数字信号处理实验报告_第四章
数字信号处理上机实验 作业结果与说明 实验三、四、五
上机频谱分析过程及结果图 上机实验三:IIR 低通数字滤波器的设计姓名:赵晓磊 学号:赵晓磊 班级:02311301 科目:数字信号处理B一、实验目的1、熟悉冲激响应不变法、双线性变换法设计IIR 数字滤波器的方法。
2、观察对实际正弦组合信号的滤波作用。
二、实验内容及要求1、分别编制采用冲激响应不变法、双线性变换法设计巴特沃思、切贝雪夫I 型,切贝雪夫II 型低通IIR 数字滤波器的程序。
要求的指标如下:通带内幅度特性在低于πω3.0=的频率衰减在1dB 内,阻带在πω6.0=到π之间的频率上衰减至少为20dB 。
抽样频率为2KHz ,求出滤波器的单位取样响应,幅频和相频响应,绘出它们的图,并比较滤波性能。
(1)巴特沃斯,双线性变换法Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radians frequency in pi unitsa r g (H [e x p (j w )](2)巴特沃斯,冲激响应不变法(3)切贝雪夫I 型,双线性变换法(4)切贝雪夫Ⅱ型,双线性变换法综合以上实验结果,可以看出,使用不同的模拟滤波器数字化方法时,滤波器的性能可能产生如下差异:使用冲击响应不变法时,使得数字滤波器的冲激响应完全模仿模拟滤波器的冲激响应,也就是时域逼急良好,而且模拟频率和数字频率之间呈线性关系;但频率响应有混叠效应。
frequency in Hz|H [e x p (j w )]|Designed Lowpass Filter Magnitude Response in dBfrequency in pi units|H [e x p (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [e xp (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radiansfrequency in pi unitsa r g (H [e x p (j w )]使用双线性变换法时,克服了多值映射的关系,避免了频率响应的混叠现象;在零频率附近,频率关系接近于线性关系,高频处有较大的非线性失真。
数字信号处理实验四报告
实验4 IIR滤波器设计
一、实验目的
1、掌握双线性变换法及脉冲相应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线
性变换法及脉冲响应不变法设计低通、高通与带通IIR 数字滤波器的计算机编程。
2、观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变
法的特点。
3、熟悉巴特沃思滤波器、切比雪夫滤波器与椭圆滤波器的频率特性。
二、实验内容
1)fc=0、3kHz,δ=0、8dB,fr=0、2kHz,At=20dB,T=1ms;设计一切比雪夫高通滤波器,观察其通带损耗与阻带衰减就是否满足要求。
2)fc=0、2kHz,δ=1dB,fr=0、3kHz,At=25dB,T=1ms;分别用脉冲响应不变法及双线性变换法设计一
巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特性曲线,记录带宽与衰减量,检查就是否满足要求。
比较这两种方法的优缺点。
3)利用双线性变换法分别设计满足下列指标的巴特沃思型、切比雪夫型与椭圆型数字低通滤波器,并作图验证设计结果: fc =1、2kHz,δ≤0、5dB,fr =2kHz,,At≥40dB,fs =8kHz。
比较这三种滤波器的阶数。
(4) 分别用脉冲响应不变法与双线性变换法设计一巴特沃思型数字带通滤波器,已知fs=30kHz,其等效的模拟滤波器指标为δ<3dB,2kHz<f≤3kHz;At≥5dB, f ≥6kHz;At≥20dB,f≤1、5kHz 。
由上图可以瞧出,用脉冲响应不变法由于滤波器的混叠作用在过度带与阻带都衰减的较双线性变换法慢。
数字信号处理EXPIV型教学实验系统实验四常规实验exp4_常规
第四章常规实验指导实验一常用指令实验一、实验目的1、了解DSP开发系统的组成和结构;2、熟悉DSP开发系统的连接;3、熟悉CCS的开发界面;4、熟悉C54X系列的寻址系统;5、熟悉常用C54X系列指令的用法。
二、实验设备计算机,CCS 2.0版软件,DSP仿真器,实验箱。
三、实验步骤与内容1、系统连接进行DSP实验之前,先必须连接好仿真器、实验箱及计算机,连接方法如下所示:2、上电复位在硬件安装完成后,确认安装正确、各实验部件及电源连接正常后,接通仿真器电源,启动计算机,此时,仿真器上的“红色小灯”应点亮,否则DSP开发系统有问题。
3、运行CCS程序待计算机启动成功后,实验箱后面220V输入电源开关置“ON”,实验箱上电,启动CCS,此时仿真器上的“绿色小灯”应点亮,并且CCS正常启动,表明系统连接正常;否则仿真器的连接、JTAG接口或CCS相关设置存在问题,掉电,检查仿真器的连接、JTAG 接口连接,或检查CCS相关设置是否正确。
注:如在此出现问题,可能是系统没有正常复位或连接错误,应重新检查系统硬件并复位;也可能是软件安装或设置有问题,应尝试调整软件系统设置,具体仿真器和仿真软件CCS的应用方法参见第三章。
●成功运行程序后,首先应熟悉CCS的用户界面●学会CCS环境下程序编写、调试、编译、装载,学习如何使用观察窗口等。
4、修改样例程序,尝试DSP其他的指令。
注:实验系统连接及CCS相关设置是以后所有实验的基础,在以下实验中这部分内容将不再复述。
5、填写实验报告。
6、样例程序实验操作说明仿真口选择开关K9拨到右侧,即仿真器选择连接右边的CPU:CPU2;启动CCS 2.0,在Project Open菜单打开exp01_cpu2目录下面的工程文件“exp01.pjt”注意:实验程序所在的目录不能包含中文,目录不能过深,如果想重新编译程序,去掉所有文件的只读属性。
用下拉菜单中Project/Open,打开“exp01.pjt”,双击“Source”,可查看源程序在File Load Program菜单下加载exp01_cpu2\debug目录下的exp01.out文件:加载完毕,单击“Run”运行程序;实验结果:可见指示灯D1定频率闪烁;单击“Halt”暂停程序运行,则指示灯停止闪烁,如再单击“Run”,则指示灯D1又开始闪烁;注:指示灯D1在CPLD单元的右上方关闭所有窗口,本实验完毕。
数字信号处理实验报告 (基于MATLAB)
课程名称:数字信号处理实验实验地点:综合楼C407专业班级:2014级生物医学工程姓名:leifeng学号:指导老师:第一次实验第一章 离散时间信号的时域分析Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它clf; n=-10:20;u=[zeros(1,10) 1 zeros(1,20)]; stem(n,u);xlabel('时间序号');ylabel('振幅'); title('单位样本序列'); axis([-10 20 0 1.2]);时间序号振幅单位样本序列Q1.2 命令clf ,axis ,title ,xlabel 和ylabel 的作用是什么clf :清除图形窗口内容; axis:规定横纵坐标的范围;title :使图像面板上方显示相应的题目名称; xlable :定义横坐标的名字; ylable :定义纵坐标的名字。
Q1.3修改程序P1.1以产生带有延时11个样本的延迟单位样本序列ud[n],运行修改的程序并且显示产生的序列。
clf; n=0:30;u=[zeros(1,11) 1 zeros(1,19)]; stem(n,u);xlabel('时间序号');ylabel('振幅'); title('单位样本序列'); axis([0 30 0 1.2]);时间序号振幅单位样本序列Q1.5 修改程序P1.1,以产生带有超前7个样本的延时单位阶跃序列sd[n]。
运行修改后的程序并显示产生的序列。
clf; n=-10:20;sd=[zeros(1,3) 1 ones(1,27) ]; stem(n,sd);xlabel('时间序号');ylabel('振幅'); title('单位样本序列'); axis([-10 20 0 1.2]);时间序号振幅单位样本序列Q1.6运行程序P1.2,以产生复数值的指数序列。
数字信号处理实验报告
数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
数字信号处理实验报告模版参考模板
实验四 FIR 数字滤波器设计与软件实现一、实验目的1、掌握用窗函数法设计FIR 数字滤波器的原理和方法。
2、掌握用等波纹最佳逼近法设计FIR 数字滤波器的原理和方法。
3、掌握FIR 滤波器的快速卷积实现原理。
4、学会调用MATLAB 函数设计与实现FIR 滤波器。
二、实验内容00.020.040.060.080.10.120.140.160.180.2-1010t/sx (t )(a) 信号加噪声波形05010015020025030035040045050000.51(b) 信号加噪声的频谱f/Hz 幅度050100150200250300350400450500-100-50(a) 低通滤波器幅频特性f/Hz幅度00.050.10.150.20.250.30.350.40.450.5-1-0.50.51t/s y w (t )(b) 滤除噪声后的信号波形课程名称数字信号处理实验成绩指导教师陈纯锴 实验报告 院系 电子与信息工程学院 班级 通信1203 学号 1210920326 姓名 武欣桐 日期 2014-11-18对两种设计FIR 滤波器的方法(窗函数法和等波纹最佳逼近法)进行分析比较,简述其优缺点。
两种方法设计的滤波器都能有效地从噪声中提取信号,但等波纹最佳逼近法设计的滤波 器阶数低得多,当然滤波实现的运算量以及时延也小得多,从图以直观地看出时延差别。
四、思考题1、如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤。
方法一选择海明窗clear all;Wp=0.2*pi;Ws=0.4*pi;tr_wide=Ws-Wp; %过渡带宽度N=ceil(6.6*pi/tr_wide)+1; %滤波器长度n=0:1:N-1;Wc=(Wp+Ws)/2; %理想低通滤波器的截止频率hd=ideal_lp1(Wc,N); %理想滤波器的单位冲击响应w_ham=(hamming(N))'; %海明窗h=hd.*w_ham; %实际海明窗的响应[db,mag,pha,w]=freqz_m2(h,[1]); %计算实际滤波器的幅度响应delta_w=2*pi/1000;Ap=-(min(db(1:1:Wp/delta_w+1))) %实际通带纹波As=-round(max(db(Ws/delta_w+1:1:501))) %实际阻带纹波subplot(221)stem(n,hd)(c) 低通滤波器幅频特性f/Hz幅度t/s y e(t )(d) 滤除噪声后的信号波形title('理想单位脉冲响应hd(n)')subplot(222)stem(n,w_ham)title('海明窗')subplot(223)stem(n,h)title('实际单位脉冲响应hd(n)')subplot(224)plot(wi/pi,db)title('幅度响应(dB)')axis([0,1,-100,10])方法二Window=blackman(16);b=fir1(15,0.3*pi ,'low',Window);freqz(b,128)注:b=fir1(N,Wn,window)只能设计低通和带通滤波器,并且滤波器的阶数必须为N+12、如果要求用窗函数法设计带通滤波器,Wc1=(Ws1+Wp1)/2Wcu=(Wpu+Wsu)/23、解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低?1、用窗函数法设计的滤波器,如果在阻带截止频率附近刚好满足,则离开阻带截止频率越远,阻带衰减富裕量越大,即存在资源浪费;2、几种常用的典型窗函数的通带最大衰减和阻带最小衰减固定,且差别较大,又不能分别控制。
数字信号处理实验报告
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
数字信号处理实验报告
数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。
二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。
2、数据采集卡。
三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。
在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。
2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。
通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。
3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。
四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。
2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。
3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。
4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。
(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。
五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。
通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。
2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。
数字信号处理实验报告
实验一 离散时间信号的产生及信号的卷积和运算实验者: 丁 悦 实验日期:2016年12月02日 学号:142125010035一、 实验目的(简述)数字信号处理系统中的信号都是以离散时间形态存在,所以对离散时间信号的研究是数字信号处理的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
MATLAB 是一套功能强大的工程计算及数据处理软件,广泛应用于工业,电子,医疗和建筑等众多领域。
使用MATLAB 软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大的绘图功能,便于用户直观地输出处理结果。
通过本实验,将学会如何用MATLAB 产生一些常见的离散时间信号,实现信号的卷积和运算,并通过MATLAB 中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
二、实验原理(一)常见的离散时间信号:1. 单位抽样序列,或称为离散时间冲激,单位冲激:⎩⎨⎧=01)(n δ 00≠=n n如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ 0≠=n k n2.单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n如果)(n u 在时间轴上延迟了k 个单位,得到)(k n u -即:⎩⎨⎧=-01)(k n u k n kn <≥3.正弦序列)cos()(0φω+=n A n x这里,,,0ωA 和φ都是实数,它们分别称为正弦信号()x n 的振幅,角频率和初始相位。
πω200=f 为频率。
4.复正弦序列n j e n x ω=)(5.实指数序列n A n x α=)((二)、信号的卷积和运算)(*)()()()(n h n x m n h m x n y m =-=∑+∞-∞=三、实验内容及实验结果分析(一)实验内容:编制程序产生前5种信号(长度可输入确定),并利用MATLAB 中的基本图形函数绘出其图形。
实现正弦序列和实指数序列的卷积和运算,并绘出其图形。
数字信号处理实验报告 (实验四)
实验四 离散时间信号的DTFT一、实验目的1. 运用MA TLAB 计算离散时间系统的频率响应。
2. 运用MA TLAB 验证离散时间傅立叶变换的性质。
二、实验原理(一)、计算离散时间系统的DTFT已知一个离散时间系统∑∑==-=-Nk k N k k k n x b k n y a 00)()(,可以用MATLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。
由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。
在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l eH l j ,,2,1),( =ω。
为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。
例3.1 运用MA TLAB 画出以下系统的频率响应。
y(n)-0.6y(n-1)=2x(n)+x(n-1)程序: clf;w=-4*pi:8*pi/511:4*pi;num=[2 1];den=[1 -0.6];h=freqz(num,den,w);subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’))xlabel(‘\omega/ \pi ’);ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。
数字信号处理实验报告完整版[5篇模版]
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
数字信号处理实验报告
数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。
实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。
程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。
数字信号处理实验报告_第四章
数字信号处理实验四专业:电子信息工程学号:20101560063 姓名:任子翔Q4.2使用修改后的程序P3.1,计算并画出当时的传输函数的因果线性时不变离散时间系统的频率响应。
他表示那种类型的滤波器?解:%程序P3.1clf;w=0:8*pi/511:pi;num=[0.15,0,-0.15]; den=[1,-0.5,0.7];h=freqz(num,den,w);%plot the DTFTsubplot(2,1,1);plot(w/pi,real(h));grid;title('H(e^{j\omega})的实部'); xlabel('\omega/\pi');ylabel('振幅');subplot(2,1,2)plot(w/pi,imag(h));grid;title('H(e^{j\omega})的虚部'); xlabel('\omega/\pi'); ylabel('振幅');pausesubplot(2,1,1);plot(w/pi,abs(h));grid;title('|H(e^{j\omega})|幅度谱'); xlabel('\omega/\pi');ylabel('振幅');subplot(2,1,2)plot(w/pi,angle(h));grid;title('相位谱[H(e^{j\omega})]'); xlabel('\omega/\pi');ylabel('以弧度为单位的相位谱');Q4.3对下面的传输函数重做习题Q4.2:这两题中给出的两个滤波器之间的区别是什么?你将选择哪个滤波器来滤波,为什么?解:%程序P3.1clf;w=0:8*pi/511:pi;num=[0.15,0,-0.15]; den=[0.7,-0.5,1];h=freqz(num,den,w);%plot the DTFTsubplot(2,1,1);plot(w/pi,real(h));grid;title('H(e^{j\omega})的实部'); xlabel('\omega/\pi');ylabel('振幅');subplot(2,1,2)plot(w/pi,imag(h));grid;title('H(e^{j\omega})的虚部'); xlabel('\omega/\pi'); ylabel('振幅');pausesubplot(2,1,1);plot(w/pi,abs(h));grid;title('|H(e^{j\omega})|幅度谱'); xlabel('\omega/\pi');ylabel('振幅');subplot(2,1,2)plot(w/pi,angle(h));grid;title('相位谱[H(e^{j\omega})]'); xlabel('\omega/\pi');ylabel('以弧度为单位的相位谱');这题中的滤波器的幅度响应较Q4.2的更为尖锐,Q4.7用程序 P4. 1计算并画出近似理想低通滤波器的冲激响应。
数字信号处理实验报告
数字信号处理实验报告
数字信号处理是指利用数字技术对模拟信号进行采样、量化、编码等处理后,再通过数字信号处理器进行数字化处理的技术。
在数字信号处理实验中,我们通过对数字信号进行滤波、变换、解调等处理,来实现信号的处理和分析。
在实验中,我们首先进行了数字信号采集和处理的基础实验,采集了包括正弦信号、方波信号、三角波信号等在内的多种信号,并进行了采样、量化、编码等处理。
通过这些处理,我们可以将模拟信号转换为数字信号,并对其进行后续处理。
接着,我们进行了数字信号滤波的实验。
滤波是指通过滤波器对数字信号进行处理,去除其中的噪声、干扰信号等不需要的部分,使其更加纯净、准确。
在实验中,我们使用了低通滤波器、高通滤波器、带通滤波器等多种滤波器进行数字信号滤波处理,得到了更加干净、准确的信号。
除了滤波,我们还进行了数字信号变换的实验。
数字信号变换是指将数字信号转换为另一种表示形式的技术,可以将信号从时域转换到频域,或者从离散域转换到连续域。
在实验中,我们使用了傅里叶变换、离散傅里叶变换等多种变换方式,对数字信号进行了变换处理,得到了信号的频谱信息和其他相关参数。
我们进行了数字信号解调的实验。
数字信号解调是指将数字信号转换为模拟信号的技术,可以将数字信号还原为原始信号,并进行后续处理。
在实验中,我们使用了频率解调、相干解调等多种解调方式,将数字信号转换为模拟信号,并对其进行了分析和处理。
总的来说,数字信号处理实验是一项非常重要的实验,可以帮助我们更好地理解数字信号处理的原理和方法,为我们今后从事相关领域的研究和工作打下坚实的基础。
数字信号处理实验报告4
专业: 学号: 姓名: 成绩: 实验题目: 窗函数法设计FIR 数字滤波器实验目的: 了解和掌握线性相位FIR 数字滤波器的设计方法实验原理与内容:1. 设计具有指标ωp =0.2π,R p =0.25dB,ωs =0.3π,A s =50dB 的低通数字滤波器2. 根据指标选择合适的窗函数,确定冲激响应,画出滤波器的频率响应3. 由于在设计过程中,并没有用到Rp=0.25dB 值,因此设计后必须对此进行校验实验结果:1. 绘出理想低通滤波器的冲激响应图12. 绘出Hamming 窗图2010203040506070-0.0500.050.10.150.20.250.3n h d (n )01020304050600.10.20.30.40.50.60.70.80.91n H a m (n )3. 绘出加窗后的滤波器冲激响应图34. 绘出该滤波器的幅频响应图4010203040506070-0.0500.050.10.150.20.250.3Actual Impulse Responsen h (n )00.20.31-100-90-80-70-60-50-40-30-20-10010Magnitude Response in dB w/pi 20l g |H g (w )|思考题:1如果没有给定h(n)的长度N,而是给定了通带边缘截止频率ωc和阻带临界频率ωp,以及相应的衰减,你能根据这些条件用窗函数法设计线性相位FIR低通滤波器吗?2窗函数的傅式变换W(e jω)的主瓣和旁瓣分别决定了H(e jω)的什么特性?程序附录:function hd=ideal_lp(wc,N)alpha=(N-1)/2;n=0:N-1;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);function [db,mag,pha,grd,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);pha=angle(H);db=20*log10((mag+eps)/max(mag));grd=grpdelay(b,a,w);clcwp=0.2*pi;ws=0.3*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width);N=0:M-1;wc=(4*ws+6*wp)/10;w_ham=(hamming(M))';hd=ideal_lp(wc,M);h=hd.*w_ham;[db,mag,pha,grd,w]=freqz_m(h,1);delta_w=2*pi/1000;subplot(2,2,1)stem(N,hd,'.');xlabel('n');ylabel('hd(n)');subplot(2,2,2)stem(N,w_ham,'.');axis([0 M-1 0.1 1])xlabel('n');ylabel('Ham(n)');subplot(2,2,3)stem(N,h,'.')title('Actual Impulse Response');xlabel('n');ylabel('h(n)');subplot(2,2,4)plot(w/pi,db)axis([0 1 -100 10])title('Magnitude Response in dB')xlabel('w/pi');ylabel('20lg|Hg(w)|');gridset(gca,'XTickMode','manual','XTick',[0,0.2,0.3 1]) Rp=-(min(db(1:1:wp/delta_w+1)))As=-round(max(db(ws/delta_w+1:1:501)))function hd=ideal_lp(wc,N)alpha=(N-1)/2;n=0:N-1;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);。
数字信号处理实验报告
数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。
二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。
其主要内容包括采样、量化、滤波、变换分析、重建等。
其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。
频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。
采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。
三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。
采集的信号包括噪声信号、含有正弦波和方波的混合信号等。
2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。
这一步通常通过ADC(模数转换器)实现。
3.滤波处理:将量化后的数字信号输入到数字滤波器中。
我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。
4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。
5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。
我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。
四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。
这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。
2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。
在频域分析中,我们可以更清楚地看到信号的频率特性。
例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。
数字信号处理实验报告
《数字信号处理》实验报告地点通信实验室学院计算机与通信工程学院专业班级通信082姓名颜晶学号 40850209指导教师杨欲亮2011年6月实验二 时域采样与频域采样一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。
要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。
二、实验原理及方法时域采样定理的要点是: (a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。
公式为:)](ˆ[)(ˆt x FT j X a a =Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T(b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。
利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。
理想采样信号)(ˆt x a 和模拟信号)(t x a 之间的关系为:∑∞-∞=-=n a a nT t t x t x)()()(ˆδ对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdte nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nTj aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即Tj a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。
数字信号处理实验报告(全)
实验一、离散时间系统及离散卷积1、单位脉冲响应源程序:function pr1() %定义函数pr1a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1;x=impseq(0,-20,120); %调用impseq函数n=[-40:140]; %定义n从-20 到120h=filter(b,a,x); %调用函数给纵座标赋值figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激title('冲激响应'); %定义标题为:'冲激响应'xlabel('n'); %绘图横座标为nylabel('h(n)'); %绘图纵座标为h(n)figure(2) %绘图figure 2[z,p,g]=tf2zp(b,a); %绘出零极点图zplane(z,p)function [x,n]=impseq(n0,n1,n2) %声明impseq函数n=[n1:n2];x=[(n-n0)==0];结果:Figure 1:Figure 2:2、离散系统的幅频、相频的分析源程序:function pr2()b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1; %m从0 到3l=0:length(a)-1; %l从0 到3K=5000;k=1:K;w=pi*k/K; %角频率wH=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义magH=abs(H); %magH为幅度angH=angle(H); %angH为相位figure(1)subplot(2,1,1); %在同一窗口的上半部分绘图plot(w/pi,magH); %绘制w(pi)-magH的图形grid;axis([0,1,0,1]); %限制横纵座标从0到1xlabel('w(pi)'); %x座标为 w(pi)ylabel('|H|'); %y座标为 angle(H)title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图plot(w/pi,angH); %绘制w(pi)-angH的图形grid; %为座标添加名称xlabel('w(pi)'); %x座标为 w(pi)ylabel('angle(H)'); %y座标为 angle(H)结果:3、卷积计算源程序:function pr3()n=-5:50; %声明n从-5到50u1=stepseq(0,-5,50); %调用stepseq函数声用明u1=u(n)u2=stepseq(10,-5,50); %调用stepseq函数声用明u2=u(n-10) %输入x(n)和冲激响应h(n)x=u1-u2; %x(n)=u(n)-u(n-10)h=((0.9).^n).*u1; %h(n)=0.9^n*u(n)figure(1)subplot(3,1,1); %绘制第一个子图stem(n,x); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('输入序列'); %规定标题为:'输入序列'xlabel('n'); %横轴为nylabel('x(n)'); %纵轴为x(n)subplot(3,1,2); %绘制第二个子图stem(n,h); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('冲激响应序列'); %规定标题为:'冲激响应序列'xlabel('n'); %横轴为nylabel('h(n)'); %纵轴为h(n)%输出响应[y,ny]=conv_m(x,n,h,n); %调用conv_m函数subplot(3,1,3); %绘制第三个子图stem(ny,y);axis([-5,50,0,8]);title('输出响应'); %规定标题为:'输出响应'xlabel('n');ylabel('y(n)'); %纵轴为y(n)%stepseq.m子程序%实现当n>=n0时x(n)的值为1function [x,n]=stepseq(n0,n1,n2)n=n1:n2;x=[(n-n0)>=0];%con_m的子程序%实现卷积的计算function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);结果:实验二、离散傅立叶变换与快速傅立叶变换1、离散傅立叶变换(DFT)源程序:function pr4()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16)subplot(2,1,1); %绘制第一个子图x(n)stem(n,x); %绘制冲激title('x(n)'); %标题为x(n)xlabel('n'); %横座标为nX=dft(x,N); %调用dft函数计算x(n)的傅里叶变换magX=abs(X); %取变换的幅值subplot(2,1,2); %绘制第二个子图DFT|X|stem(n,X);title('DFT|X|');xlabel('f(pi)'); %横座标为f(pi)%dft的子程序%实现离散傅里叶变换function [Xk]=dft(xn,N)n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;结果:F=50,N=64,T=0.000625时的波形F=50,N=32,T=0.000625时的波形:2、快速傅立叶变换(FFT)源程序:%function pr5()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16) subplot(2,1,1);plot(n,x);title('x(n)');xlabel('n'); %在第一个子窗中绘图x(n)X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X);title('DTFT|X|');xlabel('f(pi)'); %在第二个子图中绘图x(n)的快速傅%里叶变换结果:3、卷积的快速算法源程序:function pr6()n=0:14;x=1.^n;h=(4/5).^n;x(15:32)=0;h(15:32)=0;%到此 x(n)=1, n=0~14; x(n)=0,n=15~32% h(n)=(4/5)^n, n=0~14; h(n)=0,n=15~32subplot(3,1,1);stem(x);title('x(n)');axis([1,32,0,1.5]); %在第一个子窗绘图x(n)横轴从1到32,纵轴从0到1.5 subplot(3,1,2);stem(h);title('h(n)');axis([1,32,0,1.5]); %在第二个子窗绘图h(n)横轴从1到32,纵轴从0到1.5 X=fft(x); %X(n)为x(n)的快速傅里叶变换H=fft(h); %H(n)为h(n)的快速傅里叶变换Y=X.*H; %Y(n)=X(n)*H(n)%Y=conv(x,h);y=ifft(Y); %y(n)为Y(n)的傅里叶反变换subplot(3,1,3) %在第三个子窗绘图y(n)横轴从1到32,纵轴从0到6 stem(abs(y));title('y(n=x(n)*h(n))');axis([1,32,0,6]);结果:实验三、IIR数字滤波器设计源程序:function pr7()wp=0.2*pi;ws=0.3*pi;Rp=1;As=25;T=1;Fs=1/T;OmegaP=(2/T)*tan(wp/2); %OmegaP(w)=2*tan(0.1*pi) OmegaS=(2/T)*tan(ws/2); %OmegaS(w)=2*tan(0.15*pi)ep=sqrt(10^(Rp/10)-1);Ripple=sqrt(1/(1+ep.^2));Attn=1/10^(As/20);N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS) ));OmegaC=OmegaP/((10.^(Rp/10)-1).^(1/(2*N)));[cs,ds]=u_buttap(N,OmegaC);[b,a]=bilinear(cs,ds,Fs);[mag,db,pha,w]=freqz_m(b,a);subplot(3,1,1); %在第一个子窗绘制幅度响应的图形plot(w/pi,mag);title('幅度响应');xlabel('w(pi)');ylabel('H');axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[0,Attn,Ripple,1]);grid;subplot(3,1,2); %在第二个子窗以分贝为单位绘制幅度响应的图形plot(w/pi,db);title('幅度响应(dB)');xlabel('w(pi)');ylabel('H');axis([0,1,-40,5]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-50,-15,-1,0]);grid;subplot(3,1,3); %在第三个子窗绘制相位响应的图形plot(w/pi,pha);title('相位响应');xlabel('w(pi)');ylabel('pi unit');%axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-1,0,1]);grid;function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC.^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:实验四、FIR数字滤波器的设计源程序:function pr8()wp=0.2*pi;ws=0.35*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=0:M-1;wc=(ws+wp)/2;alpha=(M-1)/2;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);w_ham=(hamming(M))';h=hd.*w_ham;[mag,db,pha,w]=freqz_m(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:501)));subplot(2,2,1);stem(n,hd);title('理想冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('hd(n)');subplot(2,2,2);stem(n,h);title('实际冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('h(n)');subplot(2,2,3);plot(w/pi,pha);title('滤波器相位响应');axis([0,1,-pi,pi]);ylabel('pha');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-pi,0,pi]); grid;subplot(2,2,4);plot(w/pi,db);title('滤波器幅度响应');axis([0,1,-100,10]);ylabel('H(db)');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-50,-15,0]);function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:。
数字信号实验第四章答案解析
数字信号处理实验报告4线性时不变离散时间系统频域分析一、实验目的通过使用matlab做实验来加强对传输函数的类型和频率响应和稳定性测试来强化理解概念。
4.1 传输函数分析回答:Q4.1 修改程序P3_1去不同的M值,当0<w<2pi时计算并画出式(2.13)所示滑动平均滤波器的幅度和相位谱,代码如下:% Program Q4_1% Frequency response of the causal M-point averager of Eq. (2.13) clear;% User specifies filter lengthM = input('Enter the filter length M: ');% Compute the frequency samples of the DTFTw = 0:2*pi/1023:2*pi;num = (1/M)*ones(1,M);den = [1];% Compute and plot the DTFTh = freqz(num, den, w);subplot(2,1,1)plot(w/pi,abs(h));gridtitle('Magnitude Spectrum |H(e^{j\omega})|')xlabel('\omega /\pi');ylabel('Amplitude');subplot(2,1,2)plot(w/pi,angle(h));gridtitle('Phase Spectrum arg[H(e^{j\omega})]') xlabel('\omega /\pi');ylabel('Phase in radians');所得结果如图示:M=2M=7幅度和相位谱表现出对称性的类型是由于–冲激响应是实数,因此频率响应是周期且对称的,幅度谱是周期甚至对称的,相位响应是周期奇对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理实验四专业:电子信息工程学号:20101560063 姓名:任子翔Q4.2使用修改后的程序P3.1,计算并画出当时的传输函数的因果线性时不变离散时间系统的频率响应。
他表示那种类型的滤波器?解:%程序P3.1clf;w=0:8*pi/511:pi;num=[0.15,0,-0.15]; den=[1,-0.5,0.7];h=freqz(num,den,w);%plot the DTFTsubplot(2,1,1);plot(w/pi,real(h));grid;title('H(e^{j\omega})的实部'); xlabel('\omega/\pi');ylabel('振幅');subplot(2,1,2)plot(w/pi,imag(h));grid;title('H(e^{j\omega})的虚部'); xlabel('\omega/\pi'); ylabel('振幅');pausesubplot(2,1,1);plot(w/pi,abs(h));grid;title('|H(e^{j\omega})|幅度谱'); xlabel('\omega/\pi');ylabel('振幅');subplot(2,1,2)plot(w/pi,angle(h));grid;title('相位谱[H(e^{j\omega})]'); xlabel('\omega/\pi');ylabel('以弧度为单位的相位谱');Q4.3对下面的传输函数重做习题Q4.2:这两题中给出的两个滤波器之间的区别是什么?你将选择哪个滤波器来滤波,为什么?解:%程序P3.1clf;w=0:8*pi/511:pi;num=[0.15,0,-0.15]; den=[0.7,-0.5,1];h=freqz(num,den,w);%plot the DTFTsubplot(2,1,1);plot(w/pi,real(h));grid;title('H(e^{j\omega})的实部'); xlabel('\omega/\pi');ylabel('振幅');subplot(2,1,2)plot(w/pi,imag(h));grid;title('H(e^{j\omega})的虚部'); xlabel('\omega/\pi'); ylabel('振幅');pausesubplot(2,1,1);plot(w/pi,abs(h));grid;title('|H(e^{j\omega})|幅度谱'); xlabel('\omega/\pi');ylabel('振幅');subplot(2,1,2)plot(w/pi,angle(h));grid;title('相位谱[H(e^{j\omega})]'); xlabel('\omega/\pi');ylabel('以弧度为单位的相位谱');这题中的滤波器的幅度响应较Q4.2的更为尖锐,Q4.7用程序 P4. 1计算并画出近似理想低通滤波器的冲激响应。
低通有限冲激响应滤波器的长度是多少?在程序 P4. l 中,哪个语句确定滤波器的长度?哪个参数控制截止频率?解:%程序P4.1%截短的理想低通滤波器clf;fc=0.25;n=[-6.5:1:6.5]y=2*fc*sinc(2*fc*n);k=n+6.5stem(k,y);title('N=13');axis([0 13 -0.2 0.6]);xlabel('时间序号n');ylabel('振幅');grid;n =Columns 1 through 5-6.5000 -5.5000 -4.5000 -3.5000 -2.5000Columns 6 through 10-1.5000 -0.5000 0.5000 1.5000 2.5000Columns 11 through 143.50004.50005.50006.5000k =Columns 1 through 80 1 2 3 4 5 6 7Columns 9 through 14低通滤波器的长度为13,n=[-6.5:1:6.5]决定了滤波器的长度。
fc=0.25;控制截止频率。
Q4.8修改程序 P4.l,计算并画出(4.39 所示长度为 20 ,截止角频率为的有限冲激响应低通滤波器的冲激响应。
解:%程序P4.1%截短的理想低通滤波器clf;wc=0.45;fc=wc/2*pi;n=[-9.5:1:9.5];y=2*fc*sinc(2*fc*n);k=n+9.5;stem(k,y);title('N=20');axis([0 20 -0.2 0.6]);xlabel('时间序号n');ylabel('振幅');grid;Q4.19 运行程序 P4. 3,生成每一类线性相位有限冲激响应。
每一个有限冲激响应滤波器的长度是多少?验证冲激响应序列的对称性。
接着验证这些滤波器的零点位置。
使用 MATIAB 计算并绘出这些滤波器的相位响应,验证它们的线性相位特性。
这且滤波器的群延迟丛多少?解:%程序P4.3%现行相位有限冲激响应滤波器的零点位置clf;b=[1 -8.5 30.5 -63];num1=[b,81,fliplr(b)];num2=[b,81,81,fliplr(b)];num3=[b,0,-fliplr(b)];num4=[b,81,-81,-fliplr(b)];n1=0:length(num1)-1;n2=0:length(num2)-1;subplot(2,2,1);stem(n1,num1); xlabel('时间序号n');ylabel('振幅');grid;title('1型有限冲激响应滤波器'); subplot(2,2,2);stem(n2,num2); xlabel('时间序号n');ylabel('振幅');grid;title('2型有限冲激响应滤波器'); subplot(2,2,3);stem(n1,num3); xlabel('时间序号n');ylabel('振幅');grid;title('3型有限冲激响应滤波器'); subplot(2,2,4);stem(n2,num4); xlabel('时间序号n');ylabel('振幅');grid;title('4型有限冲激响应滤波器'); pausesubplot(2,2,1);zplane(num1,1); title('1型有限冲激响应滤波器'); subplot(2,2,2);zplane(num2,1); title('2型有限冲激响应滤波器'); subplot(2,2,3);zplane(num3,1); title('3型有限冲激响应滤波器'); subplot(2,2,4);zplane(num4,1); title('4型有限冲激响应滤波器'); disp('1型有限冲激响应滤波器的零点是:');disp(roots(num1));disp('2型有限冲激响应滤波器的零点是:');disp(roots(num2));disp('3型有限冲激响应滤波器的零点是:');disp(roots(num3));disp('4型有限冲激响应滤波器的零点是:');disp(roots(num4));1型有限冲激响应滤波器的零点是: 2.97442.08880.9790 + 1.4110i0.9790 - 1.4110i0.3319 + 0.4784i0.3319 - 0.4784i0.47870.33622型有限冲激响应滤波器的零点是: 3.7585 + 1.5147i3.7585 - 1.5147i0.6733 + 2.6623i0.6733 - 2.6623i-1.00000.0893 + 0.3530i0.0893 - 0.3530i0.2289 + 0.0922i0.2289 - 0.0922i 3型有限冲激响应滤波器的零点是: 4.76271.6279 + 3.0565i1.6279 - 3.0565i-1.00001.00000.1357 + 0.2549i0.1357 - 0.2549i0.21004型有限冲激响应滤波器的零点是: 3.41391.6541 + 1.5813i1.6541 - 1.5813i-0.0733 + 0.9973i-0.0733 - 0.9973i1.00000.3159 + 0.3020i0.3159 - 0.3020i0.2929每一个有限冲激响应滤波器的长度为:1型滤波器9,2型有限冲激响应滤波器10,3型有限冲激响应滤波器9,4型有限冲激响应滤波器10;对称性分别是:1型和2型:对称冲激响应,3型4型:反对称冲激响应。
Q4.20用 b = [1.5 -3.25 5.25 -4]替换程序 P4.3 中的向量 b,重做习题 Q4 . 19。
解:%程序P4.3%现行相位有限冲激响应滤波器的零点位置clf;b=[1.5 -3.25 5.25 -4];num1=[b,81,fliplr(b)];num2=[b,81,81,fliplr(b)];num3=[b,0,-fliplr(b)];num4=[b,81,-81,-fliplr(b)];n1=0:length(num1)-1;n2=0:length(num2)-1;subplot(2,2,1);stem(n1,num1); xlabel('时间序号n');ylabel('振幅');grid;title('1型有限冲激响应滤波器'); subplot(2,2,2);stem(n2,num2); xlabel('时间序号n');ylabel('振幅');grid; title('2型有限冲激响应滤波器'); subplot(2,2,3);stem(n1,num3); xlabel('时间序号n');ylabel('振幅');grid;title('3型有限冲激响应滤波器'); subplot(2,2,4);stem(n2,num4); xlabel('时间序号n');ylabel('振幅');grid;title('4型有限冲激响应滤波器'); pausesubplot(2,2,1);zplane(num1,1); title('1型有限冲激响应滤波器'); subplot(2,2,2);zplane(num2,1); title('2型有限冲激响应滤波器'); subplot(2,2,3);zplane(num3,1); title('3型有限冲激响应滤波器');subplot(2,2,4);zplane(num4,1); title('4型有限冲激响应滤波器'); disp('1型有限冲激响应滤波器的零点是:');disp(roots(num1));disp('2型有限冲激响应滤波器的零点是:');disp(roots(num2)); disp('3型有限冲激响应滤波器的零点是:');disp(roots(num3));disp('4型有限冲激响应滤波器的零点是:');disp(roots(num4));1型有限冲激响应滤波器的零点是: 2.3273 + 2.0140i2.3273 - 2.0140i-1.2659 + 2.0135i-1.2659 - 2.0135i-0.2238 + 0.3559i-0.2238 - 0.3559i0.2457 + 0.2126i0.2457 - 0.2126i2型有限冲激响应滤波器的零点是: 2.5270 + 2.0392i2.5270 - 2.0392i-1.0101 + 2.1930i-1.0101 - 2.1930i-1.0000-0.1733 + 0.3762i-0.1733 - 0.3762i0.2397 + 0.1934i0.2397 - 0.1934i 3型有限冲激响应滤波器的零点是: -1.00000.2602 + 1.2263i0.2602 - 1.2263i1.00000.6576 + 0.7534i0.6576 - 0.7534i0.1655 + 0.7803i0.1655 - 0.7803i4型有限冲激响应滤波器的零点是: 2.0841 + 2.0565i2.0841 - 2.0565i-1.5032 + 1.9960i-1.5032 - 1.9960i1.0000-0.2408 + 0.3197i-0.2408 - 0.3197i0.2431 + 0.2399i0.2431 - 0.2399i每一个有限冲激响应滤波器的长度为:1型滤波器9,2型有限冲激响应滤波器10,3型有限冲激响应滤波器9,4型有限冲激响应滤波器10;对称性分别是:1型和2型:对称冲激响应,3型4型:反对称冲激响应。