高考三角函数练习高考数学
(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc
2019-2020 年高考数学大题专题练习 —— 三角函数(一)1. 【山东肥城】 已知函数 f ( x) 2sin 2 x 2sin 2 ( x) , x R .( 1)求函数 yf ( x) 的对称中心;6( 2)已知在 △ABC 中,角 A 、B 、C 所对的边分别为 a , b , c ,且f (B6 ) b c, ABC 的外接圆半径为 3 ,求 △ABC 周长的最大值 . 22a【解析】f ( x) 1 cos2 x1 cos2( x) cos(2 x) cos2 x6313 sin 2x cos 2xcos2x223sin 2x1cos2x sin(2 x 6 ) . 22(1)令 2xk ( k Z ),则 xk( kZ ),6212所以函数 yf ( x) 的对称中心为 (k,0) k Z ;212(2)由 f (B)b c,得 sin( B ) bc ,即 3 sin B 1cos B b c ,262a6 2a 2 2 2a整理得 3a sin B a cos B b c ,由正弦定理得:3 sin A sin B sin A cos B sin B sin C ,化简得 3 sin A sin B sin B cos Asin B ,又因为 sin B0 ,所以 3 sin A cos A1,即sin( A1 ,6 )2由 0A,得A5 ,6 66所以 A,即 A3 ,6 6又 ABC 的外接圆的半径为3 ,所以 a 2 3 sin A 3 ,由余弦定理得222222232(b c) 2abc2bc cos A bcbc (b c)3bc (b c)(b c)44,即 ,当且仅当 bc 时取等号,所以周长的最大值为 9.2.【河北衡水】 已知函数 f x2a sin x cosx2b cos 2 x c a 0,b 0 ,满足 f 0 ,且当 x0,时, f x 在 x 取得最大值为 5.26 2( 1)求函数 f x 在 x0, 的单调递增区间;( 2)在锐角 △ABC 的三个角 A ,B ,C 所对的边分别为 a ,b ,c ,且2 22 f C3,求a2b 2c 2 的取值范围 .2ab c【解析】(1)易得 f x5sin 2x 5,整体法求出单调递增区间为0, , 2 ,;3 666 3 (2)易得 C,则由余弦定理可得 a2b 2c 2 2a 2 2b 2 ab2 b a 1,3a 2b 2c 2aba bbsin 2 A3 1 1由正弦定理可得sin B 3,所以asin Asin A2tan A2 ,22a 2b 2c 23,4 .a2b2c2rcos x, 1 r( 3 sin x,cos 2x) , xR ,设函数3.【山东青岛】 已知向量 a, b 2r rf ( x) a b .( 1)求 f(x)的最小正周期;( 2)求函数 f(x)的单调递减区间;( 3)求 f(x)在 0,上的最大值和最小值 . 2【解析】f (x) cos x, 1( 3 sin x,cos 2x) 23 cos x sin x 1cos2x 23sin 2 x 1cos 2x2 2cos sin 2x sin cos 2x6 6sin 2x.6(1)f ( x)的最小正周期为T 2 2,即函数f ( x) 的最小正周期为.2(2)函数y sin(2 x ) 单调递减区间:62k 2x 32k , k Z ,2 6 2得:k x 5 k , k Z ,63∴所以单调递减区间是3 k ,5k , k Z .6(3)∵0 x ,2∴2x 5.6 6 6 由正弦函数的性质,当 2x6 2 ,即 x 时, f (x) 取得最大值1.3当x x 0 f (0) 1,即时,,6 6 2当 2x6 5 ,即 x2时, f21 ,6 2∴ f (x) 的最小值为1. 2因此, f (x) 在 0, 上的最大值是1,最小值是1 .2 224.【浙江余姚】已知函数 f ( x) sin x sin x cos( x ) .( 1)求函数 f(x)的最小正周期;( 2)求 f(x)在 0,上的最大值和最小值.2【解析】( 1) 由题意得 f ( x) sin 2 x sin x cos x6sin 2 xsin x( 3 cos x 1sin x)2 23sin 2x3sin x cos x223(1 cos 2x)3sin 2x443 ( 1sin 2x3cos2x)3 2 2243sin( 2x) 32 34f (x) 的最小正周期为( 2) x0, ,22x23 3 3当 2x,即 x0时, f ( x) min0 ;33当 2x5 时, f ( x) max2 3 33,即 x4212综上,得 x0时, f ( x) 取得最小值,为 0;当 x5 2 3 3时, f ( x) 取得最大值,为4125.【山东青岛】 △ABC 的内角 A ,B ,C 的对边分别为a ,b ,c ,已知 b cos A 3a c .3( 1)求 cosB ;( 2)如图, D 为 △ABC 外一点,若在平面四边形ABCD中, D 2 B ,且 AD 1, CD3 , BC 6 ,求 AB 的长.【解析 】解:( 1)在ABC 中,由正弦定理得 sin B cos A3sin Asin C ,3又 C( A B) ,所以 sin B cos A3sin Asin( A B) ,3故 sin B cos A3sin Acos B cos Asin B ,sin A3所以 sin Acos B3sin A ,3又 A(0, ) ,所以 sin A30 ,故 cos B3(2) QD 2 B , cos D2cos 2 B 113又在ACD 中, AD 1, CD 3∴由余弦定理可得 AC2AD2CD22AD CD cosD 19 2 3 ( 1) 12 ,3∴ AC2 3 ,在 ABC 中, BC6 , AC 2 3 , cosB3,3∴由余弦定理可得 AC2AB 2 BC 2 2 AB BCcosB ,即 12 AB 2 6 2 AB63 ,化简得 AB 2 2 2 AB 6 0 ,解得 AB 3 2 .3故 AB 的长为 32 .6. 【江苏泰州】如图,在△ABC 中,ABC,2ACB, BC 1.P 是△ ABC 内一点,且BPC.3 2(1)若ABP,求线段AP的长度;6(2)若APB 2,求△ ABP 的面积 .3【解析】(1)因为PBC ,所以在 Rt PBC 中,6BPC , BC 1,PBC3 ,所以 PB 1 ,2 2在 APB 中,ABP , BP 13 ,所以, AB6 2AP2 AB 2 BP2 2AB BP cos PBA3 1 2 13 37,所以 AP 7 ;4 2 2 4 2(2)设PBA ,则PCB ,在 Rt PBC 中,BPC , BC 1,2PCB ,所以 PB sin ,在 APB 中,ABP , BP sin , AB 3 ,APB 2,3由正弦定理得:sin 3 1sin3cos1sinsin sin 2 2 2 23 3sin 3 cos ,又 sin 2 cos2 1 sin2 32 7SABP 1AB BP sin ABP 1 3 sin 2 3 3 .2 2 148.【辽宁抚顺】已知向量m sin x,1 , n cos x,3, f x m n4 4( 1)求出 f(x)的解析式,并写出f(x)的最小正周期,对称轴,对称中心;( 2)令 h xf x6,求 h(x)的单调递减区间;( 3)若 m // n ,求 f(x)的值.【解析】(1) f xm nsin x4cos x341sin 2 x4 3 1sin 2x231cos2x 3222所以 f x 的最小正周期 T ,对称轴为 xk , kZ2对称中心为k ,3 , kZ42(2) h xf x1 cos2 x 32 36令2k2x32k , kZ 得k x6k ,k Z3所以 h x 的单调减区间为3k ,k ,k Z6(3)若 m // n ,则 3sinxcos x即 tan x13444tan x 2f x1cos2x 3 1sin 2 x231 sin2 x cos 2 xcos x2 sin 2 xcos 2 322 x1 tan2 x 1 332 tan 2 x 31109.【辽宁抚顺】已知函数 f x 2 3 sin x cos x 2cos 2 x 1 , x R .( 1)求函数 f x 的最小正周期及在区间0,2 上的最大值和最小值;( 2)若 f x 06,x 0, 2 ,求 cos 2x 0 的值.54【解析】( 1) 由 f(x)= 2 3 sin xcos x + 2cos 2x - 1,得 f(x)= 3 (2sin xcos x)+(2cos2x-1)= 3 sin 2x+cos 2x=2sin 2x ,6所以函数 f(x)的最小正周期为π0 x , 2 x6 7 , 1 sin 2 x 12 6 6 2 6所以函数 f(x)在区间 0, 上的最大值为2,最小值为- 12( 2)由(1)可知f(x0)=2sin 2 x6又因为 f(x0 )=6,所以 sin 2 x6=3 .5 5由 x0∈, ,得 2x0+∈ 2,74 2 6 3 6从而 cos 2 x0 = 1 sin 2 2 x06 =-46 5所以 cos 2x0= cos 2 x06 6 = cos 2x0 cos + sin 2x06sin6 6 6=3 4 31010.【广西桂林】已知f x 4sin 24 x sin x cosx sin x cosx sin x 1 . 2( 1)求函数 f x 的最小正周期;( 2)常数0 ,若函数 y f x 在区间, 2上是增函数,求的取值2 3范围;( 3)若函数 g x 1 f 2 x af x af x a 1在,的最大值为2 2 4 22,求实数的值 .【解析】(1)f x 2 1 cos x sin x cos2 x sin 2 x 1 22 2sin x sin x 1 2sin 2 x 1 2sin x .∴ T 2 .(2) f x 2sinx .由 2kx 2k2kx2k2 得, k Z ,222 ∴ fx 的递增区间为2k2, 2k, k Z2∵ fx 在,2上是增函数,23∴当 k0 时,有2, 22,.320,∴, 解得 03242 22 ,3∴ 的取值范围是0,3.4(3) gx sin 2x a sin xa cos x 1 a 1.2 令 sin xcos x t ,则 sin 2x1 t2 .112a21 2att2aa∴ y 1 ta 1at2 t4a .222∵ t sin x cos x2 sin x,由x 得x,4 42244∴ 2 t 1 .①当a2 ,即 a2 2 时,在 t2 处 y max2 1 a 2 .22由21 a2 2 ,解得 a8 8 2 2 12 2 (舍去 ).22 2 1 7②当2 a 1,即2 2 a2 时, y maxa 21 a ,由 a 21a 22424 2得 a 2 2a 8 0 解得 a2 或 a 4 (舍去) .③当a1,即a 2 时,在 t 1处y max a 1 ,由a1 2 得a 6.2 2 2综上, a 2 或 a 6 为所求.11.【江苏无锡】如图所示,△ ABC 是临江公园内一个等腰三角形形状的小湖.....(假设湖岸是笔直的),其中两腰CA CB 60 米,cos CAB 2.为了给市民3营造良好的休闲环境,公园管理处决定在湖岸AC,AB 上分别取点E,F(异于线段端点),在湖上修建一条笔直的水上观光通道EF(宽度不计),使得三角形AEF 和四边形 BCEF 的周长相等 .(1)若水上观光通道的端点 E 为线段 AC 的三等分点(靠近点 C),求此时水上观光通道 EF 的长度;(2)当 AE 为多长时,观光通道 EF 的长度最短?并求出其最短长度 .【解析】(1)在等腰ABC 中,过点 C 作 CH AB 于 H ,在 Rt ACH 中,由 cosAH AH 240 , AB 80 ,CAB ,即,∴ AHAC 60 3∴三角形 AEF 和四边形 BCEF 的周长相等.∴ AE AF EF CE BC BF EF ,即 AE AF 60 AE 60 80 AF ,∴AE AF 100.∵ E 为线段 AC 的三等分点(靠近点 C ),∴ AE 40, AF 60,在AEF 中,EF 2 AE 2 AF 2 2 AE AF cos CAB 402 602 2 40 60 2 200 ,3∴ EF 2000 20 5 米.即水上观光通道EF 的长度为20 5米.(2)由( 1)知,AE AF 100 ,设 AE x ,AF y ,在AEF 中,由余弦定理,得EF 2 x2 y2 2x y cos CAB x2 y 24xy x y10xy .23 3∵ xy x y 2 1002 10 502 2 502 .502,∴EF22 3 350 6∴EF,当且仅当x y取得等号,3所以,当 AE 50 米时,水上观光通道EF 的长度取得最小值,最小值为50 6米.312.【江苏苏州】如图,长方形材料ABCD 中,已知AB 2 3 , AD4 .点P为材料ABCD 内部一点,PE AB 于 E , PF AD 于 F ,且 PE1 ,PF 3 .现要在长方形材料ABCD中裁剪出四边形材料AMPN,满足MPN 150 ,点M、N分别在边AB,AD上.( 1)设FPN,试将四边形材料AMPN 的面积表示为的函数,并指明的取值范围;(2)试确定点 N 在 AD 上的位置,使得四边形材料 AMPN 的面积 S 最小,并求出其最小值 .【解析】(1)在直角NFP 中,因为 PF 3 ,FPN ,所以 NF 3 tan ,所以 S NAP 1NA PF 1 1 3 tan 3 ,2 2在直角 MEP 中,因为 PE 1,EPM3,所以MEtan,3所以 S AMP1AM PE 1 3 tan31,2 2所以 SSNAPSAMP3tan1tan33 ,0, .2 23(2)因为S 3 1 tan33 tan3,tan2 33tan2 13 tan22令 t 13 tan,由0, ,得 t1,4,3所以S3 3t24t 4 3 t 43 3 t4 3 23 ,2 3t 2 3t 323t33当且仅当t2 3233 时,即 tan时等号成立,3此时,AN 2 3233,Smin3 ,答:当AN 2 3AMPN 的面积 S 最小,最小值为 233 时,四边形材料.313.【江苏苏州】 如图,在平面四边形ABCD 中, ABC3AD ,, AB4AB=1.uuur uuur3 ,求 △的面积;( 1)若 AB BCABCg( 2)若 BC 2 2 , AD 5 ,求 CD 的长度 .【解析】uuur uuur3 ,所以 uuur uuur,(1)因为 AB BCBAgBC 3guuur uuurABC3 ,即 BA BC cosABC 3 , AB 1 ,所以 1 uuur3 uuur3 2 ,又因为BC cos 3,则 BC44 1 uuur uuur ABC 3所以 S ABC AB BC sin .2 2(2)在 ABC 中,由余弦定理得:AC 2AB 2 BC 2 2 AB BC cos31 8 21 2 22 13 ,42解得: AC 13 ,在ABC 中,由正弦定理得:ACBC2 13sin ABC sin,即sin BAC,BAC13所以 cos CADcosBACsin BAC2 13 ,213在ACD 中,由余弦定理得:CD 2AD 2 AC 2 2AD AC cos CAD ,即 CD3 2 .14.【山东栖霞】 已知函数 f xA sin xA 0,0,的部分图象222如图所示, B , C 分别是图象的最低点和最高点,BC4 .4(1)求函数 f(x)的解析式; (2)将函数y f x 的图象向左平移个单位长度,再把所得图象上各点横坐标伸长到3原来的 2 倍(纵坐标不变)得到函数 yg x 的图象,求函数 yg 2 x 的单调递增区间 .13【解析】(1)由图象可得:3 T 5 ( ) ,所以 f (x) 的周期 T .4 12 3于是2,得2 ,C 524 A 22又 B, A , , A ∴ BC 4 ∴ A 1,12 1224又将 C (5,1) 代入 f (x)sin(2 x) 得, sin(2 5) 1,1212所以 25=2k,即=2k( k R ) ,1223由2 得, ,23∴ f (x)sin(2 x) .3(2)将函数 yf (x) 的图象沿 x 轴方向向左平移个单位长度,3得到的图象对应的解析式为:y sin(2 x) ,3再把所得图象上各点横坐标伸长到原来的 2 倍(纵坐标不变),得到的图象对应的解析式为 g( x)sin( x3 ) ,cos(2x2 )22(x13y g ( x) sin 3 )22由 2k22k, kZ 得, kx k , k Z ,2x336∴函数 yg 2 ( x) 的单调递增区间为 k,k (kZ ) .3615.【山东滕州】 已知函数 f ( x)Asin( x ) ( A 0, 0,) 的部分图象如 2图所示 .( 1)求函数 f (x) 的解析式;( 2)把函数 y f ( x) 图象上点的横坐标扩大到原来的 2 倍(纵坐标不变),再向左平移个单位,得到函数y g (x) 的图象,求611关于 x 的方程 g ( x) m(0 m 2) 在 x [,] 时3 3所有的实数根之和 .【解析】2(1)由图象知,函数 f ( x) 的周期T,故 2 .T点 (, A) 在函数图象上,6∴ Asin(26) A,∴ sin(3) 1,解得:3 2k2, k Z ,即2k6, k Z ,又2 ,从而.6点 (0,1) 在函数图象上,可得:Asin(2 0 ) 1 ,6∴ A 2 .故函数 f (x) 的解析式为: f ( x) 2sin(2 x ) .6 (2)依题意,得g (x) 2sin( x ) .3∵ g( x) 2sin( x ) 的周期T ,3∴ g( x) 2sin( x ) 在 x [11] 内有2个周期. ,3 3 3令x3 k , k Z ,2解得 x k , k Z ,6即函数 g (x) 2sin( x ) 的对称轴为 x k , k Z .3 6又 x [3 ,11 ] ,则 x3[0,4 ] ,3所以 g(x) m(0 m 2) 在 x [ , 11 ] 内有4个实根,3 3不妨从小到大依次设为x i (i 1,2,3, 4) .则x1x2 , x3 x4 13 ,2 6 2 6故 g( x) m(0 m 2) 在x [3 ,11 ] 时所有的实数根之和为:3x1 x2 x3 x4 14. 3。
高考数学一轮复习《三角函数》复习练习题(含答案)
高考数学一轮复习《三角函数》复习练习题(含答案)一、单选题1.已知(0,)θπ∈且满足cos 2cos θθ=,则tan θ=A .B .CD 2.在△ABC 中,7,5a c ==,则sin :sin A C 的值是( )A .75B .57C .712D .5123.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 24.函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭在下列区间内递减的是( ) A .,22ππ⎡⎤-⎢⎥⎣⎦B .[],0π-C .22,33ππ⎡⎤-⎢⎥⎣⎦D .232,ππ⎡⎤⎢⎥⎣⎦5.已知a =116116tan tan +︒-,b =⎝⎭,c a 、b 、c 的大小关系为( ) A .c a b >> B .c b a >>C .a c b >>D .b a c >> 6.函数f (x )=3sin(2x -6π)在区间[0,2π]上的值域为 A .[32-,32] B .[32-,3]C .[D .[,3] 7.将函数cos 2y x =的图象向左平移4π个单位长度,所得函数的解析式是( )A .cos 24y x π⎛⎫=+ ⎪⎝⎭B .cos 24y x π⎛⎫=- ⎪⎝⎭C .sin 2y x =-D .sin 2y x = 8.函数tan y x =周期为( )A .2πB .2πC .πD .3π9.在ABC 中,60A =︒,43a =,42b =,则B 等于( )A .45︒B .135︒C .45︒或135︒D .3010.函数()sin()f x A x b ωϕ=++的图象如下:则()f x 的解析式和(0)(1)(2)(2006)S f f f f =+++⋯+的值分别为A .1()sin 122f x x π=+,2006S = B .1()sin 122f x x π=+,120062S = C .1()sin 122f x x π=+,120072S = D .1()sin 122f x x π=+,2007S = 11.设函数f (x )=2sin(2πx +5x ).若对任意x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( )A .4B .2C .1D .12 12.如图所示,在ABC 中,D 是边AC 上的点,且AB AD =,23AB BD =,2BC BD =,若2BD =,则sin C 的值为( )A .33B .23C .223D .66二、填空题13.函数()()sin 0,0,y A x A ωϕωϕπ=+>><的图象如图所示,则该函数的解析式为y =______.14.在ABC ∆中,如果lg lg lgsin 2a c B -==-,且B 为锐角,则三角形的形状是__________.15.已知()2cos 3f x x π⎛⎫= ⎪⎝⎭,则(1)(2)(2022)f f f +++的值为________.16.sin 73cos13sin167cos 73︒︒-︒︒=________.17.已知△ABC 中,3cot 4A =-,则cos A =______. 18.252525sin cos tan 634πππ⎛⎫++-= ⎪⎝⎭______. 19.已知扇形的半径为3cm ,圆心角为60︒,则扇形的面积为 2cm .20.若sin 41cos 5γγ=+,则1cos 2sin γγ-=______.三、解答题21.求下列各式的值(1)2log 342233log 9log 2log 3log 432-++⋅; (2)()()()sin 1071sin99sin 171sin 261-︒︒+-︒-︒.22.已知一扇形的面积S 为定值,求当扇形的圆心角为多大时,它的周长最小?最小值是多少?23.在ABC 中,a 、b 、c 分别是内角A 、B 、C 的对边,()cos sin cos cos A A a C c A =+; (1)求角A 的大小;(2)若a =ABC 14b c +的最小值.24.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2a =,b =2B A =. (1)求sin A ;(2)求△ABC 的面积.25.(1)已知tan()22βα-=,tan()32αβ-=-,求)tan(βα+的值; (2)化简:21tan 9sin (12sin 99)︒︒-︒-.26.已知在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且有2cos (cos cos )C a B b A c +=. (1)求C ;(2)若3c =,求ABC ∆面积的最大值.27.已知函数()4cos sin()16f x x x π=+-. (1)求()f x 的最大值及此时的x 的集合;(2)求()f x 的单调增区间;(3)若1()2f α=,求sin(4)6πα-. 28.已知矩形纸片ABCD 中,AB=6,AD=12,将矩形纸片右下角折起,使该角的顶点B 落在矩形的边AD 上,且折痕的两端点M 、N 分别位于边AB ,BC 上,此时的点B 记为点P ,设MNB θ∠=,MN y =.(1)当15MNB ∠=时,判断N 的位置;(2)试将y 表示成θ的函数并求y 的最小值。
高考数学三角函数单选题专题复习题(含答案)
高考数学三角函数单选题专题复习题1.如图,阴影部分的月牙形边缘都是圆弧,两段圆弧分别是ABC △的外接圆和以AB 为直径的圆的一部分,若2π3ACB ∠=,1AC BC ==,则该月牙形的面积为()A.3π424+ B.3π424- C.1π424+ D.33π48-2.已知11sin 22M x x ⎧⎫=-≤≤⎨⎩⎭,πππ,,0,463N ⎧⎫=--⎨⎬⎩⎭,则M N = ()A.π,06⎧⎫-⎨⎬⎩⎭B.π,04⎧⎫-⎨⎬⎩⎭C.ππ,0,63⎧⎫-⎨⎬⎩⎭ D.ππ,,046⎧⎫--⎨⎬⎩⎭3.某海湾的海潮高低水位之差可达到15米,在该海湾某一固定点,大海水深d (单位:m )与午夜后的时间t (单位:h )之间的关系为()104co πs 3d t t =+,则下午5点时刻该固定点的水位变化的速度为()A.3B.6πC.6π-D.π-4.已知π,(0,2αβ∈,且cossin22tan cos sin 22ββαββ+=-,则2αβ-=()A.π8B.π4C.π2D.π5.函数cos y x =和sin y x =在下列哪个区间上都是单调递减的()A.π,π2⎡⎤⎢⎥⎣⎦B.π0,2⎡⎤⎢⎥⎣⎦C.π,02⎡⎤-⎢⎥⎣⎦D.ππ,2⎡⎤--⎢⎥⎣⎦6.若角α的终边在直线y x =上,则角α的取值集合为()A.{}36045,k k αα=⋅︒+︒∈Z ∣ B.{}360135,k k αα=⋅︒+︒∈Z ∣C.{}180135,k k αα=⋅︒-︒∈Z ∣ D.{}18045,k k αα=⋅︒-︒∈Z ∣7.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象与直线y =的相邻两个交点的距离分别为π4和3π4,若π13f ⎛⎫= ⎪⎝⎭,则()f x 解析式为()A.()π2sin 26f x x ⎛⎫=- ⎪⎝⎭ B.()π2sin 3f x x ⎛⎫=- ⎪⎝⎭C.()π2sin 6f x x ⎛⎫=+⎪⎝⎭D.()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭8.函数π32cos 23y x ⎛⎫=--- ⎪⎝⎭的单调递增区间是()A.()2πππ,π36k k k ⎡⎤--∈⎢⎥⎣⎦Z B.()πππ,π63k k k ⎡⎤-+∈⎢⎥⎣⎦Z C.()π4π2π,2π33k k k ⎡⎤++∈⎢⎥⎣⎦Z D.()ππ2π,2π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z 9.把函数()y f x =的图象上各点向右平移π6个单位,再把横坐标缩短到原来的12倍,再把纵坐标伸长到原来的32倍,所得图象的解析式是π3sin 23y x ⎛⎫=+ ⎪⎝⎭,则()f x 的解析式是()A.()2cos f x x =-B.()2sin f x x =C.()2cos f x x= D.()2sin f x x=-10.已知4πtan 3a =,2πsin 3b =,17πcos 4c ⎛⎫=- ⎪⎝⎭,则()A.a c b>> B.a b c >> C.b c a>> D.a c b>>11.下列是函数()πtan 214f x x ⎛⎫=++ ⎪⎝⎭的对称中心的是()A.π,08⎛⎫- ⎪⎝⎭B.π,02⎛⎫ ⎪⎝⎭C.()0,1 D.π,18⎛⎫ ⎪⎝⎭12.已知π3sin 35x ⎛⎫+= ⎪⎝⎭,则7πcos 6x ⎛⎫- ⎪⎝⎭等于()A.35-B.45C.35-D.45-13.若tan 2α=,则cos 21sin 2αα=+()A.34B.12C.13-D.35-14.若()sin 20α-︒=,则()sin 250α+︒=()A.18B.18-C.78-D.7815.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点.则a =()A.-1B.12C.1D.216.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是()A.4π B.2π C.34π D.π17.某著名的公式是i e cos x x isinx =+,则3i e 在复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限18.若函数()2sin f x x =存在1x ,2x ,⋅⋅⋅,n x 满足120πn x x x n ≤<<⋅⋅⋅<≤,n +∉N ,且()()()()()()122312024m m f x f x f x f x f x f x --+-+⋅⋅⋅+-=,()2,m m +≥∈N ,则满足条件的实数m 的最小值为()A.506B.507C.508D.50919.已知函数π()sin()(0,06,||2f x A x b A ωϕωϕ=++>≤≤<的部分图象如图所示,则()f x =()A.π2sin(316x ++ B.π3sin(3)6x + C.π2sin(16x ++ D.π2sin(5)13x ++20.已知函数π1()sin(262f x x =--的定义域为[,]()m n m n <,值域为3[,0]2-,则n m-的取值范围是()A.π[,π]3B.π2π[,33C.[π2,2π3D.π[,π]2参考答案题号12345678910答案A A A C A C D B C B 题号11121314151617181920答案DACDDABBAB。
高考数学三角函数与解三角真题训练100题含答案
高考数学三角函数与解三角真题训练100题含答案学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.数学家欧拉通过研究,建立了三角函数和指数函数之间的联系,得到著名的欧拉公式i e cos isin x x x =+(i 为虚数单位),此公式被誉为“数学中的天桥”.根据欧拉公式,3i e 表示的复数在复平面中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.函数22()cos 3sin 1f x x x =-+的最小正周期为( ) A .2πB .πC .π2D .π43.若360k αθ=⋅︒+,()360,m k m βθ=⋅︒-∈Z ,则角α与角β的终边一定( ) A .重合 B .关于原点对称 C .关于x 轴对称D .关于y 轴对称4.sin 480︒的值是( )A .12B .12-C D . 5.下列各角中与60︒角终边相同的角是( ) A .-300°B .-60°C .600°D .1 380°6.一架直升飞机在300m 高度处进行测绘,测得一塔顶与塔底的俯角分别是30和60︒,则塔高为( )A .200mB .C .D .100m7.已知ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,b =1a =,23B π=,则c =( )A B .2CD .38.为了得到函数2cos ,y x x R =∈的图像,只需把cos ,y x x R =∈图像上所有点( ) A .纵坐标不变,横坐标伸长为原来的2倍 B .纵坐标不变,横坐标缩短为原来的12倍 C .横坐标不变,纵坐标伸长为原来的2倍 D .横坐标不变,纵坐标缩短为原来的12倍9.把375-︒表示成2πk θ+,k Z ∈的形式,则θ的值可以是( )A .π12B .π12-C .5π12D .5π12-10.设sin160a ︒=,则cos340︒的值是( )A .21a - BC .D .11.已知,04πα⎛⎫∈- ⎪⎝⎭且24sin225α=-,则sin cos αα+=( )A .15B .15- C .75- D .7512.已知1tan 42πα⎛⎫+= ⎪⎝⎭,则2sin 2cos 1cos 2ααα-=+( ) A.56- B .75- C .2- D .13.已知函数2sin y x =的定义域为[,]a b ,值域为[2,1]-,则b a -的值不可能是 A .2πB .76πC .56π D .π14.已知曲线21:C y x =,曲线2:sin 2cos 2C y x x =+,则下列结论正确的是( )A .曲线1C 关于原点对称B .4x π=是曲线2C 的一条对称轴C .曲线1C 向右平移8π个单位长度,得到曲线2C D .曲线2C 向左平移4π个单位长度,得到曲线1C15.函数3sin 2x y x =的图象可能是( ).A .B .C .D .16.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若22()5c a b =-+,3C π=,则ABC 的面积是( )A .3B C D .17.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2c =,b ,则ABC 的面积最大值为( )AB .CD .18.已知sin()0,cos()0θπθπ+<->,则θ是第象限角. A .一 B .二 C .三D .四19. 若,且,42x ππ<<则cos sin x x -的值是A .B .C .D .20.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b =( ) A .513B .6365C .2113D .31021. E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan△ECF=A .B .C .D .22.已知θ为第四象限角,sin cos θθ+=sin cos θθ-=( )A .B .C D23.在数列{}n a 中,()*1153n n a a a n n N +==-+∈,,若该数列的前三项可作为三角形的三边长,则此三角形最小角与最大角之和为 A .150°B .135°C .120°D .90°24.将函数()π2sin +36x f x ⎛⎫= ⎪⎝⎭的图象向左平移π4个单位,再向下平移1个单位,得到函数 g ( x ) 的图象,则 g ( x ) 的解析式为 A .()π2sin +134x g x ⎛⎫=- ⎪⎝⎭ B .()π2sin 134x g x ⎛⎫=-- ⎪⎝⎭ C .()π2sin 1312x g x ⎛⎫=-+ ⎪⎝⎭D .()π2sin 1312x g x ⎛⎫=-- ⎪⎝⎭25.某船在岸边A 处向正东方向航行x 海里后到达B 处,然后向南偏西60︒方向航行3海里达到C 处,若A 与Cx 的值是( )A .3BC .D .26.一艘船航行到点B 处时,测得灯塔C 在其北偏东15°的方向,如图,随后该船以25海里/小时的速度,沿西北方向航行两小时后到达点A ,测得灯塔C 在其正东方向,此时船与灯塔C 间的距离为( )A .(253海里B .25海里C .(253海里D .(25海里27.北京大兴国际机场(如图所示)位于中国北京市大兴区和河北省廊坊市交界处,为4F 级国际机场、世界级航空枢纽、如图,天安门在北京大兴国际机场的正北方向46km处,北京首都国际机场在北京大兴国际机场北偏东16.28°方向上,在天安门北偏东47.43°的方向上,则北京大兴国际机场与北京首都国际机场的距离约为( ) (参考数据:sin16.280.28︒≈,sin47.430.74︒≈,sin31.150.52︒≈)A .65.46kmB .74.35kmC .85.09kmD .121.12km28.已知定义域为[1,1]-函数3()sin f x x x =+,则关于a 的不等式2(2)(4)0f a f a -+->的解集是( )A.(3,2)-B .2)C .D .29.某学习小组的学习实践活动是测量图示塔AB 的高度.他们选取与塔底在同一水平面内的两个测量基点C ,D ,测得3BCD π∠=,4BDC π∠=,且基点C ,D 间的距离为(30m CD =+,同时在点C 处测得塔顶A 的仰角为6π,则塔高AB 为( )A .20mB .C .40mD .30.若tan()74πα+=,则2cos 2sin 2αα+=( )A .6425B .4825C .1D .162531.已知sin α+cos αα△(0,π),则tan α=( )A .-1 BC D .132.要得到函数2sin 2y x =的图象,只需将函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象A .向左平移3π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向右平移6π个单位长度33.已知函数f (x )=A cos (ωx +φ)(A >0,ω>0,0<φ<π)的图象的一个最高点为(312π-,),与之相邻的一个对称中心为06π⎛⎫ ⎪⎝⎭,,将f (x )的图象向右平移6π个单位长度得到函数g (x )的图象,则( ) A .g (x )为偶函数B .g (x )的一个单调递增区间为51212ππ⎡⎤-⎢⎥⎣⎦,C .g (x )为奇函数D .函数g (x )在02π⎡⎤⎢⎥⎣⎦,上有两个零点34.在ABC 中,如果4sin 2cos 1,2sin 4cos A B B A +=+=C ∠的大小为( ) A .30B .150︒C .30或150︒D .60︒或120︒35.已知()2cos f x x =,[],x m n ∈,则“存在[]12,,x x m n ∈使得()()124f x f x -=”是“πn m -≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件36.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,点P 是ABC 的重心,且AP =若2b =,(()cos 24sin 1A B C ++=,则=a ( )A .B .C .D .37.把函数y= sin 3x π⎛⎫+ ⎪⎝⎭的图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移3π个单位,所得图象对应的函数为( )A .y=sin 23x π⎛⎫- ⎪⎝⎭B .y=sin2xC .y=sin 126x π⎛⎫- ⎪⎝⎭D .y=sin 12x38.将函数()sin f x x =图象上所有点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()g x 的图象.再把()g x 图象上所有点向左平移()0θθ>个单位长度,得到函数()h x 的图象,则下列叙述正确的是( )A .当6πθ=时,,012π⎛⎫⎪⎝⎭为函数()h x 图象的对称中心B .当6πθ=时,若0,4x π⎡⎤∈⎢⎥⎣⎦,则函数()h xC .当2πθ=时,函数()g x 与()h x 的图象关于x 轴对称D .当2πθ=时,函数()()g x h x -的最小值为039.如图所示,位于东海某岛的雷达观测站A ,发现其北偏东45︒方向,距离的B 处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A 东偏北(045)θθ︒<<︒方向的C 处,且4cos .5θ=已知A ,C 之间的距离为10海里,则该货船的速度大小为( )A ./小时B ./小时C ./小时D ./小时40.中,角的对边分别为,且满足,则A .B .C .D .41.已知1tan 2α=,且3,2παπ⎛⎫∈ ⎪⎝⎭,则cos 2πα⎛⎫-= ⎪⎝⎭A .BCD . 42.要得到函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移2π个单位长度 B .向右平移2π个单位长度 C .向左平移4π个单位长度D .向右平移4π个单位长度43.把函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭)图象向左平移4π个单位后所得图象与y 轴距最近的称轴方程为 A .x 3π=B .x -6π= C .x -24π= D .11x 24π=44.已知点P (sinα+cosα,tanα)在第四象限,则在[0,2π)内α的取值范围是( )A .(2π,34π)△(54π,32π)B .(0,4π)△(54π,32π)C .(2π,34π)△(74π,2π)D .(2π,34π)△(π,32π)45.已知点()00,P x y 是圆22:124390C x y x y ++++=上的一点,记点P 到x 轴距离为1d ,到原点O 的距离为2d ,则当212d d +取最小值时,x y =( ) A .167B .187C .227D .24746.函数()f x 的图象如图所示,则()f x 的解析式可能为( )A .3π()2cos(2)110f x x =+- B .3π()1cos(2)10f x x =-+C .π()1sin 25f x x ⎛⎫=+- ⎪⎝⎭D .π()1sin 25f x x ⎛⎫=-- ⎪⎝⎭47.把函数sin 2y x =的图象沿着x 轴向左平移6π个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数()y f x =的图象,对于函数()y f x =有以下四个判断:(1)该函数的解析式为2sin 26y x π⎛⎫=+ ⎪⎝⎭;(2)该函数图象关于点,03π⎛⎫⎪⎝⎭对称;(3)该函数在06,π⎡⎤⎢⎥⎣⎦上是增函数;(4)若函数()y f x a =+在0,2π⎡⎤⎢⎥⎣⎦a =其中正确的判断有( ) A .1个 B .2个C .3个D .4个二、填空题48.已知角α与180α︒-的顶点均在原点,始边均在x 轴的非负半轴上,终边相同,且450720α︒<<︒,则α=__________.(用角度表示)49.已知cos 4a π⎛⎫+ ⎪⎝⎭=13,0<α<2π,则sin 4a π⎛⎫+ ⎪⎝⎭=________.50.已知 tan 02παα⎫=<<⎪⎝⎭,则α=___________. 51.用“五点法”画2sin(2)3y x π=+在一个周期内的简图时,所描的五个点分别是(,0)6π-,(,2)12π,(,0)3π,7(,2)12π-,_______.52.如果角θ始边为x 轴的正半轴,终边经过点(,那么tan θ=______. 53.计算:10cos3π=________.54.在ABC 中,已知22,3BC AC B π==,那么ABC 的面积是______. 55.已知函数()2sin cos 4f x x x π⎛⎫=+ ⎪⎝⎭,给出以下四个命题:△函数()f x 的最小正周期为2π;△函数()f x 的图象的一个对称中心是82π⎛- ⎝⎭;△函数()f x 在,04π⎛⎫- ⎪⎝⎭上为减函数;△若()()12f x f x =,则()1211Z 4x x k k ππ+=+∈或()1222Z x x k k π-=∈.其中真命题的序号是__________.(请写出所有真命题的序号) 56.已知()()4sin cos cos sin 5αβαβαα---=,β是第三象限角,则sin 4πβ⎛⎫+ ⎪⎝⎭的值___________.57.已知sincos22θθ+=cos2θ=______. 58.如果1cos 5α=-,且α是第三象限的角,那么cos 2πα⎛⎫+= ⎪⎝⎭______.59.函数tan()34y x ππ=+的对称中心是__________.60.若18090α-︒<<-︒,且()1cos 753α︒+=,则()cos 15α︒-=__________.61.已知1sin cos 2αα+=-,则tan cot αα+=__________62.已知1tan 3α= ,则sin 2α= ________.63.已知角α的终边经过点(3,4)P ,则tan α=____________ 64.y cos 25sin x x =+的最小值为________________.65.若角α的终边经过点()P y ,且sin (0)y y α=≠,则cos α=______.66.设a >0,角α的终边经过点P (﹣3a ,4a ),那么sinα+2cosα的值等于______. 67.已知tan 2α,则3sin 2cos 5sin 4cos αααα-=+__________.68.函数sin 22y x x =的图象可由函数sin 22y x x =的图象至少向右平移_______个长度单位得到.69.已知函数()sin2f x x x =,给出下列四个结论:△函数()f x 的最小正周期是π;△函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是减函数;△函数()f x 的图像关于点,03π⎛⎫⎪⎝⎭对称;△函数()f x 的图像可由函数2sin2y x =的图像向左平移3π个单位得到;其中正确结论是_________________.70.设f(x)=kx -|sin x | (x >0,k >0),若f(x)恰有2个零点,记较大的零点为t ,则2(1)sin 2t tt+= ____71.计算:23456coscoscos cos cos cos 777777ππππππ+++++=__________.72.若2tan 3α=-,则sin(2)4πα+=____________.73.已知3ππ4αβ⎛⎫∈ ⎪⎝⎭,,,()4cos 5αβ+=,π5cos 413α⎛⎫-=- ⎪⎝⎭,所以πcos 4β⎛⎫+= ⎪⎝⎭_____74.已知集合{}22(,)(cos )(sin )4,0P x y x y θθθπ=-+-=≤≤∣.由集合P 中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论:△“水滴”图形与y 轴相交,最高点记为A ,则点A 的坐标为; △在集合P 中任取一点M ,则M 到原点的距离的最大值为4;△阴影部分与y 轴相交,最高点和最低点分别记为C ,D ,则||3CD =+△白色“水滴”图形的面积是116π 其中正确的有___________.75.设0a ≥____________.76.已知函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像过点(0,B ,且在ππ,183⎛⎫ ⎪⎝⎭上单调,同时()f x 的图像向左平移π个单位长度后与原来的图像重合,当124π2π,,33x x ⎛⎫∈-- ⎪⎝⎭,且12x x ≠时,()()12f x f x =,则()12f x x +=__________.77.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角4B π=且4sin 4sin sin 4sin a A c C ac B b B +=+,则ABC 的面积的最大值为_____________.三、解答题78.设函数()sin(2)2sin cos 3f x x x x π=++.(1)求函数()f x 的单调递增区间; (2)若[,]123x ππ∈-,求函数()f x 的最大值和最小值. 79.若角α的终边与60︒角的终边关于直线y x =对称,且360360α-︒<<︒,求角α的值. 80.已知函数()()21cos ,1sin2.2f x xg x x ==+(1)设0x x =是函数()y f x =的图象的一条对称轴,求()02g x 的值; (2)求函数()()(),0,4h x f x g x x π⎡⎤=+∈⎢⎥⎣⎦的值域.81.已知()()()()()3sin 3cos 2sin 2cos sin f παππαααπαπα⎛⎫---+ ⎪⎝⎭=----. (1)化简()f α; (2)若313πα=-,求()f α的值. 82.如图,一艘船以32.2nmile/h 的速度向正北航行,在A 处看灯塔S 在船的北偏东20°方向上,30min 后航行到B 处,在B 处看灯塔S 在船的北偏东60°方向上,求灯塔S 到B 处的距离(精确到0.1nmile ,参考数据:sin 200.342︒≈,sin 400.643︒≈).83.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若ABC且sin cos 0a C A =. (1)求a ;(2)若b c +=ABC 的面积.84.已知函数()()()sin 0,f x x ωϕωϕπ=+><图象经过点,112π⎛⎫- ⎪⎝⎭,7,112π⎛⎫⎪⎝⎭,且在区间7,1212ππ⎛⎫ ⎪⎝⎭上单调递增. (1)求函数()f x 的解析式;(2)当,6x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.85.若向量(3sin ,sin )a x x ωω=,(cos sin )b x x ωω=,,其中0>ω.记函数1()2f x a b =⋅-,若函数()f x 的图象上相邻两个对称轴之间的距离是2π. (1)求()f x 的表达式;(2)设ABC 三内角A 、B 、C 的对应边分别为a 、b 、c ,若3a b +=,c =()1f C =,求ABC 的面积.86.已知ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,)cos sin 0a c B b C --=. (1)求角C 的大小;(2)若2c =,AB 边上的中线CD ABC 的周长. 87.如图4,在平面四边形中,,(1)求的值;(2)求的长88.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若1cos 3A =,3c b =,且△ABC 的面积ABCS=(1)求边,b c ;(2)求边a 并判断△ABC 的形状.89.已知函数2()cos cos 1f x x x x =+. (1)求函数()f x 的单调递增区间;(2)若5()6f θ=,2(,)33ππθ∈,求sin 2θ的值. 90.如图,某圆形海域上有四个小岛,小岛A 与小岛B 相距为5nmile ,小岛A 与小岛C相距为,小岛B 与小岛C 相距为2nmile ,CAD ∠为钝角,且sin CAD ∠=(1)求小岛A ,B ,C 围成的三角形的面积; (2)求小岛A 与小岛D 之间的距离.91.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且222a c b ac +-=. (1)求B ;(2)若cos sin a C c A b +=,b =a .92.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若cos b A c= (1)证明:ABC ∆是直角三角形: (2)BM 平分角B 交AC 于点M ,且1BM=,6c =,求cos ABM ∠.93.为迎接冬奥会,石家庄准备进行城市绿化升级,在矩形街心广场ABCD 中,如图,其中400m AB =,300m BC =,现将在其内部挖掘一个三角形空地DPQ 进行盆景造型设计,其中点P 在BC 边上,点Q 在AB 边上,要求3PDQ π∠=.(1)若100m AQ CP ==,判断DPQ 是否符合要求,并说明理由; (2)设CDP θ∠=,写出DPQ 面积的S 关于θ的表达式,并求S 的最小值.94.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,sin A =B 2A =,b 4=. (1)求a 的值;(2)若D 为BC 中点,求AD 的长.95.已知函数()cos cos )f x x x x =+,x ∈R .(1)求函数()f x 的单调递增区间;(2)设0t >,关于x 的函数()2tx g x f ⎛⎫= ⎪⎝⎭在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值为12-,求实数t 的取值范围.96.函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><的部分图象如图所示.(1)求()f x 的解析式; (2)求()f x 的单调递增区间; (3)先将()f x 的图象向右平移3π个单位长度,再将图象上所有点的纵坐标扩大到原来的2倍得到函数()g x 的图象,求()g x 在区间[]2ππ,上的值域.97.已知函数()2cos 2cos 1f x x x x =+-. (1)求6f π⎛⎫⎪⎝⎭的值及()f x 的最小正周期;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的最大值和最小值.参考答案:1.B 【解析】 【分析】由题可知3i e 对应在复平面的点为()cos3,sin3,由32ππ<<可判断cos3和sin3的正负,进而得到答案. 【详解】由题,3i e cos3isin3=+,其对应点为()cos3,sin3, 因为32ππ<<知,cos30<,sin30>,所以点()cos3,sin3在第二象限, 故选:B 2.B 【解析】 【分析】先利用余弦的二倍角公式化简()f x ,再利用余弦函数的周期公式即可求解. 【详解】因为()()22222()cos 3sin 1cos sin 12sin f x x x x x x =-+=-+-cos2cos22cos2x x x =+=,所以最小正周期2ππ2T ==, 故选:B. 3.C 【解析】 【分析】根据角θ与角θ-的终边关于x 轴对称即可得解. 【详解】解:因为角θ与角θ-的终边关于x 轴对称,所以角α与角β的终边一定也关于x 轴对称. 故选:C 4.C【解析】结合诱导公式化简即可 【详解】()sin 480sin 360120sin120︒=︒+︒=︒=故选:C 【点睛】本题考查三角函数值的化简,属于基础题 5.A 【解析】 【详解】与60︒角终边相同的角为:60360k,k Z ︒+︒∈. 当k 1=-时,即为-300°. 故选A. 6.A 【解析】 【分析】由题设,画平面示意图,利用三角形内边角关系,列方程求塔高即可. 【详解】如图,O 、A 分别为塔底、塔顶,C 为飞机位置,△300,30,60OB BCA BCO =∠=︒∠=︒, 若设OA x =,则300AB x =-,有tan tan AB OBBCA BCO =∠∠,=200x =.故选:A. 7.B 【解析】 【分析】由余弦定理列方程即可求解. 【详解】由余弦定理得222cos 2a c b B ac +-=,即211722c c+--=,整理得260c c +-=,解得2c =.故选:B. 8.C 【解析】 【分析】根据坐标变换求解即可得答案. 【详解】为了得到函数2cos ,y x x R =∈的图像,只需把cos ,y x x R =∈图像上所有点的横坐标不变,纵坐标伸长为原来的2倍. 故选:C 9.B 【解析】 【分析】由37515360-=-︒-︒︒结合弧度制求解即可. 【详解】△37515360-=-︒-︒︒,△π3752πrad 12⎛⎫-︒=-- ⎪⎝⎭故选:B 10.B 【解析】根据题中条件,先由诱导公式,得到sin 20a ︒=,再根据诱导公式化简所求式子即可. 【详解】因为sin160a ︒=,所以()sin 18020sin 20a ︒-︒=︒=,而()()cos340cos 36020cos 20cos 20︒=︒-︒=-︒=︒= 故选:B. 11.A 【解析】 【分析】由题意得242sin cos 25αα∴=-,由,04πα⎛⎫∈- ⎪⎝⎭,可得sin cos αα+=,代入即可求值得解. 【详解】 24sin 225α=-, 242sin cos 25αα∴=-, ,04πα⎛⎫∈- ⎪⎝⎭,cos sin 0αα∴+>,1sin cos 5αα∴+=. 故选:A 【点睛】本题考查同角三角函数关系式,常用公式2(sin cos )12sin cos 1sin 2x x x x x +=+=+,属于基础题. 12.A 【解析】 【分析】利用两角差的正切公式求出tan tan 44ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,再利用二倍角公式以及同角三角函数的基本关系即可求解. 【详解】△1tan 42πα⎛⎫+= ⎪⎝⎭,△1tan tan 11442tan tan 1443111tan tan 244ππαππααππα⎛⎫+-- ⎪⎡⎤⎛⎫⎝⎭=+-===- ⎪⎢⎥⎛⎫⎝⎭⎣⎦+⨯++ ⎪⎝⎭, 则222sin 2cos 2sin cos cos 2tan 11cos 22cos 2αααααααα---==+ 1115tan 2326α=-=--=-.故选:A 【点睛】本题以三角正切函数值为依托,考查了正切的两角差公式和倍角公式的运用,此题以考生最熟悉的知识呈现,面向考生,试题注重基础,针对性强,同时考查了考生的运算求解能力及逻辑推理能力,属于基础题. 13.A 【解析】 【详解】试题分析:因为函数的最大值取不到2,所以b a T -<,即02b a π<-<.故A 正确. 考点:三角函数的图像,值域. 14.C 【解析】 【分析】利用辅助角公式将函数化简,再根据余弦函数、正弦函数的性质判断即可; 【详解】解:曲线21:C y x x ==关于y 轴对称,故A 错误;曲线2:sin 2cos 224C y x x x π⎛⎫=+=+ ⎪⎝⎭,令242x k πππ+=+,解得82k x ππ=+,Z k ∈,即曲线2C 的对称轴方程为82k x ππ=+,Z k ∈,则4x π=不是曲线2C 的一条对称轴,故B 错误;曲线1:222C y x x π⎛⎫==+ ⎪⎝⎭向右平移8π个单位长度得到24i 28n 2y x x πππ⎡⎤⎛⎫⎛⎫=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即得到曲线2C ,故C 正确.将曲线2C 向左平移4π个单位长度得到42242i 4n 24y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦++,故D 错误;故选:C 15.D 【解析】 【分析】首先判断函数的奇偶性,排除选项,再根据特殊区间,2x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <判断选项.【详解】3xy =是偶函数,sin 2y x =是奇函数,()3sin 2xf x x =是奇函数,函数图象关于原点对称,故排除A,B02f ⎛⎫= ⎪⎝⎭π ,当(,)2x ππ∈时,30x y =>,sin 20y x =<3sin 20xy x ∴=<,排除C.故选D . 【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项. 16.C 【解析】 【分析】先根据题意以及余弦定理求出ab ,再根据三角形面积公式即可求解. 【详解】解:2222()525c a b a ab b =-+=-++, 即22225a b c ab +-=-,由余弦定理得:222251cos 3222a b c ab ab ab π+--===, 解得:5ab =,则ABC的面积为:11sin 522ab C =⨯=故选:C. 17.B 【解析】 【分析】根据题意,先由余弦定理,得到28cos 8b A b +=,求出sin A积公式,得到1sin 2ABCSbc A ==,根据三角形的性质,确定b 的范围,进而可求出三角形面积的最值. 【详解】因为b =,2c =,所以222221482cos 248b c b a b A bc b b++-+===,所以sin A =因此1sin 2ABCSbc A == 由三角形性质可得:a b c b a c +>⎧⎨-<⎩,即22b b +>⎨⎪<⎪⎩,解得:44b -<+又44-<+因此当224b =,即b =ABC的面积最大,为ABCS ==. 故选:B. 【点睛】本题主要考查求三角形面积的最值问题,熟记余弦定理,以及三角形面积公式即可,属于常考题型. 18.B 【解析】 【详解】试题分析:由sin()sin 0sin 0θπθθ+=-⇒,cos()cos 0cos 0θπθθ-=->⇒<,由sin 0{cos 0θθ><可知θ是第二象限角,选B.考点:诱导公式及三角函数在各个象限的符号. 19.C 【解析】 【详解】 试题分析:42x ππ<<,cos sin x x ∴<,cos sin 0x x ∴-<,()22213cos sin cos sin 2sin cos 1284x x x x x x -=+-⋅=-⨯=,cos sin x x ∴-=C 正确. 考点:1同角三角函数基本关系式;2正弦函数余弦函数比较大小问题. 20.C 【解析】 【分析】根据同角的三角函数关系式中的平方和关系,结合两角和的正弦公式、正弦定理进行求解即可. 【详解】因为A ,C 是ABC ∆的内角,所以,(0,)A C π∈. 因为4cos 5A =,5cos 13C=,所以3sin 5A ==,12sin 13C ===,因此有:3541263sin sin()sin()sin cos cos sin 51351365B AC A C A C A C π=--=+=+=⨯+⨯=,由正弦定理可知:121363sin sin 13565a b b b A B =⇒=⇒=. 故选:C 【点睛】本题考查了正弦定理的应用,考查了同角的三角函数关系式、两角和的正弦公式的应用,考查了数学运算能力.21.D 【解析】 【详解】 略 22.B 【解析】 【分析】将sin cos θθ+=2sin cos θθ,再求出()2sin cos θθ-,即可得到sin cos θθ-,最后根据θ的范围,即可得解;【详解】解:因为sin cos θθ+=()2sin co 1s 5θθ+=,所以221sin 2sin cos cos 5θθθθ++=,所以42sin cos 5θθ=-,所以()2229sin cos sin 2sin cos cos 5θθθθθθ-=-+=,所以sin cos θθ-=θ为第四象限角,所以sin 0θ<,cos 0θ>,所以sin cos θθ-= 故选:B 23.C 【解析】根据数列的递推关系求出前三项即为三角形边长,根据余弦定理求出从小到大第二大的角,即可求得最大角与最小角之和. 【详解】由题:数列{}n a 中,()*1153n n a a a n n N +==-+∈,,所以12357,8a a a ===,,作为三角形三边长, 由余弦定理:边长为7的边所对角的余弦值为25644912582+-=⨯⨯,角的大小为60°,所以最大角与最小角之和为120°. 故选:C 【点睛】此题考查根据递推关系求数列中的项,根据余弦定理求三角形的角的大小,涉及三角形三内角和的关系进行转化. 24.A 【解析】 【分析】根据函数图象的平移变换,即可求解. 【详解】将函数()π2sin()36x f x +=的图象向左平移 π4个单位,得到函数()πππ2sin +2sin 312634x x f x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭=,再向下平移1个单位,得到函数()π2sin +134x g x ⎛⎫=- ⎪⎝⎭的图象,则解析式为()π2sin +134x g x ⎛⎫=- ⎪⎝⎭.故选:A . 25.D 【解析】 【分析】根据题意画出图形,在ABC 中利用余弦定理建立方程求解即得. 【详解】如图,ABC 中,依题意,30ABC ∠=,,3AC AB x BC ===,由余弦定理2222cos AC AB BC AB BC ABC =+-⋅∠得,222323cos30x x =+-⋅,即260x -+=,解得x =x =所以x 的值是 故选:D 26.D 【解析】 【分析】根据三角形ABC 的边和角,利用正弦定理,即可求解. 【详解】由题意可知,60ABC ∠=︒,45A ∠=︒,75C ∠=︒,50AB =海里,由正弦定理可得sin sin AB ACC ABC=∠,所以(25AC =海里. 故选:D 27.A 【解析】 【分析】由题意可得46km AC =,16.28ACB ∠=︒,132.57BAC ∠=︒,然后在ABC 中利用正弦定理求解即可 【详解】如图所示,由题意可得46km AC =,16.28ACB ∠=︒,132.57BAC ∠=︒, 由正弦定理可得sin sin BC ACA B =,即46sin132.57sin31.15BC =︒︒, 解得4646sin132.570.7465.46sin31.150..52BC =⋅︒≈⨯≈︒.故选:A28.C 【解析】 【分析】根据已知中的函数解析式,先分析函数的奇偶性和单调性,进而根据函数的性质和定义域,将不等式2(2)(4)0f a f a -+->化为2(2)(4)f a f a ->-,解不等式组即可求解. 【详解】解:因为函数3y x =和函数sin y x =均为奇函数,且在[1,1]-上均为增函数, 所以函数3()sin f x x x =+是奇函数,且在[1,1]-为增函数, 由2(2)(4)0f a f a -+->, 得2(2)(4)f a f a ->-, 所以2224121141a a a a ⎧->-⎪-≤-≤⎨⎪-≤-≤⎩,解得2a <≤2a ∈(. 故选:C. 29.A 【解析】 【分析】设,AB x =则BC =,利用正弦定理即得解. 【详解】解:设,AB x =则BC . 由题得53412CBD ππππ∠=--=.51sinsin()12642πππ=+==在△BCD20x ∴=. 所以塔高20m. 故选:A 30.A 【解析】 【分析】先计算出tan α的值,然后构造齐次式,将分子分母同除以2cos α即可计算出结果. 【详解】因为tan()74πα+=,所以tan 171tan A A +=-,所以3tan 4α=,又222222314cos 4sin cos 14tan 644cos 2sin 2sin cos tan 125314ααααααααα+⨯+++====++⎛⎫+ ⎪⎝⎭,所以264cos 2sin 225αα+=. 故选:A. 【点睛】本题考查两角和的正切公式与同角三角函数的基本关系的综合应用,难度一般.已知tan α,求解22sin cos m n αα+的值,可变形为求解222222sin cos tan sin cos tan 1m n m nαααααα++=++的结果;求解sin cos sin cos n n n n a b c d αααα++的值,可变形为求解tan tan n n a b c dαα++的结果.31.D 【解析】 【详解】 由sin α+cos α=得(sin α+cos α)2=1+2sin αcos α=2,即2sin αcos α=1,又因为α△(0,π),则当cos α=0时,sin α=1,不符合题意,所以cos α≠0,所以==1,解得tan α=1,故选D. 32.D 【解析】 【详解】分析:利用诱导公式,()y Asin x ωϕ=+的图象变换规律,得到答案详解:222sin 236y sin x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦要得到函数22y sin x =的图象,只需要将函数223y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度即可故选D点睛:本题考查了三角函数图像的性质,根据图像的平移来确定结果,掌握由sin y x =图像到()y Asin x ωϕ=+图像的变换过程. 33.B【分析】先根据函数的部分图象和性质求出f (x )解析式,再根据图象的变换规律求得g (x ),最后根据余弦函数性质得出结论. 【详解】因为函数f (x )=A cos (ωx +φ)的图象的一个最高点为(312π-,),与之相邻的一个对称中心为06π⎛⎫⎪⎝⎭,, 所以A =3,46T π=-(12π-)4π=;所以T =π所以ω=2;所以f (x )=3cos (2x +φ); 又因为f (12π-)=3cos[(2×(12π-)+φ]=3,所以6π-+φ=K π;△0<φ<π; △φ6π=,△f (x )=3cos (2x 6π+); 因为将f (x )的图象向右平移6π个单位长度得到函数g (x )的图象, 所以g (x )=3cos[2(x 6π-)6π+]=3cos (2x 6π-);是非奇非偶函数;令﹣π+2k π≤2x 6π-≤2k π,所以512π-+k π≤x ≤k π12+π,k △z ; 当k =0时,g (x )的一个单调递增区间为:51212ππ⎡⎤-⎢⎥⎣⎦,;令2x 6π-=k π2π+, 解得x 23k ππ=+,k △z , △函数g (x )在[0,2π]上只有一个零点. 故选:B .本题主要考查由三角函数部分图象求解析式,图象变换以及三角函数的性质,还考查了数形结合的思想和运算求解的能力,属于中档题. 34.A 【解析】 【分析】对4sin 2cos 1,2sin 4cos A B B A +=+=再相加得出30C ︒=或150︒,再由三角函数的性质验证150C ︒=,即可得出答案. 【详解】4sin 2cos 1,2sin 4cos A B B A +=+=2216sin 16sin cos 4cos 1A A B B ∴++=△224sin 16sin cos 16cos 27B B A A ∴++=△△+△得2016sin()28A B ++=即1sin()sin()sin 2A B C C π+=-==()0,180C ︒︒∈ 30C ︒∴=或150︒当150C ︒=时,则030,030A B ︒︒︒︒<<<<12sin 212B ∴<⨯=,4cos 4A <2sin 4cos 5B A ∴+<5∴<150C ︒∴=不满足题意故选:A 【点睛】本题主要考查了两角和的正弦公式,平方关系,三角函数的性质,属于中档题. 35.A 【解析】 【分析】由三角函数的性质可知()2cos f x x =在R 上的最大值为2,最小值2-,且相邻的最大值与最小值之间的水平距离为π,结合充分、必要条件的定义即可判定. 【详解】由于()2cos f x x =在R 上的最大值为2,最小值2-,且相邻的最大值与最小值之间的水平距离为半个周期,即π,所以若存在[]12,,x x m n ∈使得()()124f x f x -=,则必有πn m -≥,但反之不成立,比如2π2,33m n π=-=时,4=>π3n m π-,但()f x 在[],m n 上的最大值为2,最小值为1-,[]12,,x x m n ∈时()()12f x f x -的最大值为3,不可能等于4,△“存在[]12,,x x m n ∈使得()()124f x f x -=”是“πn m -≥”的充分不必要条件, 故选:A. 【点睛】本题考查充分不必要条件的判定,涉及三角函数的性质,属基础题,关键是认真审题,理解存在性命题的意义,掌握三角函数的性质和充分、必要条件的意义. 36.C 【解析】 【分析】利用三角恒等变换的应用化简已知恒等式可得(22sin 4sin 0A A -+=,解方程即可求出sin A ,进而求出角A ,由三角形的重心的性质可得()13AP AB AC =+,两边同时平方结合平面向量的数量积的运算即可得到24cos 240c c A +⋅-=,分类讨论求出边c ,进而求出结果. 【详解】因为(()cos 24sin 1A B C ++=,所以(212sin 4sin 1A A -+=,因此(22sin 4sin 0A A -+=,解得sin A =或sin 2A =, 又因为()0,A π∈,则(]sin 0,1A ∈,所以sin A =,因此3A π=或23A π=,又因为点P 是ABC 的重心,所以()13AP AB AC =+,因此()22212cos 9AP AB AC AB AC A =++⋅⋅, 即()22212cos 9AP AB AC AB AC A =++⋅⋅,又因为AP =2b =,所以()228144cos 99c c A =++⋅,即24cos 240c c A +⋅-=,当3A π=时,22240c c +-=,因为0c >,所以4c =,此时214162242a =+-⨯⨯⨯,所以a =当23A π=时,22240c c --=,因为0c >,所以6c =,此时214362262a ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭,所以a =综上:a =a = 故选:C. 37.A 【解析】 【分析】直接利用三角函数图象的“伸缩变换”与“平移变换”法则求解即可. 【详解】把函数3y sin x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标缩短到原来的12(纵坐标不变),得到23y sin x π⎛⎫=+ ⎪⎝⎭的图象,再将23y sin x π⎛⎫=+ ⎪⎝⎭的图象向右平移3π个单位,所得图象对应的函数为22333y sin x sin x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选A.【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.38.C 【解析】 【分析】利用图象的变换规律,可求出函数()g x 与()h x 的的解析式, 再由三角函数的性质逐项判断即可. 【详解】将函数()sin f x x =图象上所有点的横坐标缩短为原来的12倍, 纵坐标不变,得到函数()sin 2g x x =的图象,再把()g x 图象上所有点向左平移()0θθ>个单位长度,得到函数 ()sin()h x x θ=+的图象 ,当6πθ=时,()sin(2),3h x x π=+ 当12x π=时,()sin(2)112123h πππ=⨯+=,则12x π=为函数()h x 图象的对称轴,故 A 错误;当6πθ=时,()sin(2)3h x x π=+,若0,,4x π⎡⎤∈⎢⎥⎣⎦52,,336x πππ⎡⎤+∈⎢⎥⎣⎦则1sin(2),132x π⎡⎤+∈⎢⎥⎣⎦故()h x 的最大值为 1,故B 错误; 当2πθ=时,函数()sin 2g x x =与()sin 2h x x =-的图象关于x 轴对称,故C 正确; 当2πθ=时,()()2sin 2g x h x x -=最小值为 -2 , 故D 错误. 故选:C. 39.A 【解析】 【分析】根据所给条件求出cos BAC ∠,再借助余弦定理即可作答. 【详解】因4cos 5θ=,则3sin 5θ=,由题意得45BAC θ∠=︒-, 即()43cos cos 4555BAC θ⎛⎫∠=︒-=+= ⎪⎝⎭, 在ABC中,AB =10AC =,由余弦定理2222BC AB AC AB ACcos BAC =+-⋅∠得:即22210210340BC =+-⋅=,解得BC = 设船速为x,则12x =x =所以货船的速度大小为/小时. 故选:A 40.C 【解析】 【详解】 设,则,则,故选C.考点:正弦定理与余弦定理. 41.A 【解析】 【详解】2222221sin tan 14sin 1sin cos tan 1514αααααα====+++,由于角为第三象限角,故sin α=πcos sin 2αα⎛⎫-== ⎪⎝⎭. 42.C 【解析】 【分析】先将函数()f x 的化为正弦型函数,在将函数()f x 的解析式表示为()()sin 23f x x πϕ⎡⎤=++⎢⎥⎣⎦,并结合ϕ的符号与绝对值确定平移的方向与长度.【详解】由诱导公式可得()cos 2sin 2sin 232343f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因此,只需在将函数()sin 23g x x π⎛⎫=+ ⎪⎝⎭的图象向左平移4π个单位长度,即可得到函数()cos 23f x x π⎛⎫=+ ⎪⎝⎭的图象,故选C .【点睛】在考查两个三角函数平移的过程中,需注意以下两个问题; △两个函数的名称一定要一致;△左右平移法则中的“左加右减”指的是在自变量x 上变化了多少. 43.B 【解析】 【分析】先求出把函数()f x 的图象向左平移4π个单位后所得图象对应的解析式,然后求出该图象对应函数的对称轴,最后结合四个选项进行判断即可. 【详解】把函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭)图象向左平移4π个单位后所得图象对应的解析式为sin 2?cos 2433y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由2,k Z 3x k ππ+=∈,得对称轴方程为,k Z 62k x ππ=-+∈.当0k =时,可得对称轴为6x π=-,此时对称轴离y 轴距最近. 故选B . 【点睛】本题考查三角函数图象的平移变换以及函数图象对称轴的求法,对于图象的平移变换,解题时要注意平移只是对自变量x 而言的,同时要注意平移的单位的大小;在求图象的对称轴方程时,将4x π+看作一个整体进行求解,属于基础题.44.C【解析】 【分析】由点P 的横坐标大于0且纵坐标小于0解三角不等式求解α的范围. 【详解】△点P (sinα+cosα,tanα)在第四象限,△00sin cos tan ><ααα+⎧⎨⎩, 由sinα+cosα=(α4π+), 得2kπ<α4<π+2kπ+π,k△Z ,即2kπ4π-<α<2kπ34π+π,k△Z . 由tanα<0,得kπ2π+<α<kπ+π,k△Z . △α△(2π,34π)△(74π,2π).故选C . 【点睛】本题考查了三角函数的符号,考查了三角不等式的解法,是基础题. 45.D 【解析】 【分析】利用圆的参数方程,表示出212d d +并求最值,利用三角函数求出0x y . 【详解】22:124390C x y x y ++++=化为标准方程:22(6)(2)1x y +++=,点()00,P x y 是圆上一点,不妨设006sin 2cos x ty t =-+⎧⎨=-+⎩(t 为参数),则22212(6sin )(2cos )(2cos )d d t t t +=-++-+--+(12sin 5cos )43t t =-++)43t ϕ=++ 13sin()43t ϕ=-++其中5tan 12ϕ= 当2t πϕ+=时,212sin()1,t d d ϕ+=+可取得最小值30此时001266sin 6cos 221352cos 2sin 7213x t y t ϕϕ-+-+-+====-+-+-+ 故选:D 【点睛】关键点点睛:根据圆的方程,可设点()00,P x y 满足006sin 2cos x t y t=-+⎧⎨=-+⎩,代入212d d +化简求最值,是解决本题的关键,属于中档题. 46.D 【解析】 【分析】由函数图象知,,A T B ,利用周期公式即可解得ω,又πf ⎛⎫= ⎪⎝⎭7020,解得ϕ,即可得出函数()f x 的解析式. 【详解】设函数()()sin f x A x B ωϕ=++,则 由图可知,A B =-=11,πππT =-=7420104,解得πT =, 所以2π=πT ω=,解得2=ω,将点π,⎛⎫⎪⎝⎭7020代入函数()()sin 21f x x ϕ=-++中,即7π7π()sin 2102020f ϕ⎛⎫=-⨯++= ⎪⎝⎭,解得ππ,k k Z ϕ=-∈25当0k =时,π5ϕ=-. ()f x 的解析式为:π()1sin 25f x x ⎛⎫=-- ⎪⎝⎭.故选:D.47.B 【解析】 【分析】利用正弦型函数的图象变换规律求得函数()y f x =的解析式,然后利用正弦函数的基本性质可得出结论. 【详解】把函数sin 2y x =的图象沿着x 轴向左平移6π个单位,可得sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,再把纵坐标伸长到原来的2倍(横坐标不变)后得到函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象,对于函数()2sin 23x y f x π=⎛⎫=+ ⎪⎝⎭,故(1)错误;由于当3x π=时,()0f x =,故该函数图象关于点,03π⎛⎫⎪⎝⎭对称,故(2)正确;在06,π⎡⎤⎢⎥⎣⎦上,22,333x πππ⎡⎤+∈⎢⎥⎣⎦,故函数()y f x =该函数在0,2π⎡⎤⎢⎥⎣⎦上不是增函数,故(3)错误;在0,2π⎡⎤⎢⎥⎣⎦上,42,333x πππ⎡⎤+∈⎢⎥⎣⎦,故当4233x ππ+=时,函数()y f x a =+在06,π⎡⎤⎢⎥⎣⎦上取得最小值为a =a ∴=4)正确,故选:B. 【点睛】本题主要考查正弦型三角函数图象变换,同时也考查了正弦型函数基本性质的判断,考查推理能力,属于中等题. 48.630° 【解析】 【分析】根据题目条件得到(180)360,k Z k αα=-+⋅︒︒∈,求出()2190,k k Z α=+⋅︒∈,列出不等式组,求出3,630k α==︒. 【详解】由题意得,(180)360,k Z k αα=-+⋅︒︒∈, 即()2190,k k Z α=+⋅︒∈,。
2024年高考数学真题分类汇编(三角函数篇,解析版)
专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
2023-2024学年高考数学三角函数专项练习题(附答案)
2023-2024学年高考数学三角函数小专题一、单选题1.函数的最小正周期为( )()2sin 222sin 4f x x xπ⎛⎫=-- ⎪⎝⎭A .B .C .D .π2ππ42π2.若,则等于( )sin tan 0x x ⋅<1cos2x +A .B .C .D .2cos x 2cos x -2sin x 2sin x-3.已知,均为锐角,则( )251cos ,tan()53ααβ=-=-,αββ=A .B .C .D .5π12π3π4π64.将函数的图象平移后所得的图象对应的函数为,则进行的平移πsin 23y x ⎛⎫=+ ⎪⎝⎭cos 2y x =是( )A .向左平移个单位B .向右平移个单位C .向右平移个单位π12π6π12D .向左平移个单位π65.若,则( )1cos 63πα⎛⎫-=⎪⎝⎭sin 26πα⎛⎫+= ⎪⎝⎭A .B .C .D .42979429-79-6.设函数,其图象的一条对称轴在区间内,且的()3sin cos (0)f x x x ωωω=+>ππ,63⎡⎤⎢⎥⎣⎦()f x 最小正周期大于,则的取值范围为( )πωA .B .C .D .1,12⎛⎫⎪⎝⎭()0,2[)1,2()1,27.已知,且,求( )π4sin 45α⎛⎫+= ⎪⎝⎭π3π44<<αcos α=A .B .C .D .2106222610A .函数的图像可由()f xB .函数在区间()f xC .函数的图像关于直线()f xC .D .o o2sin15sin 75o oo otan 30tan151tan 30tan15+-11.已知函数的图像关于直线对称,函数关于点对称,则下列说(21)f x +1x =(1)f x +(1,0)法不正确的是( )A .B .4为的周期(1)(1)f x f x -=+()f x C .D .(1)0f =()32f x f x ⎛⎫=- ⎪⎝⎭12.已知函数的图象关于直线对称,则( )ππ()sin(3)()22f x x ϕϕ=+-<<π4x =A .函数为奇函数π()12f x +B .函数在上单调递增()f x ππ[,]126C .若,则的最小值为12|()()|2f x f x -=12||x x -2π3D .将函数图象上所有点的横坐标缩小为原来的,得到函数的图象()f x 13sin()y x ϕ=+三、填空题13.计算:=.tan 73tan1933tan 73tan13︒︒︒︒--14.已知,,则 .1sin cos 5αα+=-()0,πα∈tan α=15.已知函数的最小正周期为,则.π()2sin()(0)3f x x ωω=+>4πω=16.已知函数,则函数的对称轴的方程为22()2cos 43sin cos 2sin f x x x x x =+-()f x .答案:1.B【分析】把函数化成的形式,利用公式求函数的最小正周期.()sin y A x ωϕ=+2πT ω=【详解】因为()2sin 222sin 4f x x x π⎛⎫=-- ⎪⎝⎭()22sin 2cos 221cos 222x x x =---.22sin 2cos 2222x x =+-πsin 224x ⎛⎫=+- ⎪⎝⎭所以,函数的最小正周期为.2ππ2T ==故选:B 2.B【分析】先由已知条件判断的符号,然后对配凑升幂公式即可.cos x 1cos2x +【详解】由题知:2sin sin tan 00cos 0cos xx x x x ⋅<⇒<⇒<.21cos21cos222cos 2cos 2cos 2xx x x x++=⨯===-故选:B.3.C【分析】由两角差的正切公式求解即可.【详解】因为,,,π02α<<25cos 5α=25sin 1cos 5αα=-=,sin 1tan cos 2ααα==,()()()11tan tan 23tan tan 1111tan tan 123ααββααβααβ⎛⎫-- ⎪--⎝⎭⎡⎤=--===⎣⎦+-⎛⎫+⋅- ⎪⎝⎭所以.π4β=故选:C.4.A【分析】分析各选项平移后的函数解析式,由此作出判断即可.【详解】对于A :向左平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π12,符合;πππsin 2sin 2cos 21232y x x x⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于B :向右平移个单位可得到,不πsin 23y x ⎛⎫=+ ⎪⎝⎭π6ππsin 2sin 2cos 263y x x x ⎡⎤⎛⎫=-+=≠ ⎪⎢⎥⎝⎭⎣⎦符合;对于C :向右平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π12,不符合;πππsin 2sin 2cos 21236y x x x⎡⎤⎛⎫⎛⎫=-+=+≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于D :向左平移个单位可得到πsin 23y x ⎛⎫=+ ⎪⎝⎭π6,不符合;ππ2πsin 2sin 2cos 2633y x x x⎡⎤⎛⎫⎛⎫=++=+≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故选:A.5.D【分析】利用二倍角公式和诱导公式解题.【详解】因为2217cos(2)=cos22cos 121cos(2)366393ππππαααα⎛⎫⎛⎫⎛⎫--=--=⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以.7sin 2sin 2cos 262339ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=--=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选:D 6.C【分析】根据题意,得到,取得对称轴的方程,由的()π2sin()6f x x ω=+ππ,Z 3k x k ωω=+∈k 取值,结合题意,即可求解.【详解】由函数,()π3sin cos 2sin()6f x x x x ωωω=+=+令,可得,πππ,Z 62x k k ω+=+∈ππ,Z3k x k ωω=+∈因为图象的一条对称轴在区间内,可得,可得,ππ,63⎡⎤⎢⎥⎣⎦ππππ633k ωω≤+≤131231k k ωω⎧≤+⎪⎨⎪≥+⎩又因为的最小正周期大于,可得,解得,()f x π2ππω>2ω<当且仅当时,解得.0k =ω1≤<2综上可得,实数的取值范围为.ω[1,2)故选:C.7.A【分析】利用平方关系和两角差的余弦公式计算.【详解】因为,所以,,π3π44<<απππ24α<+<2ππ3cos()1sin ()445αα+=--+=-,ππππππ3422cos cos ()cos()cos sin()sin ()44444455210αααα⎡⎤=+-=+++=-+⨯=⎢⎥⎣⎦故选:A.8.B【分析】根据给定的函数图象,结合“五点法”作图求出函数解析式,再根据正弦函数的单调性、对称性,结合三角函数图象的平移变换,逐项判断作答.【详解】由图象可知,,2A =由图,因为,所以,,()10=1sin =2f ϕ⇒π02ϕ<<π=6ϕ()π2sin 6f x x ω⎛⎫=+ ⎪⎝⎭由图,则,5π012f ⎛⎫= ⎪⎝⎭5ππ122π,=,12655k k k k ωω⨯+=∈⇒-∈Z Z由图可知,所以,所以,1π5π12002125T ωω=>-⇒<<=2ω()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭对于A ,的图像向左平移个单位得到的sin =2sin2y A x x ω=π6ππ2sin2+=2sin 2+63y x x ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭图象,选项A 不正确;对于B ,由,可得,πππ2π22π,262k x k k -+≤+≤+∈Z ππππ,36k x k k -+≤≤+∈Z则函数的单调递增区间为,则在区间上单调递增,()f x πππ,π,36k k k ⎡⎤-++∈⎢⎥⎣⎦Z ()f x ππ,36⎡⎤-⎢⎥⎣⎦所以在区间上单调递增,选项B 正确;()f x ππ,312⎡⎤-⎢⎥⎣⎦对于C ,由于,则直线不是函数图象的对称轴,选项π2ππ2sin 12336f ⎛⎫⎛⎫=+=≠± ⎪ ⎪⎝⎭⎝⎭π3x =()f x C 不正确;对于D ,由,可得,则函数的图象关于点π2π,6x k k +=∈Zππ,122k x k =-+∈Z ()f x 对称,选项D 不正确.ππ,0,122k k ⎛⎫-+∈ ⎪⎝⎭Z 故选:B .9.ABD【分析】令,求得,可判定A 不正确;令,求得5π12x =5π3()122f =π8x =-可判定B 不正确;由时,可得,可判定C 正π5π()sin()812f -=-π22π,π,0,π6x -=--()0f x =确;由,结合正弦函数的性质,可判定D 不正确.π7ππ2(,)666x -∈--【详解】对于函数,()sin 26πf x x ⎛⎫=- ⎪⎝⎭对于A 中,令,可得,5π12x =5π5ππ2π3()sin(2)sin 1212632f =⨯-==所以函数的图象不关于点中心对称,所以A 不正确;()f x 5π,012⎛⎫⎪⎝⎭对于B 中,令,可得不是最值,π8x =-πππ5π()sin(2)sin()88612f -=-⨯-=-所以函数的图象不关于直线对称,所以B 不正确;()f x π8x =-对于C 中,由,可得,()π,πx ∈-π13π11π2,666x ⎛⎫-∈- ⎪⎝⎭当时,可得,π22π,π,0,π6x -=--()0f x =所以在上有4个零点,所以C 正确;()f x ()π,π-对于D 中,由,可得,π[,0]2x ∈-π7ππ2(,)666x -∈--根据正弦函数的性质,此时先减后增,所以D 不正确.()f x故选:ABD.10.BC【分析】由诱导公式先求出的值,然后用三角恒等公式逐一验证即可.11sin(6-π)【详解】由题意有,11ππ1sin sin 662⎛⎫-== ⎪⎝⎭对于A 选项:因为,故A 选项不符合题意;2o o 312cos 151cos3022-==≠对于B 选项:因为,故B 选项符合()o o o o o o o 1cos18cos 42sin18sin 42cos 1842cos 602-=+==题意;对于C 选项:因为,故()()o o o o o o o o 12sin15sin 75cos 7515cos 7515cos 60cos902=--+=-=C 选项符合题意;对于D 选项:因为,故D 选项不符合题意;()o o o o o o otan 30tan151tan 3015tan 4511tan 30tan152+=+==≠-故选:BC.11.CD【分析】根据题意结合函数的对称性可推出函数的周期以及对称轴,从而判断A ,B ;举特例符合题意,验证C ,D 选项,即得答案.【详解】由函数的图像关于直线对称,可得,(21)f x +1x =(2(1)1)(2(1)1)f x f x ++=-+即,即,(32)(32)f x f x +=-(3)(3)f x f x +=-以代换x ,则;1x +(4)(2)f x f x +=-由函数关于点对称,可得,(1)f x +(1,0)(2)(2)0f x f x ++-=结合可得,(4)(2)f x f x +=-(4)(2)f x f x +=-+即,则,即4为的一个周期,B 正确;(2)()f x f x +=-(4)()f x f x +=()f x 又,结合,(2)(2)f x f x +=--(2)()f x f x +=-可得,故,A 正确;(2)()f x f x -=(1)(1)f x f x -=+由以上分析可知函数关于直线对称,且关于点成中心对称,()f x 1x =(2,0)其周期为4,则满足题意,π()sin2f x x=但是,故C 错误;π(1)sin 12f ==说明函数图象关于直线对称,3()2f x f x ⎛⎫=- ⎪⎝⎭34x =而,即直线不是对称轴,D 错误,33π()sin 148f =≠±34x =π()sin 2f x x =故选:CD 12.AB【分析】利用三角函数的图象与性质结合图象变换一一判定即可.【详解】由题意可知,又,()πππ3πZ π424k k k ϕϕ⨯+=+∈⇒=-+ππ22ϕ-<<故,()ππ,sin 344f x x ϕ⎛⎫=-=- ⎪⎝⎭对于A 项,,由诱导公式知,即函πππsin 3sin 312124f x x x⎡⎤⎛⎫⎛⎫+=+-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 3sin 3x x -=-数为奇函数,故A 正确;π()12f x +对于B 项,,由正弦函数的图象及性质可知函数在上ππππ[,]30,12644x x ⎡⎤∈⇒-∈⎢⎥⎣⎦()f x ππ[,]126单调递增,故B 正确;对于C 项,易知,若,则与一个取得最大值,一个()max 1f x =12|()()|2f x f x -=()1f x ()2f x 取得最小值,即与相隔最近为半个周期,即的最小值为,故C 错误;1x 2x 12||x x -π23T =对于D 项,由三角函数的伸缩变换可知,函数图象上所有点的横坐标缩小为原来的,()f x 13得到函数的图象,故D 错误.sin(9)y x ϕ=+故选:AB.13.3【分析】由题意由两角差的正切公式即可得解.【详解】由题意.()()tan 73tan133tan 73tan13tan 73131tan 73tan133tan 73tan133︒︒︒︒︒︒︒︒︒︒--=-+-=故.314./34-0.75-【分析】根据同角平方和关系可得,进而根据齐次式即可求解.12sin cos 25αα-=【详解】由可得,故,1sin cos 5αα+=-112sin cos 25αα+=12sin cos 25αα-=又,解得或,222sin cos tan 12sin cos sin cos tan 125αααααααα-===++3tan 4α=-4tan 3α=-由于,,故,12sin cos 025αα-=<()0,πα∈sin 0,cos 0αα><又,故,因此,1sin cos 05αα+=-<sin cos αα<tan 1α<故,3tan 4α=-故34-15./120.5【分析】利用正弦函数的周期公式即可得解.【详解】因为的最小正周期为,π()2sin()(0)3f x x ωω=+>4π所以,则.2π2π4πT ωω===ω=12故答案为.1216.ππ(Z)62kx k =+∈【分析】先利用三角函数恒等变换公式对函数化简变形,然后由可求得ππ2π(Z)62x k k +=+∈答案.【详解】22()2cos 43sin cos 2sin 1cos 223sin 2cos 21f x x x x x x x x =+-=+++-,π23sin 22cos 24sin 26x x x ⎛⎫=+=+ ⎪⎝⎭令,解得:.ππ2π(Z)62x k k +=+∈ππ(Z)62k x k =+∈故ππ(Z)62kx k =+∈。
高考数学三角函数典型例题
三角函数典型例题1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.【解析】:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC ∆为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.2 .在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcos C .(Ⅰ)求角B 的大小;(Ⅱ)设()()()2411m sin A,cos A ,n k,k ,==>且m n ⋅的最大值是5,求k 的值.【解析】:(I)∵(2a -c )cos B =b cos C ,∴(2sin A -sin C )cos B =sin B cos C .即2sin A cos B =sin B cos C +sin C cos B =sin(B +C )∵A +B +C =π,∴2sin A cos B =sinA . ∵0<A <π,∴sin A ≠0. ∴cos B =21. ∵0<B <π,∴B =3π. (II)m n ⋅=4k sin A +cos2A . =-2sin 2A +4k sin A +1,A ∈(0,32π) 设sin A =t ,那么t ∈]1,0(.那么m n ⋅=-2t 2+4kt +1=-2(t -k )2+1+2k 2,t ∈]1,0(. ∵k >1,∴t =1时,m n ⋅取最大值.依题意得,-2+4k +1=5,∴k =23. 3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin=++CB A . I.试判断△ABC 的形状;II.假设△ABC 的周长为16,求面积的最大值.【解析】:I.)42sin(22sin 2cos 2sin2sinππ+=+=+-C C C C C2242πππ==+∴C C 即,所以此三角形为直角三角形. II.ab ab b a b a 221622+≥+++=,2)22(64-≤∴ab 当且仅当b a =时取等号,此时面积的最大值为()24632-.4 .在ABC ∆中,a 、b 、c 分别是角A . B .C 的对边,C =2A ,43cos =A, (1)求B C cos ,cos 的值; (2)假设227=⋅BC BA ,求边AC 的长。 【解析】:(1)81116921cos 22cos cos 2=-⨯=-==A A C47sin ,43cos ;873sin ,81cos ====A A C C 得由得由()169814387347cos cos sin sin cos cos =⨯-⨯=-=+-=∴C A C A C A B (2)24,227cos ,227=∴=∴=⋅ac B ac BC BA ① 又a A a c A C C c A a 23cos 2,2,sin sin ==∴== ② 由①②解得a=4,c=625169483616cos 2222=⨯-+=-+=∴B ac c a b 5=∴b ,即AC 边的长为5.5 .在ABC ∆中,A B >,且A tan 及B tan 是方程0652=+-x x 的两个根.(Ⅰ)求)tan(B A +的值; (Ⅱ)假设AB 5=,求BC 的长.【解析】:(Ⅰ)由所给条件,方程0652=+-x x 的两根tan 3,tan 2A B ==.∴tan tan tan()1tan tan A B A B A B ++=-231123+==--⨯(Ⅱ)∵180=++C B A ,∴)(180B A C +-=.由(Ⅰ)知,1)tan(tan =+-=B A C ,∵C 为三角形的内角,∴sin C =∵tan 3A =,A 为三角形的内角,∴sin A =, 由正弦定理得:sin sin AB BCC A=∴2BC ==6 .在ABC ∆中,内角A . B .C 所对的边分别为a 、b 、c ,向量(2sin ,m B =,2cos 2,2cos12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。【解析】:(1)//m n ⇒ 2sinB(2cos 2B2-1)=-3cos2B⇒2sinBcosB=-3cos2B ⇒ tan2B=- 3∵0<2B<π,∴2B=2π3,∴锐角B=π3(2)由tan2B =- 3 ⇒ B=π3或5π6①当B=π3时,b=2,由余弦定理,得:4=a 2+c 2-ac≥2ac -ac=ac(当且仅当a=c=2时等号成立)∵△ABC 的面积S △ABC =12 acsinB=34ac ≤ 3∴△ABC 的面积最大值为 3②当B=5π6时,b=2,由余弦定理,得:4=a 2+c 2+3ac≥2ac +3ac=(2+3)ac (当且仅当a=c =6-2时等号成立) ∴a c≤4(2-3)∵△ABC 的面积S △ABC =12 acsinB=14ac≤ 2- 3∴△ABC 的面积最大值为2- 37 .在ABC ∆中,角A . B .C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值; (2)假设b =2,求△ABC 面积的最大值.【解析】:(1) 由余弦定理:cosB=142sin 2A C ++cos2B= 41-(2)由.415sin ,41cos ==B B 得 ∵b =2, a2+c 2=12ac +4≥2ac ,得ac ≤38, S △ABC =12ac si nB ≤315(a =c 时取等号)故S △ABC 的最大值为3158 .)1(,tan >=a a α,求θθπθπ2tan )2sin()4sin(⋅-+的值。 【解析】aa -12;9 .()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(I)化简()fα(II)假设α是第三象限角,且31cos 25πα⎛⎫-=⎪⎝⎭,求()f α的值。 【解析】10.函数f(x)=sin 2x+3sinxcosx+2cos 2x,x ∈R.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x ∈R)的图象经过怎样的变换得到?【解析】:(1)1cos 23()2(1cos 2)2x f x x x -=+++132cos 22223sin(2).62x x x π=++=++()f x ∴的最小正周期2.2T ππ== 由题意得222,,262k x k k Z πππππ-≤+≤+∈ 即 ,.36k x k k Z ππππ-≤≤+∈()f x ∴的单调增区间为,,.36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)先把sin 2y x =图象上所有点向左平移12π个单位长度, 得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度, 就得到3sin(2)62y x π=++的图象。11.⎪⎪⎭⎫ ⎝⎛-=23,23a,)4cos ,4(sin xx b ππ=,b a x f ⋅=)(。 (1)求)(x f 的单调递减区间。(2)假设函数)(x g y =及)(x f y =关于直线1=x 对称,求当]34,0[∈x 时,)(x g y =的最大值。【解析】:(1))34sin(34cos 234sin 23)(ππππ-=-=x x x x f ∴当]223,22[34ππππππk k x ++∈-时,)(x f 单调递减 解得:]8322,8310[k k x ++∈时,)(x f 单调递减。(2)∵函数)(x g y =及)(x f y =关于直线1=x 对称 ∴⎥⎦⎤⎢⎣⎡--=-=34)2(sin 3)2()(ππx x f x g⎪⎭⎫⎝⎛+=⎥⎦⎤⎢⎣⎡--=34cos 3342sin 3πππππx x∵]34,0[∈x ∴⎥⎦⎤⎢⎣⎡∈+32,334ππππx∴]21,21[34cos -∈⎪⎭⎫⎝⎛+ππx ∴0=x 时,23)(max =x g12.cos 2sin αα=-,求以下各式的值; (1)2sin cos sin 3cos αααα-+; (2)2sin2sin cos ααα+【解析】:1cos 2sin ,tan 2ααα=-∴=-(1)1212sin cos 2tan 1421sin 3cos tan 3532αααααα⎛⎫⨯-- ⎪--⎝⎭===-++-+(2)2222sin 2sin cos sin 2sin cos sin cos αααααααα++=+ 2222112tan 2tan 322tan 15112ααα⎛⎫⎛⎫-+⨯- ⎪ ⎪+⎝⎭⎝⎭===-+⎛⎫-+ ⎪⎝⎭13.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+(I)求函数()f x 的最大值及最小正周期; (II)求使不等式3()2f x ≥成立的x 的取值集合。 【解析】14.向量)1,32(cos --=αm ,)1,(sin α=n ,m 及n 为共线向量,且]0,2[πα-∈(Ⅰ)求ααcos sin +的值;(Ⅱ)求αααcos sin 2sin -的值.。【解析】:(Ⅰ) m 及n 为共线向量, 0sin )1(1)32(cos =⨯--⨯-∴αα, 即32cos sin =+αα (Ⅱ) 92)cos (sin 2sin 12=+=+ααα ,972sin -=∴α 2)cos (sin )cos (sin 22=-++αααα ,916)32(2)cos (sin 22=-=-∴αα 又]0,2[πα-∈ ,0cos sin <-∴αα,34cos sin -=-αα 因此, 127cos sin 2sin =-ααα15.如图,A,B,C,D 都在同一个及水平面垂直的平面内,B,D 为两岛上的两座灯塔的塔顶。测量船于水面A 处测得B 点和D 点的仰角分别为075,030,于水面C 处测得B 点和D 点的仰角均为060,AC=。试探究图中B,D 间距离及另外哪两点距离相等,然后求B,D 的距离(计算结果准确到,2≈1.414,6≈2.449)【解析】:在ACD ∆中,DAC ∠=30°,ADC ∠=60°-DAC ∠=30°,又BCD ∠=180°-60°-60°=60°,故CB 是CAD ∆底边AD 的中垂线,所以BD=BA 在ABC ∆中,ABCACBCA AB ∠=∠sin sin , 即AB=2062351sin 60sin +=︒︒AC因此,km 33.020623≈+=BD故 B .D 的距离约为。16.函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象及x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2(,2)3M π-.(Ⅰ)求()f x 的解析式;(Ⅱ)当[,]122x ππ∈,求()f x 的值域.【解析】: (1)由最低点为2(,2)3M π-得A=2.由x 轴上相邻的两个交点之间的距离为2π得2T =2π,即T π=,222T ππωπ===由点2(,2)3M π-在图像上的242sin(2)2,)133ππϕϕ⨯+=-+=-即sin(故42,32k k Z ππϕπ+=-∈ 1126k πϕπ∴=- 又(0,),,()2sin(2)266f x x πππϕϕ∈∴==+故(2)7[,],2[,]122636x x πππππ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266x ππ+=即2x π=时,()f x 取得最小值-1,故()f x 的值域为[-1,2]17.如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C 三点进展测量,50AB m =,120BC m =,于A 处测得水深80AD m =,于B 处测得水深200BE m =,于C 处测得水深110CF m =,求∠DEF 的余弦值。【解析】:作//DMAC 交BE 于N ,交CF 于M .22223017010198DF MF DM =+=+=, 222250120130DE DN EN =+=+=, 2222()90120150EF BE FC BC =-+=+=在DEF ∆中,由余弦定理,2222221301501029816cos 2213015065DE EF DF DEF DE EF +-+-⨯∠===⨯⨯⨯18.51cos sin =+θθ,),2(ππθ∈,求〔1〕sin cos θθ-〔2〕33sincos θθ-〔3〕44sin cos θθ+【解析】:〔1〕3344791337sin cos (2)sin cos (3)sin cos 5125625θθθθθθ-=-=+=19.函数)sin(ϕω+=x A y 〔0>A , 0ω>,πϕ<||〕的一段图象如下图,〔1〕求函数的解析式;〔2〕求这个函数的单调递增区间。
高考数学模拟题汇编《三角函数》专项练习题-带答案
高考数学模拟题汇编《三角函数》专项练习题-带答案1.(2024·天津和平区·高三上期末)已知函数()sin (0)f x x ωω=> 函数()f x 图象的一条对称轴与一个对称中心的最小距离为π2 将()f x 图象上所有的点向左平移π4个单位长度 再将所得图象上所有点的横坐标缩短到原来的12(纵坐标不变) 得到的图象所表示的函数为( ) A. ()πsin 24h x x ⎛⎫=+⎪⎝⎭B. ()1πsin 24h x x ⎛⎫=+ ⎪⎝⎭C. ()πsin 24h x x ⎛⎫=- ⎪⎝⎭D. ()cos2h x x = 2.(2024·天津和平耀华中学·高三上期末)已知函数()()()cos 210,0πf x A x A ϕϕ=+-><< 若函数()y f x =的部分图象如图所示 函数()()sin g x A Ax ϕ=- 则下列结论正确的个数有( )①将函数()1y f x =+的图象向左平移π12个单位长度可得到函数()g x 的图象 ②函数()y g x =的图象关于点π,06⎛⎫-⎪⎝⎭对称 ③函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的单调递减区间为ππ,122⎡⎤⎢⎥⎣⎦④若函数()()0g x θθ+≥为偶函数 则θ的最小值为7π12. A. 1个 B. 2个C. 3个D. 4个3.(2024·天津河北区·高三上期末)函数()sin()(0)6f x x πωω=+>的最小正周期为π 将函数()y f x =的图象向左平移4π个单位后得到()y g x =的图象 则下列命题中不正确...的是( ) A. 函数()y g x =图象的两条相邻对称轴之间距离为2π B. 函数()y g x =图象关于1112π=x 对称C. 函数()y g x =图像关于7(,0)24π对称 D. 函数()y g x =在5(0,)12π内单调减函数.4.(2024·天津河东区·高三上期末)已知函数()()()sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示.有下列四个结论:①3πϕ=﹔①()f x 在7,1212ππ⎡⎤--⎢⎥⎣⎦上单调递增 ①()f x 的最小正周期T π= ①()f x 的图象的一条对称轴为3x π=.其中正确的结论有( )A. ①①B. ①①C. ①①D. ①①5.(2024·天津河西区·高三上期末)将函数()π2sin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图像向左平移π3个单位 得到函数()y g x =的图像 若函数(y g x =)的一个极值点是π6 且在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增 则ω的值为( )A.23B.43C.83D.1636.(2024·天津红桥区·高三上期末)已知函数()cos sin (0)f x a x b x ωωω=+>在π6x =处取得最大值2 ()f x 的最小正周期为π 则ω=______ ()f x 在π[0,]2上的单调递减区间是______.7.(2024·天津南开区·高三上期末)设函数()()3sin (0,π)f x x ωϕωϕ-><.若π5π0,388f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭且()f x 的最小正周期大于2π 则( )A.17π,312ωϕ==-. B. 111π,324ωϕ== C. 2π,312ωϕ==- D. 211π,312ωϕ== 8.(2024·天津宁河区·高三上期末)已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象关于π12x =-对称 它的最小正周期为π 关于该函数有下面四个说法: ①()f x 的图象过点π,012⎛⎫⎪⎝⎭ ②()f x 在区间5π11π,1212⎡⎤⎢⎥⎣⎦上单调递减 ③当π0,2x ⎡⎤∈⎢⎥⎣⎦时 ()f x 的取值范围为33⎡⎢⎣⎦④把函数sin 2y x =的图象上所有点向右平行移动π6个单位长度 可得到()f x 的图象.以上四个说法中 正确的个数为( ) A. 1B. 2C. 3D. 49.(2024·天津五所重点校·高三上期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭ 其图象相邻两个对称中心之间的距离为π4且直线π12x =-是其一条对称轴 则下列结论正确的是( )A. 函数()f x 的最小正周期为πB. 函数()f x 在区间ππ,612⎡⎤-⎢⎥⎣⎦上单调递增 C. 点5π,024⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D. 将函数()f x 图象上所有点的横坐标伸长为原来的2倍 纵坐标不变 再把得到的图象向左平移π6个单位长度 可得到一个奇函数的图象10.(2024·天津西青区·高三上期末)将函数sin cos 22y x x ϕϕ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象沿x 轴向左平移8π个单位后 得到一个偶函数的图象 则ϕ的取值不可能是( ) A. 34π-B. 4π-C.4π D.54π 11.(2024·天津八校联考·高三上期末)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的对称中心到对称轴的最小距离为π4将()f x 的图象向右平移π3个单位长度后所得图象关于y 轴对称 且()()12max 1f x f x -=关于函数()f x 有下列四种说法: ①π6x =是()f x 的一个对称轴 ②π,03⎛⎫- ⎪⎝⎭是()f x 的一个对称中心 ③()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递增 ④若()()120f x f x == 则12π2k x x -= ()k ∈Z . 以上四个说法中 正确的个数为( ) A. 1B. 2C. 3D. 412.(2024·天津塘沽一中·高三上期末)已知函数())3cos cos f x x x x =+.下列结论错误..的是( ) A. ()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭ B. π6f ⎛⎫ ⎪⎝⎭是()f x 的最大值 C. ()f x 在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增 D. 把函数cos 2y x =的图象上所有点向右平行移动π6个单位长度后 再向上平移12个单位长度 可得到()f x 的图象.13.(2024·天津部分区·高三上期末)将函数()sin 2f x x =的图象向左平移π6个单位长度 得到函数()g x 的图象 则()g x 所具有的性质是( ) A. 图象关于直线π6x =对称 B. 图象关于点5π,012⎛⎫⎪⎝⎭成中心对称C. ()g x 的一个单调递增区间为ππ,123⎡⎤⎢⎥⎣⎦D. 曲线()y g x =与直线32y =的所有交点中 相邻交点距离的最小值为π6答案:1.(2024·天津和平区·高三上期末)已知函数()sin (0)f x x ωω=> 函数()f x 图象的一条对称轴与一个对称中心的最小距离为π2 将()f x 图象上所有的点向左平移π4个单位长度 再将所得图象上所有点的横坐标缩短到原来的12(纵坐标不变) 得到的图象所表示的函数为( ) A. ()πsin 24h x x ⎛⎫=+⎪⎝⎭ B. ()1πsin 24h x x ⎛⎫=+ ⎪⎝⎭ C. ()πsin 24h x x ⎛⎫=- ⎪⎝⎭ D. ()cos2h x x =【答案】A 【详解】由题意得π42T = 22T ππω== 则1ω= 所以()sin f x x = 则将()f x 图象上所有的点向左平移π4个单位长度变为()πsin 4g x x ⎛⎫=+ ⎪⎝⎭再将所得图象上所有点的横坐标缩短到原来的12(纵坐标不变) 得到的图象所表示的函数为()πsin 24h x x ⎛⎫=+ ⎪⎝⎭. 故选:A.2.(2024·天津和平耀华中学·高三上期末)已知函数()()()cos 210,0πf x A x A ϕϕ=+-><< 若函数()y f x =的部分图象如图所示 函数()()sin g x A Ax ϕ=- 则下列结论正确的个数有( )①将函数()1y f x =+的图象向左平移π12个单位长度可得到函数()g x 的图象 ②函数()y g x =的图象关于点π,06⎛⎫- ⎪⎝⎭对称 ③函数()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上的单调递减区间为ππ,122⎡⎤⎢⎥⎣⎦④若函数()()0g x θθ+≥为偶函数 则θ的最小值为7π12. A. 1个 B. 2个C. 3个D. 4个【答案】B 【详解】因为1311A A --=-⎧⎨-=⎩ 所以2A = 所以()()2cos 21f x x ϕ=+-.又因为()02cos 12f ϕ=-= 得3cos 2ϕ=(舍)或1cos 2ϕ=- 因为0πϕ<< 可得23ϕπ=所以()2π2cos 213f x x ⎛⎫=+- ⎪⎝⎭ ()2π2sin 23g x x ⎛⎫=- ⎪⎝⎭函数()1y f x =+的图象向左平移π12个单位长度得到 ()π2π2π3π2π2cos 22cos 22sin 263323y x x x g x ⎛⎫⎛⎫⎛⎫=++=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故A 正确对于B 令2π2π,3x k k -=∈Z 解得ππ,32k x k =+∈Z 所以()g x 关于点()ππ,023k k ⎛⎫⎪⎝⎭+∈Z 对称当1k =-时 对称点为π,06⎛⎫-⎪⎝⎭故B 正确 对于C π32g ⎛⎫=⎪⎝⎭ π03g ⎛⎫= ⎪⎝⎭ππ23g g ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ 故C 错误 对于D 函数()()0g x θθ+≥为偶函数 即()2π2sin 223g x x θθ⎛⎫+=+- ⎪⎝⎭为偶函数 所以2ππ2π32k θ-=+ Z k ∈ 解得7ππ122k θ=+ Z k ∈ 又0θ≥ 所以当1k =-时π12θ=为最小值 故D 错误. 故选:B .3.(2024·天津河北区·高三上期末)函数()sin()(0)6f x x πωω=+>的最小正周期为π 将函数()y f x =的图象向左平移4π个单位后得到()y g x =的图象 则下列命题中不正确...的是 A. 函数()y g x =图象的两条相邻对称轴之间距离为2π B. 函数()y g x =图象关于1112π=x 对称C. 函数()y g x =图像关于7(,0)24π对称 D. 函数()y g x =在5(0,)12π内单调减函数.【答案】C 【详解】将函数()sin 26f x x π⎛⎫=+ ⎪⎝⎭的图像向左平移4π个单位后得到()cos 26g x x π⎛⎫=+ ⎪⎝⎭函数()g x 的对称中心横坐标为262x k πππ+=+ 即()62k x k Z ππ=+∈ C 选项错误 故选C .4.(2024·天津河东区·高三上期末)已知函数()()()sin 0,0f x x ωϕωϕπ=+><<的部分图象如图所示.有下列四个结论:①3πϕ=﹔①()f x 在7,1212ππ⎡⎤--⎢⎥⎣⎦上单调递增 ①()f x 的最小正周期T π= ①()f x 的图象的一条对称轴为3x π=.其中正确的结论有( )A. ①①B. ①①C. ①①D. ①①【答案】A 【详解】因为()30f = 所以3sin ϕ= 由于0ϕπ<< 所以3πϕ=或23π 由于图象最高点在y轴左侧 所以23ϕπ= ①不正确 因为06f π⎛⎫=⎪⎝⎭所以2sin()063ππω+= 解得2,63k k ωππ+=π∈Z 64k ω=- 令1k =得2ω= 周期为π ①正确由2222,232k x k k ππππ-≤+≤π+∈Z 可得,1212k x k k 7πππ-≤≤π-∈Z 令0k =可得增区间为7,1212ππ⎡⎤--⎢⎥⎣⎦①正确 因为3x π=时 24233x ππ+=所以3x π=不是对称轴 ①不正确 故选:A. 5.(2024·天津河西区·高三上期末)将函数()π2sin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图像向左平移π3个单位 得到函数()y g x =的图像 若函数(y g x =)的一个极值点是π6 且在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增 则ω的值为( )A.23B.43C.83D.163【答案】A 【详解】由题意得:()ππππ2sin 2sin 3636g x x x ωωω⎡⎤⎛⎫⎛⎫=++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦又函数(y g x =)的一个极值点是π6即π6x =是函数()g x 一条对称轴所以πππππ6362k ωω++=+ 则223k ω=+(k ∈Z ) 函数 ()g x 在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增 则函数()g x 的周期2πππ263T ω⎡⎤⎛⎫=>-- ⎪⎢⎥⎝⎭⎣⎦解得02ω<< 则0k = 23ω=故选:A. 6.(2024·天津红桥区·高三上期末)已知函数()cos sin (0)f x a x b x ωωω=+>在π6x =处取得最大值2 ()f x 的最小正周期为π 则ω=______ ()f x 在π[0,]2上的单调递减区间是______. 【答案】 ①. 2 ①. ππ[,]62【详解】依题意 函数22())f x a b x ωϕ=++ 222a b + 2ππω= 解得2ω=又π()26f = 则ππ22π,Z 62k k ϕ⨯+=+∈ 即πZ π2,6k k ϕ=+∈ 因此π()2sin(2)6f x x =+ 当π[0,]2x ∈时 ππ7π(2)[,]666x +∈由ππ7π2266x ≤+≤ 解得ππ62x ≤≤ 于是()f x 在ππ[,]62上单调递减所以2ω= ()f x 在π[0,]2上的单调递减区间是ππ[,]62.故答案为:2 ππ[,]627.(2024·天津南开区·高三上期末)设函数()()3sin (0,π)f x x ωϕωϕ-><.若π5π0,388f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭且()f x 的最小正周期大于2π 则( )A.17π,312ωϕ==-. B. 111π,324ωϕ== C. 2π,312ωϕ==- D. 211π,312ωϕ== 【答案】C 【详解】由()f x 的最小正周期大于2π 可得π42T > 因为π5π0,388f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭可得5ππ3π4884=+=T 则3πT = 且0ω> 所以2π23T ω==即2()3sin 3ϕ⎛⎫- ⎪⎝⎭f x x 由5π25π3sin 3838ϕ⎛⎫⎛⎫=⨯- ⎪ ⎪⎝⎭⎝⎭f 即5πsin 112ϕ⎛⎫-= ⎪⎝⎭可得5ππ2π122ϕ-=+k k ∈Z 则π2π12k ϕ=-- k ∈Z 且π<ϕ 可得0k = π12ϕ=- 所以23ω=π12ϕ=-.故选:C .8.(2024·天津宁河区·高三上期末)已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象关于π12x =-对称 它的最小正周期为π 关于该函数有下面四个说法:①()f x 的图象过点π,012⎛⎫⎪⎝⎭ ②()f x 在区间5π11π,1212⎡⎤⎢⎥⎣⎦上单调递减 ③当π0,2x ⎡⎤∈⎢⎥⎣⎦时 ()f x 的取值范围为33⎡⎢⎣⎦④把函数sin 2y x =的图象上所有点向右平行移动π6个单位长度 可得到()f x 的图象.以上四个说法中 正确的个数为( ) A. 1B. 2C. 3D. 4【答案】B 【详解】()f x 的最小正周期为π 所以2ππω= 得2ω=由()f x 关于π12x =-对称 则ππsin 1126f ϕ⎛⎫⎛⎫-=-+=± ⎪ ⎪⎝⎭⎝⎭所以πππ,Z 62k k ϕ-+=+∈ 解得2ππ,Z 3k k ϕ=+∈ 又π2ϕ< 所以π3ϕ=- 所以()πsin 23f x x ⎛⎫=- ⎪⎝⎭对于①:πππsin 01263f ⎛⎫⎛⎫=-≠ ⎪ ⎪⎝⎭⎝⎭①错误对于②:由5π11π1212x ≤≤得ππ3π2232x ≤-≤ 函数sin y x =在π3π,22⎡⎤⎢⎥⎣⎦上单调递减 所以()f x 在区间5π11π,1212⎡⎤⎢⎥⎣⎦上单调递减 ②正确对于③:由π02x ≤≤得ππ2π2333x -≤-≤ 函数sin y x =在π2π,33⎡⎤-⎢⎥⎣⎦上的值域为3⎡⎤⎢⎥⎣⎦ 所以()f x 的取值范围为32⎡⎤-⎢⎥⎣⎦③错误 对于④ 把函数sin 2y x =的图象上所有点向右平行移动π6个单位长度得ππsin 2sin 263y x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ④正确故选:B.9.(2024·天津五所重点校·高三上期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭ 其图象相邻两个对称中心之间的距离为π4且直线π12x =-是其一条对称轴 则下列结论正确的是( )A. 函数()f x 的最小正周期为πB. 函数()f x 在区间ππ,612⎡⎤-⎢⎥⎣⎦上单调递增C. 点5π,024⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D. 将函数()f x 图象上所有点的横坐标伸长为原来的2倍 纵坐标不变 再把得到的图象向左平移π6个单位长度 可得到一个奇函数的图象【答案】C 【详解】对于A 由题意可知 函数()f x 的最小正周期为ππ242T =⨯= A 错误 2π4Tω== ()()sin 4f x x ϕ=+因为直线π12x =-是函数()f x 的一条对称轴 则()ππ4πZ 122k k ϕ⎛⎫⨯-+=+∈ ⎪⎝⎭得()5ππZ 6k k ϕ=+∈ 因为π2≤ϕ 则π6ϕ=- 所以 ()πsin 46f x x ⎛⎫=- ⎪⎝⎭.对B 当ππ,612x ⎡⎤∈-⎢⎥⎣⎦时 5πππ4666x -≤-≤ 故函数()f x 在区间ππ,612⎡⎤-⎢⎥⎣⎦上不单调 B 错对C()5πsin π024f ⎛⎫-=-= ⎪⎝⎭ 故点5π,024⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心 C 对 对D 由题意可知 ()πππsin 2sin 2666g x x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦不为奇函数 D 错. 故选:C. 10.(2024·天津西青区·高三上期末)将函数sin cos 22y x x ϕϕ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象沿x 轴向左平移8π个单位后 得到一个偶函数的图象 则ϕ的取值不可能是( ) A. 34π-B. 4π-C.4π D.54π 【答案】B 【详解】将()1sin cos sin 2222y x x x ϕϕϕ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭的图象向左平移8π个单位后得到的图象对应的函数为1sin 224y x πϕ⎛⎫=++ ⎪⎝⎭由题意得()42k k Z ππϕπ+=+∈ ①()4k k Z πϕπ=+∈当1,0,1k =-时 ϕ的值分别为34π-4π 54π所以ϕ的取值不可能是4π-.故选:B. 11.(2024·天津八校联考·高三上期末)已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的对称中心到对称轴的最小距离为π4将()f x 的图象向右平移π3个单位长度后所得图象关于y 轴对称 且()()12max 1f x f x -=关于函数()f x 有下列四种说法: ①π6x =是()f x 的一个对称轴 ②π,03⎛⎫- ⎪⎝⎭是()f x 的一个对称中心 ③()f x 在π0,2⎛⎫ ⎪⎝⎭上单调递增 ④若()()120f x f x == 则12π2k x x -= ()k ∈Z . 以上四个说法中 正确的个数为( ) A. 1B. 2C. 3D. 4【答案】B【详解】根据题意由对称中心到对称轴的最小距离为π4可得1π44T = 即2ππT ω== 得2ω= 将()f x 的图象向右平移π3个单位长度后可得()2πsin 23f x A x ϕ⎛⎫=-+ ⎪⎝⎭其图象关于y 轴对称 所以()f x 偶函数 则2πππ32k ϕ-+=+ Z k ∈ 解得7ππ6k ϕ=+ Z k ∈ 由π2ϕ<可知当1k =-时 π6ϕ=符合题意由()()12max 21f x f x A -==可得12A = 因此()1πsin 226f x x ⎛⎫=+ ⎪⎝⎭对于① 当π6x =时 π1ππ1sin 262662f ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭ 取得最大值所以π6x =是()f x 的一个对称轴 即①正确 对于② 当π3x =-时 π12ππ1sin 032362f ⎛⎫⎛⎫-=-+=-≠ ⎪ ⎪⎝⎭⎝⎭所以π,03⎛⎫-⎪⎝⎭不是()f x 的一个对称中心 即②错误 对于③ 当π20,x ⎛⎫∈ ⎪⎝⎭时 可得ππ7π2,666x ⎛⎫+∈ ⎪⎝⎭ 又sin y x =在π7π,66⎛⎫ ⎪⎝⎭上不单调 所以()f x 在π0,2⎛⎫⎪⎝⎭上不是单调递增的 所以③错误 对于④ 若()()120f x f x == 由正弦函数图象性质可知两个相邻零点的距离为半个周期 所以任意两个零点之间的距离为半周期的整数倍 由()1πsin 226f x x ⎛⎫=+ ⎪⎝⎭周期为π可得12π2k x x -=()k ∈Z 即④正确 所以正确的个数只有①和④共2个.故选:B12.(2024·天津塘沽一中·高三上期末)已知函数())3cos cos f x x x x =+.下列结论错误..的是( ) A. ()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭ B. π6f ⎛⎫ ⎪⎝⎭是()f x 的最大值 C. ()f x 在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D. 把函数cos 2y x =的图象上所有点向右平行移动π6个单位长度后 再向上平移12个单位长度 可得到()f x 的图象.【答案】A 【详解】由题意可得:()()3sin cos cos f x x x x =+3cos21π1sin 2262+⎛⎫=+=++ ⎪⎝⎭x x x 对于选项A :因为5π5ππ111sin sin π1266222⎛⎫⎛⎫=++=+=⎪ ⎪⎝⎭⎝⎭f 所以()f x 的一个对称中心为5π1,122⎛⎫ ⎪⎝⎭ 故A 错误 对于选项B :πππ1π13sin sin 6362222⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭f 所以π6f ⎛⎫ ⎪⎝⎭是()f x 的最大值 故B 正确 对于选项C :因为ππ,36⎡⎤-⎢⎥⎣⎦ 则πππ2,622x ⎡⎤+∈-⎢⎥⎣⎦ 且sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦内单调递增 所以()f x 在ππ,36⎡⎤-⎢⎥⎣⎦上单调递增 故C 正确对于选项D :把函数cos 2y x =的图象上所有点向右平行移动π6个单位长度后 得到πππππcos 2cos 2cos 2sin 263626⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-=+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦y x x x x 的图象 再向上平移12个单位长度 得到()π1sin 262⎛⎫=++= ⎪⎝⎭y x f x 的图象 故D 正确 故选:A. 13.(2024·天津部分区·高三上期末)将函数()sin 2f x x =的图象向左平移π6个单位长度 得到函数()g x 的图象 则()g x 所具有的性质是( )A. 图象关于直线π6x =对称B. 图象关于点5π,012⎛⎫ ⎪⎝⎭成中心对称 C. ()g x 的一个单调递增区间为ππ,123⎡⎤⎢⎥⎣⎦ D. 曲线()y g x =与直线3y =的所有交点中 相邻交点距离的最小值为π6 【答案】D 【详解】由题意()ππsin 2sin 326g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦对于A 133πππ33sin g ⎛⎫⎛⎫=+=≠ ⎪ ⎪⎝⎭⎝⎭ 所以图象不关于直线π6x =对称 故A 错误 对于B 5π5ππ1sin 022163g ⎛⎫⎛⎫=+=-≠ ⎪ ⎪⎝⎭⎝⎭所以图象不关于点5π,012⎛⎫ ⎪⎝⎭成中心对称 故B 错误 对于C 当ππ,123x ⎡⎤∈⎢⎥⎣⎦时 2π2,ππ3t x ⎡⎤=+∈⎢⎥⎣⎦ 由复合函数单调性可知此时()g x 单调递减 故C 错误 对于D 若()23π3sin 2g x x ⎛⎫=+= ⎪⎝⎭ 则ππ22π33x k +=+或()π2π22π,Z 33x k k +=+∈ 所以曲线()y g x =与直线3y =的所有交点中 相邻交点距离的最小值为2πππ3326=-.故选:D.。
2024届高考数学复习:精选历年真题、好题专项(三角函数的性质)练习(附答案)
2024届高考数学复习:精选历年真题、好题专项(三角函数的性质)练习一、基础小题练透篇1.在函数①y =cos |2x |,②y =|cos x | ,③y =cos ⎝⎛⎭⎫2x +π6 ,④y =tan ⎝⎛⎭⎫2x -π4 中,最小正周期为π 的所有函数为( )A .②④B .①③④C .①②③D .②③④ 2.下列函数中,最小正周期为π的奇函数是( )A .y =sin ⎝⎛⎭⎫2x +π2B .y =cos ⎝⎛⎭⎫2x +π2 C .y =sin ⎝⎛⎭⎫2x +π4 D .y =2 sin ⎝⎛⎭⎫x +π4 3.[2023ꞏ陕西省商洛模拟]函数f (x )=2cos 22x 图象的一个对称中心为( )A .⎝⎛⎭⎫-π8,0B .⎝⎛⎭⎫-π4,1 C .⎝⎛⎭⎫-π8,1 D .⎝⎛⎭⎫π4,0 4.[2023ꞏ江苏连云港模拟]函数f (x )=2sin ⎝⎛⎭⎫π3x -π6 在[0,5]上的最大值与最小值之和是( )A .2-3B .0C .1D .2+35.[2023ꞏ浙江省十校联盟联考]同时具有以下性质:“①最小正周期是π;②在区间⎣⎡⎦⎤-π6,π3 上是增函数”的一个函数是( ) A .y =sin ⎝⎛⎭⎫x 2+π6B .y =sin ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫2x +π3 D .y =cos ⎝⎛⎭⎫2x -π6 6.[2023ꞏ贵州毕节模拟]已知函数f (x )=sin ⎝⎛⎭⎫2x +π6 ,若将f (x )的图象向右平移π6 个单位后,再把所得曲线上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g (x )的图象,则( )A .g (x )=sin ⎝⎛⎭⎫4x -π6 B .g (x )=sin 4x C .g (x )=sin xD .g (x )=sin ⎝⎛⎭⎫x -π67.函数y =cos ⎝⎛⎭⎫x -π3 的单调递增区间是________. 8.如果函数y =cos (2x +φ)的图象关于点⎝⎛⎭⎫π6,0 对称,那么|φ|的最小值为________.二、能力小题提升篇1.[2023ꞏ四川省遂宁市射洪中学考试]在函数y =sin |x |,y =|sin x |,y =tan ⎝⎛⎭⎫x +π3 ,y =cos ⎝⎛⎭⎫2x +π3 中,最小正周期为π的函数的个数为( ) A .1 B .2 C .3 D .42.[2023ꞏ陕西蒲城模拟]将函数y =3sin ⎝⎛⎭⎫2x +π4 的图象向右平移π6 个单位长度,则平移后的图象中与y 轴最近的对称中心的坐标是( )A .⎝⎛⎭⎫π24,0B .⎝⎛⎭⎫-π24,0C .⎝⎛⎭⎫π12,0D .⎝⎛⎭⎫-π12,0 3.[2023ꞏ重庆测试]已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2 ),现有如下四个命题:甲:该函数的最大值为2 ;乙:该函数图象可以由y =sin 2x +cos 2x 的图象平移得到; 丙:该函数图象的相邻两条对称轴之间的距离为π;丁:该函数图象的一个对称中心为⎝⎛⎭⎫2π3,0 . 如果只有一个假命题,那么该命题是( ) A .甲 B .乙 C .丙 D .丁4.[2023ꞏ天津市武清区模拟]将函数y =sin(2x +φ)(0≤φ<π)的图象向左平移π6 个单位后,得到的函数恰好为偶函数,则φ=________.5.[2023ꞏ山西省三晋名校阶段性考试]设函数f (x )=2cos 2⎝⎛⎭⎫ωx -π3 -1()ω>0 ,给出下列结论:①若||f ()x 1-f (x 2) =2,||x 1-x 2 min =π,则ω=1;②存在ω∈(0,1),使得f (x )的图象向左平移π3 个单位长度后得到的图象关于原点对称;③若f (x )在[]0,π 上有且仅有4个零点,则ω的取值范围为⎣⎡⎭⎫1912,2512 ;④∀ω∈(0,1),f (x )在⎣⎡⎦⎤-π6,π4 上单调递增. 其中正确的个数为( )A .1B .2C .3D .4三、高考小题重现篇1.[2021ꞏ山东卷]下列区间中,函数f (x )=7sin ⎝⎛⎭⎫x -π6 单调递增的区间是( ) A .⎝⎛⎭⎫0,π2 B .⎝⎛⎭⎫π2,π C .⎝⎛⎭⎫π,3π2 D .⎝⎛⎭⎫3π2,2π 2.[2021ꞏ全国乙卷]函数f (x )=sin x3 +cos x 3 的最小正周期和最大值分别是( ) A .3π和2 B .3π和2 C .6π和2 D .6π和23.[2020ꞏ天津卷]已知函数f (x )=sin ⎝⎛⎭⎫x +π3 .给出下列结论: ①f (x )的最小正周期为2π;②f ⎝⎛⎭⎫π2 是f (x )的最大值;③把函数y =sin x 的图象上所有点向左平移π3 个单位长度,可得到函数y =f (x )的图象. 其中所有正确结论的序号是( )A .①B .①③C .②③D .①②③4.[2022ꞏ新高考Ⅰ卷]记函数f (x )=sin (ωx +π4 )+b (ω>0)的最小正周期为T .若2π3 <T <π,且y =f (x )的图象关于点⎝⎛⎭⎫3π2,2 中心对称,则f ⎝⎛⎭⎫π2 =( ) A .1 B .32 C .52 D .35.[2019ꞏ北京卷]函数f (x )=sin 22x 的最小正周期是________.6.[2022ꞏ全国乙卷]记函数f (x )=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f (T )=32 ,x =π9 为f (x )的零点,则ω的最小值为________.四、经典大题强化篇1.[2023ꞏ河南省驻马店市环际大联考]已知函数f (x )=sin (ωx +φ)(其中ω>0,|φ|<π2 ),其图象经过M ⎝⎛⎭⎫0,12 ,且函数f (x )图象的相邻两条对称轴之间的距离为π4 . (1)求f (x )解析式;(2)是否存在正实数m ,使f (x )图象向左平移m 个单位长度后所得图象对应的函数是偶函数,若存在,求出m 的最小值,若不存在,请说明理由.2.[2023ꞏ福建省闽江口月考]已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6 -1. (1)求f (x )的最小正周期和单调区间; (2)用五点法作出其简图;(3)求f (x )在区间⎣⎡⎦⎤-π6,π4 上最大值和最小值.参考答案一 基础小题练透篇1.答案:C答案解析:∵y =cos |2x |=cos 2x ,∴T =2π2=π;y =|cos x |图象是将y =cos x 在x 轴下方的图象对称翻折到x 轴上方得到,所以周期为π,由周期公式知,y =cos ⎝ ⎛⎭⎪⎫2x +π6 周期为π,y =tan ⎝ ⎛⎭⎪⎫2x -π4 周期为π2 . 2.答案:B答案解析:对于A ,y =sin ⎝⎛⎭⎪⎫2x +π2 =cos 2x ,是偶函数,不符合题意; 对于B ,y =cos ⎝⎛⎭⎪⎫2x +π2 =-sin 2x ,是奇函数,最小正周期T =2π2 =π,符合题意;对于C 和D ,y =sin ⎝ ⎛⎭⎪⎫2x +π4 和y =2 sin ⎝⎛⎭⎪⎫x +π4 都是非奇非偶函数,不符合题意.3.答案:C答案解析:f (x )=2cos 22x =cos4x +1,令4x =π2 +k π(k ∈Z ),得x =π8 +k π4(k ∈Z ),当k =-1时,x =-π8 ,即f (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫-π8,1 . 4.答案:B答案解析:因为0≤x ≤5,则-π6 ≤π3 x -π6 ≤3π2 ,∴-1≤sin ⎝ ⎛⎭⎪⎫π3x -π6 ≤1,-2≤2sin ⎝ ⎛⎭⎪⎫π3x -π6 ≤2,∴f (x )max +f (x )min =0.5.答案:B答案解析:对于A ,函数的最小正周期T =2π12=4π,故A 不符合题意;对于B ,函数的最小正周期T =2π2=π, 当x ∈⎣⎢⎡⎦⎥⎤-π6,π3 ,2x -π6 ∈⎣⎢⎡⎦⎥⎤-π2,π2 ,所以函数在区间⎣⎢⎡⎦⎥⎤-π6,π3 上是增函数,故B 符合题意;对于C ,函数的最小正周期T =2π2 =π,当x ∈⎣⎢⎡⎦⎥⎤-π6,π3 ,2x +π3 ∈[]0,π ,所以函数在区间⎣⎢⎡⎦⎥⎤-π6,π3 上是减函数,故C 不符合题意;对于D ,函数的最小正周期T =2π2 =π,当x ∈⎣⎢⎡⎦⎥⎤-π6,π3 ,2x -π6 ∈⎣⎢⎡⎦⎥⎤-π2,π2 ,所以函数在区间⎣⎢⎡⎦⎥⎤-π6,π3 上不具有单调性,故D 不符合题意.故选B.6.答案:D答案解析:将函数f (x )=sin ⎝⎛⎭⎪⎫2x +π6 的图象向右平移π6,可得函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π6 =sin ⎝ ⎛⎭⎪⎫2x -π6 的图象;再把所有点的横坐标伸长到原来的2倍(纵坐标不变)得到函数g (x )=sin ⎝⎛⎭⎪⎫x -π6 的图象.7.答案:⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3 ,k ∈Z 答案解析:因为函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z , 所以2k π-π≤x -π3 ≤2k π,k ∈Z ,即2k π-2π3 ≤x ≤2k π+π3,k ∈Z ,所以函数y =cos ⎝⎛⎭⎪⎫x -π3 的单调递增区间是[2k π-2π3 ,2k π+π3 ],k ∈Z .8.答案:π6答案解析:由y =cos (2x +φ)的图象关于点⎝ ⎛⎭⎪⎫π6,0 对称,可得π3 +φ=π2 +k π,k ∈Z ,即φ=π6 +k π,k ∈Z ,当k =0时,φ=π6 ,故|φ|的最小值为π6.二 能力小题提升篇1.答案:C答案解析:函数y =sin |x |的图象如图所示由图可知,函数y =sin ||x 不是周期函数,f ()x +π =||sin ()x +π =||-sin x =||sin x =f (x ),则函数y =|sin x |的最小正周期为π;y =tan ⎝ ⎛⎭⎪⎫x +π3 的周期为T =π1 =π,y =cos ⎝ ⎛⎭⎪⎫2x +π3 的周期为T =2π2 =π. 故选C. 2.答案:A答案解析:函数y =3sin ⎝⎛⎭⎪⎫2x +π4 的图象向右平移π6 个单位长度, 所得函数图象的答案解析式为y =3sin ⎣⎢⎡⎦2⎝⎛⎭⎪⎫x -π6+π4 =3sin ⎝ ⎛⎭⎪⎫2x -π12 , 令2x -π12 =k π(k ∈Z ),得x =k π2 +π24 ,k ∈Z .令k =0,则x =π24, 即平移后的图象中与y 轴最近的对称中心的坐标是⎝ ⎛⎭⎪⎫π24,0 .3.答案:B答案解析:由命题甲:该函数的最大值为2 ,可得A =2 ;由命题乙:由y =sin 2x +cos 2x =2 sin ⎝⎛⎭⎪⎫2x +π4 ,可知A =2 ,ω=2; 由命题丙:该函数图象的相邻两条对称轴之间的距离为π, 可得ω=1,所以命题乙和命题丙矛盾;若假命题是乙,则f (x )=2 sin (x +φ),由命题丁:该函数图象的一个对称中心为⎝ ⎛⎭⎪⎫2π3,0 ,可得f ⎝ ⎛⎭2π3 =2 sin⎝ ⎛⎭⎪⎫2π3+φ =0,因为0<φ<π2 ,可得φ=π3,符合题意;若假命题是丙,则f (x )=2 sin (2x +φ), 由命题丁:该函数图象的一个对称中心为⎝ ⎛⎭⎪⎫2π3,0 ,可得f ⎝ ⎛⎭2π3 =2 sin⎝ ⎛⎭⎪⎫4π3+φ =0,可得φ=k π-4π3 ,k ∈Z ,不满足条件0<φ<π2,所以假命题是乙. 4.答案:π6答案解析:由题意,y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π6+φ 是一个偶函数, ∴π3 +φ=π2 +k π,(k ∈Z ),则φ=π6 +k π,(k ∈Z ),又|φ|<π2 ,∴φ=π6 . 5.答案:C答案解析:因为f (x )=2cos 2⎝ ⎛⎭⎪⎫ωx -π3 -1=cos ⎝ ⎛⎭2ωx -2π3 ,所以f (x )的最小正周期为2π2ω=πω .对于①,因为||f ()x 1-f (x 2) =2,故f ()x 1 ,f (x 2)分别为最大、最小值,由于||x 1-x 2 min =π,所以f (x )的最小正周期T =2π,所以πω =2π⇒ω=12 .故①错误;对于②,图象变换后所得函数为y =cos ⎝ ⎛⎭⎪⎫2ωx +2πω3-2π3 , 若其图象关于原点对称,则2πω3 -2π3 =π2 +k π,k ∈Z ,解得ω=74 +32k ,k ∈Z ,当k =-1时,ω=14∈(0,1),故②正确;对于③,当x ∈[]0,π 时,2ωx -2π3 ∈⎣⎢⎡⎦⎥⎤-2π3,2πω-2π3 ,因为f (x )在[]0,π 上有且仅有4个零点,所以5π2 ≤2πω-2π3 <7π2 ,解得1912 ≤ω<2512,故③正确;对于④,当x ∈⎣⎢⎡⎦⎥⎤-π6,π4 时,2ωx -2π3 ∈⎣⎢⎡⎦⎥⎤-ωπ3-2π3,ωπ2-2π3 ,因为ω∈(0,1),所以-ωπ3-2π3 ∈⎝ ⎛⎭⎪⎫-π,-2π3 ,ωπ2 -2π3 ∈⎝ ⎛⎭⎪⎫-2π3,-π6 , 所以f (x )在⎣⎢⎡⎦⎥⎤-π6,π4 上单调递增.故④正确.综上,正确的个数为3.故选C.三 高考小题重现篇1.答案:A答案解析:因为函数y =sin x 的单调递增区间为 ⎝ ⎛⎭⎪⎫2k π-π2,2k π+π2 ()k ∈Z , 对于函数f ()x =7sin ⎝⎛⎭⎪⎫x -π6 ,由2k π-π2 <x -π6 <2k π+π2 ()k ∈Z ,解得2k π-π3 <x <2k π+2π3()k ∈Z ,取k =0,可得函数f ()x 的一个单调递增区间为⎝ ⎛⎭⎪⎫-π3,2π3 ,则⎝ ⎛⎭⎪⎫0,π2 ⊆⎝ ⎛⎭⎪⎫-π3,2π3 ,⎝ ⎛⎭⎪⎫π2,π ⊄⎝ ⎛⎭⎪⎫-π3,2π3 ,A 选项满足条件,B 不满足条件; 取k =1,可得函数f ()x 的一个单调递增区间为⎝ ⎛⎭⎪⎫5π3,8π3 ,⎝ ⎛⎭⎪⎫π,3π2 ⊄⎝ ⎛⎭⎪⎫-π3,2π3 且⎝ ⎛⎭⎪⎫π,3π2 ⊄⎝ ⎛⎭⎪⎫5π3,8π3 ,⎝ ⎛⎭⎪⎫3π2,2π ⊄⎝ ⎛⎭⎪⎫5π3,8π3 ,CD 选项均不满足条件.2.答案:C答案解析:因为函数f (x )=sin x 3 +cos x 3 =2 (22 sin x 3 +22cos x3 )=2(sin x 3 cos π4 +cos x 3 sin π4 )=2 sin (x 3 +π4 ),所以函数f (x )的最小正周期T =2π13=6π,最大值为2 .3.答案:B答案解析:f (x )=sin ⎝ ⎛⎭⎪⎫x +π3 的最小正周期为2π,①正确;sin π2 =1=f ⎝ ⎛⎭⎪⎫π6 为f (x )的最大值,②错误;将y =sin x 的图象上所有点向左平移π3个单位长度得到f (x )=sin ⎝⎛⎭⎪⎫x +π3 的图象,③正确.4.答案:A答案解析:因为2π3 <T <π,所以2π3 <2π|ω|<π.又因为ω>0,所以2<ω<3.因为y =f (x )的图象关于点(3π2 ,2)中心对称,所以b =2,3π2 ω+π4=k π,k ∈Z ,所以ω=-16 +23 k ,k ∈Z .令2<-16 +23 k <3,解得134 <k <194.又因为k ∈Z ,所以k=4,所以ω=52 .所以f (x )=sin (52 x +π4 )+2,所以f (π2 )=sin (5π4 +π4)+2=1.故选A.5.答案:π2答案解析:∵f (x )=sin 22x =1-cos4x 2 ,∴f (x )的最小正周期T =2π4 =π2.6.答案:3答案解析:因为T =2π|ω| ,ω>0,所以ω=2πT .由f (T )=32 ,得cos (2π+φ)=32 ,即cos φ=32 .又因为0<φ<π,所以φ=π6 .因为x =π9为f (x )的零点,所以ωπ9+π6 =k π+π2 ,k ∈Z ,解得ω=9k +3,k ∈Z .又因为ω>0,所以ω的最小值为3.四 经典大题强化篇1.答案解析:(1)∵图象经过M ⎝ ⎛⎭⎪⎫0,12 ,∴12 =sin φ,|φ|<π2 ,∴φ=π6 , ∵函数f (x )图象的相邻两条对称轴之间的距离为π4,∴2πω =π2,∴ω=4, 则f (x )=sin ⎝⎛⎭⎪⎫4x +π6 . (2)设g (x )=sin ⎣⎢⎡⎦⎥⎤4(x +m )+π6 =sin ⎝⎛⎭⎪⎫4x +4m +π6 , ∵g (x )是偶函数,∴4m +π6 =π2+k π(k ∈Z ), ∴m =π12 +k π4(k ∈Z ),∵m 为正实数,∴m min =π12 .2.答案解析:(1)f (x )=4cos x (32 sin x +12cos x )-1=23 sin x cos x +2cos 2x -1=3 sin2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6 . 所以,函数f (x )的最小正周期T =2π2=π,令-π2 +2k π≤2x +π6 ≤π2 +2k π(k ∈Z ),解得-π3 +k π≤x ≤π6 +k π(k ∈Z ).令π2 +2k π≤2x +π6 ≤3π2 +2k π(k ∈Z ),解得π6 +k π≤x ≤2π3 +k π(k ∈Z ).所以,f (x )的单调增区间是⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π ,减区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π ,k ∈Z ;(2)列表:(3)因为x ∈⎣⎢⎡⎦⎥⎤-π6,π4 ,所以2x +π6 ∈⎣⎢⎡⎦⎥⎤-π6,2π3 ,所以,当2x +π6 =-π6 时,f (x )取得最小值-1,当2x +π6 =π2时,f (x )取得最大值2.。
高考数学大题专题练习 (1)
10 10
+
5 5
3 ×
1010=
2 10 .
第8页
3.(2019·东北三省三校第一次联考)设函数 f(x)=sin2x-π6+ 2cos2x.
(1)当 x∈0,π2时,求函数 f(x)的值域; (2)△ ABC 的内角 A,B,C 所对的边分别为 a,b,c,且 f(A) =32, 2a= 3b,c=1+ 3,求△ ABC 的面积.
1--
11002=3
10 10 .
在△ ABC 中,由正弦定理得sinaA=sibnB,
即 3
310=sin2B,
10
第7页
∴sinB= 55.又 A∈π2,π,故 B∈0,π2,
∴cosB= 1-sin2B=
1-
552=2
5
5 .
∴cos(B - A) = cosBcosA + sinBsinA = 255 ×-
∵ 2a= 3b,∴由正弦定理可得 2sinA= 3sinB,
∴sinB=
2 2.
第11页
∵0<B<23π,∴B=π4.
∴sinC=sin(π-A-B)=sin(A+B)=
6+ 4
2 .
∵由正弦定理可得sincC= 42=sibnB,
∴b=2.
∴S△ ABC=12bcsinA=3+2
3 .
第12页
4.(2019·广东省六校第二次联考)已知△ ABC 的三个内角 A, B,C 所对的边分别为 a,b,c,且 asinAsinB+bcos2A=53a.
(1)求ba; (2)若 c2=a2+85b2,求角 C 的大小.
第13页
解析 (1)由正弦定理及已知条件得 sin2AsinB+sinBcos2A= 53sinA,即 sinB(sin2A+cos2A)=53sinA,
高三数学三角函数经典练习题及答案精析
1.将函数()2sin 2x f x =的图象向右移动02πϕϕ⎛⎫<<⎪⎝⎭个单位长度,所得的部分图象如右图所示,则ϕ的值为( )A .6πB .3πC .12πD .23π 2.已知函数()sin 23f x x π⎛⎫=+⎪⎝⎭,为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A .向右平移3π个长度单位 B .向右平移6π个长度单位 C .向左平移6π个长度单位 D .向左平移3π个长度单位 3.若113sin cos αα+=sin cos αα=( ) A .13- B .13 C .13-或1 D .13或-1 4.2014cos()3π的值为( )A .12B 3C .12-D .3 5.记cos(80),tan 80k -︒=︒那么= ( ).A 21k -B .21k -C 21k -D .21kk -- 6.若sin a = -45,a 是第三象限的角,则sin()4a π+=( ) (A )-7210 (B )210 (C )2 -10 (D )2107.若552)4sin(2cos -=+παα,且)2,4(ππα∈,则α2tan 的值为( )A .34-B .43- C .43 D .34 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( )A .)(x f 的周期为πB .)(x f 在)0,2(π-上单调递减C .)(x f 的最大值为2D .)(x f 的图象关于直线π=x 对称9.如图是函数y=2sin (ωx+φ),φ<2π的图象,那么A.ω=1110,φ=6π B.ω=1011,φ=-6π C.ω=2,φ=6π D.ω=2,φ=-6π 10.要得到函数sin(4)3y x π=-的图象,只需要将函数sin 4y x =的图象( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移12π个单位 D .向右平移12π个单位 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( )A .向右平移4π个单位,再向上平移1个单位 B .向左平移4π个单位,再向下平移1个单位 C .向右平移2π个单位,再向上平移1个单位 D .向左平移2π个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移6π个单位,得到函数()y g x =的图象,则()2g π等于( )A .32B .32-C .12D .12- 13.同时具有性质①最小正周期是π;②图象关于直线3x π=对称;③在[,]63ππ-上是增函数的一个函数为( )A .sin()26x y π=+ B .cos(2)3y x π=+C .sin(2)6y x π=- D .cos()26x y π=- 14.若[]5sin cos ,0,5θθθπ+=∈,则tan θ=( )A .12- B.12 C .-2 D .215.已知1cos(=-cos 2A π+),那么sin 2A π⎛⎫+ ⎪⎝⎭的值是( )A .12- B.12 C .32- D.3216.已知tan (α﹣)=,则的值为( )A .B .2C .2D .﹣217.200sin 501sin10+的值等于( )A .12 B .14 C .1 D .218.已知角α的终边上一点的坐标为(sin 23π,cos 23π),则角α值为A.56πB.23πC.53πD.116π19.已知1cos 62πα⎛⎫-= ⎪⎝⎭,则cos cos 3παα⎛⎫+-= ⎪⎝⎭( )A .12 B .12± C 3D .3±20.已知3sin 1cos =+αα,则1sin cos -αα的值为( )A . 33B . 33- C .3 D .3-21.已知锐角,αβ满足()3cos 5ααβ=-=-,则sin β的值为( )A .B . CD 22.已知α为锐角,若1sin 2cos 25αα+=-,则tan α=( ) A .3 B .2 C .12 D .1323.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+等于( ) A .1318 B .1322 C .322 D .1624.若[,]42ππθ∈,sin 28θ=,则sin θ等于( )A .35B .45C .4D .3425.钝角三角形ABC 的面积是1,1,2AB BC ==,则AC =( )A .5B .C .2D .126.在∆ABC 中,记角A ,B ,C 的对边为a ,b ,c ,角A 为锐角,设向量(cos ,sin )m A A =u r(cos ,sin )n A A r ,且12m n ⋅=u r r . (1)求角A 的大小及向量m u r 与n r 的夹角;(2)若a =,求∆ABC 面积的最大值.27.已知函数()2sin cos()32f x x x π=++. (Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)求函数()f x 在区间[0,]2π上的最大值及最小值.28.已知向量2,1,cos ,cos 444x x x m n ⎫⎛⎫==⎪ ⎪⎭⎝⎭r r ,记()f x m n =r r g . (1)若()1f x =,求cos 3x π⎛⎫+ ⎪⎝⎭的值; (2)在锐角ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足()2cos cos a c B b C -=,求()2f A 的取值范围.29.在ABC ∆中,角,,A B C 对边分别为,,a b c ,若cos cos 2cos b A a B a C +=-.(1)求角C 的大小;(2)若6a b +=,且ABC ∆的面积为c 的长.30.在锐角△ABC 中,2sin sin sin()sin()44A B B B ππ=++-. (1)求角A 的值; (2)若12AB AC ⋅=u u u r u u u r ,求△ABC 的面积.31.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,向量)sin sin ,(C A b a -+=,向量)sin sin ,(B A c n -=,且//.(1)求角B 的大小;(2)设BC 的中点为D ,且3=AD ,求c a 2+的最大值.32(1(2成立的x 的取值集合.33.已知函数2())2sin ()()612f x x x x R ππ=-+-∈.(1)求函数()f x 的最小正周期;(2)求函数()f x 取得最大值的所有x 组成的集合.参考答案1.A【解析】试题分析:由题意得552sin 2()22()2()()121226k k Z k k Z ππππϕϕπϕπ-=⇒-=+∈⇒=-∈,因为02πϕ<<,所以0,6k πϕ==,选A.考点:三角函数求角【思路点睛】在求角的某个三角函数值时,应注意根据条件选择恰当的函数,尽量做到所选函数在确定角的范围内为一对一函数。
高考数学三角函数选择题
高考数学三角函数选择题1. 函数f(x) = sin2x - cos2x的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成2. 已知函数f(x) = sin(x + π/2),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π3. 已知函数f(x) = sin(x - π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成4. 已知函数f(x) = cos(x + π/2),那么f(x)的周期是()B. 2πC. 4πD. 8π5. 已知函数f(x) = cos(x - π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成6. 已知函数f(x) = sin2x,那么f(x)的周期是()A. πB. 2πC. 4πD. 8π7. 已知函数f(x) = cos2x,那么f(x)的周期是()A. πB. 2πC. 4π8. 已知函数f(x) = sin(2x + π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成9. 已知函数f(x) = cos(2x - π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成10. 已知函数f(x) = sin(x + π),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π11. 已知函数f(x) = cos(x + π),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π12. 已知函数f(x) = sin(x - π),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成13. 已知函数f(x) = cos(x - π),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成14. 已知函数f(x) = sin3x,那么f(x)的周期是()A. πB. 2πC. 3πD. 4π15. 已知函数f(x) = cos3x,那么f(x)的周期是()A. πB. 2πC. 3πD. 4π16. 已知函数f(x) = sin(3x + π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成17. 已知函数f(x) = cos(3x - π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成18. 已知函数f(x) = sin(x/3),那么f(x)的周期是()A. πB. 2πC. 3πD. 4π19. 已知函数f(x) = cos(x/3),那么f(x)的周期是()A. πB. 2πC. 3πD. 4π20. 已知函数f(x) = sin(x/3 + π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成21. 已知函数f(x) = cos(x/3 - π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成22. 已知函数f(x) = sin(x/2),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π23. 已知函数f(x) = cos(x/2),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π24. 已知函数f(x) = sin(x/2 + π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成25. 已知函数f(x) = cos(x/2 - π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成26. 已知函数f(x) = sin(x/2 + π),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π27. 已知函数f(x) = cos(x/2 + π),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π28. 已知函数f(x) = sin(x/2 - π),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成29. 已知函数f(x) = cos(x/2 - π),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成30. 已知函数f(x) = sin(x),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π31. 已知函数f(x) = cos(x),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π32. 已知函数f(x) = sin(-x),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成33. 已知函数f(x) = cos(-x),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成34. 已知函数f(x) = sin(x + π),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π35. 已知函数f(x) = cos(x + π),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π36. 已知函数f(x) = sin(x - π),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成37. 已知函数f(x) = cos(x - π),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成38. 已知函数f(x) = sin(-x + π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成39. 已知函数f(x) = cos(-x + π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成40. 已知函数f(x) = sin(-x - π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成41. 已知函数f(x) = cos(-x - π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成42. 已知函数f(x) = sin(-x),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π43. 已知函数f(x) = cos(-x),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π44. 已知函数f(x) = sin(-x + π),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π45. 已知函数f(x) = cos(-x + π),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π46. 已知函数f(x) = sin(-x - π),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成47. 已知函数f(x) = cos(-x - π),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成48. 已知函数f(x) = sin(x/2),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π49. 已知函数f(x) = cos(x/2),那么f(x)的周期是()A. πB. 2πC. 4πD. 8π50. 已知函数f(x) = sin(x/2 + π/2),那么f(x)的图像可以表示为()A. 一条直线B. 一个正弦函数C. 一个余弦函数D. 一个正弦函数和一个余弦函数的合成。
高考数学三角函数练习与答案
D. α-β=π6
【练习 2】若锐角φ满足 sinφ-cosφ= 2,则函数
2
=cos2(x+φ)的单调递减区间为
A.[2kπ-5π ,2kπ + π ](k∈Z)
12
12
B.[kπ-5π
12
,kπ
+
π ](k∈Z)
12
C.[2kπ+ π
12
,2kπ
+
7π](k∈Z)
12
D.[kπ+ π ,kπ + 7π](k∈Z)
∵N(2, 2 )是函数 y=Asin(ωx+φ)的图象的一个最高点 ∴A= 2 . ∵N 到相邻最低点的图象曲线与 x 轴相交于 A、 B,B 点坐标为( 6,0)
∴ 7 =|x B-xN|=4,∴T=16.
4
又∵T=
2
,∴ω=
2 T
=
8
∵xN= xA xB
2
∴xA=2xN-xB=-2 ∴A(-2,0) ∴y= 2 sin (x+2)
3 【练习 1】若 cosa= 3 且为第四象限角,tana 则的值等于( )
【练习 2】
二、看图求解析式
【练习 1】函数 f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分
图象如图所示,则函数 f(x)的解析式为( )
A. ㌳䁠 ꀀ sin㌳䁠
B. ㌳䁠 ꀀ sin㌳ 䁠
C. ㌳䁠 ꀀ sin㌳䁠 h
四、三角函数的三角恋
【练习 1】设 sin 2α=-sin α,α∈ π ,π ,则 tan 2α的值是
.
【练习 2】若
[ , ],sin 2 42
三角函数--2024年数学高考真题和模拟好题分类汇编(解析版)
专题三角函数1(新课标全国Ⅰ卷)已知cos(α+β)=m,tanαtanβ=2,则cos(α-β)=()A.-3mB.-m3C.m3D.3m【答案】A【分析】根据两角和的余弦可求cosαcosβ,sinαsinβ的关系,结合tanαtanβ的值可求前者,故可求cosα-β的值.【详解】因为cosα+β=m,所以cosαcosβ-sinαsinβ=m,而tanαtanβ=2,所以=12×2b×kb×sin A2+12×kb×b×sin A2,故cosαcosβ-2cosαcosβ=m即cosαcosβ=-m,从而sinαsinβ=-2m,故cosα-β=-3m,故选:A.2(新课标全国Ⅰ卷)当x∈[0,2π]时,曲线y=sin x与y=2sin3x-π6的交点个数为() A.3 B.4 C.6 D.8【答案】C【分析】画出两函数在0,2π上的图象,根据图象即可求解【详解】因为函数y=sin x的的最小正周期为T=2π,函数y=2sin3x-π6的最小正周期为T=2π3,所以在x∈0,2π上函数y=2sin3x-π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f(x)=a(x+1)2-1,g(x)=cos x+2ax,当x∈(-1,1)时,曲线y=f(x)与y=g(x)恰有一个交点,则a=()A.-1B.12C.1D.2【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3 ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A:当x∈-π8 ,π3时,2x-π3∈-7π12,π3,由函数y=sin x在-7π12,π3上不为单调递增,故f x 在区间-π8 ,π3上不为单调递增,故A错误;对B:当x=5π6时,2x-π3=4π3,由x=4π3不是函数y=sin x的对称轴,故x=5π6不是f x 图象的对称轴,故B错误;对C:当x∈-π6 ,π4时,2x-π3∈-2π3,π6,则f x ∈-1,1 2,故C错误;对D:将f x 图象上的所有点向左平移5π12个长度单位后,可得y=sin2x+2×5π12-π3=sin2x+π2=cos2x,该函数关于y轴对称,故D正确.故选:D.8(2024·广东广州·二模)已知函数f(x)=2sin(ωx+φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f(x)的图象向右平移θ(θ>0)个单位后所得曲线关于y轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由fπ4=1,得sinπ4ω+φ=22,又点π4,1及附近点从左到右是上升的,则π4ω+φ=π4+2kπ,k∈Z,由f5π8=0,点5π8,0及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2kπ,k∈Z,联立解得ω=2,φ=-π4+2kπ,k∈Z,而|φ|<π2,于是φ=-π4,f(x)=2sin2x-π4,若将函数f(x)的图像向右平移θ(θ>0)个单位后,得到y=sin2x-2θ-π4,则-2θ-π4=π2-kπ,k∈Z,而θ>0,因此θ=-3π8+kπ2,k∈N,所以当k=1时,θ取得最小值为π8 .故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
高考数学三角函数练习题及答案解析_图文.docx
高考数学三角函数练习题及答案解析(2010 ±海文数)19.(本题满分12分)TT已知Ovxv —,化简:2lg(cos x • tan x +1 - 2 sin 2 + lg[V2 cos(x 一 彳)]一 lg(l + sin 2x). 解析:原式=lg(sin_r+cosx)+lg(cosx+siru)-lg(sinx+cosx)2=0.(2010湖南文数)16.(本小题满分12分) 已知函数 f (x) = sin 2x-2sin 2 x (I )求函数/(x )的最小正周期。
(II )求函数/(X )的最大值及/(X )取最大值时X 的集合。
解(I )因为/(x) = sin2x-(l-cos2x)= s/2sin(2r + -J)-l t所以函数/(x )的最小正周期为卩=夸=兀(II )由(I )知,当2x +于=2A 卄号,即+晋(kZ )时,/(X )取最大值 7?-1・因此函数/(X )取址大值时;c 的集合为{职“后+罟”G Z}・O(2010浙江理数)(18)(本题满分14分)®AABC 中,角A 、B 、C 所对的边分别为a,b,c, 已知 cos2C =4⑴求sinC 的值;(11)当8=2, 2sinA=sinC 吋,求 b 及 c 的长.解析:木题主要考察三角变换、正弦定理、余弦定理等基础知识,同事考查运算求解能力。
(I ) 解:因为 cos2C=l-2sin 2C=--,及 0<C< 兀4 所以 sinC=——.4(II ) 解:当 a=2, 2sinA=sinC 吋,由正弦定理一-—=—-—,得sin A sinC c=4/x4 * it口 ■由COS2C=2COS2C-1=一一,J 及0<C<H得4cosC=±由余弦定理c 2=a 2+b 2-2abcosC,得 b 2± V6 b-12=0所以rb=>/6V、c=4 或(2010全国卷2理数)(17)(本小题满分10分)53 \ABC 中,D 为边 BC 上的一点,BD = 33, sin5 = —, cosZADC = -f 求 AD. 13 5【命题意图】本试题主要考查同角三角函数关系、两角和差公式和正弦定理在解三角形小的 应用,考查考牛对基础知识、基本技能的掌握情况. 【参考答案】3 R由 cosZADeJ? >0,知 B< 2.12 4[fl 已知I 得 cosB=l 13 , sinZADC=5 .从而 sinZBAD=sin ( ZADC-B) =s【点评】三角函数与解三角形的综合性问题,是近儿年高考的热点,在高考试题屮频繁出现. 这类题型难度比鮫低,一般出现在17或18题,属于送分题,估计以后这类题型仍会保超, 不会冇太大改变.解决此类问题,要根据已知条件,灵活运用正弦定理或余弦定理,求边角 或将边角互化.(2010陕西文数)17.(本小题满分12分)在AABC 屮,已知B=45° ,。
高考数学三角函数与解三角真题训练100题含参考答案
(2)求 在 上的单调增区间.
89.已知函数f(x)=2sin ωx cos ωx+ cos 2ωx(ω>0)的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的单调递增区间.
90.已知向量 , , .
(1)求函数 的最小正周期及 取得最大值时对应的 的值;
(2)在锐角三角形 中,角 、 、 的对边为 、 、 ,若 , ,求三角形 面积的最大值并说明此时该三角形的形状.
A.90°B.60°C.45°D.30°
39.已知函数 的部分图像如图所示,将 图像上所有点的横坐标缩小到原来的 (纵坐标不变),所得图像对应的函数 解析式为()
A. B.
C. D.
40.函数 在 的图象大致为()
A. B.
C. D.
41.已知 , ,则 的值为
A. B. C. D.
42.已知 中,角 , , 所对的边分别为 , , .已知 , , 的面积 ,则 的外接圆的直径为()
19.如图,在扇形OAB中, ,半径OA=2,在 上取一点M,连接OM,过M点分别向线段OA,OB作垂线,垂足分别为E,F,得到一个四边形MEOF.设 ,则四边形MEOF的面积为()
A. B.
C. D.
20.设 , , 为同一平面内具有相同起点的任意三个非零向量,且满足 与 不共线,
, ,则 的值一定等于()
55.在 中, , , ,则 ________.
56.在锐角 中, , , 分别为角 , , 的对边,且 , ,则 面积的取值范围为______.
57.用列举法写出 __________.
58.在△ABC中,∠B=75°,∠C=60°,c=1,则最小边的边长为______________________ .
高考数学专题《三角函数的图象与性质》习题含答案解析
专题5.3 三角函数的图象与性质1.(2021·北京市大兴区精华培训学校高三三模)下列函数中,既是奇函数又以π为最小正周期的函数是()A .cos 2y x =B .sin2y x=C .sin cos y x x=+D .tan 2y x=【答案】B 【解析】由三角函数的奇偶性和周期性判断即可得出答案.【详解】解:A 选项:cos 2y x =是周期为π的偶函数,故A 不正确;B 选项:sin2y x =是周期为π的奇函数,故B 正确;C选项:sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,周期为2π且非奇非偶函数,故C 不正确;D 选项:tan 2y x =是周期为2π的奇函数,故D 不正确.故选:B.2.(2021·海南高三其他模拟)下列函数中,既是偶函数又存在零点的是( )A .ln y x =B .21y x =+C .sin y x=D .cos y x=【答案】D 【解析】根据题意,依次分析选项中函数的奇偶性以及是否存在零点,综合即可得答案.【详解】解:根据题意,依次分析选项:对于A ,y lnx =,为对数函数,不是奇函数,不符合题意,对于B ,21y x =+,为二次函数,是偶函数,但不存在零点,不符合题意,对于C ,sin y x =,为正弦函数,是奇函数,不符合题意,对于D ,cos y x =,为余弦函数,既是偶函数又存在零点,符合题意,故选:D .练基础3.(2021·浙江高三其他模拟)函数y =sin tan x e xx在[-2,2]上的图像可能是( )A .B .C .D .【答案】B 【解析】利用同角三角函数的商数关系并注意利用正切函数的性质求得函数的定义域,可以化简得到()cos ,2x k f x e x x k Z π⎛⎫=≠∈ ⎪⎝⎭,考察当x 趋近于0时,函数的变化趋势,可以排除A,考察端点值的正负可以评出CD.【详解】()sin cos ,tan 2x x e x k f x e x x k Z x π⎛⎫==≠∈ ⎪⎝⎭,当x 趋近于0时,函数值趋近于0cos 01e =,故排除A;()22cos 20f e =<,故排除CD,故选:B4.(2021·全国高三其他模拟(理))函数y =tan(3x +6π)的一个对称中心是( )A .(0,0)B .(6π,0)C .(49π,0)D .以上选项都不对【答案】C 【解析】根据正切函数y =tan x 图象的对称中心是(2k π,0)求出函数y =tan(3x +6π)图象的对称中心,即可得到选项.【详解】解:因为正切函数y =tan x 图象的对称中心是(2k π,0),k ∈Z ;令3x +6π=2k π,解得618k x ππ=-,k ∈Z ;所以函数y =tan(3x +6π)的图象的对称中心为(618k ππ-,0),k ∈Z ;当k =3时,C 正确,故选:C.5.(2019年高考全国Ⅱ卷文)若x 1=,x 2=是函数f (x )=(>0)两个相邻的极值点,则=( )A .2B .C .1D .【答案】A【解析】由题意知,的周期,解得.故选A .6.(2021·临川一中实验学校高三其他模拟(文))若函数cos (0)y x ωω=>的图象在区间,24ππ⎛⎫- ⎪⎝⎭上只有一个对称中心,则ω的取范围为( )A .12ω<≤B .ω1≤<2C .13ω<≤D .13ω≤<【答案】A 【解析】根据题意可得422πππω≤<,即可求出.【详解】4π43πsin x ωωω3212()sin f x x ω=232()44T ωπππ==-=π2ω=由题可知,cos (0)y x ωω=>在,42ππ⎡⎫⎪⎢⎣⎭上只有一个零点,又2x πω=,2x πω=,所以422πππω≤<,即12ω<≤.故选:A.7.(2019年高考北京卷文)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】时,,为偶函数;为偶函数时,对任意的恒成立,即,,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.8.(2021·青海西宁市·高三二模(文))函数()cos 218f x x π⎛⎫=-- ⎪⎝⎭图象的一个对称中心为( )A .,14π⎛⎫-- ⎪⎝⎭B .,14π⎛⎫-⎪⎝⎭C .,116π⎛⎫-- ⎪⎝⎭D .3,116π⎛⎫-- ⎪⎝⎭【答案】D 【解析】根据余弦函数的对称中心整体代换求解即可.【详解】令2()82x k k πππ-=+∈Z ,可得5()216k x k ππ=+∈Z .所以当1k =-时,316x π=-,故3,116π⎛⎫-- ⎪⎝⎭满足条件,当0k =时,516x π=,故5,116π⎛⎫-⎪⎝⎭满足条件;故选:D0b =()cos sin cos f x x b x x =+=()f x ()f x ()=()f x f x -x ()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=-sin 0b x =x 0b =0b =()f x9.(2021·全国高一专题练习)设函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为2πB .()f x 的图象关于直线23x π=对称C .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减D .()f x 的一个零点为6x π=【答案】C 【解析】根据解析式结合余弦函数的性质依次判断每个选项的正误即可.【详解】函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,()f x ∴的最小正周期为2π,故A 正确;22(cos 1333f πππ⎛⎫=+=- ⎪⎝⎭,∴()f x 的图象关于直线23x π=对称,故B 正确;当x ∈,2ππ⎛⎫⎪⎝⎭时,54,363πππx ⎛⎫+∈ ⎪⎝⎭,()f x 没有单调性,故C 错误;()cos 0663f πππ⎛⎫=+= ⎪⎝⎭,∴()f x 的一个零点为6x π=,故D 正确.综上,错误的选项为C.故选:C.10.(2017·全国高考真题(理))函数f (x )=s in 2x +3cosx ―34(x ∈0,__________.【答案】1【解析】化简三角函数的解析式,则f (x )=1―cos 2x+3cos x ―34=―cos 2x +3cos x +14= ―(cos x ―32)2+1,由x ∈[0,π2]可得cos x ∈[0,1],当cos x =32时,函数f (x )取得最大值1.练提升1.(2021·河南高二月考(文))已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+ ⎪⎝⎭><<的相邻的两个零点之间的距离是6π,且直线18x π=是()f x 图象的一条对称轴,则12f π⎛⎫=⎪⎝⎭( )A.B .12-C .12D【答案】D 【解析】由相邻两个零点的距离确定周期求出6ω=,再由对称轴确定6π=ϕ,代入12x π=可求出结果.【详解】解:因为相邻的两个零点之间的距离是6π,所以26T π=,23T ππω==,所以6ω=,又sin 6sin 118183f πππϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且02πϕ<<,则6π=ϕ,所以()sin 66f x x π⎛⎫=+ ⎪⎝⎭,则sin 612126f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.故选:D.2.(2020·山东潍坊�高一期末)若函数的最小正周期为,则( )A .B .C .D .【答案】C 【解析】由题意,函数的最小正周期为,可得,解得,即,()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭π(2)(0)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>>-⎪⎝⎭(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭(0)(2)5f f f π⎛⎫->> ⎪⎝⎭()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭πwππ=1w =()tan()4f x x π=+令,即,当时,,即函数在上单调递增,又由,又由,所以.故选:C.3.(2021·广东佛山市·高三二模)设()0,θπ∈,则“6πθ<”是“1sin 2θ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】由条件即06πθ<<,由06πθ<<,得1sin 2θ<;反之不成立,可举反例.再由充分必要条件的判定得答案.【详解】由()0,θπ∈,则6πθ<,即06πθ<<所以当06πθ<<时,由正弦函数sin y x =的单调性可得1sin sin62πθ<=,即由6πθ<可以得到1sin 2θ<.反之不成立,例如当56πθπ<<时,也有1sin 2θ<成立,但6πθ<不成立.故“6πθ<”是“1sin 2θ<”的充分不必要条件故选:A4.(2021·四川省华蓥中学高三其他模拟(理))已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的最,242k x k k Z πππππ-+<+<+∈3,44k x k k Z ππππ-+<<+∈1k =544x ππ<<()f x 5(,)44ππ4(0)(),()()()555f f f f f πππππ=-=-+=425ππ>>(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭大值为2,其图象相邻两条对称轴之间的距离为2π且()f x 的图象关于点,06π⎛⎫-⎪⎝⎭对称,则下列判断不正确的是()A .要得到函数()f x 的图象,只需将2cos 2y x =的图象向右平移12π个单位B .函数()f x 的图象关于直线712x π=对称C .,126x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x D .函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减【答案】C 【解析】根据最大值为2,可得A ,根据正弦型函数的周期性,可求得ω,根据对称性,可求得ϕ,即可得()f x 解析式,根据正弦型函数的单调性、值域的求法,逐一分析选项,即可得答案.【详解】由题意得A =2,因为其图象相邻两条对称轴之间的距离为2π,所以22Tπ=,可得2T ππω==,所以2ω=,所以()2sin(2)f x x ϕ=+,因为,06π⎛⎫-⎪⎝⎭为对称中心,所以2,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭,因为||2ϕπ<,令k =0,可得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+⎪⎝⎭.对于A :将2cos 2y x =的图象向右平移12π个单位,可得2cos 22cos 22cos 22sin 22sin 21266263y x x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=--=+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故A 正确;对于B :令2,32x k k Z πππ+=+∈,解得,212k x k Z ππ=+∈,令k =1,可得712x π=,所以函数()f x 的图象关于直线712x π=对称,故B 正确;对于C :因为,126x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,363x πππ⎡⎤+∈⎢⎥⎣⎦,所以当236x ππ+=时,min ()2sin16f x π==,故C 错误;对于D :令3222,232k x k k Z πππππ+≤+≤+∈,解得7,1212k x k k Z ππππ+≤≤+∈,令k =0,可得一个单调减区间为7,1212ππ⎡⎤⎢⎥⎣⎦,因为57,,6121212ππππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在5,612ππ⎡⎤⎢⎥⎣⎦上单调递减,故D 正确.故选:C5.(2021·玉林市第十一中学高三其他模拟(文))已知函数()sin (0)f x x ωω=>的图象向右平移4π个单位长度得y =g (x )的图象,若函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则a 的取值范围是( )A .[416,)39B .1620,[)99C .[208,93D .[8,4)3【答案】B 【解析】由函数的平移可得()sin 4g x x πωω⎛⎫=- ⎪⎝⎭,结合三角函数的图象与性质可得ω满足的不等式,即可得解.【详解】由题意,()sin sin 44g x x x ππωωω⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,3,444x πωπωπωω⎡⎤-∈-⎢⎥⎣⎦,因为函数g (x )的图象与直线y =在,22ππ⎡⎤-⎢⎥⎣⎦上恰有两个交点,则3542,2433122,2433k k k k πωπππππωππππ⎧⎛⎤-∈-+-+ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩或3412,2433272,2433k k k k πωπππππωππππ⎧⎛⎤-∈-++ ⎪⎥⎪⎝⎦⎨⎡⎫⎪∈++⎪⎢⎪⎣⎭⎩,k Z ∈,又0>ω,所以1620,99ω⎡∈⎫⎪⎢⎣⎭.故选:B.6.(2020·北京四中高三其他模拟)函数tan 42y x ππ⎛⎫=- ⎪⎝⎭ 的部分图象如图所示,则 ()OA OB AB +⋅=( )A .6B .5C .4D .3【答案】A 【解析】根据正切函数的图象求出A 、B 两点的坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果.【详解】由图象得,令tan 42y x ππ⎛⎫=- ⎪⎝⎭=0,即42x ππ-=kπ,k Z∈k =0时解得x =2,令tan 42y x ππ⎛⎫=-⎪⎝⎭=1,即424x πππ-=,解得x =3,∴A (2,0),B (3,1),∴()()()2,0,3,1,1,1OA OB AB ===,∴()()()5,11,1516OA OB AB +⋅=⋅=+=.故选:A .7.(2020·全国高三其他模拟(文))若函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆222:O x y n +=上,则()1f =( )A B .C .-D .【答案】A 【解析】首先由题意判断该正弦型函数的大概图象及相邻最高点和最低点与圆的交点情况.从而解得n 的取值,再代入1x =求解.【详解】解:设两交点坐标分别为()11,x y ,()22,x y ,则1y =,2y =-又函数()(0)xf x n nπ=>为奇函数,∴12x x =-,当22xnx n ππ=⇒=时,函数取得最大值,∴12n x =-,22nx =,由题,函数()(0)xf x n nπ=>图象上的相邻一个最高点和一个最低点恰好都在圆22: O x y n +=上,∴22242n n n ⎛⎫+=⇒= ⎪⎝⎭,则(1)4f π==.故选:A.8.【多选题】(2021·全国高三其他模拟)已知函数()2sin(),(0,0)f x x ωϕωϕπ=+><<图象的一条对称轴为23x π=,4⎛⎫= ⎪⎝⎭f π,且()f x 在2,43ππ⎛⎫ ⎪⎝⎭内单调递减,则以下说法正确的是( )A .7,012π⎛⎫-⎪⎝⎭是其中一个对称中心B .145ω=C .()f x 在5,012π⎛⎫- ⎪⎝⎭单増D .16f π⎛⎫-=- ⎪⎝⎭【答案】AD 【解析】先根据条件求解函数的解析式,然后根据选项验证可得答案.【详解】∵f (x )关23x π=对称,4⎛⎫= ⎪⎝⎭f π,f (x )在2,43ππ⎛⎫ ⎪⎝⎭单调递减,232232,22643k k ωπωϕπππππϕωϕπ⎧=+=+⎧⎪⎪⎪∴∴⎨⎨=⎪⎪+=+⎩⎪⎩,B 错误;()2sin 2,6f x x π⎛⎫=+ ⎪⎝⎭令2,6x k k ππ+=∈Z ,可得,,122k x k ππ=-+∈Z 当1k =-时,7,12x π=-即()f x 关于7,012π⎛⎫- ⎪⎝⎭对称,A 正确;令222,262k x k πππππ-+<+<+得,312k x k ππππ-+<<+∴()f x 在,312ππ⎡⎤-⎢⎥⎣⎦单调递増,即C 错误;2sin 2sin 16366f ππππ⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,D 正确,故选:AD.9.【多选题】(2021·重庆市蜀都中学校高三月考)已知函数()f x 满足x R ∀∈,有()(6)f x f x =-,且(2)(2)f x f x +=-,当[1,1]x ∈-时,)()lnf x x =-,则下列说法正确的是( )A .(2021)0f =B .(2020,2022)x ∈时,()f x 单调递增C .()f x 关于点(1010,0)对称D .(1,11)x ∈-时,方程()sin 2f x x π⎛⎫=⎪⎝⎭的所有根的和为30【答案】CD 【解析】利用已知条件可知()f x 在[1,1]x ∈-上为奇函数且单调递减,关于21x k =+、(2,0)k ,k Z ∈对称,且周期为4,即可判断各选项的正误.【详解】由题设知:()))()f x x x f x -===-=-,故()f x 在[1,1]x ∈-上为奇函数且单调递减,又(2)(4)(2)f x f x f x +=-=-,即关于21x k =+、(2,0)k ,k Z ∈对称,且最小周期为4,A :(2021)(50541)(1)1)0f f f =⨯+==-≠,错误;B :(2020,2022)x ∈等价于(0,2)x ∈,由上易知:(0,1)上递减,(1,2)上递增,故()f x 不单调,错误;C :由上知:()f x 关于(2,0)k 对称且k Z ∈,所以()f x 关于(1010,0)对称,正确;D :由题意,只需确定()f x 与sin 2xy π=在(1,11)x ∈-的交点,判断交点横坐标的对称情况即可求和,如下图示,∴共有6个交点且关于5x =对称,则16253410x x x x x x +=+=+=,∴所有根的和为30,正确.故选:CD10.(2021·浙江杭州市·杭州高级中学高三其他模拟)设函数sin 3xy π=在[,1]t t +上的最大值为()M t ,最小值为()N t ,则()()M t N t -在3722t ≤≤上最大值为________.【答案】1【解析】依题意可得函数在39,22⎡⎤⎢⎥⎣⎦上单调递减,则39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦,所以()()cos 36t M t N t ππ⎛⎫-=-+⎪⎝⎭,即可求出函数的最大值;【详解】解:函数sin3xy π=的周期为6,函数sin3xy π=在39,22⎡⎤⎢⎥⎣⎦上单调递减,当3722t ≤≤时,39[,1],22t t ⎡⎤+⊆⎢⎥⎣⎦(1)()()sinsin2cos sin cos 3336636tt t t M t N t πππππππ+⎛⎫⎛⎫⎛⎫-=-=+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3722t ≤≤,所以243363t ππππ≤+≤,所以11cos 362t ππ⎛⎫-≤+≤-⎪⎝⎭所以1()()12M t N t ≤-≤当52t =时取最大值1故答案为:11.(2021·全国高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A 【解析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .2.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( )练真题A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.3.(2019年高考全国Ⅰ卷文)函数f (x )=在的图象大致为( )A .B .C .D .【答案】D2sin cos ++x xx x[,]-ππ【解析】由,得是奇函数,其图象关于原点对称,排除A .又,排除B ,C ,故选D .4.(2020·全国高考真题(理))设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+()f x 22π1π42π2(1,π2π()2f ++==>2π(π)01πf =>-+5.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.6.(2018·北京高考真题(理))设函数f (x )=cos(ωx ―π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为f (x )≤f (π4)对任意的实数x 都成立,所以f (π4)取最大值,所以π4ω―π6=2k π(k ∈Z ),∴ω=8k +23(k∈Z ),因为ω>0,所以当k =0时,ω取最小值为23.。
2023高考数学复习专项训练《三角函数的应用》(含答案)
2023高考数学复习专项训练《三角函数的应用》一、单选题(本大题共12小题,共60分)1.(5分)设函数f(x)=Acos(ωx+φ)(其中A>0,|ω|<;4,0<;φ<;π)的大致图象如图所示,则f(x)的最小正周期为()A. π2B. πC. 2πD. 4π2.(5分)数学必修二介绍了海伦−秦九韶公式:我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.若把以上这段文字写成公式,即S=√14[a2c2−(a2+c2−b22)2],其中a、b、c分别为△ABC内角A、B、C的对边.若√3cosB√3sinB =1tanC,b=2,则△ABC面积S的最大值为()A. √3B. √5C. 3D. √23.(5分)某干燥塔的底面是半径为1的圆面O,圆面有一个内接正方形ABCD框架,在圆O的劣弧BC上有一点P,现在从点P出发,安装PA,PB,PC三根热管,则三根热管的长度和的最大值为()A、4B、2√3C、3√3D、2√6A. 4B. 2√3C. 3√3D. 2√64.(5分)现只有一把长为2m的尺子,为了求得某小区草坪坛边缘A,B两点的距离AB(AB大于2m),在草坪坛边缘找到点C与D,已知∠ACD=90∘,且tan∠ADB=−2√2,测得AC=1.2m,CD=0.9m,BD=1m,则AB=()A. √373m B. √5m C. √172m D. 3√22m5.(5分)已知函数f(x)=Asin(ωx+φ)(A>;0,ω>;0,|φ|<;π2)在一个周期内的图象如图所示.若方程f(x)=m在区间[0,π]上有两个不同的实数解x1,x2,则x1+x2的值为()A. π3B. 23π或43π C. 43π D. π3或43π6.(5分)设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0⩽t⩽24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:经长期观观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.在下面的函数中,最能近似表示表中数据间对应关系的函数是()A、y=12+3sinπ6t,t∈[0,24]B、y=12+3sin(π6t+π),t∈[0,24]C、y=12+3sinπ12t,t∈[0,24]D、y=12+3sin(π12t+π2),t∈[0,24]A. y=12+3sinπ6t,t∈[0,24]B. y=12+3sin(π6t+π),t∈[0,24]C. y=12+3sinπ12t,t∈[0,24]D. y=12+3sin(π12t+π2),t∈[0,24]7.(5分)泰山于1987年12月12日被列为世界文化与自然双重遗产,泰山及其周边坐落着许多古塔.某兴趣小组为了测量某古塔的高度,如图所示,在地面上一点A处测得塔顶B的仰角为60∘,在塔底C处测得A处的俯角为45∘.已知山岭高CD为256米,则塔高BC为()A. 256(√2−1)米B. 256(√3−1)米C. 256(√6−1)米D. 256(2√3−1)米8.(5分)为迎接校运动会的到来,学校决定在半径为20√2m,圆心角为π的扇形空地4OPQ内部修建一平行四边形观赛场地ABCD,如图所示,则观赛场地面积的最大值为( )A. 200m2B. 400(2−√2)m2C. 400(√3−1)m2D. 400(√2−1)m29.(5分)如图所示,单摆从某点开始来回摆动,离开平衡位置O的距离s(cm)和时),那么单摆摆动一个周期所需的时间为间t(s)的函数关系式为s=6sin(2πt+π6()A. 2πsB. πsC. 0.5sD. 1s10.(5分)小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA的高度与拉绳PB的长度相等,小明先将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A. 11+sin α米 B. 11−cos α米 C. 11−sin α米D. 11+cos α米11.(5分)瀑布是庐山的一大奇观,为了测量某个瀑布的实际高度,某同学设计了如下测量方案:有一段水平山道,且山道与瀑布不在同一平面内,瀑布底端与山道在同一平面内,可粗略认为瀑布与该水平山道所在平面垂直,在水平山道上A 点位置测得瀑布顶端仰角的正切值为32,沿山道继续走20m ,抵达B 点位置测得瀑布顶端的仰角为π3.已知该同学沿山道行进的方向与他第一次望向瀑布底端的方向所成角为π3,则该瀑布的高度约为()A. 60mB. 90mC. 108mD. 120m12.(5分)设y =f(t)是某港口水的深度y (米)关于时间t (时)的函数,其中0⩽t ⩽24,表格中是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y =f(t)的图象可以近似地看成函数y =k +Asin(ωt +φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A. y =12+3sin π6t,t ∈[0,24] B. y =12+3sin(π6t +π2),t ∈[0,24] C. y =12+3sin π12t,t ∈[0,24] D. y =12+3sin(π12t +π2),t ∈[0,24] 二 、填空题(本大题共5小题,共25分)13.(5分)振动量函数y =√2sin(ωx +φ)(ω>;0)的初相和频率分别为-π和32,则它的运动周期为_______________,相位是_______________.14.(5分)如图,在平面直角坐标系中,点P 以每秒π2的角速度从点A 出发,沿半径为2的上半圆逆时针移动到B ,再以每秒π3的角速度从点B 沿半径为1的下半圆逆时针移动到坐标原点O,则上述过程中动点P的纵坐标y关于时间t的函数表达式为__________.15.(5分)函数f(x)=sin(ωx+φ)(其中ω>;0,|φ|<;π2)的图象如图所示,则函数f(x)=sin(ωx+φ)的最小正周期为_______________;为了得到g(x)=sinωx的图象,只需把y=f(x)的图象上所有的点向右平移_______________个单位长度.16.(5分)已知海湾内海浪的高度y(米)是时间t(0⩽t⩽24,单位:小时)的函数,记作y=f(t).某日各时刻记录的浪高数据如下表:经长期观测,y=f(t)可近似地看成是函数y=Acosωt+b.根据以上数据,可得函数y=Acosωt+b的表达式为__________.17.(5分)一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则16分钟后P点距地面的高度是____.三、解答题(本大题共6小题,共72分)18.(12分)某地为发展旅游业,在旅游手册中给出了当地一年每个月的月平均气温表,根据图中提供的数据,试用y=Asin(ωt+φ)+b近似地拟合出月平均气温y(单位:℃)与时间t(单位:月)的函数关系,并求出其周期和振幅,以及气温达到最大值和最小值的时间.(答案不唯一)19.(12分)某地种植大棚蔬菜,已知大棚内一天的温度(单位:℃)随时间t(单位:ℎ)的变化近似满足函数关系:f(t)=12−3sin(π12t+π3),t∈[0,24).(1)求实验室这一天的最大温差;(2)若某种蔬菜的生长要求温度不高于10.5℃,若种植这种蔬菜,则在哪段时间大棚需要降温?20.(12分)如图,有一块以点O为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD开辟为绿地,使其一边AD落在半圆的直径上,另两点B,C落在半圆的圆周上.已知半圆的半径长为20m.(1)如何选择关于点O对称的点A,D的位置,可以使矩形ABCD的面积最大,最大值是多少?(2)沿着AB,BC,CD修一条步行小路从A到D,如何选择A,D位置,使步行小路的距离最远?21.(12分)健康成年人的收缩压和舒张压一般为120~140mmHg和60~90mmHg.心脏跳动时,血压在增加或减小.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80mmHg为标准值.记某人的血压满足函数式p(t)=25sin160πt+115,其中p(t)为血压(mmHg),t为时间(min),试回答下列问题:(1)求函数p(t)的周期;(2)求此人每分钟心跳的次数;(3)求出此人的血压在血压计上的读数,并与正常值比较.22.(12分)如果α为小于360°的正角,且这个角的7倍角的终边与这个角的终边重合,则这样的角α是否存在?23.(12分)某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:(A>0,ω>0).(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,则船舶在一天中有几个小时可以安全进出该港?答案和解析1.【答案】C;【解析】略2.【答案】A;【解析】此题主要考查正弦定理在解三角形中的应用,两角和与差公式,考查二次函数求最值问题,考查转化思想,属于较难题.先利用两角和的正弦公式、三角形的内角和、诱导公式化简已知条件可得sinC=√3sinA,由正弦定理可得c=√3a代入面积公式结合二次函数的性质即可求解.解:因为√3cosB√3sinB =1tanC=cosCsinC,所以sinC=√3sinCcosB+√3cosCsinB=√3sin(B+C)=√3sinA,由正弦定理可得:c=√3a,代入面积公式可得:S=√14[a2⋅3a2−(a2+3a2−222)2]=√14[3a4−(2a2−2)2]=√14(−a4+8a2−4)=√14[−(a2−4)2+12]=√−14(a2−4)2+3,所以当a=2时,−14(a2−4)2+3取得最大值3,所以△ABC面积S的最大值为√3,故选:A.3.【答案】null;【解析】此题主要考查三角函数的实际应用,属于基础题.求出|PA|+|PB|+|PC|=2√3sin(θ+φ),利用三角函数的性质即可求解.解:如图,设∠PAC=θ,θ∈[0,π4],可得|PA|+|PB|+|PC|=2[cosθ+sin(π4−θ)+sinθ]=(2+√2)cosθ+(2−√2)sinθ=2√3sin(θ+φ),其中tanφ=3+2√2,φ∈(π4,π2 ),所以(|PA|+|PB|+|PC|)max=2√3,由的范围可以取到最大值.故选B.4.【答案】C;【解析】此题主要考查解三角形的实际应用,考查数学运算的核心素养与应用意识,属于中档题.由题意可得AD=1.5m,利用tan∠ADB,求出cos∠ADB,进一步进行求解即可.解:因为∠ACD=90∘,AC=1.2m,CD=0.9m,所以AD=√AC2+CD2=1.5m.因为tan∠ADB=−2√2,所以cos∠ADB=−13,所以AB=√1.52+12−2×1.5×1×(−13)=√172m.5.【答案】D;【解析】略6.【答案】null;【解析】此题主要考查由y=Asin(ωx+φ)的部分图象确定其解析式以及应用,通过对实际问题的分析,转化为解决三角函数问题,属基础题.通过排除法进行求解,由y=f(t)可以近似看成y=k+Asin(ωx+φ)的图象,故可以把已知数据代入y=k+Asin(ωx+φ)中,分别按照周期和函数值排除,即可求出答案.解:排除法:∵y=f(t)可以近似看成y=k+Asin(ωx+φ)的图象,∴由T=12可排除C、D,将(3,15)代入,排除B.故选A.7.【答案】B;此题主要考查了三角形的边角关系应用问题,也考查了数形结合思想和运算求解能力,属于基础题.根据题意结合图形,利用三角形的边角关系,即可求出塔高BC 的值.解:如图所示,在Rt △ACD 中,∠CAD =45°,CD =256, 所以AD =256,在Rt △ABD 中,∠BAD =60°, 所以BD =ADtan∠BAD =256√3, 所以BC =BD −CD =256√3−256, 即塔高BC 为256(√3−1)米. 故选:B.8.【答案】D;【解析】如图所示,连接OC ,设∠COA =θ,作DF ⊥OP ,CE ⊥OP ,垂足分别为F ,E .根据平面几何知识可知,AB =CD =EF ,DF =OF =CE ,∴CE =20√2sinθ,EF =OE −OF =20√2cosθ−20√2sinθ.故四边形ABCD 的面积S 等于四边形DFEC 的面积,即有S =20√2sinθ×20√2(cosθ−sinθ)=400(sin2θ+cos2θ−1)=400√2sin(2θ+π4)−400,其中θ∈(0,π4).所以当sin(2θ+π4)=1,即θ=π8时,S max =400(√2−1),即观赛场地面积的最大值为400(√2−1)m 2.故选D .9.【答案】D;10.【答案】C; 【解析】此题主要考查三角函数在实际生活中的应用. 由题设可得PA −1=PAsinα,即可得结果. 解:由题设,PC =PB′sinα=PAsinα,而PC =PA −1,所以PA −1=PAsinα,可得PA =11−sinα米.故选:C11.【答案】A; 【解析】此题主要考查解三角形的应用,根据题意作出示意图是解答该题的关键,考查空间立体感、学科素养和运算能力,属于中档题.作出示意图,过点B 作BC ⊥OA 于C ,结合三角函数和勾股定理,转化为平面几何中的简单计算,即可得解.解:根据题意作出如下示意图,其中tanα=32,β=θ=π3,AB =20m ,过点B 作BC ⊥OA 于C , 设OH =3x ,则OA =OH tanα=2x ,OB =OH tanβ=√3x ,在Rt △ABC 中,因为AB =20,θ=π3,所以AC =AB ×cos π3=10,BC =AB ×sin π3=10√3,所以OC =OA −AC =2x −10,在Rt △OBC 中,由勾股定理知,(2x −10)2+(10√3)2=(√3x)2, 化简得x 2−40x +400=0,解得x =20, 所以瀑布的高度OH =3x =60m.故答案选:A.12.【答案】A;【解析】略13.【答案】23;3πx−π; 【解析】略14.【答案】f(t)={2sinπt2,0<t⩽2sin[π3(t−2)+π],2<t⩽5;【解析】此题主要考查利用三角函数的定义解决实际问题,在做题过程中点的坐标与角度之间的关系,属于综合题.解:由三角函数的定义可得:当动点P在半径为2的上半圆上运动时,t∈(0,2],终边OP对应的角度为π2t,所以P点坐标为(2cosπ2t,2sinπ2t),当动点P在半径为1的下半圆上运动时,t∈(2,5],终边OP对应的角度为π3(t−2)+π,所以P点坐标为(cos[π3(t−2)+π],sin[π3(t−2)+π]),综上:动点P的纵坐标y关于时间t的函数表达式为y={2sinπ2t,t∈(0,2]sin[π3(t−2)+π],t∈(2,5]15.【答案】π;π6+kπ,k∈Z;【解析】略16.【答案】y=12cosπ6t+1;【解析】此题主要考查了三角函数模型的应用的相关知识,试题难度一般. 解题时先计算出周期和振幅,然后求解解析式即可.解:由表中数据,知周期T=12,∴ω=2πT =2π12=π6,由t=0,y=1.5,得A+b=1.5;由t=3,y=1.0,得b=1.0,∴A=0.5,b=1,∴y=12cosπ6t+1.17.【答案】14;【解析】解:设P 与地面高度与时间t 的关系,f (t )=Asin (ωt+φ)+B (A >0,ω>0,φ∈[0,2π)),由题意可知:A=8,B=10,T=12,所以ω=,又因为f (0)=2,故ϕ=-πt所以f (16)=8sin(π- . 故答案为:14.18.【答案】解:根据图象可知,当t =1时,y 有最小值15;当t =8时,y 有最大值27. ∴{−A +b =15ω+φ=−π28ω+φ=π2A +b =27解得{A =6b =21ω=π7φ=−9π14, ∴y =6sin(π7t −9π14)+21,周期T =2πω=2ππ7=14,振幅A =6.气温在1月份时达到最低, 在8月份时达到最高.;【解析】此题主要考查由y =Asin(ωt +φ)的部分图象确定其解析式,属于中档题. 当t =8月份时平均气温达到最大值25℃,当t =1月份时,平均气温达到最小值15℃,列出方程组,结合周期与振幅,从而可得函数解析式.19.【答案】解:(1)由题意,函数f(t)=12−3sin(π12t +π3),t ∈[0,24), 根据正弦型函数的性质可得−1⩽sin(π12t +π3)⩽1,所以f(t)max=15,f(t)min=9,可得f(t)max−f(t)min=6,则实验室这一天的最大温差为6℃.(2)由题意,令f(t)>10.5,即12−3sin(π12t+π3)>10.5,即sin(π12t+π3)<12,因为t∈[0,24),可得π12t+π3∈[π3,7π3),所以5π6<π12t+π3<13π6,解得6<t<22,即在6时至22时这段时间内大棚需要降温.;【解析】此题主要考查了函数y=Asin(ωx+φ)的图象与性质,三角函数模型的应用,属于中档题.(1)根据正弦型函数的性质可得−1⩽sin(π12t+π3)⩽1,求得f(t)max=15,f(t)min=9,进而求得这一天的最大温差;(2)根据题意,令f(t)>10.5,得到sin(π12t+π3)<12,利用正弦型函数的性质,求得t的范围即可求解.20.【答案】解(1)连接OB,如图所示,设∠AOB=θ,则AB=OBsinθ=20sinθ,OA=OBcosθ=20cosθ,且θ∈(0,π2).因为A,D关于点O对称,所以AD=2OA=40cosθ.设矩形ABCD的面积为S,则S=AD·AB=40cosθ·20sinθ=400sin2θ.因为θ∈(0,π2),所以2θ∈(0,π),所以当sin2θ=1,即θ=π4时,S max=400(m2).此时AO=DO=10√2(m).故当A,D距离圆心O为10√2m时,矩形ABCD的面积最大,其最大面积是400m2.(2)由(1)知AB=20sinθ,AD=40cosθ,所以AB+BC+CD=40sinθ+40cosθ=40√2sin(θ+π4),又θ∈(0,π2),所以θ+π4∈(π4,3π4),当θ+π4=π2,即θ=π4时,(AB+BC+CD)max=40√2(m),此时AO=DO=10√2(m),即当A,D距离圆心O为10√2m时,步行小路的距离最远.;【解析】此题主要考查三角函数在实际生活中的应用,考查正弦函数的最值,是中档题21.【答案】解(1)T =2π|ω|=2π160π =180(min).(2)f =1T=80. 即此人每分钟心跳的次数为80.(3)p(t)max =115+25=140(mmHg),p(t)min =115−25=90(mmHg), 即收缩压为140mmHg ,舒张压为90mmHg.此人的血压在血压计上的读数为140/90mmHg ,在正常值范围内.;【解析】此题主要考查三角函数在实际生活中的应用,考查正弦函数的周期与频率之间的关系以及求正弦函数的的值域相关问题,属于一般题.22.【答案】解:由题意,有7α=k·360°+α(k ∈Z),即α=k·60°. 又由于0°<α<360°,即0°<k·60°<360°(k ∈Z),则k 取1,2,3,4,5,所以α的值可取60°,120°,180°240°,300°.; 【解析】略.23.【答案】【解析】(1)由题表中数据可得:水深的最大值为13,最小值为7,所以{A +B =13,−A +B =7B =13+72=10,A =13−72=3,且相隔12小时达到一次最大值,说明周期为12,因此T=2πω=12,ω=π6,故f(t)=3sin π6t +10(0≤t ≤24)(2)要想船舶安全,必须f (t )≥11.5,即3sin π6t +10≥11.5, 所以sin π6t ≥12,所以2kπ+π6≤π6t ≤5π6+2kπ,k ∈Z ,解得12k+1≤t≤5+12k ,k ∈Z ,当k=0时,1≤t≤5;当k=1时,13≤t≤17.故船舶能安全进出该港的时间段为1:00至5:00,13:00至17:00,共8个小时.; 【解析】略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足
2
2a b 4c +-=(),且C=60°,ab 的值为 2.若0
2π
α<<
,02πβ-<<,
1cos()43πα+=,3cos()423πβ-=,则cos()2βα+=
3. 如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===,则sin C
的值为
4.在∆ABC 中.2
2
2
sin sin sin sin sin A B C B C ≤+-.则A 的 取值范围是
5.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣
⎦上单调递增,在区间,32ππ⎡⎤
⎢⎥⎣⎦上单调递减,则ω=
6.函数
2sin 2x
y x =
-的图象大致是
8.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π
个单位长度后,所得的图像与原图像重合,则ω的最小值等于
9.已知函数()3sin cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为
10.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,asinAsinB+bcos2A=a 2,则=
a b
13.设函数()sin()cos()
f x x x ωϕωϕ=+++(0,||)
2π
ωϕ><
的最小正周期为π,且
()()f x f x -=则 单调递减 单调递增
14.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若
()()
6f x f π
≤对x R ∈恒成立,且 ()()2f f π
π>,则()f x 的单调递增区间是
17.已知函数)(x f =Atan (ωx+ϕ)(
2||,0π
ϕω<
>),y=)(x f 的部分图像如下图,则
=
)24
(
π
f .
19.已知1sin cos 2α=+α
,且
0,2π⎛⎫α∈ ⎪⎝⎭,则cos 2sin 4πα
⎛⎫α- ⎪⎝⎭的值为__________
25.函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则f(0)=
31设ABC ∆的内角A 、B 、C 、所对的边分别为a 、b 、c ,
已知
1
1. 2.cos .
4a b C === (Ⅰ)求ABC ∆的周长 (Ⅱ)求
()
cos A C -的值
32.在△ABC 中,角A,B,C 所对的边分别为a,b,c ,且满足csinA=acosC . (Ⅰ)求角C 的大小;
(Ⅱ)求3sinA-cos (B+4π
)的最大值,并求取得最大值时角A 、B 的大小。
33.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .己知A —C=90°,a+c=2b ,求 C .
cos A-2cos C2c-a
=
cos B b.
34.在 ABC中,内角A,B,C的对边分别为a,b,c.已知
(I )求sin sin C A 的值; (II )若cosB=1
4,b=2,ABC ∆的面积S 。
37.已知函数
()tan(2),
4f x x π
=+ (Ⅰ)求()f x 定义域与最小正周期;(II )设0,4
πα⎛⎫
∈ ⎪
⎝
⎭,若()2cos 2,2f α
α=求α的大小.
38.在ABC ∆中,角..A B C 所对的边分别为a,b,c .已知()sin sin sin ,
A C p
B p R +=∈且
214ac b =. (Ⅰ)当5,1
4p b ==时,求,a c 的值;
(Ⅱ)若角B 为锐角,求p 的取值范围;
39.设a R ∈,()()2cos sin cos cos 2f x x a x x x π⎛⎫
=-+- ⎪
⎝⎭满足()03f f π⎛⎫
-= ⎪⎝⎭,求函数
()f x 在11[,]
424ππ
上的最大值和最小值.
(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。