《概率论与统计原理》、《概率与统计原理》期末复习资料121220
概率论与数理统计期末考试复习资料
F (x) x f (x)dx ,
则称 X 为连续型随机变量。f (x) 称为 X 的概率密度函数或密度函 数,简称概率密度。 密度函数具有下面 4 个性质: 1° f (x) 0 。
2° f (x)dx 1。
X
| x1, x2,, xk, 。
P( X xk) p1, p2,, pk,
显然分布律应满足下列条件:
(2)连 续型随 机变量 的分布 密度
(3)离 散与连 续型随 机变量 的关系 (4)分 布函数
(5)八 大分布
(1) pk 0 ,k 1,2,, (2) pk 1。 k 1
ba
f
(x)
b
1
a
,
0,
a≤x≤b
其他,
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,b)。
分布函数为
0,
xa, ba
x<a, a≤x≤b
x
F (x) f (x)dx
1,
x>b。
当 a≤x1<x2≤b 时,X 落在区间(x1, x2 )内的概率为
P( A)
条件概
下,事件 B 发生的条件概率,记为P(B / A) P(AB) 。
P( A)
率
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如 P(Ω/B)=1P( B /A)=1-P(B/A)
(13) 乘法公式:P(AB) P(A)P(B / A)
乘法公 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
概率论与数理统计期末考试复习资料
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有
。
(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,
则
,i=1,2,…n。
此公式即为贝叶斯公式。
。
指数分布
,
0, ,
?
?其中 ,则称随机变量X服从参数为 的指数分布。
X的分布函数为
,
x<0。
?记住积分公式:
正态分布
设随机变量 的密度函数为
, ,
其中 、 为常数,则称随机变量 服从参数为 、 的正态分布或高斯(Gauss)分布,记为 。
具有如下性质:
1° 的图形是关于 对称的;
2°当 时, 为最大值;
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。
(3)一些常见排列
重复排列和非重复排列(有序)
对立事件(至少有一个)
顺序问题
(4)随机试验和随机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
记为(X,Y)~N(
由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,
即X~N(
但是若X~N( ,(X,Y)未必是二维正态分布。
(10)函数分布
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
概率论与统计原理复习资料
一、填空题1、设A B, C为三个事件,则下列事件“ B发生而A与C至少有一个发生”,“A,B, C中至少有两个发生”,“A, B, C中至少有一个发生”,“A,B, C中不多于一个发生”,“A,B, C中恰好有一个发生” ,“ A , B , C中恰好有两个发生”分别可表示丿为、、、、、。
参考答案:B ( A+C AB+AC+BCA + B+C, AC + BC +AB , AB C +AC B + A BC, ABC + ABC +ABC考核知识点:事件的关系及运算2、从0, 1, 2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为___________ 、______ 、______ 。
参考答案:,,考核知识点:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为_____________ ,恰好有2枚正面向上的概率为__________________ 。
参考答案:1/8 , 3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为_____________________ 。
参考答案:考核知识点:古典型概率5、假设某商店获利15万元以下的概率为,获利10万元以下的概率为,获利5万元以下的概率为,则该商店获利5~10万元的概率为_____________ ,获利U 10~15万元的概率为_____________ 。
参考答案:,考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。
用不放回两种方法取球,则取到的两个球都是白球的概率为______________ ;取到的两个球颜色相同的概率为_____________ ;取到的两个球中至少有一个是白球的概率为_____________ 。
参考答案:,7/15, 14/15考核知识点:古典型概率和概率的性质7、设事件A,B互不相容,已知P( A= ,P( B)二,则P( A+B= ________ ; P( A +B) = _______ ;P( A B) = _______ ;P( AB) = _______ 。
概率论与数理统计期末考试复习资料汇编
式
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) ……P( An | A1A2 … An 1) 。
①两个事件的独立性
(14) 设事件 A 、B 满足P(AB) P(A)P(B) ,则称事件 A 、B 是相互独立 独立性 的。
若事件 A 、B 相互独立,且P(A) 0 ,则有
学习-----好资料
第 1 章 随机事件及其概率
(1)排 列组合 公式
Pmn
m! (m n)!
C
n m
m! n!(m n)!
从 m 个人中挑出 n 个人进行排列的可能数。 从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加 法和乘 法原理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方 法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步
(6)事 件的关 系与运 算
B:A=B。 A、B 中至少有一个发生的事件:A B,或者 A+B。
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B, 也可表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。 A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发
德摩根率:
Ai
Ai
AB AB,AB AB
i1
i 1
设 为样本空间,A 为事件,对每一个事件 A 都有一个实数 P(A),
概率论与数理统计期末必备复习资料
全概率公式
划分:设S为试验E的样本空间,B1, B2,L , Bn 为E的一 组事件,若
① Bi Bj ,i j,i, j 1, 2,L , n ② B1 U B2 UL U Bn S 则称 B1, B2,L , Bn 为样本空间S的一个划分.
例 E:掷骰子观察点数
S {1,2,3,4,5,6}
条件概率小结
缩减样本空间
条件概率 乘法公式
定义式
全概率公式
贝叶斯公式
浙江师范大学 14
独立性
独立事件:两事件A、B,A发生对B发生没有影响, B发生也对A没有影响,则称两事件相互独立.即 P(A|B)=P(A)且P(B|A)=P(B),则 P(AB)=P(A)P(B|A)=P(A)P(B)
例 抛甲,乙两枚硬币,A={甲出现正面H},B={乙 出现正面H},问A,B同时发生的概率.
注:全概率公式给出我们一个用来计算在众多原 因 B1, B2,L , Bn 的作用下事件A发生概率的方法. (由因得果)
浙江师范大学 12
贝叶斯公式(由果溯因)
设E的样本空间为S,A为E的事件. B1, B2 ,L , Bn 为S的一个划分,且 P(A)>0,P(Bi ) 0.(i 1, 2,L , n) ,
即在f (x)的连续点
x1 x2
f (x) F '(x) lim F(x x) F(x) lim P{x X x x}
k
均有:P Ai1 Ai2 L Aik P Aij j 1
则称A1, A2,L , An相互独立
浙江师范大学 16
定义 随机试验的结果可以用一个实值变量表示, 这个变量的取值是随机的,但又服从一定的统计规 律性,这种变量称为随机变量,通常用X,Y,Z表 示。
概率论与数理统计期末考试复习资料
分布函数F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即x1 x2 时,有 F(x1) F(x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
并且同时满足 P(ABC)=P(A)P(B)P(C)
那么 A、B、C 相互独立。
对于 n 个事件类似。
设事件B1, B2,, Bn 满足
(15) 1° B1, B2,, Bn 两两互不相容,P(Bi) 0(i 1,2,, n) ,
全概公
2°
A
n
Bi
,
式
i 1
则有
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
n 次试验是重复进行的,即 A 发生的概率每次均一样;
(17)
每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发
伯努利 生与否是互不影响的。
概型 这种试验称为伯努利概型,或称为n 重伯努利试验。 用 p 表示每次试验 A 发生的概率,则 A 发生的概率为1 p q ,用Pn(k) 表示n 重伯努利试验中 A 出现k(0 k n) 次的概率,
C Pn(k) k pk qnk ,k 0,1,2,, n 。 n
第二章 随机变量及其分布
3
(1)离 散型随 机变量 的分布 律
设离散型随机变量 X 的可能取值为 Xk(k=1,2,…)且取各个值 的概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…,
概率论与数理统计期末总复习资料
古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出m (m ≤a +b)个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;分析:本例的样本点就是从a +b中有次序地取出m 个球的不同取法;第m 次取出的球是白球意味着:第m次是从a 个白球中取出一球,再在a +b-1个球中取出m-1个球。
解:设B ={第m 次取出的球是白球}样本空间的样本点总数: mb a A n +=事件B 包含的样本点: 111--+=m b a a A C r ,则 b a a A aA n r B P mba mb a +===+--+11)( 注:本例实质上也是抽签问题,结论说明按上述规则抽签,每人抽中白球的机会相等,同抽签次序无关。
例2:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1 个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数: 915C n ==5005事件B 包含的样本点: 563514C C C r ==240,则 P (B )=120/1001=0.048 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子(N ≥n)的任一个之中,求下列事件的概率:(1) A ={指定n 个格子中各有一个质点};(2) B ={任意n 个格子中各有一个质点}; (3) C ={指定的一个格子中恰有m (m ≤n )个质点}.解:样本点为n 个质点在N 个格子中的任一种分布,每个质点都有N 种不同分布,即n 个质点共有N n 种分布。
故样本点总数为:N n(1)在n 个格子中放有n 个质点,且每格有一个质点,共有n !种不同放法;因此,事件A 包含的样本点数:n!,则 n Nn A P !)(=(2)先在N 个格子中任意指定n 个格子,共有nN C 种不同的方法;在n 个格子中放n 个质点,且每格一个质点,共有n !种不同方法;因此,事件B 包含的样本点数: n NnN A C n =!,则n nNNA B P =)((3)在指定的一个格子中放m (m ≤n )个质点共有mn C 种不同方法;余下n-m 个质点任意放在余下的N-1个格子中,共有m n N --)1(种不同方法.因此,事件C 包含的样本点数:mn C m n N --)1(, 则mn m m n nm n mn N N N C N N C C P ---=-=)1()1()1()( 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数} 。
概率论与统计原理
《概率论与统计原理》课程期末复习资料《概率论与统计原理》课程讲稿章节目录:第一章事件的概率§1.1 随机事件和样本空间1.1.1 随机现象与随机试验1.1.2 随机事件1.1.3 样本空间§1.2 事件的关系和运算1.2.1 事件的关系和运算1.2.2 事件与集合的关系1.2.3 事件的运算性质§1.3 随机事件的概率1.3.1 概率的统计定义1.3.2 古典型概率1.3.3 几何型概率§1.4 概率的公理化定义1.4.1 概率的三条公理(概率的公理化定义)1.4.2 概率的性质§1.5 条件概率和事件的独立性1.5.1 条件概率1.5.2 乘法公式1.5.3 全概率公式1.5.4 贝叶斯公式1.5.5 事件的独立性第二章随机变量及其分布§2.1 随机变量及其分布函数2.1.1 随机变量2.1.2 随机变量的分布函数§2.2 离散型随机变量2.2.1离散型随机变量及其分布2.2.2 常用离散型概率分布§2.3 连续型随机变量2.3.1 连续型随机变量的定义2.3.2 常用连续型概率分布§2.4 随机变量函数的分布2.4.1 离散型随机变量函数的分布2.4.2 连续型随机变量函数的分布§2.5 多维随机变量简介2.5.1 多维随机变量的定义2.5.2 二维随机变量的联合分布函数2.5.3 边缘分布函数2.5.4 随机变量的独立性第三章随机变量的数字特征§3.1 随机变量的数学期望3.1.1 数学期望的定义3.1.2 随机变量函数的数学期望3.1.3 数学期望的性质§3.2 随机变量的方差3.2.1 方差和标准差的定义3.2.2 方差的性质3.2.3 切比雪夫不等式§3.3 常用分布的数学期望和方差3.3.1 常用离散型分布的数学期望和方差3.3.2 常见连续型分布的数学期望和方差§3.4 随机变量的矩第四章极限定理§4.1 大数定律4.1.1随机变量列的极限4.1.2 大数定律§4.2 中心极限定理4.2.1 列维-林德伯格定理4.2.2 棣莫佛-拉普拉斯(De Moivre-Laplace)定理第五章统计原理§5.1 数理统计的基本概念5.1.1 总体和样本5.1.2 统计量5.1.3 经验分布函数§5.2 抽样分布5.2.1 χ2分布5.2.2 t分布5.2.3 正态总体的抽样分布§5.3 参数估计5.3.1 统计估计的概念5.3.2 参数的点估计5.3.3 正态总体参数的区间估计§5.4 假设检验5.4.1 一个总体均值的假设检验5.4.2 一个正态总体方差σ2的假设检验5.4.3 一个总体比率的假设检验(大样本)一、客观部分:(单项选择)★考核知识点: 事件的关系和运算考核知识点解释:“事件A与事件B至少有一个发生”的事件,称为事件A与事件B的和(或并),记作A∪B或A+B。
概率论与数理统计期末复习资料
《概率统计》、《概率论与数理统计》、《随机数学》课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。
1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。
5、理解随机变量的概念,能熟练写出(0—1)分布、二项分布、泊松分布的分布律。
6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。
7、掌握指数分布(参数λ)、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度。
9、会求分布中的待定参数。
10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性。
11、掌握连续型随机变量的条件概率密度的概念及计算。
12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。
13、了解求二维随机变量函数的分布的一般方法。
14、会熟练地求随机变量及其函数的数学期望和方差。
会熟练地默写出几种重要随机变量的数学期望及方差。
15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念。
会用独立正态随机变量线性组合性质解题。
17、了解大数定理结论,会用中心极限定理解题。
18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握2分布(及性质)、t分布、F分布及其分位点概念。
19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。
概率论与数理统计期末复习重要知识点及公式整理
概率论与数理统计期末复习重要知识点及公式整理2010-2011学年第一学期期末复习资料概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量XP{X x1}p,P{X x2}1p只有两个可能取值,且其分布为(0p1),则称X服从x1,x2处参数为p的两点分布。
两点分布的概率分布:两点分布的期望:(2)二项分布:P{X x1}p,P{X x2}1p(0p1) E(X)p;两点分布的方差:D(X)p(1p)若一个随机变量X的概率分布由式给出,则称X服从参数为n,p的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:二项分布的期望:(3)泊松分布:P{x k}Cnp(1p)kkn kkkn k,k0,1,...,n. P{x k}Cnp(1p),k0,1,...,n. E(X)np;二项分布的方差:D(X)np(1p)kP{X k} e若一个随机变量X的概率分布为数为的泊松分布,记为X~P () k!,0,k0,1,2,...,则称X服从参P{X k} e泊松分布的概率分布:泊松分布的期望:4.连续型随机变量:kk!,0,k0,1,2,... E(X);泊松分布的方差:D(X)如果对随机变量X的分布函数F(x),存在非负可积函数F(x)P{X x}f(x),使得对于任意实数x,有xf(t)dt,则称X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度函数。
2010-2011学年第一学期期末复习资料5.常用的连续型分布:(1)均匀分布:1,若连续型随机变量X的概率密度为f(x)b a 0,a x b其它,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)1,均匀分布的概率密度:f(x)b a0,a b2a xb 其它均匀分布的期望:(2)指数分布:E(X);均匀分布的方差:D(X)(b a)122e xf(x)0若连续型随机变量X的概率密度为x00,则称X服从参数为的指数分布,记为X~e ()x0e xf(x)0指数分布的概率密度:指数分布的期望:(3)正态分布:E(X)1;指数分布的方差:D(X)2f(x)(x)222x若连续型随机变量X的概率密度为则称X服从参数为和22的正态分布,记为X~N(,)(x)222f(x)正态分布的概率密度:正态分布的期望:E(X)xD(X)x22;正态分布的方差:(4)标准正态分布:0,21(x),2(x)xet22标准正态分布表的使用:(1)x0(x)1(x)2010-2011学年第一学期期末复习资料X~N(0,1)P{a x b}P{a x b}P{a x b}P{a x b}(b)(a)X~N(,),Y2(2)X(3)P{a X b}P{a~N(0,1),F(x)P{X x}P{X故b}(b)(a)x(x) Y2Y定理1:设X~N(,),则X~N(0,1)6.随机变量的分布函数:设X是一个随机变量,称分布函数的重要性质:0F(x) 1P{x1X x2}P{X x2}P{X x1}F(x2)F(x1)x1x2F(x1)F(x2)F()1,F()0F(x)P{X x}为X的分布函数。
概率论与数理统计第一章期末复习
概率论与数理统计第一章期末复习(一)随机事件1.随机现象定义1在一定的条件下,并不总是出现相同结果的现象称为随机现象.定义2只有一个结果的现象称为确定性现象.2.样本空间定义3一个试验如果满足下述条件:(1)试验可以在相同的情形下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.就称这样的试验是一个随机试验,记作E.定义4随机试验E的所有可能结果组成的集合称为E的样本空间,记作Ω.样本空间的元素,即E的每个结果,称为样本点,记作ω.3.随机事件定义5随机试验的某些样本点的集合称为随机事件,简称事件,常用大写英文字母A,B,C,…表示.定义6由样本空间Ω中的单个元素组成的子集称为基本事件.而样本空间Ω的最大子集(即Ω本身)称为必然事件,样本空间Ω的最小子集(即空集∅)称为不可能事件.4.事件的关系与运算下面的讨论总是假设在同一个样本空间Ω中进行.1)包含关系⊂如果属于A的样本点必属于B,则称A包含于B或称B包含A,记作A B ⊃.用概率的语言说:事件A发生必然导致事件B发生.或B A对任一事件A,必有∅Ω⊂A.⊂2)相等关系如果属于A的样本点必属于B,且属于B的样本点必属于A,即BA⊂且=.AB⊂,则称事件A与B相等,记作A B3)互不相容(互斥)如果A 与B 没有相同的样本点,则称A 与B 互不相容(互斥).即事件A 与事件B 不可能同时发生.4)两事件的和事件“事件A 与B 中至少有一个发生”,这样的一个事件称作事件A 与B 的和(或并),记作B A .5)两事件的积事件“事件A 与B 同时发生”,这样的一个事件称作事件A 与B 的积(或交),记作B A (或AB ).6)两事件的差事件“事件A 发生而B 不发生”,这样的事件称为事件A 对B 的差,记作A B -.7)对立事件或逆事件若=AB ∅且Ω=B A ,则称A 与B 为对立事件或互为逆事件,事件A 的对立事件记作A .【例1】设A 、B 、C 是Ω中的随机事件,则(1)事件{A 发生且B 与C 至少有一个发生}可表示为:)(C B A ;(2)事件{A 与B 发生而C 不发生}可表示为:C AB ;(3)事件{A 、B 、C 中至少有两个发生}可表示为:BC AC AB ;(4)事件{A 、B 、C 中至多有两个发生}可表示为:ABC ;(5)事件{A 、B 、C 中不多于一个发生}可表示为:AB BC AC ;(6)事件{A 、B 、C 中恰有一个发生}可表示为:ABC ABC ABC .【例2】关系()成立,则事件A 与B 为对立事件.A .=AB ∅B .Ω=B AC .=AB ∅,Ω=B AD .=AB ∅,Ω≠B A 【解析】由对立事件的概念可知选项C 正确.【例3】甲、乙两人谈判,设事件A ,B 分别表示甲、乙无诚意,则B A 表示()A .两人都无诚意B .两人都有诚意C .两人至少有一人无诚意D .两人至少有一人有诚意【解析】由题可知A 与B 分别表示甲、乙有诚意,则B A 表示甲、乙两人至少有一人有诚意,故选项D 正确.5.事件的运算性质(1)交换律:A B B A =,BA AB =;(2)结合律:C B A C B A )()(=,)()(BC A C AB =;(3)分配律:()()()A B C AB AC = ,()()()A B C A C B C = ;(4)对偶律:B A B A = ,B A AB =.一些有用的等式:A A A = ,A Ω=Ω ,A A ∅= AA A =,A A Ω=,A ∅=∅A B A AB AB -=-=,A B A B A =【例4】化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .【解】(1) A B B A B A B A ==)())((ØA =;(2)AC B C A B C B B A ==)())((;(3)))(())((B A B B A B A B A B A =AB AB A A B A A === )(.(二)随机事件的概率1.概率的公理化定义定义1设E 是随机试验,Ω是它的样本空间.对于E 的每一事件A 赋予一个实数,记为)(A P ,称为事件A 的概率,如果集合函数)(⋅P 满足下列条件:(1)非负性0)(≥A P ,对Ω∈A ;(2)规范性()1P Ω=;(3)可列可加性若=j i A A ∅,j i ≠, ,2,1,=j i ,有∑+∞=+∞==11)()(i i i i A P A P .2.概率的性质性质1不可能事件的概率为0,即()0P ∅=.性质2概率具有有限可加性,即若=j i A A ∅(n j i ≤<≤1),则∑===ni i n i i A P A P 11)()( .性质3对任一随机事件A ,有()1()P A P A =-.性质4若A B ⊂,则)()()(B P A P B A P -=-.推论若A B ⊂,则)()(B P A P ≥.性质5对任意的两个事件A ,B ,有)()()(AB P A P B A P -=-.性质6对任意的两个事件A ,B ,有()()()()P A B P A P B P AB =+- .对任意三个事件A ,B ,C ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= .推论对任意的两个事件A ,B ,有)()()(B P A P B A P +≤ .【例1】设A 与B 互不相容,且0)(>A P ,0)(>B P ,则下列结论正确的是()A .A 与B 为对立事件B .A 与B 互不相容C .)()()(B P A P B A P -=-D .)()(A P B A P =-【解析】因为A 与B 互不相容,所以AB =∅,0)(=AB P ,故选项A :互不相容不一定对立,故选项A 错误;选项B :互不相容不一定对立,故B A 不一定等于Ω,所以B A B A =不一定等于∅,即A 与B 不一定互不相容,故选项B 错误;选项C :)()()()(A P AB P A P B A P =-=-,故选项C 错误,进而选项D 正确.【例2】已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求(A P ,)(AB P ,)(B A P 和)(B A P .【解】(1)7.0)(1)(=-=A P A P ;(2)∵B A ⊂,∴A AB =,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .【注】事件的概率的计算常常需要结合对偶律,应用性质3.【例3】已知事件A ,B ,B A 的概率分别是0.4,0.3,0.6,求(B A P .【解】)()()()(AB P B P A P B A P -+= )(3.04.06.0AB P -+=所以1.0)(=AB P ,则3.0)()()((=-=-=AB P A P B A P B A P .【例4】已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P .求:(1)A ,B ,C 中至少发生一个的概率;(2)A ,B ,C 都不发生的概率.【解】(1)因为0)(=AB P ,且AB ABC ⊂,所以由概率的单调性知0)(=ABC P ;再由加法公式,得A ,B ,C 中至少发生一个的概率为)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= 8516243=-=.(2)因为{A ,B ,C 都不发生}的对立事件为{A ,B ,C 中至少发生一个},所以A ,B ,C 都不发生的概率为83851(=-=C B A P .3.古典概型定义2若随机试验E 具有下述特征:(1)样本空间的元素(即样本点)只有有限个,不妨设为n 个,并记它们为12,,,n ωωω .(2)每个样本点出现的可能性相等(等可能性),即有12()()()n P P P ωωω=== .则称这种等可能性的概率模型为古典概型.对任意一个随机事件Ω∈A ,有nk A A P =Ω=中所有样本点的个数所含有样本点的个数事件)(.【例5】袋中有大小相同的4个白球,3个黑球,从中任取3个至少有2个白球的概率为.【解析】袋中共有7个球,从中任取3个,共有37C 中取法,即样本空间Ω中共有37C 个样本点.取出的3个球中至少有2个白球,分为2个白球1个黑球和3个白球两种情况.当取出的3个球中有2个白球1个黑球时,共有1324C C 中取法;当取出的3个球中有3个白球时,共有0334C C 中取法.记=A {从中任取3个至少有2个白球},则事件A 中共有03341324C C C C +个样本点.因此3522)(3703341324=+=C C C C C A P .(三)条件概率1.条件概率定义1设A 与B 是样本空间Ω中的两个事件,若0)(>B P ,则称)()()(B P AB P B A P =为“在事件B 发生条件下事件A 发生的条件概率”,简称条件概率.【例1】已知31)()(==B P A P ,61)(=B A P ,求(B A P .【解】∵61)()()(==B P AB P B A P ,∴181)(=AB P ,)(1)()()()(B P B A P B P B A P B A P -== )(1)]()()([1B P AB P B P A P --+-=127=.【注】条件概率的计算通常与概率的性质结合使用.【技巧】在计算过程中,只要有概率的性质可以用,就一直用概率的性质计算,直到没有概率的性质可用时,对得到的式子进行化简整理,代入已知数据计算.2.乘法公式定理1(乘法公式)(1)若0)(>B P ,则)()()(B A P B P AB P =.(2)若0)(121>-n A A A P ,则)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P .【例2】一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第三次才取得合格品的概率.【解】设=i A {第i 次取得合格品},3,2,1=i .由题意知,所求概率为)(321A A A P ,易知10010)(1=A P ,999)(12=A A P ,9890)(213=A A A P .由此得)()()()(213121321A A A P A A P A P A A A P =0083.0989099910010≈⋅⋅=.3.全概率公式定义2设Ω为试验E 的样本空间,1B ,2B ,…,n B 为E 的一组事件.如果=j i B B ∅,j i ≠,n j i ,,2,1, =且Ω=n B B B 21,则称1B ,2B ,…,n B 为样本空间Ω的一个划分.定理2(全概率公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>i B P ,n i ,,2,1 =,则对任一事件A 有)()()(1i ni i B A P B P A P ∑==.4.贝叶斯公式定理3(贝叶斯公式)设1B ,2B ,…,n B 为样本空间Ω的一个划分,若0)(>A P ,0)(>i B P ,n i ,,2,1 =,则∑==n i j j i i i B A P B P B A P B P A B P 1)()()()()(,n i ,,2,1 =.【例3】一批同型号的零件由编号为Ⅰ、Ⅱ、Ⅲ的三台机器共同生产,各台机器生产的零件占这批零件的比例分别为35%、40%和25%,各台机器生产的零件的次品率分别为3%、2%和1%.(1)求该批零件的次品率;(2)现从该批零件中抽到一颗次品,试问这颗零件由Ⅰ号机器生产的概率是多少?【解】设=A {零件是次品},=1B {零件由Ⅰ号机器生产},=2B {零件由Ⅱ号机器生产},=3B {零件由Ⅲ号机器生产},则由题设知35.0)(1=B P ,4.0)(2=B P ,25.0)(3=B P ,03.0)(1=B A P ,02.0)(2=B A P ,01.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 021.0=.(2)题目要求的是)(1A B P ,由贝叶斯公式,得21)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P .【例4】有甲、乙、丙三厂同时生产某种产品.甲、乙、丙三厂的产量之比为1:1:3,次品率分别为4%,3%,2%.(1)若从一批产品中随机抽出一件,求这件产品为次品的概率.(2)若产品的售后部门接到一名顾客投诉,说其购买的产品为次品,请问哪个厂最该为此事负责,为什么?【解】设=A {产品为次品},=1B {产品由甲厂生产},=2B {产品由乙厂生产},=3B {产品由丙厂生产},则由题设知,2.0)(1=B P ,2.0)(2=B P ,6.0)(3=B P ,04.0)(1=B A P ,03.0)(2=B A P ,02.0)(3=B A P .(1)题目要求的是)(A P ,由全概率公式,得∑==31)()()(i i i B A P B P A P 026.0=.(2)由贝叶斯公式,得134)|()()|()()(31111==∑=i i i B A P B P B A P B P A B P ,133)|()()|()()(31222==∑=i i i B A P B P B A P B P A B P ,136)|()()|()()(31333==∑=i i i B A P B P B A P B P A B P .所以在产品为次品的情况下,产品来自丙厂的可能性最大,丙厂最该负责.【注】全概率公式与贝叶斯公式通常一起考试.(四)独立性1.两个事件的独立性定义1若)()()(B P A P AB P =成立,则称事件A 与事件B 相互独立,简称A 与B 独立.否则称A 与B 不独立或相依.定理1若事件A 与B 独立,则A 与B 独立;A 与B 独立;A 与B 独立.【例1】甲、乙两人彼此独立的向同一个目标射击,甲击中目标的概率为0.9,乙击中目标的概率为0.8,求目标被击中的概率.【解】设=A {甲击中目标},=B {乙击中目标},则=B A {目标被击中}.则)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=98.0=.【例2】若事件A 与B 相互独立,8.0)(=A P ,6.0)(=B P ,求:)(B A P 和)|(B A A P .【解】∵A 与B 相互独立,∴)()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=92.0=.)())(()|(B A P B A A P B A A P =)()()()()(B A P B P A P B A P B A P ==13.0=.【例3】设)()(B A P B A P =,证明:A 与B 相互独立.【证】因为)()(B A P B A P =,所以有)(1)()()(1)()()()()(B P AB P A P B P B A P B P B A P B P AB P --=--==,即有)]()()[()](1)[(AB P A P B P B P AB P -=-,整理得)()()(B P A P AB P =,所以A 与B 相互独立.2.多个事件的相互独立性定义2设A ,B ,C 是三个事件,若有⎪⎩⎪⎨⎧===)()()()()()()()()(C P B P BC P C P A P AC P B P A P AB P (1)第11页共11页则称A ,B ,C 两两独立.若还有)()()()(C P B P A P ABC P =,(2)则称A ,B ,C 相互独立.注意:只有(1)式与(2)式同时成立,事件A ,B ,C 才相互独立.(1)式成立不能保证(2)式成立;反过来,(2)式成立也不能保证(1)式成立.定义3设有n 个事件1A ,2A ,…,n A ,对任意的n k j i ≤<<<≤ 1,若以下等式均成立⎪⎪⎩⎪⎪⎨⎧===)()()()()()()()()()()(2121n n k j i k j i j i j i A P A P A P A A A P A P A P A P A A A P A P A P A A P 则称此n 个事件1A ,2A ,…,n A 相互独立.定理2如果n (2≥n )个事件1A ,2A ,…,n A 相互独立,则其中任何m (n m ≤≤1)个事件换成相应的对立事件,形成的n 个新的事件仍相互独立.【例4】三人独立地去破译一份密码,已知各人能译出的概率分别为51,31,41,问三人中至少有一人能将此密码译出的概率是多少?【解】设A ,B ,C 分别表示三人独立译出密码,则51)(=A P ,31)(=B P ,41)(=C P ,且A ,B ,C 相互独立,有方法1:)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=6.0=.方法2:)(1)(C B A P C B A P -=(1C B A P -=()()(1C P B P A P -=53411)(311)(511(1=----=.。
概率论与统计原理复习资料全
《概率论与统计原理》复习资料一、填空题1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。
参考答案:B(A+C,AB+AC+BC,A +B+C,CB+BA+CA,AB C+AC B+A BC,ABA+CBCA+CB考核知识点:事件的关系及运算2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。
参考答案:0.04,0.02,0.1考核知识点:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为,恰好有2枚正面向上的概率为。
参考答案:1/8,3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。
参考答案:0.6考核知识点:古典型概率5、假设某商店获利15万元以下的概率为0.9,获利10万元以下的概率为0.5,获利5万元以下的概率为0.3,则该商店获利5~10万元的概率为,获利10~15万元的概率为。
参考答案:0.2,0.4考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。
用不放回两种方法取球,则取到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率为。
参考答案:0.4,7/15,14/15考核知识点:古典型概率和概率的性质7、设事件A,B互不相容,已知P(A)= 0.6,P(B)= 0.3,则P (A+B)= ;P(A+B)= ;P(A B)= ;P(BA)= 。
参考答案:0.9,0.4,0.3,0.1考核知识点:概率的性质8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为0.5,0.6,0.8,则恰有一人中靶的概率为;至少有一人中靶的概率为。
《概率论与数理统计》总复习资料
《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。
例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。
若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。
其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。
因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。
例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。
概率论与数理统计期末复习资料
《概率统计》、《概率论与数理统计》、《随机数学》课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。
1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。
5、理解随机变量的概念,能熟练写出(0—1)分布、二项分布、泊松分布的分布律。
6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。
7、掌握指数分布(参数λ)、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度。
9、会求分布中的待定参数。
10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性。
11、掌握连续型随机变量的条件概率密度的概念及计算。
12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。
13、了解求二维随机变量函数的分布的一般方法。
14、会熟练地求随机变量及其函数的数学期望和方差。
会熟练地默写出几种重要随机变量的数学期望及方差。
15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念。
会用独立正态随机变量线性组合性质解题。
17、了解大数定理结论,会用中心极限定理解题。
18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握χ2分布(及性质)、t分布、F分布及其分位点概念。
19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。
概率论与数理统计期末考试复习资料
2° f (x)dx 1。
P(X x) P(x X x dx) f (x)dx
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P(X xk) pk 在离散型随机变量理论中所起的作用相类似。
机变量
的关系
(4)分 布函数
设 X 为随机变量,x 是任意实数,则函数
F(x) P(X x)
称为随机变量 X 的分布函数,本质上是一个累积函数。 P(a X b) F(b) F(a) 可以得到 X 落入区间(a,b] 的概
率。分布函数F(x) 表示随机变量落入区间(– ∞,x]内的概率。
'
分布函数具有如下性质:
1° 0 F(x) 1, x ; 2° F(x) 是单调不减的函数,即x1 x2 时,有 F(x1) F(x2) ;
pk
1。
k 1
设F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意
实数x ,有
F (x) x f (x)dx ,
则称 X 为连续型随机变量。f (x) 称为 X 的概率密度函数或密度函 数,简称概率密度。
密度函数具有下面 4 个性质: 1° f (x) 0 。
|
(3)离 散与连
某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步
骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。
(3)一 重复排列和非重复排列(有序)
些常见 对立事件(至少有一个)
排列 顺序问题
(4)随 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不
机试验 止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这
q 1 p,0 p 1, k 0,1,2,, n ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题1、设A ,B ,C 为三个事件,则下列事件“B 发生而A 与C 至少有一个发生”,“A ,B ,C 中至少有两个发生”,“A ,B ,C 中至少有一个发生”,“A ,B ,C 中不多于一个发生”,“A ,B ,C 中恰好有一个发生”,“A ,B ,C 中恰好有两个发生”分别可表示为 、 、 、 、 、 。
参考答案:B (A+C ,AB+AC+BC ,A +B +C ,C A +C B +B A ,AB C +AC B +A BC ,BC A +C B A +C AB 考核知识点:事件的关系及运算,参见P92、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为 、 、 。
参考答案:0.04,0.04,0.1考核知识点:古典型概率,参见P113、箱中有60个黑球和40个白球,从中任意连接不放回取出k 个球,则第k 次取出黑球的概率为 。
参考答案:0.6考核知识点:古典型概率,参见P134、假设某商店获利15万元以下的概率为0.9,获利10万元以下的概率为0.5,获利5万元以下的概率为0.3,则该商店获利5~10万元的概率为 ,获利10~15万元的概率为 。
参考答案:0.2,0.4考核知识点:概率的性质,参见P16~P175、设袋中有6个球,其中4白2黑。
用不放回两种方法取球,则取到的两个球都是白球的概率为 ;取到的两个球颜色相同的概率为 ;取到的两个球中至少有一个是白球的概率为 。
参考答案:0.4,7/15,14/15考核知识点:古典型概率和概率的性质,参见P18~P19 6、设事件A ,B 互不相容,已知P (A )= 0.6,P (B )= 0.3,则P (A+B )= ;P (A +B )= ;P (A B )= ;P (B A )= 。
参考答案:0.9,0.4,0.3,0.1考核知识点:概率的性质,参见P197、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为0.5,0.6,0.8,则恰有一人中靶的概率为 ;至少有一人中靶的概率为 。
参考答案:(1)0.26;(2)0.96考核知识点:事件的独立性,参见P298~P30 8、每次试验的成功率为p (0< p <1),则在5次重复试验中至少成功一次的概率为 。
参考答案:5)1(1p --考核知识点:事件的独立性,参见P299、设随机变量X ~N (1,4),则P{0 ≤X <1.6}= ;P{X <1}= 。
参考答案:0.3094,0.5考核知识点:正态分布,参见P6110、设随机变量X ~B (n ,p ),已知E X =0.6,D X =0.48,则n = ,p = 。
参考答案:3,0.2考核知识点:随机变量的数学期望和方差,参见P111,P120~P121 11、设随机变量X 服从参数为(100,0.2)的二项分布,则E X = , D X = 。
参考答案:20,16考核知识点:随机变量的数学期望和方差,参见P111,P120~P121 12、设随机变量X 服从正态分布N (-0.5,0.52),则E X 2= ,D (2X -3)= 。
参考答案:0.5,1考核知识点:随机变量的数学期望和方差及其性质,参见P113, P12213、设由来自正态总体)9,(2μN 的容量为9的简单随机样本,得样本均值X =5,则未知参数μ的最大似然估计值为 ,μ的置信度为0.95的置信区间为 。
参考答案:5,(-0.88,10.88)考核知识点:正态总体参数的极大似然估计以及区间估计,参见P185~P186,P19414、设由来自正态总体)10,(2μN 的容量为25的简单随机样本,得样本均值X =15,则未知参数μ的最大似然估计值为 ,μ的置信度为0.95的置信区间长度为 。
参考答案:15,7.84考核知识点:正态总体参数的极大似然估计以及区间估计,参见P185~P186,P194~P19515、设总体X 服从正态分布),(2σμN ,从X 中随机抽取一个容量为36的样本,设X 为样本均值,S 2为样本方差。
当总体方差σ2已知时,检验假设H 0:μ=μ0的统计量为 ,当总体方差σ2未知时,检验假设H 0:μ=μ0的统计量为 。
参考答案:36/0σμ-X ,36/0S X μ-考核知识点:正态总体均值的假设检验,参见P21216、设总体X 服从正态分布),(2σμN ,从X 中随机抽取一个容量为n 的样本,设S 2为样本方差,则检验假设H 0:202σσ=的统计量为 。
参考答案:222)1(σχS n -=考核知识点:正态总体方差的假设检验,参见P21817、假设检验时若增大样本容量,则犯两类错误的概率都将 。
参考答案:减少考核知识点:假设检验的两类错误,参见P 210~P211二、单项选择题1、下列数字中不可能是随机事件概率的是( )。
A .- 1/3B .0 C.0.3 D.1 参考答案:A考核知识点:概率的公理化定义,参见P162、某产品共有10件,其中3件为次品,其余为正品。
用不放回方法从中任取两次,一次一件,则第二次取到的是正品的概率为( )。
A .107 B .103C .92D .151参考答案:B考核知识点:古典型概率,参见P133、设某厂的甲、乙、丙三个车间生产同一种产品,记A 1为“产品是由甲车间生产的”, A 2为“产品是由乙车间生产的”, A 3为“产品是由丙车间生产的”, B 为“产品是次品”。
今从即将出厂的该种产品中任取一件,则取到的是甲车间生产的次品的概率为( )。
A .P (C A 1) B .P (C 2A ) C .P (B A 2) D .P (A 1B )参考答案:D考核知识点:概率的表示与条件概率,参见P214、设某厂的甲、乙、丙三个车间生产同一种产品,记A 1为“产品是由甲车间生产的”, A 2为“产品是由乙车间生产的”, A 3为“产品是由丙车间生产的”, B 为“产品是次品”。
今从次品中任取一件,则它是由甲车间生产的的概率为( )。
A .P (C A 1) B .P (C 2A ) C .P (B A 2) D .P (B A 1) 参考答案:D考核知识点:概率的表示与条件概率,参见P215、任何连续型随机变量的概率密度f (x ) 一定满足( )。
A .1)(0≤≤x fB .在定义域内单调不减C .在定义域内右连续D .⎰∞+∞-=1)(dx x f参考答案:D考核知识点:概率密度的性质,参见P526、设随机变量X ~N (2,1002),且P{0<X <4}=0.3,则P{X <0}=( )。
A .0.25B .0.35C .0.65D . 0.95 参考答案:B考核知识点:正态分布,参见P617、设X 是随机变量,x 0为任意实数,E X 是X 的数学期望,则( )。
A .220)E E()E(X X x X -=- B .220)E E()E(X X x X -≥- C .220)E E()E(X X x X -≤- D .0)E(20=-x X参考答案:B考核知识点:方差的性质,参见P1238、设假设总体X 服从参数为p (0<p <1)的0-1分布,p 未知。
(X 1,X 2,…,X 5)是来自X 的简单随机样本,则下面的( )是统计量。
A .X 1+pX 3B .X 5+2p (X 5 -X 2)C .min (X 1,X 2,…,X 5)D .X 2-E X 4 参考答案:C考核知识点:统计量的定义,参见P 1609、设总体X 的均值μ与方差2σ都存在,且均为未知参数,而n X X X ,,,21 为该总体的一个样本,∑==ni i X n X 11,则总体均值μ的矩估计量为( ).A .∑=n i i X n 121B .∑=-n i i X X n 12)(1C .∑=-n i i X n 12)(1μ D .∑=-n i i X X n 1)(1参考答案:A考核知识点:参数的矩估计,参见P 180~P18110、设总体X 的均值μ与方差2σ都存在,且均为未知参数,而n X X X ,,,21 为该总体的一个样本,∑==n i i X n X 11,则总体方差2σ的矩估计量为( ).A .∑=n i i X n 121B .∑=-n i i X X n 12)(1C .∑=-n i i X n 12)(1μ D .∑=-n i i X X n 1)(1参考答案:B考核知识点:参数的矩估计,参见P 180~P18111、从估计量的有效性是指( )。
A .估计量的抽样方差比较小B .估计量的抽样方差比较大C .估计量的置信区间比较宽D .估计量的置信区间比较窄 参考答案:A考核知识点:评价估计量的标准,参见P 19012、在一次假设检验中,当显著性水平为0.01时原假设被拒绝。
当显著性水平为0.05时,则( )。
A .可能会被拒绝B .就不会被拒绝C .也一定会被拒绝D .需要重新检验 参考答案:C考核知识点:假设检验的显著性水平,参见P 20913、假设检验时若增大样本容量,则犯两类错误的概率( )。
A .一个增大,一个减少B .都增大C .都不变D .都减少 参考答案:D考核知识点:假设检验的两类错误,参见P 210~P21114、假设检验中,一般情况下,( )错误。
A .只犯第一类B .只犯第二类C .既可能犯第一类也可能犯第二类D .既不犯第一类也不犯第二类 参考答案:C考核知识点:假设检验的两类错误,参见P 210~P21115、要求次品率低于10%才能出厂,在检验时原假设应该是( )。
A. 1.0:0≥p H B.1.0:0=p H C. 1.0:0≤p H D.1.0:0<p H 参考答案:A考核知识点:单边假设检验,参见P 221~P224三、计算题1、写出下列随机试验的样本空间及下列事件的样本点。
(1)E 1:掷一颗均匀对称的骰子,观察出现的点数;A ={掷出偶数点}。
(2)E 2:记录一段时间内某城市110报警次数;B ={报警次数小于5次}。
(3)E 3:在一批灯泡中任意抽取一只,观察其使用寿命(单位:小时);C ={使用寿命超过500小时}。
(4)E 4:向半径为10的平面区域D ={(x ,y ):x 2 +y 2≤100}内随机投掷一点(假设点必落在D 内),观察落点的坐标;C={落点在半径为5的同心圆内}。
参考答案:(1)Ω1 = {1,2,…,6};A = {2,4,6}(2)Ω2 ={0,1,2,…};B ={0,1,2,3,4} (3)Ω3 =(0,∞ );C =(500,∞)(4)Ω4 = {100:),(22≤+y x y x },D ={25:),(22≤+y x y x } 考核知识点:用集合表示随机试验的样本空间和随机事件,参见P4~P52、已知P (A )=P (B )=P (C )=1/4,P (AC )=P (AB )=1/16,P (BC )= 0,求事件“A ,B ,C 至少有一个发生”和事件“A ,B ,C 都发生”的概率。