遗传学-第10章-数量遗传

合集下载

医学遗传学:第10章 群体中的基因

医学遗传学:第10章 群体中的基因

一、基因频率和基因型频率
❖ 例:在一个747人的群体中,发现M血型者有233人; N血型者有129人;MN血型者有385人。
❖(1) MM、NN和MN3种基因型的频率分别是多少? ❖(2) M基因和N基因的频率分别是多少?
MN血型(共显性遗传)。人群中有MM、NN 和MN 3种基因型,相应的表型分别是M血型、 N血型和MN血型。
❖2、群体的遗传结构
又称为群体的遗传组成,是指群体的基因、基因 型的种类和频率。
❖ 一个群体所具有的全部遗传信息称为基因库 (gene pool)。
❖ 不同群体的遗传结构有差异。
❖3、随机交配
❖ 在有性生殖的孟德尔群体中,一种性别的任何一 个个体有同样的机会和相反性别的个体交配的方 式叫随机交配(random mating)。
群体发病率
p2 + 2pq H = 2pq ≈ 2p
p 1H 2
H≈发病率
基因频率的计算
❖2、常染色体隐性遗传
❖ aa为患者,Aa是携带者,AA是完全正常个体。 ❖遗传平衡群体中:AA=p2 Aa=2pq aa=q2 ❖ 所以群体发病率是q2,携带者频率为2pq。 ❖则通过群体发病率(q2 )就可直接计算出致病基
D
H
[M] p 747 0.312 2 747 0.515 0.312 2 0.515 0.57
747 2
R2H
[N] q 747 每0个.1基73因座2 747 0.515 0.173 2 0.515 0.43
有2个基74因7 2
2
一、基因频率和基因型频率
❖ 通过群体中的基因型频率计算共显性遗传和不完 全显性遗传的基因频率:
usq选择与突变间的平衡案例101一对外表正常的新婚夫妇新郎是中国上海人新娘系美国马萨诸塞州人双方均无遗传病家族史他们看到邻居家一对非近亲结婚的健康夫妇生了个苯丙酮尿症pku患儿很担忧将来自己的孩子也遭此厄运因此前来进行遗传咨询

数量遗传学

数量遗传学

质量性状:指由一对或对基因控制,在个体间能够明显区分,呈不连续性变异的性状。

数量性状:由微效多基因控制,在群体中不能明显区分,呈连续性变异的性状。

门阈性状:由微效多基因控制的,在群体中呈不连续分布的性状,一般能够明显地区分其表现形式。

数量遗传学:指用数理统计方法和数学分析方法研究数量性状遗传和变异规律的科学。

选择:在人类和自然干预下,某一群体的基因在世代传递的过程中,某种基因型个体的比例所发生的变化现象,称作选择。

适应度:比较群体中各种基因型(以个体平均留种子女数为标准)生存适应力的相对指标。

适应度就是特定基因型的留种率和群体最佳基因型留种率之比值。

选择系数:1减去适应度就是该基因型的选择系数。

留种率+淘汰率=1遗传漂变:如果群体规模较小,下一代的实际基因频率都可能由于抽样误差而偏离理论上应有的频率。

始祖效应:当来自大群体的一个小样本在特定环境中成为一个新的封闭群体,其基因库仅包括亲本群体中遗传变异的一小部分,并在新环境中承受新进化压力的作用,因而最终可能与亲本群分体。

这种过程在体现的般规律,称为始祖效应。

瓶颈效应:当大群体经历一个规模缩小阶段之后,以及在漂变中改变了基因库(通常是变异性减少)又重新扩大时,基因频率发生的变化。

同型交配:如果把同型交配严格地定义为同基因型交配,那么近交和同质选配都只有部分的同型交配,只有极端的近交方式——自交才是完全同型交配。

群体遗传学:专门研究群体的遗传结构及其变化规律的遗传学分支学科。

群体:是指一个种、一个变种、一个品种或一个其它类群所有成员的总和。

孟德尔群体:在个体间有相系交配的可能性,并随着世代进行基因交流的有性繁殖群体。

基因库:以各种基因型携带着各种基因的许多个体所组成的群体。

亚群:由于各种原因的交配限制,可能导致基因频率分布不均匀的现象,形成若干遗传特性有一定差异的群落通常称为亚群。

随机资本:在一个有性系列的生物群体中,任何一个雌性式雄性的个体与其任何一个相反性别的个体交配的机率是相同的。

《遗传学》(朱军第三版)名词解释大全

《遗传学》(朱军第三版)名词解释大全

第一章绪论1. 遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。

同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。

2. 遗传:是指亲代与子代相似的现象。

如种瓜得瓜、种豆得豆。

3. 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。

如高秆植物品种可能产生矮杆植株,一卵双生的兄弟也不可能完全一样。

第二章遗传的细胞学基础1. 细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。

其中有丝分裂过程分为:①.DNA合成前期(G1期);②.DNA 合成期(S期);③. DNA合成后期(G2期);④.有丝分裂期(M期)。

2. 原核细胞:一般较小,约为1~10mm。

细胞壁是由蛋白聚糖(原核生物所特有的化学物质)构成,起保护作用。

细胞壁内为细胞膜。

内为DNA、RNA、蛋白质及其它小分子物质构成的细胞质。

细胞器只有核糖体,而且没有分隔,是个有机体的整体;也没有任何内部支持结构,主要靠其坚韧的外壁,来维持其形状。

其DNA存在的区域称拟核,但其外面并无外膜包裹。

各种细菌、蓝藻等低等生物由原核细胞构成,统称为原核生物。

3. 真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。

真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。

另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。

真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。

4. 染色质:是指染色体在细胞分裂的间期所表现的形态,呈纤细的丝状结构,含有许多基因的自主复制核酸分子。

染色体:是指染色质丝通过多级螺旋化后卷缩而成的一定形态结构。

细菌的全部基因包容在一个双股环形DNA构成的染色体内。

真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。

《医学遗传学》背诵重点分章

《医学遗传学》背诵重点分章

《医学遗传学》背诵重点第一章绪论【名词解释】1、遗传性疾病(genetic disease):简称遗传病,是指遗传物质改变(基因突变或染色体畸变)所引起的疾病。

2、先天性疾病:是指个体出生后即表现出来的疾病。

大多数是遗传病与遗传因素有关的疾病和畸形。

3、家族性疾病:是指某些表现出家族性聚集现象的疾病,即在一个家族中有多人同患一种疾病。

【简答题】遗传病的特征及分类(1)特征:①垂直遗传②基因突变或染色体畸变是遗传病发生的根本原因,也是遗传病不同于其他疾病的主要特征。

③生殖细胞或受精卵发生的遗传物质改变才能遗传,而体细胞中遗传物质的改变,并不能向后代传递。

④遗传病常有家族性聚集现象。

(2)分类:(一)单基因病:由染色体上某一等位基因发生突变所导致的疾病。

①常染色体显性遗传病②常染色体隐性遗传病③X连锁隐性遗传病④X连锁显性遗传病⑤Y连锁遗传病⑥线粒体遗传病(二)多基因病:由两对以上的等位基因和环境因素共同作用所致的疾病。

(三)染色体病:染色体数目或结构改变所致的疾病。

(四)体细胞遗传病:体细胞中遗传物质改变所致的疾病。

第二章基因【名词解释】1、基因(gene):是合成一种有功能的多肽链或者RNA分子所必需的一段完整的DNA序列。

2、断裂基因(split gene):真核生物结构基因包括编码序列和非编码序列两部分,编码顺序在DNA分子中是不连续的,被非编码顺序分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因。

3、基因突变(gene mutation):是DNA分子中核苷酸序列发生改变,导致遗传密码编码信息改变,造成基因的表达产物蛋白质的氨基酸变化,从而引起表型的改变。

4、外显子(exon):编码顺序称为外显子5、内含子(intron):非编码顺序称为内含子6、多基因家族(mumlti gene family):指某一共同祖先基因经过重复和变异所产生的一组基因。

来源相同、结构相似、功能相关。

7、假基因(pseudo gene):基因序列与具有编码功能的类α和类β珠蛋白基因序列类似,因为不能编码蛋白质,所以称为假基因。

数量遗传学综述

数量遗传学综述

数量遗传学的发展历程摘要:数量遗传学经过近百年的发展,形成了一整套理论体系。

本文以数量遗传学的诞生、发展、现状为线索,阐述了该学科诞生的背景及所得到的启示、体会,介绍了数量遗传学发展历程的三次结合,分析了它的研究现状和发展前景。

关键词:数量遗传学数量性状发展历程1865年,孟德尔(G·Mendel)根据豌豆杂交试验,表了论文《植物杂交试验》,提出了遗传因子分离重组的假设,形成了孟德尔理论,标志着经典遗传的诞生。

19世纪末,孟德尔遗传学与数学相结合成了群体遗传学(population genetics)。

20世纪年代,Fisher在关于方差组分剖分的论文[1]中将体遗传学进一步与生物统计学相结合,奠定了数遗传学(quantitative genetics)的基础。

数量遗学是以数量性状(quantitative trait)为研究对的遗传学分支学科[2],它作为育种的理论基础已发展了近百年。

而将数量遗传学的理论应用于动育种则应归功于Lush(1945)在其划时代的著作物育种方案》(Animal Breeding Plan)中的系统述[3]。

在中国,1958年吴仲贤教授翻译的出版了英K·Mather 的第一版《生统遗传学》(Biometricalnetics),对我国动植物数量遗传学的发展起到了键性的推动作用。

在基因组学时代,随着对数量状基因型的识别,人们通过对经典数量遗传学模的修改完善,数量遗传学为分析表型信息和基因信息构建筑了合理框架,数量遗传学将会比过去挥更大的作用[4]。

在畜牧业生产中,与生产性能有的大多数经济性状属于数量性状。

因此,研究数量性状的遗传规律具有重要的实践意义。

1数量遗传学诞生的背景数量遗传学的诞生可以追溯到Fisher(1918)关于方差组分剖分的论文[1],它作为育种的理论基础已经发展了近1O0年,而数量性状的遗传研究可追溯到19世纪。

1885年,Galton[5]报道了205对父母与其930个后裔的身高关系。

遗传学第十章 数量性状遗传

遗传学第十章 数量性状遗传

• 表型方差 = 遗传(基因型)方差 + 环境方差
• VPhenotype = VGenetics + VEnvironment
数量性状的遗传率
遗传率H2=遗传方差/表型方差 =VG /(VG+VE〕
遗传率: 遗传方差在全部方差中所 占比率, 用于定量描述遗传变 异在表型变异中所起的作用
数量性状的遗传率(Heritability)
F2 5.07
H2b=VG/VP=(VF2-VE)/VF2 5.07 = -(0.67 + 3.56 + 2.31 )/3 5.07 =57%
狭义遗传率:h2=VA/VP=(1/2 VA)/VF2
• 要求出VA,需用F1个体回交两个亲本: • F1(Aa) X P1(AA)得B1; • F1(Aa) X P2(aa)得B2。 • B1,B2的表型方差分别计算如下
• 如果控制同一性状有n对基因:A,a;B,b;…N,n • 则F2的遗传方差: • VG=1/2 aa2+1/2 ab2+…+1/2 an2 … (VA) • +1/4 da2+1/4 db2+…+1/4 dn2 ... (VD)
• 设:VA为加性效应产生的方差 • VD为显性效应产生的方差 • 则表型方差VF2=1/2 VA+1/4 VD+VE(表型方差 可由观察值来计算。)
h2N>50%高遗传率
h2N=20-50%中遗传率
h2N <20% 低遗传率
遗传率高,选择较容易;遗传率低,选择较难。
平均显性程度
控制某一性状的所有等位基因显性的平均程度。
d/a= VD/VA
显性的遗传方差的求法

数量遗传学

数量遗传学
父方基因型
母方 基因型
AA (p2) Aa (2pq) aa (q2) AA (p2) AA ×AA (p4) Aa ×AA (2p3q) aa × AA (p2q2) Aa (2pq) AA ×Aa (2p3q) Aa × Aa (4p2q2 ) aa × Aa (2pq3) aa (q2) AA ×aa (p2q2) Aa × aa (2pq3) aa × aa (q4)

,世代间基因稳定传递,是生物进化的最小单位



表型 (phenotype):? 基因型 (genotype):? 基因 (gene):? 等位基因 (allele):? 复等位基因 (multiple allele):? 基因多态 (gene polymorphism):? (等位) 因频率 (allele frequency):? 基因型频率 (genotype frequency):?
哈迪一温伯格法则两个深层次的方面:
首先,因为亲本和后裔中基因频率相同,基因频率和基因型频 率之间的关系可适用于一单个世代。 其次,后裔的基因型频率仅取决于亲本的基因频率而与亲本的 基因型频率无关。
A1A1=p2
A1A2=2pq A2A2=q2
四、Hardy-Weinberg定律的应用
(一)遗传平衡群体的判定
Hardy-Weinberg定律
假定有一对等位基因A和a,A的频率为p,a的频率为q,则: p+q=1 (p + q) 2 = 1 p2 + 2pq + q2 =1 ↓ AA 因此,当AA:Aa:aa = 平衡状态。 ↓ Aa ↓ aa
p2:2pq:q2时,这样的群体处于
Hardy-Weinberg定律

数量性状遗传讲解学习

数量性状遗传讲解学习
有些组合 3:1分离,1对基因控制 有些组合15:1, 2对基因重叠 有些组合63:1, 3对基因重叠
若观察再详细一点,可以发现,在红粒组中红 色的程度又分为好几个等级。
2020/6/4
假设R基因使子粒呈红色,每增加一个R ,子粒的颜色就深一些 R,红色增效基因 R的效应可以累加 R的等位基因为r, r为减效基因
• 加上环境方差,F2的表现型方差为:
VF2 1 2VA1 4VDVE
❖ 上式中的1/2VA和1/4VD分别表示F2方差的两 个组成部分,加性方差和显性方差,而不是这两 部分方差的1/2和1/4。 ❖ VA和VD前面的系数由群体的遗传组成决定。
2020/6/4
回交群体的遗传方差
❖ 回交(back cross)是F1与亲本之一杂交。 ❖ F1与两个亲本回交得到的群体记为B1、B2。
❖ 非加性效应。
2020/6/4
基因型效应的数学模型
▪ 中亲值(m)=(CC+cc)/2,定为0 ▪ 各基因型值与中亲值的差就是相应的基因型效应 ▪ ac为加性效应,表示CC和cc基因型值与中亲值之差 ▪ dc为显性效应,表示Cc基因型值与中亲值之差 ▪ dc =0,无显性; dc >0,有显性效应; dc <0,表示c基因为
2020/6/4
如果只有1对基因控制
F1植株产生的配子 ♂G 1/2R+1/2r ♀G 1/2R+1/2r
♀♂配子受精结合, F2的基因型频率为 (1/2R+1/2r)(1/2R+1/2r) =(1/2R+1/2r)2 =1/4 RR +2/4 Rr +1/4 rr
表现型 3:1
2020/6/4
2020/6/4
2020/6/4

遗传学-数量性状的遗传分析

遗传学-数量性状的遗传分析

三、微效基因表型值的推算
累加作用(每个显性基因的作用以一定的数值与纯隐性亲本 的表型值相加) 纯显性亲本表型值=每个显性基因表型值X纯显性亲本基因数+ 纯隐性亲本表型值 如短穗玉米x=6.6,长穗玉米x=16.8,F2中长、短穗各占群体 的1/16 4n=16,n=2 控制长穗玉米穗长的显性基因为2对(4个). 每个显性基因表型值=纯显亲本表型值-纯隐亲本表型值/纯显 亲本基因数=16.8-6.6/4=2.55 所以,含一个显性基因的玉米穗长:6.6+2.55=9.15cm 含2个显性基因的玉米穗长:6.6+(2×2.55)=11.7cm 依此类推。
狭义遗传率
计算基因的相加效应的方差VA在总的表型方差中所占的百分率。
Aa同AA回交的子代个体为B1,同aa回交的子代个体为B2。 B1的遗传方差的计算 f x fx fx2 AA 1/2 a 1/2a 1/2a2 Aa 1/2 d 1/2d 1/2d2 合计 1 1/2(a+d) 1/2(a2+d2) B1的遗传方差:VB1=1/2(a2+d2) -1/4(a+d)2=1/4(a-d)2 B2的遗传方差的计算 f x fx fx2 Aa 1/2 d 1/2d 1/2d2 aa 1/2 -a -1/2a 1/2a2 合计 1 1/2(d-a) 1/2(a2+d2) B2的遗传方差:VB2=1/2(a2+d2)- 1/4(d-a)2=1/4(a+d)2
例如小麦籽粒颜色两对基因控制的遗传动态 P 红R1R1R2R2 白r1r1r2r2 R1r1R2r2 红 1 4 6 4
F1
F2
1
4R
深红
3R
中深红

(整理)数量遗传学

(整理)数量遗传学

质量性状:指由一对或对基因控制,在个体间能够明显区分,呈不连续性变异的性状。

数量性状:由微效多基因控制,在群体中不能明显区分,呈连续性变异的性状。

门阈性状:由微效多基因控制的,在群体中呈不连续分布的性状,一般能够明显地区分其表现形式。

数量遗传学:指用数理统计方法和数学分析方法研究数量性状遗传和变异规律的科学。

选择:在人类和自然干预下,某一群体的基因在世代传递的过程中,某种基因型个体的比例所发生的变化现象,称作选择。

适应度:比较群体中各种基因型(以个体平均留种子女数为标准)生存适应力的相对指标。

适应度就是特定基因型的留种率和群体最佳基因型留种率之比值。

选择系数:1减去适应度就是该基因型的选择系数。

留种率+淘汰率=1遗传漂变:如果群体规模较小,下一代的实际基因频率都可能由于抽样误差而偏离理论上应有的频率。

始祖效应:当来自大群体的一个小样本在特定环境中成为一个新的封闭群体,其基因库仅包括亲本群体中遗传变异的一小部分,并在新环境中承受新进化压力的作用,因而最终可能与亲本群分体。

这种过程在体现的般规律,称为始祖效应。

瓶颈效应:当大群体经历一个规模缩小阶段之后,以及在漂变中改变了基因库(通常是变异性减少)又重新扩大时,基因频率发生的变化。

同型交配:如果把同型交配严格地定义为同基因型交配,那么近交和同质选配都只有部分的同型交配,只有极端的近交方式——自交才是完全同型交配。

群体遗传学:专门研究群体的遗传结构及其变化规律的遗传学分支学科。

群体:是指一个种、一个变种、一个品种或一个其它类群所有成员的总和。

孟德尔群体:在个体间有相系交配的可能性,并随着世代进行基因交流的有性繁殖群体。

基因库:以各种基因型携带着各种基因的许多个体所组成的群体。

亚群:由于各种原因的交配限制,可能导致基因频率分布不均匀的现象,形成若干遗传特性有一定差异的群落通常称为亚群。

随机资本:在一个有性系列的生物群体中,任何一个雌性式雄性的个体与其任何一个相反性别的个体交配的机率是相同的。

遗传生物学

遗传生物学
动物遗传学河北工程大学动物遗传育种教研室标题时数第一章绪论第二章遗传的物质基础第三章遗传信息的传递第四章遗传学信息的改变第五章遗传的基本定律及其扩展第六章群体遗传学基础第七章数量遗传学基础第八章免疫遗传学基础自学第九章动物基因组学基础第十章非孟德尔遗传第十一章动物基因工程总和49实验
动物遗传学
Animal Genetics
主讲 张伟峰
E-mail: peak_zhang@
河北工程大学动物遗传育种教研室
教 材
40 35 30 25 20 15 10 5 0 ÒÅ ´« Óý Ö
ªÑ Ó øË ÇÁ Ï ¼ ²² ¡· ÀÖ Î Ë ÇÑ ø¹ ÜÀ í
äË Æ ü
章次 第一章 绪论
标题
时数 1
第二章
第三章 第四章 第五章 第六章 第七章
谢谢大家!
细胞遗传学:
主要是孟德尔定律和连 锁定律,
以及染色体研究的综合 产物。
群体遗传学:
讨论基因在整个群体中的频率分 布和变化速度。 基因频率在群体中的变化主要有两种 情况起作用:1、长期的自然选择 (进化遗传学);2、短期的人工选 择,特别是数量性状的短期改进(数 量遗传学)。
分子遗传学:
遗传学开始于:19世纪60年代; 创始人:Gregor J. Mendel(孟德尔, 1822~1884), 一位奥地利修道士。 1865年Mendel首次发表历经8年的豌豆杂 交试验结果:”植物杂交试验“,以及由此 得出的基因分离和重组基本定律。(当时没 有引起注意)
35年后(1900年)三位不同国家的生物学 家独立研究,重新发现了孟德尔分离和重组 定律及其著作。
主要研究三种大分子(多糖、多肽、 多核苷酸,主要是DNA,某基因的DNA 序列和功能)的化学结构、生物功能、 活动和变化的科学。遗传工程(也叫基 因工程、DNA重组技术)是当代的一门 崭新生物技术,人们运用分子生物学知 识所设计的巧妙方法,定向改造生物遗 传性。

全部遗传学作业答案

全部遗传学作业答案

第一章遗传的分子基础一、解释下列名词:1、细菌的转化:指某一受体细菌通过直接吸收来自另一来自供体细菌游离DNA, 从而获得供体细菌的相应遗传性状的现象.2、Chargaff 第一碱基当量定律:不同物种的DNA碱基组成显著不同,但腺嘌呤(A)的总摩尔数等于胸腺嘧啶(T),而鸟嘌呤(G)的总摩尔数等于胞啶啶(C).即3、Chargaff 第二碱基当量定律:在完整的单链DNA中,腺嘌呤(A)的总摩尔数等于胸腺嘧啶(T),而鸟嘌呤(G)的总摩尔数等于胞啶啶(C).4、启动子(promotor)是结构基因上游的一段DNA序列,是RNA聚合酶和基本转录因子的结合位点,包含着一个转录启始位点和TATA框(TATAAAAG)。

5、内含子和外显子6、增强子(enhancer)是活化因子结合的DNA序列,活化因子与增强子结合后,通过作用位于启动子的RNA聚合酶提高转录效率。

增强子有时与启动子间隔数万个bp。

7、断裂基因(split gene):真核生物的结构基因的DNA序列由编码序列和非编码序列两部分组成,编码序列是不连续的,被非编码序列分割开来,故称为断裂基因(split gene)。

8、半保留复制:DNA复制时分别以两条链互为模板,而合成两条互补新链;每个子代DNA分子含有一条旧链和一条新链的方式。

9、复制起点:DNA复制的起始位置,具有特殊的序列,可以被复制先导酶识别。

10、复制子:从起点到终点的DNA复制单位。

四.简答题1、试述基因概念的发展历程。

2、试述DNA复制的一般过程.3、以大肠杆菌为例,试述DNA转录为mRNA 的一般过程。

4、以大肠杆菌为例,试述蛋白质生物合成的一般过程。

5、试述真核生物DNA复制的特点.6、试述真核生物mRNA 转录后加工的过程与作用。

7、蛋白质在细胞合成后还有哪些后加工过程?8、图示中心法则,并作简要说明。

遗传学课程复习题第二章细胞遗传学基础一.名词解释:1、染色体: 染色体是遗传物质的载体。

《遗传学》朱军版习题及答案

《遗传学》朱军版习题及答案

《遗传学(第三版)》朱军主编课后习题与答案目录第一章绪论 (1)第二章遗传的细胞学基础 (2)第三章遗传物质的分子基础 (6)第四章孟德尔遗传 (9)第五章连锁遗传和性连锁 (12)第六章染色体变异 (15)第七章细菌和病毒的遗传 (21)第八章基因表达与调控 (27)第九章基因工程和基因组学 (31)第十章基因突变 (34)第十一章细胞质遗传 (35)第十二章遗传与发育 (38)第十三章数量性状的遗传 (39)第十四章群体遗传与进化 (44)第一章绪论1.解释下列名词:遗传学、遗传、变异。

答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。

同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。

遗传:是指亲代与子代相似的现象。

如种瓜得瓜、种豆得豆。

变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。

如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。

2.简述遗传学研究的对象和研究的任务。

答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。

遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。

3.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素?答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。

没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。

遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。

同时经过人工选择,才育成适合人类需要的不同品种。

因此,遗传、变异和选择是生物进化和新品种选育的三大因素。

4. 为什么研究生物的遗传和变异必须联系环境?答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。

数量遗传学

数量遗传学

• 这时上述模型可简化为:P=G+E----数量性状的 数学模型
二 数量性状的数学模型
• 在一般情况下,由于环境效应偏差是以离均差表示的,个 体随机环境效应对各观察值的影响有大有小、有正有负, 总和可抵消为0.即假设有:
• 因此.在同一固定环境条件下可得到
三 基因效应及其剖分
• 数量性状的数学模型在实际育种工作中仍是有欠缺的,这 是由于基因实际上存在三种不同的效应: • 即基因加性效应(A) • 等位基因间的显性效应(D) • 非等位基因间的上位效应(I)。 G(遗传效应值)=A+D+I
• 从育种学角度出发,重要的是能够真实遗传的育种值(基 因加性效应值)A这一部分,而D和I带有一定的随机性, 一般均将它们归并到环境偏差E中,通称之为剩余值,记 为R,即有: R=D十I十E • 因此,模型可进一步化为 P=A+R
描述数量性状遗传规律有三个最基本的遗传参数: 重复率、遗传力和遗传相关
• 重复率: • 用来衡量一个数量性状在同一个体多次度量值之间的相 关程度。Fra bibliotek• • • •
V(G)基因型方差 V(Ep)持久环境效应方差 V(P)总环境效应方差 V(E1)暂时性的环境效应方差
遗传力
• 广义遗传力就是指数量性状基因型方差占表型方差的比例。 • 通过广义遗传力的估计,可以了解一个性状受遗传效应影 响有多大,受环境效应影响多大。
数量性状基因座
• 英文全名:Quantitative Trait Locus
• 英文缩写:QTL • 概念:指控制数量性状的基因在染色体(或基因组)中所 在的座位。通过检测染色体上某个座位表现出对数量性状 表现型的作用的大小,可以探知QTL的存在。检测到的一 个QTL既可能只包含一个数量性状基因,也可能包含若干 个数量性状基因,与人们的检测能力有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



VF 2
玉米穗长试验结果 VF1=2.307,VF2=5.072, 在该组合中,穗长的广义遗传率为: Hb2=(5.072-2.307)/5.072×100%=54% 在该杂交组合中, F2 穗长的变异大约有 54%是由于遗传差异造成的,46%是环境 影响造成的。
三. 狭义遗传力的估算方法
例如小麦子粒颜色的遗传动态
P F1 F2 红R1R1R2R2 白r1r1r2r2 R1r1R2r2 红 1 4 6 4
1
4R
深红
3R
中深红
2R
中红
1R
淡红
0R
白色
P F1
F2
红R1R1R2R2R3R3 白r1r1r2r2r5R 4R 3R 2R 1R
VA H 100% VG VE
2 N
VA = 100% VA VD VI VE
(1) 不易受环境影响的性状的遗传率比较 高,易受环境影响的性状则较低; (2) 变异系数小的性状遗传率高,变异系 数大的则较低; (3) 质量性状一般比数量性状有较高的遗 传率; (4) 性状差距大的两个亲本的杂种后代, 一般表现较高的遗传率; (5) 遗传率并不是一个固定数值,对自花 授粉植物来说,它因杂种世代推移而 有逐渐升高的趋势。
一、遗传率(heritability)的概念
表现型是基因型和环境条件共同作用的结果。
具有相对性状的两个亲本杂交,后代的性状表 现型值的差异取决于两方面的因素,一是基因 的分离造成的,一是环境条件的影响造成的。
遗传率:在一个群体中,遗传方差在总 方差(表现型方差)中所占的比值。
广义遗传率定义为:
G A D I
加性效应,A:等位基因和非等位基因 的累加效应,可固定的分量 显性效应,D:等位基因之间的互作 效应, 属于非加性效应 上位性效应, I: 非等位基因之间的相 互作用, 属于非加性效应
• VG = VA+VD+VI • VA:加性方差(可固定遗传) • VD:显性方差(不可固定遗传) • VI:上位性方差(不可固定遗传)
1/2VA =72%×40.35=29.05
VA = 58.1
(3) VF2=1/2VA+1/4VD+VE=40.35
VD=(40.35-29.05-10.68)×4=2.48 2=1/2VA+1/4VD/ V =(40.35-10.68)/40.35=73.5% h F2 (4) B
• • • • •
上位性效应(I)
非等位基因之间的相互作用对基因型值 产生的效应。 非加性效应。
加性-显性模型 G=A+D P=A+D +E
VG = VA + VD VP = VA+VD+VE
加性-显性-上位性模型 G=A+D+I VG = VA + VD + VI P=A+ D + I + E VP = VA+VD+VI+VE
第十章 数量性状的遗传
遗传性状: 质量性状:表现型具有 不连续的变异
数量性状:表现型具有 连续的变异
第一节 数量性状的特征
一、数量性状的特征 (1) 连续性变异,不 能明确分组,用 统计学方法分析 (2)易受环境条件的 影响而发生变化 (3)存在基因型与环 境的互作
玉米穗长遗传
图 8-2 玉米4个品种在3个环境中的产量表现
方差 V/S2 V
x x
n 1
2
V
2
x x n
2
2
n 1
标准差S
S
x x
n 1
第三节 数量性状的遗传模型 和方差分析
一、数量性状的遗传模型 表现型值 : 对个体某性状度量或观测 到的数值,是个体基因型在一定条件 下的实际表现,是基因型与环境共同 作用的结果 P - 表现型值 G - 基因型值 E - 环境离差 则 P=G+E VP = VG + VE
HN
2
2VF 2 VB1 VB 2 100% VF 2
VA 加性方差 100%= 100% 总方差 VF 2
注意点:
遗传率是一个统计学概念,是针对群体的 而不适用于个体。 例如人类身高的遗传率是 0.5 ( 50% ), 并不是说某一个人的身高一半是由遗传控 制的,另一半是由环境决定的,而只是说, 在人群中,身高的总变异中,1/2与遗传差 异有关,1/2与环境的差异有关,或者说, 群体中各个人身高的变异,50%是由其个体 间的遗传差异造成的。
1
0R
最深红 暗红 深红 中深红 中红 淡红 白色
由于 F1 产生 1/2R 和 1/2r 的♀、♂配 子,则F2表现型为: (1/2R+1/2r)2
当性状由 n 对独立基因决定时,则 F2表现型频率: (1/2R+1/2r)2n
多基因控制 的性状一般 均表现数量 遗传的特征
典型数量性状分布图(正态分布)
第四节 数量性状基因座
数量性状是由众多基因控制的 随着现代分子生物学的发展和分子标 记技术的成熟,已经可以构建各种作 物的分子标记连锁图谱,在此基础上 ,发展起来了数量性状基因位点(QTL) 的定位方法 可以估算数量性状的基因位点数目、 位置和遗传效应- QTL定位
借助于分子标记和数量性状基因位点 (QTL) 作图技术,已经可以在分子标 记连锁图上标记出单个基因位点的位 置,并确定其基因效应: 主(效)基因:效应明显的基因 微效基因:效应微小的基因 修饰基因:增强或削弱其他主基因对 表现型的作用 (加性效应、显性效应、上位性效应 及与环境的互作)
加性效应(A)
基因座位(locus)内等位基因之间 以及非等位基因之间的累加效应 是上下代遗传中可以固定的遗传分量
显性效应(D)
基因座位内等位基因之间的互作效应。
非加性效应,不能在世代间固定 与基因型有关 随着基因在不同世代中的分离与重组, 基因间的关系(基因型)会发生变化, 显性效应会逐代减小。
按天然异交率对作物的分类:
加性方差 100% • 按照定义公式 H 总方差
2 N
• 计算狭义遗传力需解出加性效应 方差(VD),可通过F2、B1和B2 方差来估算。
6家系
cc
ac
0 dc Cc
ac
CC
dc 0
d c ac d c ac
无显性 ,加性效应
部分显性 完全显性
d c ac
超显性
狭义遗传力的估算方法
QQ Qq qq QQ Qq qq
QQ Qq qq QQ Qq qq QQ Qq qq
MM
Mm
mm
MM
Mm
mm
图 8-5 QTL定位的基本原理示意图
图 8-6 玉米5号染色体上影响产量的QTL位置与LOD曲线图
第五节 近亲繁殖与杂种优势
如图所示,以品种内交 配为起点,愈上则亲缘关 系愈近,属于近亲繁殖 (inbreeding, 也 称 近 亲 交 配或简称近交,是指血统 或亲缘关系相近的两个 个体间的交配,其极端类 型的为自交;愈下则亲缘 关系愈远 , 属于异交 , 而 以远缘杂交为极点。
QTL——是 Quantitative
trait loci 的缩写。中文可翻译
成数量性状座位或数量性状基因座,指的是控制数量性状
的基因在基因组中的位置。
采用QTL定位方法,可以估算数量性状的基因点数目、位置 和遗传效应。
该定位方法有三大类: 1.单标记分析法 2.区间作图法 3.复合区间作图法
QQ Qq qq
小麦抽穗期的 hN 两亲本 的平均表型方差为 10.68 , F2 表 型方差为 40.35。 求:VE VA VD 2 hB
2=72%,
例:小麦抽穗期的hN2=72%, 两亲本的平均表型方差为 10.68,F2表型方差为 40.35。 求(1)VE =1/2(VP1+VP2)=10.68 (2) h2N=1/2VA/VF2=1/2VA/40.35=72%
VE=VF1 =1/2(VP1+VP2) =1/3(VP1+VP2+VF1) =1/4VP1+1/2VF1+1/4VP2
广义遗传率的估算
H
2 B
VG 100% VG VE
VP VE 100% VP VF 2 VF 1 100% VF 2 VF 2 1 VP1 VP 2 2 100% VF 2 1 VF 1 VP1 VP 2 3 100% VF 2
cc
ac
0 dc Cc
ac
CC
dc 0
d c ac d c ac
无显性 ,加性效应
部分显性 完全显性
d c ac
超显性
第四节
遗传率的估算及其应用
遗传率(力 ): 遗传方差在总方差 (表型 方差 ) 中所占的比值,作为杂种后代 进行选择的一个指标 广义遗传率hB2 = VG VP × 100%
基因加性方差是可固定的遗传变异 量,可在上、下代间传递,所以, 凡是狭义遗传率高的性状,在杂种 的早期世代选择有效; 反之,则要在 晚期世代选择才有效。
育种值方差
理论上,在同一个试验中 HN2 一定小于 HB2。
狭义遗传力才真正表示以表现型值作为选择 指标的可靠性程度。
加性方差又称为育种值方差。
VG 遗传方差 H 100 %= 100% 总方差 VG VE
2 B
遗传率衡量遗传因素和环境条件对所研究的性状的 表型总变异所起作用的相对重要性。
遗传力又称为遗传决定度(degree of genetic determination)。
相关文档
最新文档