21(lim 0=--→h f h f h ,则=')1(f( )A. 1B. 21-C.41 D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.由方程y x e xy +=确定的隐函数)(y x 的导数dydx 为 ( )A.)1()1(x y y x -- B.)1()1(y x x y -- C.)1()1(-+y x x y D.)1()1(-+x y y x解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy yx +=++,即dy x e dx ey y x yx )()(-=-++,dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( )A. 1)]([+n x f nB. 1)]([!+n x f nC. 1)]()[1(++n x f n D. 1)]([)!1(++n x f n解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='='', ⇒ =)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-xxe x f C.]1,1[,11)(2--=x x f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( ) A.增加,曲线)(x f y =为凹的 B.减少,曲线)(x f y =为凹的C.增加,曲线)(x f y =为凸的D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.11.曲线xe y 1-= ( )A. 只有垂直渐近线B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线 解:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.设参数方程为⎩⎨⎧==t b y t a x sin cos ,则二阶导数=22dx yd ( ) A.t a b 2sin B.t a b 32sin - C.t a b 2cos D.t t a b 22cos sin - 解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22ta bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.若⎰+=C e dx ex f xx11)(,则=)(x f ( )A. x 1-B. 21x -C. x 1D. 21x解:两边对x 求导 22111)()1()(x x f x e e x f xx -=⇒-⨯=,应选B. 14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是 ( )A.⎰+∞+0211dx x B.⎰-1211dx xC.⎰+∞edx xxln D.⎰+∞-0dx e x解:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.=⎰-11||dx x x ( )A.0B.32 C.34 D.32- 解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.设)(x f 在],[a a -上连续,则定积分⎰-=-aadx x f )( ( )A.0B.⎰adx x f 0)(2 C.⎰--a adx x f )( D.⎰-aadx x f )(解:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )(( ) A.C x x +-2sin 2121 B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21 解: x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B.19.设函数)(x f 在区间],[b a 上连续,则不正确的是( )A.⎰badx x f )(是)(x f 的一个原函数 B.⎰xadt t f )(是)(x f 的一个原函数C.⎰ax dt t f )(是)(x f -的一个原函数 D.)(x f 在],[b a 上可积解: ⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰ba dx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( )A. 垂直B.相交但不垂直C. 直线在平面上D. 平行解:n s n s⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数x z ∂∂和yz∂∂存在是它在该点处可微的 ( )A.充分条件B.必要条件C.充要条件D.无关条件解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln= ,则=)2,1(dz ( ) A.dx x y 2 B.dy dx 2121- C.dy dx 21- D.dy dx 21+ 解:dy y dx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C.23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( ) A.)1,1(- B.)1,1(- C. )1,1(-- D. )1,1(解:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.二次积分⎰⎰22),(x dy y x f dx 写成另一种次序的积分是 ( )A. ⎰⎰402),(ydx y x f dy B. ⎰⎰400),(ydx y x f dy C. ⎰⎰422),(xdx y x f dy D. ⎰⎰402),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A.25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(( )A.⎰⎰πθθθ2020)sin ,cos (ardr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f d C.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d解:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,=+⎰Ldy x xydx 22()A. -1B.1C. 2D. -1解:L :,2⎩⎨⎧==xy xx x 从0变到1 , 1422210410310332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n n nC .∑∞=-121)1(n n n D .∑∞=+-1)1()1(n n n n 解:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n nn 是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n n n 条件收敛,应选B. 28. 下列命题正确的是 ( )A .若级数∑∞=1n nu与∑∞=1n nv收敛,则级数21)(n n nv u+∑∞=收敛B . 若级数∑∞=1n nu与∑∞=1n nv收敛,则级数)(212n n n v u+∑∞=收敛C . 若正项级数∑∞=1n nu与∑∞=1n nv收敛,则级数21)(n n nv u+∑∞=收敛D . 若级数∑∞=1n nn vu 收敛,则级数∑∞=1n nu与∑∞=1n n v都收敛解:正项级数∑∞=1n nu与∑∞=1n nv收敛⇒∑∞=12n nu与∑∞=12n nv收敛,而)(2)(222nnn n v u v u +≤+,所以级数21)(n n nv u+∑∞=收敛 ,应选C 。
2001-2013年河南专升本高数真题及答案
2005年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试一、单项选择题(每小题2分,共计60分) 在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( ) A .x x y cos = B. 13++=x x yC. 222x x y --=D. 222xx y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3. 当0→x 时,与12-x e 等价的无穷小量是 ( )A. xB.2xC. x 2D. 22x 解: ⇒-x e x ~12~12x e x -,应选B.4.=⎪⎭⎫⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n n n n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( ) A. 1 B. -1 C. 21 D. 21-解:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C. 6.设函数)(x f 在点1=x 处可导,且21)1()21(lim 0=--→h f h f h ,则=')1(f ( )A. 1B. 21-C. 41D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim 020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.由方程yx e xy +=确定的隐函数)(y x 的导数dydx为( )A.)1()1(x y y x --B.)1()1(y x x y --C.)1()1(-+y x x yD.)1()1(-+x y y x 解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++,即dy x e dx e y y x y x )()(-=-++, dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( ) A. 1)]([+n x f n B. 1)]([!+n x f n C. 1)]()[1(++n x f n D. 1)]([)!1(++n x f n解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='='', ⇒ =)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-x xe x fC.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( )A.增加,曲线)(x f y =为凹的B.减少,曲线)(x f y =为凹的C.增加,曲线)(x f y =为凸的D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.11.曲线xe y 1-=( )A. 只有垂直渐近线B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线 解:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.设参数方程为⎩⎨⎧==t b y t a x sin cos ,则二阶导数=22dx yd ( )A.t a b 2sinB.t a b32sin - C.t a b 2cos D.tt a b22cos sin -解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22t a bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.若⎰+=C e dx e x f xx11)(,则=)(x f ( )A. x 1-B. 21x -C. x 1D. 21x解:两边对x 求导 22111)()1()(xx f x e e x f x x -=⇒-⨯=,应选B.14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是 ( )A.⎰+∞+0211dx x B.⎰-10211dx x C.⎰+∞e dx x x ln D.⎰+∞-0dx e x解:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.=⎰-11||dx x x ( )A.0B.32 C.34 D.32- 解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.设)(x f 在],[a a -上连续,则定积分⎰-=-aa dx x f )( ( )A.0B.⎰a dx x f 0)(2 C.⎰--a adx x f )( D.⎰-aadx x f )(解:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )( ( )A.C x x +-2sin 2121B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21解: x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B. 19.设函数)(x f 在区间],[b a 上连续,则不正确的是 ( )A.⎰ba dx x f )(是)(x f 的一个原函数 B.⎰xadt t f )(是)(x f 的一个原函数C.⎰axdt t f )(是)(x f -的一个原函数 D.)(x f 在],[b a 上可积解: ⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( ) A. 垂直 B.相交但不垂直 C. 直线在平面上 D. 平行 解:n s n s ⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数xz∂∂和y z ∂∂存在是它在该点处可微的 ( )A.充分条件B.必要条件C.充要条件D.无关条件 解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln = ,则=)2,1(dz ( )A.dx x y 2B.dy dx 2121-C.dy dx 21-D.dy dx 21+ 解:dy y dx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C. 23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( ) A.)1,1(- B.)1,1(- C. )1,1(-- D. )1,1(解:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.二次积分⎰⎰202),(x dy y x f dx 写成另一种次序的积分是 ( )A. ⎰⎰402),(y dx y x f dy B. ⎰⎰400),(ydx y x f dy C. ⎰⎰4022),(xdx y x f dy D. ⎰⎰42),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A.25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(()A.⎰⎰πθθθ2020)sin ,cos (a rdr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f dC.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d 解:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,=+⎰Ldy x xydx 22( )A. -1B.1C. 2D. -1解:L :,2⎩⎨⎧==xy xx x 从0变到1 , 142221041031332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n n nC .∑∞=-121)1(n nn D .∑∞=+-1)1()1(n n n n解:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n n n是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n n n条件收敛,应选B.28. 下列命题正确的是 ( ) A .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛B .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数)(212n n nv u +∑∞=收敛 C .若正项级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛D .若级数∑∞=1n n n v u 收敛,则级数∑∞=1n n u 与∑∞=1n n v 都收敛解:正项级数∑∞=1n n u 与∑∞=1n n v 收敛⇒ ∑∞=12n nu 与∑∞=12n n v 收敛,而)(2)(222nnn n v u v u +≤+,所以级数21)(n n n v u +∑∞=收敛 ,应选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试高等数学 试卷一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x2.下列函数中,图形关于y 轴对称的是 ( ) A .x x y cos = B. 13++=x x yC. 222x x y --= D. 222xx y -+=3. 当0→x 时,与12-x e 等价的无穷小量是 ( )A. xB.2xC. x 2D. 22x4.=⎪⎭⎫ ⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( ) A. 1 B. -1 C. 21 D. 21-6.设函数)(x f 在点1=x处可导,且21)1()21(lim0=--→h f h f h ,则=')1(f ( )A. 1B. 21-C. 41D. 41-7.由方程yx e xy +=确定的隐函数)(y x 的导数dydx 为 ( )A.)1()1(x y y x -- B.)1()1(y x x y -- C.)1()1(-+y x x y D.)1()1(-+x y y x8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( )A. 1)]([+n x f nB. 1)]([!+n x f nC. 1)]()[1(++n x f n D. 1)]([)!1(++n x f n9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-xxe x fC.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( )A.增加,曲线)(x f y =为凹的B.减少,曲线)(x f y =为凹的C.增加,曲线)(x f y =为凸的D.减少,曲线)(x f y =为凸的11.曲线xe y 1-= ( ) A. 只有垂直渐近线 B. 只有水平渐近线 C. 既有垂直渐近线,又有水平渐近线, D. 无水平、垂直渐近线12.设参数方程为⎩⎨⎧==t b y t a x sin cos ,则二阶导数=22dx yd ( ) A.ta b 2sin B.t a b 32sin -C.t a b 2cosD.tt a b 22cos sin - 13.若⎰+=C e dx ex f xx11)(,则=)(x f ( )A. x 1-B. 21x -C. x 1D. 21x14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos15.下列广义积分发散的是 ( )A.⎰+∞+0211dx x B.⎰-10211dx xC.⎰+∞e dx x x lnD.⎰+∞-0dx e x16.=⎰-11||dx x x ( )A.0B.32 C.34 D.32-17.设)(x f 在],[a a -上连续,则定积分⎰-=-aadx x f )( ( )A.0B.⎰adx x f 0)(2C.⎰--aadx x f )( D.⎰-aadx x f )(18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )( ( )A.C x x +-2sin 2121 B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21 19.设函数)(x f 在区间],[b a 上连续,则不正确的是 ( )A.⎰ba dx x f )(是)(x f 的一个原函数 B.⎰xadt t f )(是)(x f 的一个原函数C.⎰axdt t f )(是)(x f -的一个原函数 D.)(x f 在],[b a 上可积20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( ) A. 垂直 B.相交但不垂直 C. 直线在平面上 D. 平行 21.函数),(y x f z =在点),(00y x 处的两个偏导数x z ∂∂和yz∂∂存在是它在该点处可微的 ( )A.充分条件B.必要条件C.充要条件D.无关条件22.设yxz 2ln = ,则=)2,1(dz ( ) A.dx x y 2 B.dy dx 2121- C.dy dx 21- D.dy dx 21+23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( ) A.)1,1(- B.)1,1(- C. )1,1(-- D. )1,1(24.二次积分⎰⎰22),(x dy y x f dx 写成另一种次序的积分是 ( )A. ⎰⎰402),(ydx y x f dy B. ⎰⎰400),(ydx y x f dy C.⎰⎰422),(xdx y x f dy D. ⎰⎰402),(ydx y x f dy25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(( )A.⎰⎰πθθθ2020)sin ,cos (ardr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f dC.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,则=+⎰Ldy x xydx 22( )A. -1B.1C. 2D. -127.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n nnC .∑∞=-121)1(n n n D .∑∞=+-1)1()1(n n n n 28. 下列命题正确的是 ( ) A .若级数∑∞=1n nu与∑∞=1n nv收敛,则级数21)(n n nv u+∑∞=收敛B . 若级数∑∞=1n nu与∑∞=1n nv收敛,则级数)(212n n n v u+∑∞=收敛C . 若正项级数∑∞=1n nu与∑∞=1n nv收敛,则级数21)(n n nv u+∑∞=收敛D . 若级数∑∞=1n nn vu 收敛,则级数∑∞=1n nu与∑∞=1n nv都收敛29. 微分方程y x y y x -='-2)2(的通解为 ( ) A. C y x =+22B. C y x =+C. 1+=x yD. 222C y xy x =+-30.微分方程0β222=+x dtx d 的通解是 ( )A. t C t C x βsin βcos 21+=B. tt e C e C x β2β1+=-C. t t x βsin βcos +=D. tt e e x ββ+=-二、填空题(每小题2分,共30分)1.设2)1(2+=+x x f ,则=-)2(x f _________.2.526lim22=--+→x ax x x ,则=a _____________. 3.设函数x y arctan =在点)4π,1(处的切线方程是__________.4.设x xe x y 1=,则=dy ___________.5.函数x x y ln 22-=的单调递增区间是 __________. 6.曲线x ey =的拐点是_________.7.设)(x f 连续,且x dt t f x ⎰=3)(,则=)27(f _________.8.设3)2(,2)2(,1)0(='==f f f ,则 ⎰=''1)2(dx x f x __________.9.函数⎰-=xt dt te y 0的极小值是_________.10.⎰=+-dx x x xcos sin 1 ________.11. 由向量}2,1,0{},1,0,1{=-=b a ρρ为邻边构成的平行四边形的面积为______.12.设yz z x ln = ,则=∂∂+∂∂y zx z _________. 13.设D 是由0,,12==-=y x y x y ,所围成的第一象限部分,则⎰⎰Ddxdy x y 2)( =_______.14.将223)(xx x f -+=展开为x 的幂级数是_________. 15.用待定系数法求方程xe x y y y 2)12(44+=+'-''的特解时,特解应设为_____ _____.三、计算题(每小题5分,共40分)1.xx x x x cos sin 1lim2-+→.2.已知2arctan )(,2523x x f x x y ='⎪⎭⎫ ⎝⎛+-=,求=x dx dy .3.求不定积分⎰+dx xx 231.4.设⎪⎩⎪⎨⎧<+≥+=0,210),1ln()(x xx x x f ,求⎰-20)1(dx x f .5.设),sin (22y x y e f z x+= ,其中),(v u f 可微,求yzx z ∂∂∂∂,. 6.求⎰⎰Ddxdy yx 22,其中D 是由2,1===x x y xy 及所围成的闭区域. 7.求幂级数12012)1(+∞=∑+-n n n x n 的收敛域(考虑区间端点).8.求微分方程 0cos 2)1(2=-+'+x xy y x 通解.四、应用题(每小题7分,共计14分)1. 一房地产公司有50套公寓要出租,当月租金定为2000元时,公寓会全部租出去,当月租金每增加100元时,就会多一套公寓租不出去,而租出去的公寓每月需花费200元的维修费.试问租金定为多少可获得最大收入?最大收入是多少?2.平面图形由抛物线x y 22=与该曲线在点)1,21(处法线所围成,试求: (1)该平面图形的面积;x 轴旋转所成的旋转体的体积.五、证明题(6分)试证:当0>x 时,有xx x x 11ln 11<+<+.。