26.1二次函数的概念

合集下载

二次函数的概念

二次函数的概念

26.1.1 二次函数的概念一、回顾旧知1.函数的定义:一般地,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个______的值,y 都有__________的值与其对应,那么我们就说x 是_______,y 是x 的______。

2.观察下列函数:(1)y = 2x+1 (2)y = -x-4()x y 23= (4)y = 5x 2(5)y = -4x (6)y = ax+1其中正比例函数有____,其一般形式为_________,正比例函数是_______的特例.一次函数有_________,其一般形式为_____________.反比例函数有_________,其一般形式为______________。

二、探索新知1.函数y=x+1 ,自变量是___,自变量的次数是___,y 是x 的____函数。

2.函数s=-2t-4 ,自变量是___,自变量的次数是___,s 是t 的____函数. 你能写出下列函数的表达式吗?①圆的半径是r(cm)时,面积s(cm2)与半径之间的关系___________,自变量是___,它的最高次数是______。

②设正方体的棱长为x ,表面积为y ,则y 与x 之间的关系是________,自变量是___,它的最高次数是______。

③多边形的对角线数d 与边数n 的函数关系为d=___________, 自变量是______,它的最高次数为______.④某工厂一种产品现在的年产量是20件,计划今后两年增加产量。

如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而确定,y 与x 之间的关系为___________________,自变量为_______,它的最高次数为_________。

归纳:①②③④中的函数的最高次数都是____次的。

二次函数的定义:一般地,形如y =ax 2+bx+c (a,b,c 是常数,a ≠0) 的函数,叫做二次函数。

26.1二次函数(7)有关符号的判断

26.1二次函数(7)有关符号的判断

精讲点拨:
抛物线y=ax2+bx+c的符号问题: (1)a的符号:由抛物线的开口方向确定 开口向上 开口向下 a>0 a<0
由抛物线与y轴的交点位置确定 (2)C的符号: 交点在x轴上方 c>0
交点在x轴下方
经过坐标原点
c<0
c=0
先定a的符号,由对称轴的位置确定 (3)b的符号:
对称轴在y轴左侧 对称轴在y轴右侧
开口向上
对称轴是:直线x 1
练习:
1.二次函数y=a(x+k)2+k(a≠0),无论k取什么实数, 图象顶点必在( )A . A.直线y=-x上 B.x轴上 C.直线y=x上 D.y 轴上
2.若所求的二次函数的图象与抛物线y=2x2 -4x-1 有相同的顶点,并且在对称轴左侧,y随x的增大而 增大,在对称轴右侧,y随x的增大而减小,则所求 的二次函数的解析式为( A ) A.y=-x2+2x-4 B.y=ax2-2ax+a-3(a>0) C.y=-x2-4x-5 D.y=ax2-2ax+a-3(a<0)
课堂作业
1.已知二次函数y=ax2+bx+c, 写出a、b、c、△的符号。 2.二次函数y=ax2+bx+c的图
c 像如图所示,求点M(b, ) a 所在得象限
3、已知抛物线y=-2x2+3x-1,画出 抛物线的草图。
4、若抛物线y=ax2+3x+1与x轴有两
个交点,则a的取值范围是 ( D )
练一练:
1、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中不正确的是 ( D ) y A、abc>0 B、b2-4ac>0

26.1二次函数教案[修改版]

26.1二次函数教案[修改版]

第一篇:26.1二次函数教案26.1 二次函数[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.[创新思维](1)正方形边长为a(cm),它的面积s(cm)是多少?s = a(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式.y = (4+x)(3+x)−4×3 = x+7x222请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义.二次函数的概念:形如ax+bx+c = 0(a≠0,a、b、c为常数)的函数叫二次函数.2[实践与探索]例题:补充例题:1.m取哪些值时,函数是以x为自变量的二次函数?分析若函数.解若函数解得因此,当,且,且时,函数..是二次函数,须满足的条件是:是二次函数,则是二次函数.的函数只有在的条件下才是二次函数.回顾与反思形如探索若函数值?是以x为自变量的一次函数,则m取哪些2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S(cm)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S(cm)与一对角线长x(cm)之间的函数关系.解(1)由题意,得,其中S是a的二次函数;222(2)由题意,得(3)由题意,得其中y是x的一次函数;,其中y是x的二次函数;(x≥0且是正整数),(4)由题意,得数.,其中S是x的二次函3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.2解(1)(2)当x = 3cm时,;(cm).2[当堂课内练习]1.下列函数中,哪些是二次函数?(1)(2)(3)(4)为二次函数?2.当k为何值时,函数3.已知正方形的面积为,周长为x(cm).(1)请写出y与x的函数关系式;(2)判断y是否为x的二次函数.[本课课外作业]A组1.已知函数2.已知二次函数是二次函数,求m的值.,当x=3时,y= -5,当x= -5时,求y的值.3.已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式.若圆柱的底面半径x 为3,求此时的y.4.用一根长为40 cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.B组5.对于任意实数m,下列函数一定是二次函数的是()A.B.C.(D.6.下列函数关系中,可以看作二次函数A.在一定的距离内汽车的行驶速度与行驶时间的关系)模型的是()B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)圆的周长与圆的半径之间的关系典型例题1.下列各式中,y是x的二次函数的是( ) A.x+y−1 = 0 B.y = (x+1)(x−1)−xC.y = 1+22D.2(x−1)+3y−2 = 0 答案:D2 4说明:选项A、C都不难看出关系式中不含x的平方项,因此,都不满足二次函数的定义,选项B,y = (x+1)(x−1)−x可化简为y = −1,也不满足二次函数的定义,只有选项D是正确的,答案为D.2.下列函数中,不是二次函数的是( )2A.y = 1−x B.y = 2(x−1)+4 C.y =2222(x−1)(x+4) D.y = (x−2)−x22答案:D说明:选项D,y = (x−2)−x可化为y = −4x+4,不是二次函数,而选项A、B、C中的函数都是二次函数,答案为D.3.函数y = (m−3)是二次函数,则m的值为:(答案:−3)说明:因为y = (m−3)且m≠3,即m = −3.4.已知函数y = ( 4a +3)是二次函数,所以m2−7 = 2,且m−3≠0,因此有m = ±3,+x−1是一个二次函数,求满足条件的a的值.解:∵y = ( 4a +3)+x−1是一个二次函数,∴,解得a = 1.习题精选21.在半径为4 cm的圆中,挖去一个半径为x(cm)的小圆,剩下的圆环面积为y(cm),则y与x之间的函数关系式为( ) A.y = πx−4 B.y = π(2−x)C.y = −(x+4) D.y = −πx+16π答案:D说明:半径为4cm的圆,面积为16π(cm),挖去的小圆面积为πx(cm),所以剩下的圆环222面积为(16π-πx)(cm),即有y =-πx+16π,答案为D.2.若圆锥的体积为Vcm,高为6cm,底面半径为rcm.写出V与r之间的函数关系式,并判断它是否是二次函数?此题考查圆锥的体积公式及二次函数的概念.32222222解:由题意得:V=n+2πr×6,即V=2πr,此函数是二次函数.223.若函数y=2x+1是二次函数,求n的值.此题考查二次函数概念中关于自变量的二次式.解:由题意得:n+2=2 ∴n=04.若函数y=(a−1)x+x+1是二次函数,求a、b的取值范围.b+12 5此题综合考查二次函数的概念,分三种情况讨论:(1)(a−1)x是二次项(2)(a−1)x是一次项(3)(a−1)x是常数项.解:分三种情况:b+1b+1b+1(1)∴b = 1,a≠1(2)∴b = 0,a≠1(3)a−1 = 0 ∴a = 1∴a = 1;b = 0且a≠1且b = 15.一个长方形的周长为50cm,一边长为x(cm),求这个长方形的面积y(cm)与一边长x(cm)之间的函数关系式,并写出自变量x的取值范围答案:y=−x+25x,0说明:由已知不难得出,该长方形的另一边长为50÷2−x,即25−x,长方形的两边长则分别为x、25−x,而这两边长都应该大于0,即x>0且25−x>0,同时,该长方形的面积为22x(25−x)=−x+25x,即有y=−x+25x,06.小明存入银行人民币200元,年利率为x,两年到期,本息和为y元(以单利计算).(1)求y与x之间的函数关系式.(2)若年利率为2.25%,求本息和.(3)若利息税率为20%,求到期时,小明实际所得利息.答案:(1)y=200+400 (2)209 (3)7.2元说明:(1)两年到期的利息应该是2×200x,即400x,所以本息和y=200+400x(2)当x=2.25%时,y=200+400×2.25%=209(3)实际所得利息为2×200×2.25%×(1−20%)=7.2.22 6第二篇:《26.1二次函数》教学反思《26.1二次函数》教学反思龙潭镇第一初级中学黄海东这节课是安排在学了一次函数、反比例、一元二次方程之后的二次函数的第一节课,学习目标是要学生懂得二次函数概念,能分辨二次函数与其他函数的不同,能理解二次函数的一般形式,并能初步理解实际问题中对自变量的取值范围的限制。

沪教版九年级上册数学 26.1二次函数的概念(解析版)

沪教版九年级上册数学 26.1二次函数的概念(解析版)

26.1二次函数的概念一、单选题1.(2020·上海市静安区实验中学初三课时练习)下列函数中是二次函数的是( )A .12y x =+B .21y x x=- C .22(1)y x x =-- D .23(1)y x =-【答案】D 【解析】解:A 、是一次函数,故A 不符合题意; B 、函数关系式不是整式,故B 不符合题意; C 、是一次函数,故C 不符合题意; D 、是二次函数,故D 符合题意; 故选:D .2.(2020·上海市静安区实验中学初三课时练习)函数2y ax bx c =++ (a ,b ,c 为常数)是二次函数的条件是( ). A .0a ≠或0c ≠ B .0a ≠ C .0b ≠且0c ≠ D .0a b c ++≠【答案】B 【解析】由二次函数定义可知,自变量x 和应变量y 满足2y ax bx c =++ (a ,b ,c 为常数,且0a ≠)的函数叫做二次函数; 故选:B . 【点睛】本题考察了二次函数的知识,求解的关键是准确掌握二次函数的定义,从而得到答案. 3.(2020·上海市静安区实验中学初三课时练习)若y=(2-m)22m x -是二次函数,则m 等于( ) A .±2 B .2C .-2D .不能确定【答案】C 【解析】分析:根据二次函数的定义,自变量指数为2,且二次项系数不为0,列出方程与不等式求解则可. 解答:解:根据二次函数的定义,得:m 2-2=2 解得m=2或m=-2 又∵2-m≠0 ∵m≠2∵当m=-2时,这个函数是二次函数. 故选C .4.(2020·上海市静安区实验中学初三课时练习)在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( ) A .216y x ππ=-+ B .24y x π=- C .2(2)y x π=-D .2(4)y x =-+【答案】A 【解析】先求出原来的圆的面积,再用x 表示挖去的圆的面积,相减得到圆环的面积. 解:圆的面积公式是2S r π=,原来的圆的面积=2416ππ⋅=,挖去的圆的面积=2x π, ∵圆环面积216y x ππ=-. 故选:A .5.(2020·乐陵市实验中学月考)二次函数y=2x 2-6x -9的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9C .2,6,9D .2,-6,-9【答案】D 【解析】根据二次函数的标准形式即可得到答案.二次函数y=2x 2-6x -9的二次项系数、一次项系数、常数项分别为2,-6,-9. 故选:D . 【点睛】本题考查了二次函数的一般形式,属于基础题,熟知二次函数的一般形式是解题的关键.6.(2020·全国初三课时练习)已知二次函数y =ax 2+4x +c ,当x 等于﹣2时,函数值是﹣1;当x =1时,函数值是5.则此二次函数的表达式为( ) A .y =2x 2+4x ﹣1 B .y =x 2+4x ﹣2 C .y =﹣2x 2+4x +1 D .y =2x 2+4x +1【答案】A 【解析】将2组x 、y 值代入函数,得到关于a 、c 的二元一次方程,求解可得函数表达式.解:根据题意得48145a c a c -+=-⎧⎨++=⎩,解得21a c =⎧⎨=-⎩,所以抛物线解析式为y =2x 2+4x ﹣1. 故选A .7.(2020·全国初三课时练习)下列函数关系中,是二次函数的是( ) A .在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系 B .当距离一定时,火车行驶的时间t 与速度v 之间的关系 C .等边三角形的周长C 与边长a 之间的关系 D .半圆面积S 与半径R 之间的关系 【答案】D 【解析】根据二次函数的定义,分别列出关系式,进行选择即可. A 选项为y kx b =+,是一次函数,错误; B 选项为st v=不是二次函数,错误; C 选项为3C a =,是正比例函数,错误; D 选项为212S R π=,是二次函数,正确. 故选:D .8.(2020·全国初三课时练习)下列函数:∵23y =-; ∵22y x =; ∵(35)y x x =-; ∵(12)(12)y x x =+-,是二次函数的有: A .1个 B .2个C .3个D .4个【答案】C 【解析】根据二次函数的定义,对每个函数进行判断,即可得到答案.解:∵23y =-是二次函数,正确;∵22y x =不是二次函数,错误; ∵(35)y x x =-整理得253y x x =-+,是二次函数,正确;∵(12)(12)y x x =+-整理得214y x =-,是二次函数,正确; ∵一共有3个二次函数; 故选择:C.9.(2020·全国初三课时练习)若二次函数y=(m∵1)x 2-mx∵m 2-2m -3的图象经过原点,则m 的值必为( ) A .-1或3 B .-1 C .3 D .-3或1 【答案】C 【解析】由图像经过原点可知m 2-2m -3=0∵同时注意m∵1≠0.解∵由图像过原点可得,m 2-2m -3=0∵解得m=-1或3∵再由二次函数定义可知m∵1≠0∵即m≠-1∵故m=3. 【点睛】本题考查了二次函数的定义,很容易遗漏m∵1≠0.10.(2019·北京市第五十四中学初二期中)如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .【答案】D 【解析】Rt∵AOB 中,AB∵OB ,且AB=OB=3,所以很容易求得∵AOB=∵A=45°;再由平行线的性质得出∵OCD=∵A ,即∵AOD=∵OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.解:∵Rt∵AOB 中,AB∵OB ,且AB=OB=3, ∵∵AOB=∵A=45°, ∵CD∵OB , ∵CD∵AB , ∵∵OCD=∵A , ∵∵AOD=∵OCD=45°, ∵OD=CD=t , ∵S ∵OCD =12×OD×CD=12t 2(0≤t≤3),即S=12t 2(0≤t≤3). 故S 与t 之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象; 故选D .二、填空题11.(2020·上海市静安区实验中学初三课时练习)已知2()352f x x x =-+那么()2f =____________.【答案】4【解析】根据题意,令x =2,代入二次函数求值. 解:(2)345224f =⨯-⨯+=.故答案是:4.12.(2020·上海市静安区实验中学初三课时练习)已知二次函数2y ax =,如果当x=-1时y=2,那么当x=2时,y=_____. 【答案】8 【解析】先根据x =-1时y =2求出a 的值,得到原函数,再令x =2,求出y .解:当x =-1 ,y =2时,()221a =⋅-,2a =,∵22y x =,当x =2时,()2228y =⨯=. 故答案是:8.13.(2020·上海市静安区实验中学初三课时练习)半径为5的圆,如果半径增加x 时,面积增加y ,那么y 与x 的函数关系式是_____________________. 【答案】210y x x ππ=+ 【解析】根据题意,圆增加的面积等于现在的面积减原来的面积,分别用x 表示现在的面积和原来的面积,再相减列出函数关系式. 解:()()22225510252510y x x x x x ππππππ=+-=++-=+ .故答案是:210y x x ππ=+.14.(2020·上海市静安区实验中学初三课时练习)已知函数y=(k+2)24k k x +-是关于x 的二次函数,则k=________. 【答案】2或-3 【解析】根据二次函数的定义列出方程与不等式解答即可. ∵函数y=(k+2)24kk x +-是关于x 的二次函数,∵k 2+k ﹣4=2,解得k=2或﹣3, 且k+2≠0,k≠﹣2. 故答案为: 2或﹣3.15.(2020·上海初三月考)如果函数232(3)72k k y k x x -+=-++是关于x 的二次函数,则k =__________.【答案】0 【解析】根据二次函数的定义得到30k -≠且2322k k -+=,然后解不等式和方程即可得到k 的值.∵函数232(3)72kk y k x x -+=-++是关于x 的二次函数,∵30k -≠且2322k k -+=, 解方程得:0k =或3k =(舍去), ∵0k =. 故答案为:0.16.(2020·上海黄浦·初三一模)如果抛物线221y x x m =++-经过原点,那么m 的值等于________∵【答案】1【解析】将点(0,0)代入抛物线方程,列出关于m 的方程,然后解方程即可. 解:根据题意,知点(0,0)在抛物线221y x x m -=++上, ∵0=m -1, 解得,m =1; 故答案是:1.17.(2020·上海市静安区实验中学初三课时练习)某广告公司设计一幅周长为20米的矩形广告牌,设矩形的一边长为x 米,广告牌的面积为S 平方米,则S 与x 的函数关系式为________________. 【答案】210S x x =-+ 【解析】广告牌的一边长是x 米,根据周长再用x 表示出另一边,矩形广告牌的面积等于长⨯宽. 解:另一边长为()10x -米,()21010S x x x x =-=-+.故答案是:210S x x =-+.18.(2019·四川绵阳·初三月考)函数y =(m 2﹣3m +2)x 2+mx +1﹣m ,则当m =_____时,它为正比例函数;当m =_____时,它为一次函数;当m _____时,它为二次函数. 【答案】1 1或2 m ≠1且m ≠2 【解析】(1)正比例函数:y kx =,2320m m ∴-+=且10m -=,即可求得m 的值;(2)一次函数:y kx b =+2320m m ∴-+=且10m -≠,即可求得m 的值;(3)二次函数:2y ax bx c =++2320m m ∴-+≠,即可求得m 的值;(1)正比例函数:y kx =,2320m m ∴-+=且10m -=,解得m =1;(2)一次函数:y kx b =+2320m m ∴-+=,解得m =1或2,;(3)二次函数:2y ax bx c =++2320m m ∴-+≠,解得m ≠1且m ≠2故当m =1时,它为正比例函数;当m =1或2时,它为一次函数;当m ≠1且m ≠2时,它为二次函数. 故答案为:1;1或2;m ≠1且m ≠219.(2020·江苏扬中·初三期末)点(),1m 是二次函数221y x x =--图像上一点,则236m m -的值为__________ 【答案】6 【解析】把点(),1m 代入221y x x =--即可求得22m m -值,将236m m -变形()232m m -,代入即可.解:∵点(),1m 是二次函数221y x x =--图像上,∵2121m m =--则222m m -=.∵()223632326m m m m -=-=⨯= 故答案为:6.20.(2020·全国初三课时练习)∵∵∵∵O∵∵∵∵2∵C 1∵∵∵y=2x 2∵∵∵∵C 2∵∵∵y=∵2x 2∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵_______∵【答案】2π【解析】试题分析:根据题意可知两个函数的图像关于x 轴对称,通过对称性可知阴影部分为一个半圆,求半圆的面积为π×22÷2=2π. 故答案为2π.三、解答题21.(2020·上海市静安区实验中学初三课时练习)已知:二次函数22(1)1y m x x m =-++-的图像经过原点,求m 的值,并写出函数解析式. 【答案】函数解析式为22y x x =-+ 【解析】根据二次函数图象过原点,把()0,0这个点代入函数解析式,求出m 的值,再写出函数解析式.解:令x =0,y =0,得201m =-,21m =,1m =±,∵是二次函数,∵二次项系数不能为零,即10m -≠,1m ≠,∵1m =-, 将1m =-代入原函数,得()()22211112y x x x x =--++--=-+,综上:1m =-,函数解析式为22y x x =-+.22.(2020·全国初三单元测试)一个二次函数y=(k ﹣1)x 234k k -++2x ﹣1.(1)求k 值.(2)求当x=0.5时y 的值? 【答案】(1)k=2;(2)y=14【解析】(1)根据二次函数的定义:一般地,形如y=ax 2+bx+c (a 、b 、c 是常数,a≠0)的函数,叫做二次函数可得k 2-3k+4=2,且k -1≠0,再解即可;(2)根据(1)中k 的值,可得函数解析式,再利用代入法把x=0.5代入可得y 的值. 解:(1)由题意得:k 2﹣3k+4=2,且k ﹣1≠0, 解得:k=2;(2)把k=2代入y=(k ﹣1)234-+kk x +2x ﹣1得:y=x 2+2x ﹣1,当x=0.5时,y=14. 23.(2020·福建省连江第三中学初三月考)已知函数y=(m 2﹣m )x 2+(m ﹣1)x+m+1. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,则m 的值应怎样? 【答案】(1)、m=0;(2)、m≠0且m≠1. 【解析】根据一次函数与二次函数的定义求解. 解:(1)根据一次函数的定义,得:m 2﹣m=0 解得m=0或m=1 又∵m ﹣1≠0即m≠1;∵当m=0时,这个函数是一次函数; (2)根据二次函数的定义,得:m 2﹣m≠0 解得m 1≠0,m 2≠1∵当m 1≠0,m 2≠1时,这个函数是二次函数.24.(2020·安徽滁州·初三其他)定义:如果一个点的纵坐标是横坐标的二倍,则称该点为“倍点”(1)若点(,6)P m 是双曲线ky x=上的倍点,则k = ; (2)求出直线31y x =-上的倍点的坐标;(3)若抛物线241y x bx =++上有且只有一个倍点,求b 的值.【答案】(1)18;(2)(1,2);(3)b 的值是6或2-. 【解析】(1)根据“倍点”定义求出点P 的坐标为(3,6),即可求出k ;(2)设倍点的坐标为(,2)n n ,将点坐标代入解析式得到231n n =-,求出n 即可得到答案;(3))设抛物线241y x bx =++的倍点坐标为(,2)a a ,将点坐标代入241y x bx =++得到2412a ba a ++=,根据抛物线241y x bx =++上有且只有一个倍点,得到方程24(2)10a b a +-+=有两个相等是实数根,利用∆=0得到2(2)4410b --⨯⨯=,即可求出b.解:(1)∵点(,6)P m 是双曲线ky x=上的倍点, ∵2m=6,得m=3, ∵P (3,6), ∵3618=⨯=k , 故答案为:18;(2)设倍点的坐标为(,2)n n , 则231n n =-, 解得1n =,所以倍点的坐标为(1,2);(3)设抛物线241y x bx =++的倍点坐标为(,2)a a ,2412a ba a ∴++=,即24(2)10a b a +-+=, 该抛物线上有且只有一个倍点,∴方程24(2)10a b a +-+=有两个相等是实数根,则2(2)4410b --⨯⨯=, 解得6b =或2b =-, 所以b 的值是6或2-.25.(2020·湖北黄石八中)根据下面的运算程序,若输入1x =时,请计算输出的结果y 的值.【答案】2. 【解析】1的范围,然后根据分段函数解析式,代入相应的解析式进行计算即可求解.解:当输入1x =,因为011≤<,所以满足第二个函数解析式.所以211)2y =+=26.(2020·北京人大附中初三月考)某种型号的电热水器工作过程如下:在接通电源以后,从初始温度20℃下加热水箱中的水,当水温达到设定温度60℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到保温温度30℃时,再次自动加热水箱中的水至60℃,加热停止;当水箱中的水温下降到30℃时,再次自动加热,……,按照以上方式不断循环.小宇根据学习函数的经验,对该型号电热水器水箱中的水温随时间变化的规律进行了探究,发现水温y 是时间x 的函数,其中y (单位:℃)表示水箱中水的温度,x (单位:min )表示接通电源后的时间.下面是小宇的探究过程,请补充完整:(1)小宇记录了从初始温度20℃第一次加热至设定温度60℃,之后水温冷却至保温温度30℃的过程中,y 随x 的变化情况,如下表所示:∵请写出一个符合加热阶段y 与x 关系的函数解析式______________;∵根据该电热水器的工作特点,当第二次加热至设定温度60℃时,距离接通电源的时间x 为________min . (2)根据上述的表格,小宇画出了当020x ≤≤时的函数图象,请根据该电热水器的工作特点,帮他画出当2040x ≤≤时的函数图象.(3)已知适宜人体沐浴的水温约为35C 50C ︒︒-,小宇在上午8点整接通电源,水箱中水温为20℃,热水器开始按上述模式工作,若不考虑其他因素的影响,请问在上午9点30分时,热水器的水温______(填“是”或“否”)适合他沐浴,理由是_________________.【答案】(1)∵()()25200812*******4x x y x x x +⎧≤≤⎪=⎨<≤-+⎪⎩;∵26;(2)见详解;(3)否;加热至9点30分的温度为33︒,不在人体适合的温度范围内. 【解析】(1)∵根据表格数据特点,应用待定系数法求解即可;∵根据表格数据先确定从30加热至60︒需要的时间,再将所得时间加上第一次加热至保温的时间即得;(2)根据加热温度变化规律可知从30加热至60︒需要6min ,即可确定点()2660,, (3)根据表格数据特点,第一次加热需要20分钟,之后每18分钟一次循环,即可确定早上9点30分对应第一次加热的时间段. 解:(1)∵当08x ≤≤时,设解析式为:()0y kx b k =+≠将()()0202,30,,代入()0y kx b k =+≠并联立得: 20230b k b =⎧⎨+=⎩,解得:205b k =⎧⎨=⎩∵当08x ≤≤时,520y x =+当820x <≤时,设解析式为:()20y ax bx c a =++≠将()()()10,5112,4514,40,, 代入()20y ax bx c a =++≠并联立得:100105114412451961440a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得:1823496a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∵当820x <≤时,21239684y x x =-+ ∵第一次加热阶段y 与x 关系的函数解析式为:()()2520081238209684x x y x x x +⎧≤≤⎪=⎨<≤-+⎪⎩ 故答案为:()()2520081238209684x x y x x x +⎧≤≤⎪=⎨<≤-+⎪⎩ ∵根据表格数据可知从30加热至60︒需要6min∵当第二次加热至设定温度60℃时,距离接通电源的时间x 为20+6=26min 故答案为:26. (2)如下图:(3)从早上8点至早上9点30分,总共用时90分钟,且第一次加热需要20分钟至保温温度30,第一次以后每18分钟循环一次.∵90=20+183+16⨯,即最后一次重新加热至9点30分对应第一次的第18分钟的温度:33︒. ∵在上午9点30分时,热水器的水温不适合他沐浴.故答案为:否,加热至9点30分的温度为33︒,不在人体适合的温度范围内.。

二次函数的概念课件(共27张PPT)沪科版数学九年级上学期

二次函数的概念课件(共27张PPT)沪科版数学九年级上学期
初中数学 九年级 第一学期 《二次函数》
26.1 二 次 函 数 的 概 念
上海教育出版社 九年义务教育课本 九年级 第一学期(试用本)
一、情境引入
一、情境引入
消防水枪的喷射路线
一、情境引入
投出的篮球
跳水比赛
一、情境引入
喷水池喷射出的一条水线
一、情境引入
问题1 我们已经学习过哪些函数?
问题2 从哪些方面研究这些函数?
方厘米,那么 y 关于 x 的函数解析式是__________.
问题6 把一根40厘米的铁丝分为两段,再分别把每一段弯折成一个正方形.设
其中一段铁丝长为 x 厘米,两个正方形的面积和为
y 平方厘米,那么 y

= − + . 定义域是_________.
关于 x 的函数解析式是_____________
问题3 如何研究新的函数?
实际问题






实际应用
一、情境引入
抛物线
一、情境引入
问题4 如果正方形的边长是 x 厘米,那么它的面积 y 平方厘米是边长 x 厘米的
函数,y 关于 x 的函数解析式是__________.
问题5 一个边长为4厘米的正方形, 若它的边长增加 x 厘米,则面积随之增加
的函数叫做二次函数. 其定义域为一切实数.
二次函数解析式的特点:
1.关于自变量的整式
2.自变量的最高次数为二次
3.二次项系数不为零
二、新知讲授
问题7 已知函数 y=ax2+bx+c (其中a、b、c是常数),那么 y 是 x 的什么函数?
(1)当 a≠0 时, y 是 x 的二次函数.

26.1二次函数课件(共26张PPT)

26.1二次函数课件(共26张PPT)

想一想
生活问题数学化
果园共有(100+x)棵树,平均每棵树结 (600-5x)个橙子,因此果园橙子的总产量 y=(100+x)(600-5x)=-5x² பைடு நூலகம்100x+60000 在上述问题中,种多少棵橙子树,可以使果 园橙子的总产量最多?
X/棵 Y/个
你能根据表格中的数据作出猜想 吗
1
2
3
4
5 6
=30a-a²
= -a²+30a .
是二次函数关系式.
小试牛刀
心动不如行动
如果函数y=
0或3 则k的值一定是______
x
k 3k 2
2
+kx+1是二次函数,
如果函数y=(k-3) x +kx+1是二 0 次函数,则k的值一定是______
k 2 3k 2
小结
拓展




定义中应该注意的几个问题:
设人民币一年定期储蓄的年利率是x,一年到 期后,银行将本金和利息自动按一年定期储蓄转 存.如果存款是100元,那么请你写出两年后的本 息和y(元)的表达式(不考虑利息税).
?
y=100(x+1)² =100x² +200x+100
思索归纳
二次函数
y=-5x²+100x+60000 y=100x²+200x+100
想一想
源于生活的数学
某果园有100棵橙子树,每一棵树平均结600 个橙子.现准备多种一些橙子树以提高产量,但 是如果多种树,那么树之间的距离和每一棵树所 接受的阳光就会减少.根据经验估计,每多种一 棵树,平均每棵树就会少结5个橙子.

人教26.1二次函数图象及其性质

人教26.1二次函数图象及其性质

二次函数○引:二次函数:一般地,形如y=ax ²+bx+c (a ,b ,c 为常数,a ≠0)的函数,叫二次函数,其中,x 是自变量,a ,b ,c 分别是函数解析式的二次项系数,一次项系数和常数项.○一:y=ax ²的图像及其性质 用描点法画出y=x ²的图像,(描点法三步骤:列表,描点,连线.分别注意,自变量的取值范围,坐标的表示,按横坐标的顺序把各点用平滑的曲线连接起来).同样的,用描点法画出y=-x ²的图像. 观察图像可理解“抛物线”的概念,同时图像具有对称性,(由于点(m ,m ²)和它关于y 轴的对称点(-m ,m ²)都在抛物线y=x ²上,所以抛物线y=x ²关于y 轴对称)最高点或最低点,即抛物线和对称轴的交点叫做抛物线的顶点.抛物线y=x ²与抛物线y=-x ²关于x 轴对称.再在抛物线y=x ²所在坐标系中画出函数y=½x ²的图像与函数y=2x ²的图像,比较共同点和不同点发现,开口都向上,顶点都是原点,但x ²的系数越大,抛物线的开口反而越小. 在抛物线y=-x ²所在坐标系中画出函数y=-½x ²的图像与函数y=-2x ²的图像,比较共同点和不同点发现,开口都向下,顶点都是原点,但x ²的系数越大,抛物线的开口越大.总结:一般地,抛物线y=ax ²的对称轴是y 轴,顶点是原点.a 的值互为相反数时,两条抛物线关于x 轴对称.(因为抛物线y=ax ²上的点(x ,x ²)与抛物线y=-x ²上的点(-x ,x ²)是关于x 轴对称的)|a|的绝对值相同,y=ax ²的形状相同.○二:y=a (x-h )²+k 的图像及其性质(1)y=ax ²+k 的图像用描点法在同一坐标系中画出y=x ²+1和y=x ²-1的图像,写出抛物线的开口方向、顶点和对称轴,对比y=x ²的图像、解析式、函数对应数值表、位置、形状等找出他们之间的关系. 可以发现把y=x ²向上平移一个单位就的到抛物线y=x ²+1,向下平移一个单位得到抛物线y=x ²-1.抛物线的形状相同,对称轴相同(顶点横坐标相同),顶点不同表示成(0,k )与k 有关(抛物线y=x ²上的点是(x ,x ²),将各个点纵坐标的数值+1即(x ,x ²+1),形成相应的新抛物线y=x ²+1就是将抛物线y=x ²向上平移一个单位)把抛物线y=2x ²向上平移5个单位,得到y=2x ²+5的图像. 总结:抛物线y=ax ²+k 的图像可由y=ax ²的图像上下平移得到,(上+下-)(增减性讨论同上)a >0时:抛物线开口向上,顶点是抛物线的最低点,除顶点外图像都在x 轴上方. a <0时:抛物线开口向下,顶点是抛物线的最高点,除顶点外图像都在x 轴下方.x<0时,y 随x 的增大而减小 x>0时,y 随x 的增大而增大x<0时,y 随x 的增大而增大 x>0时,y 随x 的增大而减小|a|的绝对值越大,抛物线的开口越小.k>0时,向上平移k 个单位长度 k<0时,向下平移|k|个单位长度.a>0时,开口向上;有最低点(0,k),当x=0时y 最小值=k ,图像在x 轴上方,与x 轴无交点a<0时,开口向下;有最高点(0,k),当x=0时y 最大值=k ,图像与x 轴有两个交点 a>0时,开口向上;有最低点(0,k),当x=0时y 最小值=k ,图像与x 轴有两个交点a<0时,开口向下;有最高点(0,k),当x=0时y 最大值=k ,图像在x 轴上方,与x 轴无交点(2)y=a (x-h )²的图像用描点法在同一坐标系中画出y=½(x+1)²和y=½(x-1)²的图像,写出抛物线的开口方向、顶点和对称轴,对比y=½x ²的图像、解析式、函数对应数值表、位置、形状等找出他们之间的关系.可以发现把y=½x ²水平向左平移一个单位就的到抛物线y=½(x+1)²,水平向右平移一个单位得到抛物线y=½(x-1)².抛物线的形状相同,对称轴发生变化x=h ,与h 有关,顶点不同,但顶点纵坐标都为0,可表示为(h ,0),(对称轴是经过点(h ,0)且与x 轴垂直的直线,这条直线上的所有点横坐标都是h ,因此记作x=h )总结:抛物线y=a (x-h )²的图像可由y=ax ²的图像左右平移得到,(增减性讨论同上)h>0时,向右平移,h 个单位长度,h<0,向左平移|h|个单位长度(左+右-).a>0时,开口向上,图象除顶点外在x 轴上方,a<0时,开口向下,图象除顶点外在x 轴下方.对称轴是直线x=h,顶点(h ,0).注意:y=x ²-2与y=(x-2)²平移成y=x ²的区别.(3)y=a (x-h )²+k 的图像由以上经验,显然,y=a (x-h )²+k 可以由y=ax ²图像平移得到,平移方法“左加右减,上加下减”.先水平或先垂直均可.(矩形ABCD ,从A 到C 的路径,AB+BC 与AD+DC 相同) 总结:一般地,抛物线y=a (x-h )²+k 与y=ax ²形状相同,位置不同,把抛物线y=ax ²平移后可以得到抛物线y=a (x-h )²+k ,平移的方向、距离由h ,k 来决定.当a>0时, h >0 顶点在第一象限 开口向上, k >0,抛物线在x 轴上方 h <0 顶点在第二象限 函数图象有最高点, k <0,抛物线与x 轴有两个交点 h >0 顶点在第四象限 函数有最大值 h <0 顶点在第三象限 当a<0时, h >0 顶点在第一象限 开口向下, k >0,抛物线与x 轴有两个交点 h <0 顶点在第二象限 函数图象有最高点, k <0,抛物线在x 轴下方 h >0 顶点在第四象限 函数有最大值 h <0 顶点在第三象限 对称轴是直线x=h ,顶点坐标(h ,k )○三:y=ax ²+bx+c 的图像及其性质画法分三步:第一,用配方法将一般式转化成y=a (x-h )²+k 的形式:222222244)2(])2()2([)(ab ac ab x a ac ab ab x a b x a ac x ab x ac bx ax y -++=+-++=++=++=第二,确定抛物线开口方向、对称轴和顶点 a 决定开口方向和开口大小,对称轴x=ab 2-,顶点(ab 2-,ab ac 442-),第三,利用对称性描点画图.(正确找到对称轴)平移步骤:先把二次函数转化成y=a (x-h )²+k 的形式,确定其顶点(h ,k );并将抛物线进行平移。

华师大版数学九年级下册《26.1 二次函数》说课稿

华师大版数学九年级下册《26.1 二次函数》说课稿

华师大版数学九年级下册《26.1 二次函数》说课稿一. 教材分析华师大版数学九年级下册《26.1 二次函数》这一节的内容,主要介绍了二次函数的定义、性质和图像。

二次函数是中学数学中的重要内容,对于学生来说,掌握二次函数的知识对于理解高中阶段的函数学习和解决实际问题具有重要意义。

本节内容首先介绍了二次函数的定义,包括函数的表达式、自变量和函数值的限制条件等。

接着,通过实例讲解,让学生理解二次函数的图像特征,包括开口方向、顶点坐标、对称轴等。

然后,引导学生学习二次函数的性质,包括单调性、极值等。

最后,通过练习题,让学生巩固所学知识,并能应用于解决实际问题。

二. 学情分析九年级的学生已经学习了函数的基本知识,对于一次函数和二次函数的概念有一定的了解。

但是,对于二次函数的性质和图像的深入理解还需要加强。

此外,学生对于实际问题的解决能力也有待提高。

三. 说教学目标1.知识与技能目标:让学生掌握二次函数的定义、性质和图像,能够解决简单的实际问题。

2.过程与方法目标:通过实例讲解和练习,培养学生的观察能力、分析能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的耐心和细心,使学生感受到数学在生活中的应用。

四. 说教学重难点1.重点:二次函数的定义、性质和图像。

2.难点:二次函数的图像特征的理解和应用。

五. 说教学方法与手段1.教学方法:采用讲授法、案例教学法和练习法。

2.教学手段:利用多媒体课件进行教学,展示二次函数的图像和实例。

六. 说教学过程1.导入:通过一个实际问题,引出二次函数的概念,激发学生的兴趣。

2.讲解:讲解二次函数的定义、性质和图像,通过实例进行解释和展示。

3.练习:让学生进行练习,巩固所学知识,并能应用于解决实际问题。

4.总结:对本节内容进行总结,强调二次函数的重要性和应用价值。

七. 说板书设计板书设计包括二次函数的定义、性质和图像的主要内容,以及相关的重要概念和公式。

二次函数及其图像

二次函数及其图像

学科教师辅导讲义(1)0<x<2 (2) 23x ≤≤考点九:2y ax bx c =++中a ,b ,c 符号的确定抛物线的开口方向决定a 的符号,当a>0时函数图像开口方向向上,当a<0时函数图像的开口方向向下;抛物线与y 轴的交点确定c 的符号,抛物线过原点c=0,抛物线交于y 轴的正半轴c>0,抛物线与y 轴交与y 轴的负半轴c<0;对称轴以及抛物线的开口方向决定b 的取值注1:a+b+c 的符号由x=1时的y 值来确定,a-b+c 的符号由x=-1时的y 值来确定注2:本考点是中考的中的阿,一般是结合图像求a,b,c 的符号以及其他代数式的符号。

题目以填空选择为主,特别是求a+b+c ,a-b+c ,4a+2b+c,4a-2b+c 以及2a+b,2a-b 的符号考查题目11:若二次函数241y mx x m =++-的最小值为2,求m 的值练习题目一:1、已知二次函数y =Ax 2+Bx +C 的图象如图所示,则下列结论正确的是( ) A .a >0 B .c <0 C .b 2-4ac <0 D .a +b +c >0(第1题)【答案】D2、如图5,已知抛物线cbxxy++=2的对称轴为2=x,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为A.(2,3)B.(3,2)C.(3,3)D.(4,3)【答案】D3、二次函数cbxaxy++=2的图象如图所示,则一次函数abxy+=的图象不经过A.第一象限B.第二象限C.第三象限D.第四象限【答案】D4、函数2y ax b y ax bx c=+=++和在同一直角坐标系内的图象大致是( )【答案】C.5、把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-3x+5,则()A.b=3,c=7B.b=6,c=3 C.b=-9,c=-5D.b=-9,c=21【答案】A.6、若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,122+-xx)可以由E(x,2x)怎样平移得到?A.向上平移1个单位B.向下平移1个单位C.向左平移1个单位D.向右平移1个单位O xyA图5x = 2Bx(第3题图)yO【答案】D7、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①a、b异号;②当x=1和x=3时,函数值相等;③4a+b=0,④当y=4时,x的取值只能为0.结论正确的个数有()个A.1B.2C.3D.4【答案】C8、已知抛物线2y ax bx c=++(a<0)过A(2-,0)、O(0,0)、B(3-,1y)、C(3,2y)四点,则1y与2y的大小关系是A.1y>2y B.1y2y=C.1y<2y D.不能确定【答案】A9、设a、b是常数,且b>0,抛物线y=ax2+bx+a2-5a-6为下图中四个图象之一,则a的值为()A. 6或-1B. -6或1C. 6D. -1【答案】D10、平面直角坐标系中,若平移二次函数y=(x-2009)(x-2010)+4的图象,使其与x轴交于两点,且此两点的距离为1个单位,则平移方式为A.向上平移4个单位 B.向下平移4个单位C.向左平移4个单位 D.向右平移4个单位【答案】B11、已知抛物线103:2-==xxyC,将抛物线C平移得到抛物线C'若两条抛物线C、C'关于直线1=x对称,则下列平移方法中,正确的是A.将抛物线C向右平移25个单位B.将抛物线C向右平移3个单位C.将抛物线C向右平移5个单位D.将抛物线C向右平移6个单位【答案】C12、抛物线772--=xkxy的图象和x轴有交点,则k的取值范围是()A.47-≥k B.47-≥k且0≠k C.47->k D.47->k且0≠k【答案】B13、二次函数2y ax bx c=++的图象如图所示,则一次函数acbxy-=与反比例函数xcbay+-=在同一坐标系内的图象大致为()yxOyxOyxO 1-1yxO 1-110:如图,两条抛物线y1=-21χ2+1、y2=21χ2-1 与分别经过点(-2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为A.8 B.6 C.10 D.4【答案】A11:已知二次函数()()221y x a a=-+-(a为常数),当a取不同的值时,其图象构成一个“抛物线系”.下图分别是当1a=-,0a=,1a=,2a=时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y=.【答案】112x-12:已知实数yxyxxyx+=-++则满足,033,2的最大值为.【答案】413:已知抛物线bxxy+=221经过点A(4,0)。

上海教育版数学九上26.1《二次函数的概念》WORD教案

上海教育版数学九上26.1《二次函数的概念》WORD教案
26.1二次函数的概念
一、教学内容分析
二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式和它的定义域.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述备
二、教学目标设计 1.理解二次函数的概念
2.会求一些简单的实际问题中二次函数的解析式和它的定义域
3.在从问题出发到列二次函数解析式的过程中,体验用函数思想去描述、研究变量之间变化规律的意义.
三、教学重点及难点
教学重点:对二次函数概念的理解.
教学难点:由实际问题确定函数解析式和确定自变量的取值范围.

沪教版数学九年级上册26.1《二次函数的概念》教学设计

沪教版数学九年级上册26.1《二次函数的概念》教学设计

沪教版数学九年级上册26.1《二次函数的概念》教学设计一. 教材分析沪教版数学九年级上册第26.1节《二次函数的概念》是整个初中数学阶段的重要内容,它为学生以后学习高中数学乃至大学数学打下基础。

本节内容主要介绍二次函数的定义、一般形式以及二次函数的图像特征。

教材通过实例引导学生理解二次函数的概念,并通过自主探究活动,让学生掌握二次函数的性质。

二. 学情分析九年级的学生已经具备了一定的函数知识,例如一次函数和正比例函数。

他们在学习过程中能初步运用观察、实验、猜测、推理、交流等数学活动方式,进一步抽象和概括数学问题。

但二次函数的概念较为抽象,学生理解起来存在一定困难,因此,在教学过程中,需要教师引导学生通过实际问题来感受二次函数的实际意义,激发学生的学习兴趣。

三. 教学目标1.让学生理解二次函数的概念,掌握二次函数的一般形式。

2.使学生能够通过实际问题,运用二次函数的知识进行分析。

3.培养学生运用数学语言描述和解决问题的能力。

四. 教学重难点1.重点:二次函数的概念,二次函数的一般形式。

2.难点:理解二次函数的图像特征,能够运用二次函数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解二次函数的实际意义。

2.自主探究法:教师提出问题,引导学生分组讨论,共同探究二次函数的性质。

3.讲解法:教师对二次函数的概念、性质进行系统的讲解。

4.练习法:通过课堂练习,巩固所学知识。

六. 教学准备1.课件:制作关于二次函数概念、图像特征的课件。

2.练习题:准备一些关于二次函数的练习题,用于课堂练习和课后作业。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用生活实例,如抛物线运动,引出二次函数的概念。

提问:你们认为什么是二次函数?2.呈现(10分钟)呈现二次函数的一般形式,y=ax^2+bx+c(a≠0)。

讲解二次函数的各部分含义,让学生理解二次函数的定义。

3.操练(10分钟)让学生分组讨论,探究二次函数的性质。

26.1.1 二次函数的意义-丁博

26.1.1 二次函数的意义-丁博
k 2 - 3k+ 2 k - 3k+ 2
2
+kx+1是二次函
知识的升华
已知函数 y (k k ) x kx 2 k (1) k为何值时,y是x的一次函数? (2) k为何值时,y是x的二次函数?
2 2
k 0 k 解(1)根据题意得 k 0
2
∴k=1时,y是x的一次函数。
所求的二次函数是y x 12x 15
2
牛刀小试
5.已知二次函数
y 2( x 1) 4
2
(1)你能说出此函数的最小值吗? 当x=1时,函数y有最小值为4 (2)你能说出这里自变量能取哪些值呢?
x取任意实数
开动脑筋
问题:是否任何情况下二次函数中的自变量
的取值范围都是任意实数呢? 2 例如:圆的面积 y (cm )与圆的半径 x (cm)的函数关系是 y =πx2 其中自变量x能取哪些值呢? x 0
2
(o<x<10)
(2) y 2 32 20 3 42m
小试牛刀
圆的半径是1cm,假设半径增加 xcm时,圆的面积增加ycm² . (1)写出y与x之间的函数关系表 达式;
(2)当圆的半径分别增加 1cm, 2cm ,2cm时,圆的面积增加多 少?
问题再探究
在种树问题中,种 多少棵橙子树,可 以使果园橙子的 y=-5x² +100x+60000, 总产量最多?
4. 已知二次函数y=x² +px+q,当x=1时,函数 值为4,当x=2时,函数值为- 5, 求这个二次 函数的解析式.
解:把x=1,y=4和x=2,y=-5分别代入 函数y x 2 px q, 得:

26.1.1二次函数

26.1.1二次函数

k 反比例函数y = (k≠0) , x 二次函数y =ax2+bx+c(a≠0)。
1.一个圆柱的高等于底面半径,写出它的表 面积 s 与半径 r 之间的关系式.
S=2πr2 +2πr2 即S=4πr2
2. n支球队参加比赛,每两队之间进行一场 比赛,写出比赛的场次数 m与球队数 n 之 间的关系式. 1 2 1 1 m nn 1 即 m n n 2 2 2

1 (2) y=x+ __ 不是二次函数.
x
(6) v=8π r² 是二次函数. 二次项系数: 8π
(3) s=3-2t² 是二次函数.
二次项系数: 一次项系数: 常数项:
-2 0 3
一次项系数: 0
常数项: 0
思考:2. 二次函数的一般式y=ax2+bx+c (a≠0)与一元二次方程ax2+bx+c=0 (a≠0)有什么联系和区别? 联系(1)等式一边都是ax2+bx+c且a ≠0 (2)方程ax2+bx+c=0可以看成是函数 y= ax2+bx+c中y=0时得到的.
1 d nn 3 2

1 2 3 d n n② 2 2
3、某工厂一种产品现在的年产量是20件,计划 今后两年增加产量,如果每年都比上一年的产 量增加x倍,那么两年后这种产品的产量y将随 计划所定的x的值而确定,y与x之间的关系应怎 样表示?
y=20(1+x)2
即 y=20x2+40x+20 ③
26.1 二次函数
基础回顾
什么叫函数?
在某变化过程中的两个变量x、y,当变量x 在某个范围内取一个确定的值,另一个变量y 总有唯一的值与它对应。 这样的两个变量之间的关系我们把它叫 做函数关系。 对于上述变量x 、y,我们把y叫x的函数。 x叫自变量, y叫因变量。 目前,我们已经学习了那几种类型的函 数?

沪教版(上海)初中数学九年级第一学期 26.1 二次函数的概念 教案

沪教版(上海)初中数学九年级第一学期 26.1 二次函数的概念 教案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯26.1二次函数的概念教学目标:1. 理解二次函数的概念;能判断用解析式表示出来的两个变量之间的关系是不是二次函数.2. 对简单的实际问题,能根据具体情景中两个变量之间的依赖关系列出二次函数解析式,并确定函数的定义域.3. 经历从实际问题引进二次函数概念的过程,体会用函数去描述、研究变量之间的变化规律的意义. 教学重点及难点:重点:理解二次函数的概念,初步学会用二次函数描述实际问题中两个变量之间的依赖关系.难点:由实际问题确定函数解析式和自变量的取值范围.教学过程:一、复习回顾:我们学过哪些函数?什么是一次函数?表达式中的自变量是什么?函数是什么?为什么要有k≠0的条件? k的值对函数性质有什么影响?函数是研究两个变量在某变化过程中的相互依赖关系.我们来看下面几个例子中的两个变量存在怎样的关系.二、情境引入:问题1:正方形的边长是x厘米,那么它的面积y平方厘米与边长x厘米之间的函数解析式如何表示?解:函数解析式是y=x2.问题2:一个边长为4厘米的正方形,若它的边长增加x厘米,则面积随之增加y平方厘米,那么y 关于x的函数解析式是什么?解:函数解析式是y=(x+4)2-42,即 y=x2+8x.问题3:某厂七月份的产值是100万元,设第三季度每个月产值的增长率相同,都为x,九月份的产值为y万元,那么y关于x的函数解析式.解:函数解析式是y=100(1+x)2,即y=100x2+200x+100.三、概念形成:观察:y=x2、y=x2+8x、y=100x2+200x+100的特征,想一想,y是x的什么函数?(二次函数)概念:一般地,形如y=ax2+bx+c(其中a、b、c为常数,且a≠0)的函数叫做二次函数.其中,a是二次项系数,b是一次项系数,c是常数项.二次函数y=ax2+bx+c(a≠0)的定义域为一切实数.注意:(1)为什么二次函数定义中要求a≠0?若a=0,y=ax 2+bx+c=bx+c 为一次函数.(2)b 和c 是否可以为零?若b=0,则y=ax 2+c ;若c=0,则y=ax 2+bx ;若b=c=0,则y=ax 2.以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c 是二次函数的一般形式.(3)概念中的“形如”,指二次函数的自变量与函数不仅仅局限于只用x 、y 来表示.(4)自变量x 的取值范围是一切实数.但在实际问题中,自变量的取值范围应是使实际问题有意义的值.故,三个问题中的定义域应都为x>0.四、巩固练习: 1、下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出各项系数.① y=1-x 2; ② m=n 2-2n-1; ③ y=x(x-1); ④ y=3x(2-x)+3x 2; ⑤ y=x 4+2x 2+1; ⑥ x x x y 122+-=; ⑦ πx x y -=23; ⑧ 2x y =. 2、(1)已知函数()35112-+-=+x x m y m是二次函数,则m =__________. (2)已知函数2)3()9(22+---=x m x m y ,当m__________时,这个函数是二次函数;当m __________时,这个函数是一次函数.五、例题分析:例:用长为20米的篱笆,一面靠墙(墙长20米),围成一个矩形花圃,如图所示. 设AB 边的长为x 米,花圃的面积为y 平方米,求y 关于x 的函数解析式及函数的定义域.解:根据题意,AB=x 米,则BC=20-2x 米,函数解析式为y=x(20-2x)=-2x 2+20x.由x>0且20-2x>0,解得0<x<10.变式:若其他条件不变,还要求在与墙平行的BC 边上开一扇2米的门(门的材料另备),如图所示.求y 关于x 的函数解析式及函数的定义域.解:根据题意,AB=x 米,则BC=20+2-2x 米,函数解析式为y=x(22-2x)=-2x 2+22x.由x>0且22-2x>0,解得0<x<11.六、课堂小结:这节课你学习了什么,有何收获?七、作业布置:1. 已知二次函数y=2x 2-3x-2.(1)当x=-32时,y=__________;(2)当x=__________时,函数值为0. 2. 已知二次函数y=ax 2+bx+3,当x=2时,函数值是3;当x=-2时,函数值是2. 求这个二次函数解析式.3. 拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为120m ,室内通道尺寸如图,设一条边长为x(m),种植面积为y(m 2). 求y 与x 的函数解析式及定义域.4. 一条隧道的横截面如图所示,它的上部是一个半圆,下部是一个矩形,矩形的一边长为2.5米.如果隧道下部的宽度大于5米但不超过10米,求隧道横截面积S(平方米)关于上部半圆半径r(米)的函数解析式及定义域.八、板书设计:一次函数:形如y=kx+b (k ≠0)二次函数:形如y=ax 2+bx+c (a≠0)定义域:一切实数。

二次函数

二次函数
△让学生画图既有复习的性质又有探究的目的
△小组讨论体现了合作探究的学习方法
△学生围绕问题小结思路更清晰,教师及时的补充便于学生对知识的消化
教学流程
分课时
环节
与时间
教师活动
学生活动
△设计意图
◇资源准备
□评价○反思
第四课时
提出问题
5分
合作探究
20分
课堂练习
15分
小结
5分
板书设计
1.在同一直角坐标系内,画出二次函数y=- x2,y=- x2-1的图象,并回答:
1通过本节课的学习,你学到了什么知识?有何体会?
2布置作业:14页6题
26.1二次函数
归纳:抛物线y=ax2+bx+c的性质
练习;
学生口答完成老师的问题,并小组合作讨论新的问题,寻求解决发法。
学生已经学过配方法解一元二次方程,尝试用配方法把一般式配方成顶点式,和老师一起完成学习任务
动手画图,和老师一起归纳抛物线y=ax2+bx+c的性质
(1)两条抛物线的位置关系。
(2)分别说出它们的对称轴、开口方向和顶点坐标。
(3)说出它们所具有的公共性质。
2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?
1画图:在同一直角坐标系中画出函数y=2x2y=2(x+1) y=2(x-1)2的图像
目的是了解二次函数的概念
小结中的问题是开放的,学生的答案会很多,重在培养学生的总结能力。
直观体现知识点便于总结
◇搜集素材制作课件

教学流程
分课时
环节
与时间
教师活动

2二次函数的概念课件

2二次函数的概念课件

式是
,y是x的 函数.
A
(3)◆设
为x,
那么y关于x 的函数解析式是
为y, ,
E
D
y是x的二次函数.
◆设
为x,
4
为y,
那么y关于x 的函数解析式是

y是x的二次函数.
C4
B
【课堂小结】
一、二次函数的定义
二、学习一个具体函数的过程:
实际 问题
两个 变量
具体函数的定义 (解析式、定义域)
性质
图像
【布置作业】
.
解析式
一次函数
y=kx+b (k≠ 0)
二次函数
y=ax²+bx+c (a≠ 0)
例3、如图,用长为20米的篱笆,一面靠墙
(墙长度超过20米),围成一个矩形的花圃.设AB边的长 为x米,花圃的面积为 y平方米.
(1)求y关于x的函数解析式及函数的定义域; (2)当x=6时,y的 值是多少?当y=32时,x的值多少? (3)花圃的面积是否可能等于60平方米?为什么? (4)若题目的条件修改一下,那么第1.2问还一样吗?
A
D
x B 20-2x C
x
例题4 已知:如图,在Rt△ABC中,∠C=90°,AC=BC=4,点D
为边AB上的一个动点(不与A、B两点重合),过点D作DE⊥AC,
垂足为点E,联结DC.
(1)设线段AD的长为x,线段EC的长为y,那么y关于x的函数解
析式是
,y是x的
函数.
(2)设线段AE长为x,△ACD的面积为y,那么y关于x的函数关系
(2)如果分别用5分钟、10分钟或20分钟来提出这一概念, 那么三者相比,用哪种方式,学生的接受程度更高?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.1二次函数的概念
复习
• ⑴.一元二次方程的一般形式是什么? • ⑵.回忆一下什么是正比例函数、一次函数?它
们的一般形式是怎样的?
• 写出下列各题的函数关系式
1. 设正方形的边长是x厘米,那么它的面积y平方厘
米与边长x厘米的函数解析式是

2. 一个边长为4厘米的正方形,若它的边长增加x厘
米,则面积随之增加y平方厘米,那么y关于x的函
• (2)一次项系数和常数项可以为0吗?
若b=0,则y=

若c=0,则y=

若b=c=0,则y=

概念巩固
• (1)下列函数中哪些是二次函数?哪些不是二次函数? 若是二次函数,指出a、b、c.
练一练
概念巩固
练一练
例题分析
例题分析
练一练
例题分析
练一练
小结
作业
练习册26.1
数解析式是

3. 把一根40厘米长的铁丝分为两段,再分别把每一
段弯折成一个正方形。设其中一段铁丝长为x厘米,
两个正方形的面积和为y平方厘米,那么y关于x的
函数解析式是

二次函数的定义
• 一般地,形如
函数。其中 是自变量,a是
b是
,c是
• 二次函数的定义域为
的函数为二次 ,


想一想
• (1)二次项Biblioteka 数为什么不等于0?
相关文档
最新文档