高中数学《3.3.2简单的线性规划》导学案2 新人教A版必修5

合集下载

人教A版高中数学 必修五 3-3-2简单的线性规划2教案 精

人教A版高中数学 必修五 3-3-2简单的线性规划2教案 精

3.3.2简单的线性规划问题(2)一、设计问题,创设情境练习1:(1)作出不等式组表示的平面区域(如图阴影部分),即可行域.将z1=x+y变形为y=-x+z1,这是斜率为-1、随z1变化的一簇平行直线. z1是直线在y轴上的截距.当然直线要与可行域相交,即在满足约束条件时目标函数z1=x+y取得最值.由图可见,当直线z1=x+y经过可行域上的点B时,截距z1最小.解方程组得B点的坐标为x=,y=.所以z1的最小值为.同理,当直线z1=x+y与可行域的边界x+y=6重合时,z1最大为6.(2)同理将z2=3x+y化为y=-3x+z2,这是斜率为-3的一簇平行直线.如图所示,当它过可行域上的点A(0,6)时,z2最小为6.(3)同理将z3=x+4y化为y=-x+,它是斜率为-的一簇直线.如图所示,当直线经过可行域上的点C时,最大,即z3最大.解方程组得点C的坐标为x=,y=.所以z3的最小值为.问题1:是目标函数对应的直线的斜率与可行域中边界对应的直线的斜率的大小关系不同导致的.练习2:解:z=ax+y可化为y=-ax+z,因为z=ax+y在可行域中的点B处取得最小值,所以,直线z=ax+y与可行域只有一个公共点B或与边界AB重合,或与边界BC重合.因此-2≤-a≤-.所以实数a的取值范围是.练习3:学生探究一:可以把可行域中的所有“整点”都求出来.求这些最优解时,可根据可行域对x的限制条件,先令x去整数,然后代入到可行域,求出y的范围,并进一步求出y 的整数值.学生探究二:由于x,y∈N,则必有x+y∈N.又因为当x=,y=时,z1的最小值为,且直线z1=x+y应该向上方(或右方,或右上方)移动,所以相应的z1的值大于.所以令z1=x+y=5,即y=-x+5,代入得即1≤x≤3,所以当或时,z1取得最小值5.问题2:结合等量关系,将“二元”问题转化为“一元”问题求解.当可行域范围较小,包含的整点个数很少时,方法一比较简洁;反之,方法二较为简洁.二、运用规律,解决问题【例题】解:设需截第一种钢板x张,第二种钢板y张,则用图形表示以上限制条件,得到如图所示的平面区域(阴影部分).由题意,得目标函数为z=x+y.可行域如图所示.把z=x+y变形为y=-x+z,得到斜率为-1、在y轴上截距为z的一族平行直线.由图可以看出,当直线z=x+y经过可行域上的点M时,截距z最小.解方程组得点M.而此问题中的x,y必须是整数,所以M不是最优解.经过可行域内整点且使截距z 最小的直线是y=-x+12,经过的整点是B(3,9)和C(4,8),它们是最优解.z min=12.答:要解得所需三种规格的钢板,且使所截两种钢板张数最小的方法有两种,第一种截法是第一种钢板3张,第二种钢板9张;第二种截法是第一种钢板4张,第二种钢板8张.两种截法都最少要两种钢板12张.问题3:规律:(1)找出实际问题中的数量关系,根据数量关系设出合理的两个变量x,y;(2)用x,y表示实际问题中的数量关系,得到线性约束条件和目标函数;(3)用图解法解答线性规划问题的最优解,必要时要探求“整点”;(4)用最优解作答实际问题.四、变式训练,深化提高变式训练1:解:设每天食用x kg食物A,y kg食物B,总成本为z,那么可化为目标函数为z=28x+21y.作出不等式组表示的平面区域,即可行域.平移直线z=28x+21y知,当直线经过表示的点时,z min=28×+21×=16.答:每天食用食物A约143g,食物B约571g,能够满足日常饮食要求,又使花费最低,最低成本为16元.问题4:条件中的不等式组对应平面区域;图形;数形结合;也和图形结合起来;表示可行域内的点(x,y)与原点(0,0)连线的斜率;表示可行域内的点(x,y)与点(0,3)的距离.变式训练2:解析:如图所示,可行域内的点(x,y)与原点(0,0)连线是介于直线OC和y轴之间,根据斜率的变化规律,直线OC的斜率最小为,所以的最小值为表示可行域内的点(x,y)与点P(0,3)的距离,所以结合图形可以知道点P到直线AB的距离就是的最小值为.答案:五、反思小结,观点提炼问题5:数形结合;平移直线时,要根据目标函数对应直线的斜率确定该直线与可行域边界直线的相对位置关系;在图形变化的过程中,寻求对应的斜率的变化范围,等等.当堂检测:1. 完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x人,瓦工y人,请工人的约束条件是(). A.50402000x y+=B.50402000x y+≤C.50402000x y+≥D.40502000x y+≤2. 已知,x y满足约束条件0403280,0xyx yx y≤≤⎧⎪≤≤⎪⎨+≤⎪⎪≥≥⎩,则25z x y=+的最大值为().A.19 B.18 C.17 D.163. 变量,x y满足约束条件232421229360,0x yx yx yx y+≥⎧⎪+≥⎪⎨+≥⎪⎪≥≥⎩则使得32z x y=+的值的最小的(,)x y是().A.(4,5)B.(3,6)C.(9,2)D.(6,4)4.已知实数,x y满足约束条件240220330x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩则目标函数2z x y=+的最大值为______________5.设变量,x y满足约束条件3023x yx yx-+≥⎧⎪+≥⎨⎪-≤≤⎩则目标函数2x y+的最小值为______________。

2019高中数学 第三章 不等式 3.3.2 简单的线性规划2导学案(无答案)新人教A版必修5

2019高中数学 第三章 不等式 3.3.2 简单的线性规划2导学案(无答案)新人教A版必修5

简单的线性规划一、自学准备与知识导学线性规划的两类重要实际问题:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大;第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小二、学习交流与问题探讨1.产品安排问题例1 某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?2.物资调运问题例2 已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少?3.下料问题例3 要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:今需要、、三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?规律总结简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解(4)根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解三、练习检测与拓展延伸1.在不等式⎩⎨⎧≤+-≥-+0153042y x y x 表示的区域内,满足目标函数y x t +=取得最小值的整数点),(y x 是 ( ) A.)2,3( B.)3,2( C.)2,1( D.)1,2(2.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A 、B 两种规格的金属板,每张面积分别为2m 2、3 m 2,用A 种金属板可造甲产品3个,乙产品5个,用B 种金属板可造甲、乙产品各6个,则A 、B 两种金属板各取多少张时,能完成计划并能使总用料面积最省?( )A .A 用3张,B 用6张 B .A 用4张,B 用5张C .A 用2张,B 用6张D .A 用3张,B 用5张3.若y x ,都是非负整数,则满足5≤+y x 的点共有________个;4.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元.5.某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大?四、小结与提高。

2019-2020学年高中数学 3.3.2简单的线性规划教案(二)新人教A版必修5.doc

2019-2020学年高中数学 3.3.2简单的线性规划教案(二)新人教A版必修5.doc

2019-2020学年高中数学 3.3.2简单的线性规划教案(二)新人教A版必修5推进新课[合作探究]师 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 产品耗时1小时,每生产一件乙产品使用4个B 产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P (x,y )在上述平面区域中时,所安排的生产任务x 、y 才有意义.进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x 件,乙产品y 件时,工厂获得利润为z,则如何表示它们的关系? 生 则z=2x+3y.师 这样,上述问题就转化为:当x 、y 满足上述不等式组并且为非负整数时,z 的最大值是多少?[教师精讲]师 把z=2x+3y 变形为z x y 3132+-=,这是斜率为32-,在y 轴上的截距为31z 的直线.当z 变化时可以得到什么样的图形?在上图中表示出来.生 当z 变化时可以得到一组互相平行的直线.(板演)师 由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线z x y 3132+-=,这说明,32z y x =+由平面内的一个点的坐标唯一确定.可以看到直线z x y 3132+-=与表示不等式组的区域的交点坐标满足不等式组,而且当截距3z最大时,z取最大值,因此,问题转化为当直线z x y 3132+-=与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距3z最大.由图可以看出,当直线z x y 3132+-=经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 最大,最大值为314.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元. [知识拓展]再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l 0:2x+y=0.然后,作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].若设t=2x+y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC .作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l:2x+y=t,t ∈R. 可知,当l 在l 0的右上方时,直线l 上的点(x,y)满足2x+y >0,即t >0. 而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线l 2所对应的t 最大,以经过点A (1,1)的直线l 1所对应的t 最小.所以t m a x =2×5+2=12,t min =2×1+3=3.(2)(3)[合作探究]师 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t=2x+y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t=2x+y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. 课堂小结用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. 布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品?分析:将已知数据列成下表:甲原料(吨) 乙原料(吨) 费用限额成本1 000 1 500 6 000 运费500 400 2 000 产品90 100 解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0y x y x y xz=90x+100y.作出以上不等式组所表示的平面区域,即可行域,如右图:由⎩⎨⎧=+=+.2045,1232y x y x 得⎪⎪⎩⎪⎪⎨⎧==.720,712y x 令90x+100y=t ,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t ,当90x+100y=t过点M (712,720)时,直线90x+100y=t 中的截距最大. 由此得出t 的值也最大,z m a x =90×712+100×720=440.答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x 目标函数为z=2x+3y. 作出可行域:把直线l :2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取得最大值.解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.3.课本106页习题3.3A 组2.第2课时推进新课师 【例1】 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z=300x+900y 的最大值时的整点的坐标及相应的z 的最大值.师 分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y 取最大值时的整点. 解:如图所示平面区域A O BC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t=300x+900y, 即,90031tx y +-=, 欲求z=300x+900y 的最大值,即转化为求截距t[]900的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m a x =300×0+900×125=112 500.师 【例2】 求z=600x+300y 的最大值,使式中的x 、y 满足约束条件3x+y≤300,x+2y≤250, x≥0,y≥0的整数值.师 分析:画出约束条件表示的平面区域即可行域再解. 解:可行域如图所示.四边形A O BC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191). 因题设条件要求整点(x,y)使z=600x+300y 取最大值,将点(69,91),(70,90)代入z=600x+300y ,可知当x=70,y=90时,z 取最大值为z m a x =600×70+300×900=69 000.师 【例3】 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z=3x+y 的最小值.师 分析:可先找出可行域,平行移动直线l 0:3x+y=0找出可行解,进而求出目标函数的最小值.解:不等式x+2y≥2表示直线x+2y=2上及其右上方的点的集合; 不等式2x+y≥1表示直线2x+y=1上及其右上方的点的集合. 可行域如右图所示.作直线l 0:3x+y=0,作一组与直线l 0平行的直线l:3x+y=t(t ∈R). ∵x 、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l:3x+y=t 通过P (0,1)时,t 取到最小值1,即z min=1.师 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.师 课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x[教师精讲]师 (1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如右图所示: 当x=0,y=0时,z=2x+y=0, 点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线l:2x+y=t,t ∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大. 所以z m a x =2×2-1=3.(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如右图所示.从图示可知直线3x+5y=t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z m a x =3×89+5×817=14.[知识拓展]某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?师 分析:将已知数据列成下表:解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x目标函数为z=600x+1 000y.作出以上不等式组所表示的平面区域,即可行域. 作直线l:600x+1 000y=0, 即直线:3x+5y=0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=600x+1 000y 取最大值. 解方程组⎩⎨⎧=+=+,36094,20045y x y x得M 的坐标为x=29360≈12.4,y=291000≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). (2)设t=0,画出直线l 0.(3)观察、分析,平移直线l 0,从而找到最优解. (4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义 布置作业课本第105页习题3.3A 组3、4.第3课时推进新课 师 【例5】 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养学家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少克?师 分析:将已知数据列成下表:食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kg A 0.105 0.07 0.14 B 0.105 0.14 0.07若设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,如何列式?生 由题设条件列出约束条件①⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,y 0,x 0.06,0.07y 0.14x 0.06,0.14y 0.07x 0.075,0.105y 105x .0其目标函数z=28x+21y.二元一次不等式组①等价于②⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,6714,6147,577y x y x y x y x师 作出二元一次不等式组②所表示的平面区域,即可行域.请同学们在草稿纸上完成,再与课本上的对照.生 考虑z=28x+21y,将它变形为2834z x y +-=,这是斜率为34-、随z 变化的一族平行直线.28z 是直线在y 轴上的截距,当28z取得最小值时,z 的值最小.当然直线与可行域相交,即在满足约束条件时目标函数z=28x+21y 取得最小值.由图可见,当直线z=28x+21y 经过可行域上的点M 时,截距z[]28最小,即z 最小. 解方程组⎩⎨⎧=+=+6714,577y x y x 得点M(71,74),因此,当71=x ,74=y 时,z=28x+21y 取最小值,最小值为16.由此可知每天食用食物A 约143克,食物B 约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.师 【例6】 在上一节课本的例题(课本95页例3)中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元.那么开设初中班和高中班各多少个,每年收取的学费总额最多?学段 班级学生数 配备教师数 硬件建设/万元 教师年薪/万元初中 45 2 26/班 2/人 高中 40 3 54/班 2/人师 由前面内容知若设开设初中班x 个,高中班y 个,收取的学费总额为z 万元, 此时,目标函数z=0.16×45x+0.27×40y,可行域如下图把z=7.2x+10.8y 变形为54532z x y +-=,得到斜率为-32-,在y 轴上截距为545z,随z 变化的一组平行直线.由图可以看出,当直线z=7.2x+10.8y 经过可行域上的点M 时,截距545z最大,即z 最大. 解方程组⎩⎨⎧=+=+402,30y x y x 得点M (20,10),因此,当x=20,y=10时,z=7.2x+10.8y 取最大值,最大值为252.由此可知开设20个初中班和10个高中班时,每年收取的学费总额最多,为252万元. 师 【例7】 在上一节例4中(课本96页例4),若生产1车皮甲种肥料,产生的利润为10 000元,若生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生 若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数z=x+0.5y,可行域如下图:把z=x+0.5y 变形为y=-2x+2z,得到斜率为-2,在y 轴上截距为2z,随z 变化的一组平行直线.由图可以看出,当直线y=-2x+2z 经过可行域上的点M 时,截距2z 最大,即z 最大.解方程组⎩⎨⎧=+=+104,661518y x y x 得点M(2,2),因此当x=2,y=2时,z=x+0.5y 取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元. [教师精讲]师 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义. 课堂小结 用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义.布置作业课本第105页习题3.3 B 组1、2、3板书设计第1课时简单线性规划问题图1课堂小结 线性规划问题的相关概念图2第2课时简单线性规划问题例1课堂小结 例3例2第3课时简单线性规划问题例5课堂小结例7例6。

2021年高中数学《3.3.简单的线性规划》教案 新人教A版必修5

2021年高中数学《3.3.简单的线性规划》教案 新人教A版必修5

2021年高中数学《3.3.2简单的线性规划》教案2 新人教A版必修5高二数学教·学案主备人:执教者:【学习目标】1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。

【学习重点】用图解法求线性目标函数的最值问题。

【学习难点】把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。

【授课类型】新授课【学习方法】合作探究【学习过程】个性设计1.课题导入[复习引入]:1、二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:2.讲授新课线性规划在实际中的应用:线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务下面我们就来看看线性规划在实际中的一些应用:[范例讲解]例5 、营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。

为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?高二数学教·学案指出:要完成一项确定的任务,如何统筹安排,尽量做到用最少的资源去完成它,这是线性规划中最常见的问题之一.例6 在上一节例3中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2700元。

人教版高中数学必修五 3.3.2简单的线性规划问题(导学案)

人教版高中数学必修五 3.3.2简单的线性规划问题(导学案)

必修 第三章
简单的线性规划问题
【课前预习】阅读教材
. 线性规划的有关概念:
①线性约束条件:在上述问题中,不等式组是一组变量、的约束条件,这组约束条件都是关于、的一次不等式,故又称线性约束条件.
②线性目标函数:关于、的一次式是欲达到最大值或最小值所涉及的变量、的解析式,叫线性目标函数.
③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.
④可行解、可行域和最优解:满足线性约束条件的解叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. . 用图解法解决简单的线性规划问题的基本步骤:
()寻找线性约束条件,线性目标函数;
()由二元一次不等式表示的平面区域做出可行域;
()在可行域内求目标函数的最优解
【课初分钟】课前完成下列练习,课前分钟回答下列问题
. 目标函数,将其看成直线方程时,的意义是( ).
.该直线的横截距
.该直线的纵截距
.该直线的纵截距的一半的相反数
.该直线的纵截距的两倍的相反数
. 已知、满足约束条件,则
的最小值为( ).
. . . .
.
在如图所示的可行域内,目标函数
取得最小值的最优解有无数个,则的一个可能值是( ).
.求的最大值,其中、满足约束条件
强调(笔记):
【课中分钟】边听边练边落实
.若实数,满足,求的取值范围.
.求的最大值和最小值,其中、满足约束条件.。

高中数学 第三章 3.3.2简单的线性规划问题(二)导学案新人教A版必修5(2)

高中数学 第三章 3.3.2简单的线性规划问题(二)导学案新人教A版必修5(2)

3.3.2 简单的线性规划问题(二)课时目标1.准确利用线性规划知识求解目标函数的最值. 2.掌握线性规划实际问题中的两种常见类型.1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域;(5)利用线性目标函数(直线)求出最优解;根据实际问题的需要,适当调整最优解(如整数解等).2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.一、选择题1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克,甲、乙产品每千克可获利润分别为d 1、d 2元.月初一次性购进本月用的原料A 、B 各c 1、c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为( )A.⎩⎪⎨⎪⎧ a 1x +a 2y ≥c 1,b 1x +b 2y ≥c 2,x ≥0,y ≥0B.⎩⎪⎨⎪⎧ a 1x +b 1y ≤c 1,a 2x +b 2y ≤c 2,x ≥0,y ≥0C.⎩⎪⎨⎪⎧a 1x +a 2y ≤c 1,b 1x +b 2y ≤c 2,x ≥0,y ≥0D.⎩⎪⎨⎪⎧a 1x +a 2y =c 1,b 1x +b 2y =c 2,x ≥0,y ≥0答案 C解析 比较选项可知C 正确.2. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为()A.14B.35 C .4 D.53答案 B解析 由y =-ax +z 知当-a =k AC 时,最优解有无穷多个.∵k AC =-35,∴a =35.3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元 答案 B解析 设投资甲项目x 万元,投资乙项目y 万元,可获得利润为z 万元,则⎩⎪⎨⎪⎧x +y ≤60,x ≥23y ,x ≥5,y ≥5,z =0.4x +0.6y .由图象知,目标函数z =0.4x +0.6y 在A 点取得最大值. ∴y max =0.4×24+0.6×36=31.2(万元).4.某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( )A .甲车间加工原料10箱,乙车间加工原料60箱B .甲车间加工原料15箱,乙车间加工原料55箱C .甲车间加工原料18箱,乙车间加工原料50箱D .甲车间加工原料40箱,乙车间加工原料30箱 答案B解析 设甲车间加工原料x 箱,乙车间加工原料y 箱,由题意可知⎩⎪⎨⎪⎧x +y ≤70,10x +6y ≤480,x ≥0,y ≥0.甲、乙两车间每天总获利为z =280x +200y . 画出可行域如图所示.点M (15,55)为直线x +y =70和直线10x +6y =480的交点,由图象知在点M (15,55)处z 取得最大值.5.如图所示,目标函数z =kx -y 的可行域为四边形OABC ,点B (3,2)是目标函数的最优解,则k 的取值范围为()A.⎝ ⎛⎭⎪⎫23,2B.⎝ ⎛⎭⎪⎫1,53 C.⎝ ⎛⎭⎪⎫-2,-23 D.⎝⎛⎭⎪⎫-3,-43 答案 C解析 y =kx -z .若k >0,则目标函数的最优解是点A (4,0)或点C (0,4),不符合题意. ∴k <0,∵点(3,2)是目标函数的最优解.∴k AB ≤k ≤k BC ,即-2≤k ≤-23.二、填空题6.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为________元.答案 2 300解析 设需租赁甲种设备x 台,乙种设备y 台,则⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ∈N *,y ∈N *.目标函数为z =200x +300y .作出其可行域,易知当x =4,y =5时,z =200x +300y 有最小值2 300元. 7.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,则z =10x +10y 的最大值是________.答案 90解析该不等式组表示平面区域如图阴影所示,由于x ,y ∈N *,计算区域内与点⎝⎛⎭⎪⎫112,92最近的整点为(5,4),当x =5,y =4时,z 取得最大值为90.8.某工厂有甲、乙两种产品,按计划每天各生产不少于15吨,已知生产甲产品1吨需煤9吨,电力4千瓦,劳动力3个(按工作日计算);生产乙产品1吨需煤4吨,电力5千瓦,劳动力10个;甲产品每吨价7万元,乙产品每吨价12万元;但每天用煤量不得超过300吨,电力不得超过200千瓦,劳动力只有300个,当每天生产甲产品________吨,乙产品______吨时,既能保证完成生产任务,又能使工厂每天的利润最大.答案 20 24 解析设每天生产甲产品x 吨,乙产品y 吨,总利润为S 万元, 依题意约束条件为:⎩⎪⎨⎪⎧9x +4y ≤300,4x +5y ≤200,3x +10y ≤300,x ≥15,y ≥15,目标函数为S =7x +12y .从图中可以看出,当直线S =7x +12y 经过点A 时,直线的纵截距最大,所以S 也取最大值.解方程组⎩⎪⎨⎪⎧4x +5y -200=0,3x +10y -300=0,得A (20,24),故当x =20,y =24时, S max =7×20+12×24=428(万元). 三、解答题9.医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10 g 含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g 含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙原料,才能既满足营养,又使费用最省?解设甲、乙两种原料分别用10x g 和10y g ,总费用为z ,那么⎩⎪⎨⎪⎧5x +7y ≥35,10x +4y ≥40,x ≥0,y ≥0,目标函数为z =3x +2y ,作出可行域如图所示:把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线.由图可知,当直线y =-32x +z 2经过可行域上的点A 时,截距z2最小,即z 最小.由⎩⎪⎨⎪⎧10x +4y =40,5x +7y =35,得A (145,3),∴z min =3×145+2×3=14.4.∴甲种原料145×10=28(g),乙种原料3×10=30(g),费用最省.10.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大? 解(1)则⎩⎪⎨⎪⎧0.1x ≤902x ≤600z =80x⇒⎩⎪⎨⎪⎧x ≤900x ≤300⇒x ≤300.所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获利润z 元, 则⎩⎪⎨⎪⎧0.2y ≤901·y ≤600z =120y⇒⎩⎪⎨⎪⎧y ≤450y ≤600⇒y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤902x +y ≤600x ≥0y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在直角坐标平面内作出上面不等式组所表示的平面区域,即可行域.作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600解得点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元). 因此,生产书桌100张、书橱400个, 可使所得利润最大. 能力提升11.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值为( )A .-3B .3C .-1D .1 答案 A解析 当a =0时,z =x .仅在直线x =z 过点A (1,1)时, z 有最小值1,与题意不符.当a >0时,y =-1a x +za.斜率k =-1a<0,仅在直线z =x +ay 过点A (1,1)时,直线在y 轴的截距最小,此时z 也最小,与目标函数取得最小值的最优解有无数个矛盾.当a <0时,y =-1a x +z a ,斜率k =-1a>0,为使目标函数z 取得最小值的最优解有无数个,当且仅当斜率-1a =k AC .即-1a =13,∴a=-3.12.要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的今需要A 、B 、C 三种规格的成品分别至少为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?解 设需截第一种钢板x 张,第二种钢板y 张.⎩⎪⎨⎪⎧2x +y ≥15x +2y ≥18x +3y ≥27x ≥0,y ≥0.作出可行域(如图):(阴影部分) 目标函数为z =x +y .作出一组平行直线x +y =t ,其中经过可行域内的点且和原点距离最近的直线,经过直线x +3y =27和直线2x +y =15的交点A⎝ ⎛⎭⎪⎫185,395,直线方程为x +y =575.由于185和395都不是整数,而最优解(x ,y )中,x ,y 必须都是整数,所以可行域内点⎝ ⎛⎭⎪⎫185,395不是最优解. 经过可行域内的整点且与原点距离最近的直线是x +y =12,经过的整点是B (3,9)和C (4,8),它们都是最优解.答 要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种:第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法都最少要截两种钢板共12张.1.画图对解决线性规划问题至关重要,关键步骤基本上是在图上完成的,所以作图应尽可能准确,图上操作尽可能规范.2.在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等)而直接根据约束条件得到的不一定是整数解,可以运用枚举法验证求最优整数解,或者运用平移直线求最优整数解.最优整数解有时并非只有一个,应具体情况具体分析.。

高中数学 3.3.2简单的线性规划(第3课时)学案 新人教A版必修5

高中数学 3.3.2简单的线性规划(第3课时)学案 新人教A版必修5

3.3.2 简单的线性规划(第3课时)31**学习目标**1.进一步提高将实际问题转化为线性规划问题的能力; 2.能将代数问题转化为斜率或距离等几何问题。

**要点精讲**1、 两点()11,A x y ,()22,B x y 连线的斜率公式:2121AB y y k x x -=-。

2.两点()11,A x y ,()22,B x y 之间的距离:AB =3.以点(),C a b 为圆心,r 为半径的圆方程:()()222x a y b r -+-=。

平面区域问题有以下几种常见类型:(1)根据题设条件画出平面区域,并求出区域面积、边界曲线方程;(2)计算平面区域中整点的个数;(3)运用平面区域求与之相关的最值、取值范围等问题。

**范例分析**1.根据题设条件画出平面区域 例1.A=(){},|1,1x y x y ≤≤,B=(){}22,|1x y xy +≤,C=(){},|1x y x y +≤,求A,B,C之间的包含关系?2.求平面区域内整点的个数例2.在直角坐标平面上,求满足不等式组313100y x y x x y ≤⎧⎪⎪≥⎨⎪+≤⎪⎩的整点个数。

3.根据平面区域求有关最值、取值范围例3.画出30502400,0x y x y x y x y -+≥⎧⎪+-≤⎪⎨--≤⎪⎪≥≥⎩所表示的平面区域:(1)求22(1)(1)z x y =++-的最值; (2)求11y z x -=+的取值范围。

3.利用平面区域求解代数问题例4.(1)设,)(2c ax x f -=且4(1)1,1(2)5f f -≤≤--≤≤,试用线性规划方法求)3(f的取值范围是 。

(2)实系数方程220x ax b ++=的两根,αβ满足01,12αβ<<<<,则21b a --的取值范围是( )A 、1,14⎛⎫ ⎪⎝⎭ B 、1,12⎛⎫ ⎪⎝⎭ C 、11,24⎛⎫- ⎪⎝⎭ D 、11,22⎛⎫- ⎪⎝⎭引申:求22z a b =+的取值范围。

人教A版高中数学 必修五 3-3-2简单的线性规划2学案 精

人教A版高中数学 必修五 3-3-2简单的线性规划2学案 精

3.3.2简单的线性规划问题(2)1. 从实际情境中抽象出一些简单的二元线性规划问题,并加以解决;2. 体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题.一、课前准备复习1:已知变量,x y满足约束条件4335251x yx yx-≤-⎧⎪+≤⎨⎪≥⎩,设2z x y=+,取点(3,2)可求得8z=,取点(5,2)可求得max 12z=,取点(1,1)可求得min 3z=取点(0,0)可求得0z=,取点(3,2)叫做_________点(0,0)叫做_____________,点(5,2)和点(1,1)__________________复习2:阅读课本P88至P91二、新课导学※学习探究线性规划在实际中的应用:线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.下面我们就来看看线性规划在实际中的一些应用:※典型例题例1 营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元. 为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?例2要将两种大小不同的钢板截成A、B、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:A、B、C、三种规格成品,且使所用钢板张数最少?变式:第一种钢板为22m,各截这两种钢板多少张,可得所需三种规格的1m,第二种为2成品且所用钢板面积最小?例3 一个化肥厂生产甲乙两种混合肥料,生产1车皮甲肥料的主要原料是磷酸盐4t,硝酸盐18t;生产1车皮乙种肥料的主要原料是磷酸盐1t,硝酸盐15t. 现库存磷酸盐10t,硝酸盐66t,在此基础上生产这两种混合肥料. 若生1车皮甲种肥料能产生的利润为10000元;生产1车皮乙种肥料,产生的利润为5000元. 那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?※动手试试练1. 某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元、2000元. 甲、乙产品都需要在A、B两种设备上加工,在每台A、B设备上加工1件甲设备所需工时分别为1h、2h,加工1件乙和设备所需工时分别为2h、1h,A、B两种设备每月有效使用台时数分别为400h和500h. 如何安排生产可使收入最大?练2. 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按40个工时计算)生产空调器、彩电、冰箱共120台,且冰箱至少生20台.已知生产这些家电产品每台所需工时和每台产值如下表:(以千元为单位)三、总结提升※学习小结简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示平面区域做出可行域;(3)在可行域内求目标函数的最优解.※知识拓展含绝对值不等式所表示的平面区域的作法:(1)去绝对值,转化为不等式组;(2)采用分零点讨论或分象限讨论去绝对值;(3)利用对称性可避免讨论.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2000元,设木工x人,瓦工y人,请工人的约束条件是(). A.50402000x y+=B.50402000x y+≤C.50402000x y+≥D.40502000x y+≤2. 已知,x y满足约束条件0403280,0xyx yx y≤≤⎧⎪≤≤⎪⎨+≤⎪⎪≥≥⎩,则25z x y=+的最大值为().A.19 B.18 C.17 D.163. 变量,x y满足约束条件232421229360,0x yx yx yx y+≥⎧⎪+≥⎪⎨+≥⎪⎪≥≥⎩则使得32z x y=+的值的最小的(,)x y是().A.(4,5)B.(3,6)C.(9,2)D.(6,4)4.已知实数,x y满足约束条件240220330x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩则目标函数2z x y=+的最大值为______________5.设变量,x y满足约束条件3023x yx yx-+≥⎧⎪+≥⎨⎪-≤≤⎩则目标函数2x y+的最小值为______________电视台应某企业之约播放两套连续剧.其中,连续剧甲每次播放时间为80min,其中广告时间为1min,收视观众为60万;连续剧乙每次播放时间为40min,其中广告时间为1min,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6min广告,而电视台每周只能为该企业提供不多于320min的节目时间.如果你是电视台的制片人,电视台每周播映两套连续剧各多少次,才能获得最高的收视率?。

(新课程)高中数学《3.3.2简单的线性规划》导学案3 新人教A版必修5

(新课程)高中数学《3.3.2简单的线性规划》导学案3 新人教A版必修5

课题: 3.3.2简单的线性规划(3)一.:自主学习,明确目标1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力;教学重点:利用图解法求得线性规划问题的最优解;教学难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。

教学方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力二.研讨互动,问题生成1、二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:3、用图解法解决简单的线性规划问题的基本步骤:三.合作探究,问题解决1.线性规划在实际中的应用:例5 在上一节例4中,若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?2.若实数x ,y 满足 1311x y x y ≤+≤⎧⎨-≤-≤⎩ 求4x +2y 的取值范围.错解:由①、②同向相加可求得:0≤2x ≤4 即 0≤4x ≤8 ③由②得 —1≤y —x ≤1将上式与①同向相加得0≤2y ≤4 ④③十④得 0≤4x 十2y ≤12以上解法正确吗?为什么?(1)[质疑]引导学生阅读、讨论、分析.(2)[辨析]通过讨论,上述解法中,确定的0≤4x ≤8及0≤2y ≤4是对的,但用x 的最大(小)值及y 的最大(小)值来确定4x 十2y 的最大(小)值却是不合理的.X 取得最大(小)值时,y 并不能同时取得最大(小)值。

由于忽略了x 和 y 的相互制约关系,故这种解法不正确.(3)[激励]产生上述解法错误的原因是什么?此例有没有更好的解法?怎样求解?正解:练习11、求y x z -=的最大值、最小值,使x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤+002y x y x2、设y x z +=2,式中变量x 、y 满足 ⎪⎩⎪⎨⎧≥≤+-≤-1255334x y x y x自我评价 同伴评价 小组长评价。

高中数学 3.3.2简单的线性规划教案(二)新人教A版必修5

高中数学 3.3.2简单的线性规划教案(二)新人教A版必修5

高中数学 3.3.2简单的线性规划教案(二)新人教A版必修5教学过程推进新课[合作探究]师 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 产品耗时1小时,每生产一件乙产品使用4个B 产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3.39,图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P (x,y )在上述平面区域中时,所安排的生产任务x 、y 才有意义.进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x 件,乙产品y 件时,工厂获得利润为z ,则如何表示它们的关系? 生 则z=2x+3y.师 这样,上述问题就转化为:当x 、y 满足上述不等式组并且为非负整数时,z 的最大值是多少?[教师精讲]师 把z=2x+3y 变形为z x y 3132+-=,这是斜率为32-,在y 轴上的截距为31z 的直线.当z 变化时可以得到什么样的图形?在上图中表示出来.生 当z 变化时可以得到一组互相平行的直线.(板演)师 由于这些直线的斜率是确定的,因此只要给定一个点〔例如(1,2)〕,就能确定一条直线z x y 3132+-=,这说明,32z y x =+由平面内的一个点的坐标唯一确定.可以看到直线z x y 3132+-=与表示不等式组的区域的交点坐标满足不等式组,而且当截距3z最大时,z取最大值,因此,问题转化为当直线z x y 3132+-=与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距3z最大.由图可以看出,当直线z x y 3132+-=经过直线x=4与直线x+2y-8=0的交点M (4,2)时,截距3z 最大,最大值为314.此时2x+3y=14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元. [知识拓展]再看下面的问题:分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l 0:2x+y=0.然后,作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].若设t=2x+y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC .作一组与直线l 0平行的直线:l:2x+y=t,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t=2x+y ∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x=0,y=0时,t=2x+y=0.点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l:2x+y=t,t ∈R. 可知,当l 在l 0的右上方时,直线l 上的点(x,y)满足2x+y >0,即t >0. 而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线l 2所对应的t 最大,以经过点A (1,1)的直线l 1所对应的t 最小.所以t m a x =2×5+2=12,t min =2×1+3=3.(2)(3)[合作探究]师 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t=2x+y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t=2x+y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. 课堂小结用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. 布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品?分析:将已知数据列成下表:甲原料(吨) 乙原料(吨) 费用限额 成本 1 000 1 500 6 000 运费 500 400 2 000 产品 90 100解:设此工厂每月甲、乙两种原料各x 吨、y 吨,生产z 千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0y x y x y x z=90x+100y.作出以上不等式组所表示的平面区域,即可行域,如右图:由⎩⎨⎧=+=+.2045,1232y x y x 得⎪⎪⎩⎪⎪⎨⎧==.720,712y x 令90x+100y=t ,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t ,当90x+100y=t过点M (712,720)时,直线90x+100y=t 中的截距最大. 由此得出t 的值也最大,z m a x =90×712+100×720=440.答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y 张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x 目标函数为z=2x+3y. 作出可行域:把直线l :2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取得最大值.解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.3.课本106页习题3.3A 组2.第2课时推进新课师 【例1】 已知x 、y 满足不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+,0,0,2502,3002y x y x y x 试求z=300x+900y 的最大值时的整点的坐标及相应的z 的最大值.师 分析:先画出平面区域,然后在平面区域内寻找使z=300x+900y 取最大值时的整点. 解:如图所示平面区域A O BC ,点A (0,125),点B (150,0),点C 的坐标由方程组⇒⎩⎨⎧=+=+25023002y x y x ⎪⎪⎩⎪⎪⎨⎧==,3200,3350y x 得C (3350,3200), 令t=300x+900y , 即,90031tx y +-=, 欲求z=300x+900y 的最大值,即转化为求截距t[]900的最大值,从而可求t 的最大值,因直线90031t x y +-=与直线x y 31-=平行,故作x y 31-=的平行线,当过点A (0,125)时,对应的直线的截距最大,所以此时整点A 使z 取最大值,z m a x =300×0+900×125=112 500.师 【例2】 求z=600x+300y 的最大值,使式中的x 、y 满足约束条件3x+y≤300,x+2y≤250, x≥0,y≥0的整数值.师 分析:画出约束条件表示的平面区域即可行域再解. 解:可行域如图所示.四边形A O BC ,易求点A (0,126),B (100,0),由方程组⇒⎩⎨⎧=+=+25223003y x y x ⎪⎪⎩⎪⎪⎨⎧==.5191,5369y x 得点C 的坐标为(5369,5191).因题设条件要求整点(x,y)使z=600x+300y 取最大值,将点(69,91),(70,90)代入z=600x+300y ,可知当x=70,y=90时,z 取最大值为z m a x =600×70+300×900=69 000.师 【例3】 已知x 、y 满足不等式⎪⎩⎪⎨⎧≥≥≥+≥+,0,0,12,22y x y x y x 求z=3x+y 的最小值.师 分析:可先找出可行域,平行移动直线l 0:3x+y=0找出可行解,进而求出目标函数的最小值.解:不等式x+2y≥2表示直线x+2y=2上及其右上方的点的集合; 不等式2x+y≥1表示直线2x+y=1上及其右上方的点的集合. 可行域如右图所示.作直线l 0:3x+y=0,作一组与直线l 0平行的直线l:3x+y=t(t ∈R). ∵x 、y 是上面不等式组表示的区域内的点的坐标. 由图可知:当直线l:3x+y=t 通过P (0,1)时,t 取到最小值1,即z min =1.师 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.师 课堂练习:请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x[教师精讲]师 (1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤.1,1,y y x x y解:不等式组表示的平面区域如右图所示: 当x=0,y=0时,z=2x+y=0, 点(0,0)在直线l 0:2x+y=0上.作一组与直线l 0平行的直线l:2x+y=t,t ∈R.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大. 所以z m a x =2×2-1=3.(2)求z=3x+5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如右图所示.从图示可知直线3x+5y=t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(89,817)的直线所对应的t 最大. 所以z min =3×(-2)+5×(-1)=-11,z m a x =3×89+5×817=14.[知识拓展]某工厂生产甲、乙两种产品.已知生产甲种产品1 t ,需耗A 种矿石10 t 、B 种矿石5 t 、煤4 t ;生产乙种产品需耗A 种矿石4 t 、B 种矿石4 t 、煤9 t.每1 t 甲种产品的利润是600元,每1 t 乙种产品的利润是1 000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360 t 、B 种矿石不超过200 t 、煤不超过300 t ,甲、乙两种产品应各生产多少(精确到0.1 t ),能使利润总额达到最大?师 分析:将已知数据列成下表: 消耗量 产品甲产品(1 t ) 乙产品(1 t) 资源限额(t )资源A 种矿石(t ) 10 4 300B 种矿石(t) 5 4 200 煤(t) 利润(元)4 9 3606001 000解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 元,那么⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+;0,0,36094,20045,300410y x y x y x y x目标函数为z=600x+1 000y.作出以上不等式组所表示的平面区域,即可行域. 作直线l:600x+1 000y=0, 即直线:3x+5y=0,把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=600x+1 000y 取最大值. 解方程组⎩⎨⎧=+=+,36094,20045y x y x得M 的坐标为x=29360≈12.4,y=291000≈34.4. 答:应生产甲产品约12.4 t ,乙产品34.4 t ,能使利润总额达到最大.课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). (2)设t=0,画出直线l 0.(3)观察、分析,平移直线l 0,从而找到最优解. (4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义 布置作业课本第105页习题3.3A 组3、 4.第3课时推进新课 师 【例5】 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养学家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少克?师 分析:将已知数据列成下表:食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kg A 0.105 0.07 0.14 B 0.105 0.14 0.07若设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,如何列式?生 由题设条件列出约束条件①⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0,y 0,x 0.06,0.07y 0.14x 0.06,0.14y 0.07x 0.075,0.105y 105x .0其目标函数z=28x+21y.二元一次不等式组①等价于②⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+.0,0,6714,6147,577y x y x y x y x师 作出二元一次不等式组②所表示的平面区域,即可行域.请同学们在草稿纸上完成,再与课本上的对照.生 考虑z=28x+21y,将它变形为2834z x y +-=,这是斜率为34-、随z 变化的一族平行直线.28z 是直线在y 轴上的截距,当28z取得最小值时,z 的值最小.当然直线与可行域相交,即在满足约束条件时目标函数z=28x+21y 取得最小值.由图可见,当直线z=28x+21y 经过可行域上的点M 时,截距z[]28最小,即z 最小.解方程组⎩⎨⎧=+=+6714,577y x y x 得点M(71,74),因此,当71=x ,74=y 时,z=28x+21y 取最小值,最小值为16.由此可知每天食用食物A 约143克,食物B 约571克,能够满足日常饮食要求,又使花费最低,最低成本为16元.师 【例6】 在上一节课本的例题(课本95页例3)中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元.那么开设初中班和高中班各多少个,每年收取的学费总额最多?学段 班级学生数 配备教师数 硬件建设/万元 教师年薪/万元 初中 45 2 26/班 2/人 高中 40 3 54/班 2/人 师 由前面内容知若设开设初中班x 个,高中班y 个,收取的学费总额为z 万元, 此时,目标函数z=0.16×45x+0.27×40y,可行域如下图把z=7.2x+10.8y 变形为54532z x y +-=,得到斜率为-32-,在y 轴上截距为545z,随z 变化的一组平行直线.由图可以看出,当直线z=7.2x+10.8y 经过可行域上的点M 时,截距545z最大,即z 最大. 解方程组⎩⎨⎧=+=+402,30y x y x 得点M (20,10),因此,当x=20,y=10时,z=7.2x+10.8y 取最大值,最大值为252.由此可知开设20个初中班和10个高中班时,每年收取的学费总额最多,为252万元.师 【例7】 在上一节例4中(课本96页例4),若生产1车皮甲种肥料,产生的利润为10 000元,若生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生 若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数z=x+0.5y,可行域如下图:把z=x+0.5y 变形为y=-2x+2z,得到斜率为-2,在y 轴上截距为2z,随z 变化的一组平行直线.由图可以看出,当直线y=-2x+2z 经过可行域上的点M 时,截距2z 最大,即z 最大. 解方程组⎩⎨⎧=+=+104,661518y x y x 得点M(2,2),因此当x=2,y=2时,z=x+0.5y 取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元. [教师精讲]师 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义. 课堂小结 用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);(2)设t=0,画出直线l 0;(3)观察、分析,平移直线l 0,从而找到最优解;(4)最后求得目标函数的最大值及最小值. 以实际问题为背景的线性规划问题其求解的格式与步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.当然也要注意问题的实际意义.布置作业课本第105页习题3.3 B组1、2、3板书设计第1课时简单线性规划问题图1课堂小结线性规划问题的相关概念图2第2课时简单线性规划问题例1课堂小结例3例2第3课时简单线性规划问题例5课堂小结例7例6。

高中数学 3.3.2《简单的线性规划问题(3)》导学案 新人教A版必修5

高中数学 3.3.2《简单的线性规划问题(3)》导学案 新人教A版必修5

【学习目标】1. 从实际情境中抽象出一些简单的二元线性规划问题,并加以解决;2. 体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题.【重点难点】教学重点:利用图解法求得线性规划问题的最优解;教学难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。

【知识链接】复习1:已知1260,1536,a a b a b b<<<<-求及的取值范围复习2:已知41,145a b a b -≤-≤--≤-≤,求9a b -的取值范围.【学习过程】※ 学习探究课本第91页的“阅读与思考”——错在哪里?若实数x ,y 满足1311x y x y ≤+≤⎧⎨-≤-≤⎩,求4x +2y 的取值范围. 错解:由①、②同向相加可求得:024x ≤≤即 048x ≤≤ ③由②得 11y x -≤-≤将上式与①同向相加得024y ≤≤ ④③十④得 04212x y ≤+≤以上解法正确吗?为什么?上述解法中,确定的0≤4x ≤8及0≤2y ≤4是对的,但用x 的最大(小)值及y 的最大(小)值来确定4x 十2y 的最大(小)值却是不合理的.x 取得最大(小)值时,y 并不能同时取得最大(小)值.由于忽略了x 和 y 的相互制约关系,故这种解法不正确.此例有没有更好的解法?怎样求解?※ 典型例题例1 若实数x ,y 满足1311x y x y ≤+≤⎧⎨-≤-≤⎩ ,求4x +2y 的取值范围.变式:设2()f x ax bx =+且1(1)2f -≤-≤,2(1)4f ≤≤,求(2)f -的取值范围※ 动手试试练1. 设2z x y =+,式中变量x 、y 满足 4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值与最小值.练2. 求z x y =-的最大值、最小值,使x 、y 满足条件200x y x y +≤⎧⎪≥⎨⎪≥⎩.【学习反思】※ 学习小结1.线性目标函数的最大值、最小值一般在可行域的顶点处取得.2.线性目标函数的最大值、最小值也可能在可行域的边界上取得,即满足条件的最优解有无数多个. ※ 知识拓展求解线性规划规划问题的基本程序:作可行域,画平行线,解方程组,求最值.目标函数的一般形式为z Ax By C =++,变形为1A C y x z B B B =-+-,所以1C z B B-可以看作直线1A C y x z B B B=-+-在y 轴上的截距. 当0B >时,1C z B B -最大,z 取得最大值,1C z B B-最小,z 取得最小值; 当0B <时,1C z B B -最大,z 取得最小值,1C z B B-最小,z 取得最大值. 【基础达标】※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 若0x ≥,0y ≥且1x y +≤,则z x y =-的最大值为( ).A .-1B .1C .2D .-22. 在ABC ∆中,三顶点分别为A (2,4),B (-1,2),C (1,0),点(,)P x y 在ABC ∆内部及其边界上运动,则的取值范围为( ).A .[1,3]B .[-1,3]C .[-3,1]D .[-3,-1]3. (2007北京)若不等式组5002x y y a x -+≥⎧⎪≥⎨⎪≤≤⎩表示的平面区域是一个三角形,则的取值范围是( ).A .5a <B .7a ≥C .57a ≤<D .5a <或7a ≥4. (2004全国)设x 、y 满足约束条件021x x y x y ≥⎧⎪≥⎨⎪-≤⎩,则32z x y =+的最大值是 . 5.(2004上海) 设x 、y 满足约束条件2438x y x y ≤≤⎧⎪≥⎨⎪+≤⎩,则32k x y =-的最大值是 .【拓展提升】1. 画出(21)(3)0x y x y +--+>表示的平面区域.2. 甲、乙两个粮库要向A 、B 两镇运送大米,已知甲库可调出100t 大米,乙库可调出80t 大米,A 镇需70t 大米,B 镇需110t 大米.两库到两镇的路程和运费如下表:路程/km 运费/(元11t km --)甲库 乙库 甲库 乙库A 镇 20 15 12 12B 镇 25 20 10 8(1) 这两个粮库各运往A 、B 两镇多少t 大米,才能使总运费最省?此时总运费是多少?(2) 最不合理的调运方案是什么?它使国家造成的损失是多少?。

高中数学 第三章 不等式 3.3.2 简单的线性规划2导学案(无答案)新人教A版必修5

高中数学 第三章 不等式 3.3.2 简单的线性规划2导学案(无答案)新人教A版必修5

——————————新学期新成绩新目标新方向——————————简单的线性规划线性规划的两类重要实际问题:第一种类型是给定一定数量的人力、物力资源,问怎样安排运用这些资源,能使完成的任务量最大,收到的效益最大;第二种类型是给定一项任务,问怎样统筹安排,能使完成这项任务的人力、物力资源量最小二、学习交流与问题探讨1.产品安排问题例1 某工厂生产甲、乙两种产品.已知生产甲种产品1 t,需耗A种矿石10 t、B种矿石5 t、煤4 t;生产乙种产品需耗A种矿石4 t、B种矿石4 t、煤9 t.每1 t甲种产品的利润是600元,每1 t乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过360 t、B种矿石不超过200 t、煤不超过300 t,甲、乙两种产品应各生产多少(精确到0.1 t),能使利润总额达到最大?2.物资调运问题例2 已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少?3.下料问题例3 要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:今需要、、三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少?规律总结简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解(4)根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解三、练习检测与拓展延伸1.在不等式⎩⎨⎧≤+-≥-+0153042y x y x 表示的区域内,满足目标函数y x t +=取得最小值的整数点),(y x 是 ( ) A.)2,3( B.)3,2( C.)2,1(D.)1,2(2.某厂生产甲、乙两种产品,产量分别为45个、50个,所用原料为A 、B 两种规格的金属板,每张面积分别为2m 2、3 m 2,用A 种金属板可造甲产品3个,乙产品5个,用B 种金属板可造甲、乙产品各6个,则A 、B 两种金属板各取多少张时,能完成计划并能使总用料面积最省?( )A .A 用3张,B 用6张 B .A 用4张,B 用5张C .A 用2张,B 用6张D .A 用3张,B 用5张3.若y x ,都是非负整数,则满足5≤+y x 的点共有________个;4.某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元.5.某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大?四、小结与提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题: 3.3.2简单的线性规划(2)
班级:组名:姓名:设计人:赵帅军审核人:魏帅举领导审批:
一.:自主学习,明确目标
1.知识与技能:掌握线性规划问题的图解法,并能应用它解决一些简单的实
际问题;
2.过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高
数学建模能力;
教学重点:利用图解法求得线性规划问题的最优解
教学难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键
是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得
最优解。

教学方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学
建模能力
二.研讨互动,问题生成
1、二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0
某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)
2、目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解: 三.合作探究,问题解决
线性规划在实际中的应用:
线性规划的理论和方法主要在两类问题中得到应用,一是在人力、物力、
资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项
任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该
项任务
下面我们就来看看线性规划在实际中的一些
[范例讲解]
例5 营养学家指出,成人良好的日常
饮食应该至少提供0.075kg的碳
水化合物,0.06kg的蛋白质,
0.06kg的脂肪,1kg食物A含有
0.105kg碳水化合物,0.07kg蛋
白质,0.14kg脂肪,花费28元;
而1kg食物B含有0.105kg碳水
化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。

为了满足营养
专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A
和食物B多少kg?
例6 在上一节例3中,若根据有关部门的规定,初中每人每年可收取学费1 600元,高中每人每年可收取学费2 700元。

那么开设初中班
和高中班各多少个,每年收取的学费总额最高多?
结合上述两例子总结归纳一下解决这类问题的思路和方法:
简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域;
(3)在可行域内求目标函数的最优解
自我评价同伴评价小组长评价。

相关文档
最新文档