红外光谱法基本原理

合集下载

红外光谱的基本原理

红外光谱的基本原理

红外光谱的基本原理
红外光谱是一种化学分析技术,通过测定被分析物料在红外辐射下吸
收或反射的光谱,得到物质分子中的群振动模式和化学键信息,从而识别
物质种类与结构,推断出分子结构、化学键数目、键性质、分布以及分子
组分等信息。

红外光谱的基本原理是物质吸收红外辐射时,被分子振动激发使得分
子的结构产生变化,从而产生红外光吸收。

有机化合物中的键振动可分为
基本振动和任意相互作用振动两种类型,基本振动与单个键的振动有关,
而任意相互作用振动则主要与分子中不同化学键的相互作用有关。

红外光谱中的波数与物质的化学键、结构有关,波数越高,振动频率
越快,对应的键能越大。

因此,不同的化学键、化学基团都有其特有的红
外光谱吸收带。

例如,C-H键和C=C键的吸收带出现在不同的波数范围内,因此可以通过观察吸收带位置来推断它们在分子中的位置和数量。

由于红外光谱具有非破坏性、快速、准确、灵敏度高等优点,广泛应
用于材料科学、环境科学、生物医学和未知物质分析等领域。

例如,红外
光谱可用于分析食品、化妆品、药品等样品的成分和质量控制,识别污染物、染料、化学品等物质,甚至是探测宇宙中的分子等。

红外光谱检测原理

红外光谱检测原理

红外光谱检测原理红外光谱检测原理概述在化学领域,红外光谱检测是一项重要的分析检测技术。

它利用物质分子在红外光谱范围内的特征振动和转动来识别和定量分析样品中的化学物质。

其原理是将样品置于红外光源和探测器之间,通过照射样品后所发生的红外光谱状况得出一系列信息,用以分析样品中的化学物质成分、分子结构、状态等相关信息。

红外光谱的基本原理红外光谱是指物质在特定波长的红外辐射下发生量子激发而产生的谱线,这些谱线所呈现的振动和转动信息可以用于判定物质的结构和成分。

红外光谱的来源是红外辐射,也称为红外线,波长通常在8000至200cm^-1之间。

这段区间可以根据波数描绘,波数为每秒振动,以cm^-1作单位。

该波长区间涵盖了分子中振动模式的主要类型,因此足以用于分析和鉴定物质的结构和成分。

小分子分子的红外吸收谱由振动-转动谱和原子自由移动谱组成。

基于布尔定理和运动求和原理,每种化学键类型都能具有一定的红外吸收频率和强度(与其振动模式有关)。

C-H,O-H和N-H 都具有不同的吸收频率,根据这些频率,我们可以确定样品成分和分子结构。

红外光谱的实验流程在进行红外光谱检测时,一般需要进行以下步骤:1. 收集样品:从要测试的原料或者样品中获取一个可以测试的组分(例如气体或者溶液)。

2. 预处理样品:对样品进行必要的预处理。

去除杂质和水分等。

3. 测试样品:使用一个红外光谱仪测试样品。

4. 分析数据:根据样品振动和转动的谱线以及吸收频率和强度等参数来确定样品成分、分子结构等信息。

红外光谱仪1. 光源:红外光谱仪中使用红外辐射光源,如Nernst灯、热电导灯和Halogen灯等。

2. 互相作用的样品和光线:通过对样品处于放置于一个样品池中,在此把紫外线、红外线或可见光投射至此处的方式来激发样品,样品吹风机息怀发生转动和振动。

这些相位发生了变化之后便会与样品中的质子或化学基团之间相互作用进而发生吸收。

3. 接受器:红外光谱仪的接受器会检测样品中吸收的红外线光量。

ir(红外光谱)的原理

ir(红外光谱)的原理

ir(红外光谱)的原理
红外光谱法(IR)的原理是:分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。

在红外线照射下,当辐射能量与分子振动、转动频率相一致时,被测物质分子会产生其特定的红外光谱,据此可鉴定出化合物中各种原子团。

IR具有测定快速、特征性强、试样用量少、操作简便等优点。

但是,红外光谱一般只提供物质分子中官能团的相关信息,而对于一些复杂化合物,特别是新化合物,单靠IR 检测技术并不能解决问题,需要与其他分析手段互相配合,才能确定分子结构。

如需了解更多关于IR的原理,建议查阅相关文献或咨询专业化学家。

红外光谱的基本原理

红外光谱的基本原理

红外光谱的基本原理红外光谱是一种分析技术,通过测量物质在红外辐射下的吸收和散射来确定物质的结构和组成。

红外光谱的基本原理可以归结为分子的振动和转动。

红外光谱涉及的能量范围一般在3000 cm-1到10 cm-1之间,这个范围对应着分子的振动、转动和一些电子运动的能级。

因为红外辐射的能量与分子的振动和转动的能级相匹配,所以红外光可以被分子中一部分原子吸收,从而发生光谱吸收。

分子的振动可以分为伸缩振动、弯曲振动和转动振动。

伸缩振动是分子中原子之间的相对运动,弯曲振动则是两个或多个原子之间改变绝对角度的运动。

转动振动涉及到分子整体发生旋转的运动。

红外光谱的实验装置一般包括光源、样品室、光谱计和检测器。

光源产生红外光束,被样品室内的样品吸收、散射或透射。

样品室是一个封闭的容器,内部设置好样品和红外透明的窗口。

光谱计通过光束分离装置将入射光分成不同波长,然后通过检测器来测量相应的信号强度。

红外光谱图上的峰对应着样品中特定的化学键或分子基团。

不同的化学键和基团对红外光的吸收有不同的谱特征,参考指纹区域的红外光谱峰可以提供物质的识别和组成信息。

红外光谱分析主要包括定性分析和定量分析。

定性分析通过比较样品的红外光谱峰和已知物质的峰值数据库,确定样品中有哪些化学键或基团。

定量分析则是通过对吸收峰强度进行定量计算,得到样品中特定成分的浓度。

红外光谱广泛应用于有机化学、分析化学、材料科学等领域。

例如,在药物研发中,红外光谱可以用于分析药物的结构和纯度;在环境监测中,红外光谱可以用于分析大气中的污染物;在食品科学中,红外光谱可以用于分析食品的成分和质量等。

总之,红外光谱是一种非常有用的分析技术,可以通过测量物质在红外辐射下的吸收和散射,得到物质的结构和组成信息,以及一些物理和化学特性的定量和定性分析。

通过了解红外光谱的基本原理,我们可以更好地理解和应用这一技术。

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

红外光谱的原理和特点

红外光谱的原理和特点

红外光谱的原理和特点
红外光谱是一种将样品暴露于红外辐射下进行分析的方法。

红外辐射的波长范围为0.7~300微米,分为近红外区、中红外区和远红外区。

红外光谱分析的原理是利用用样品对不同波长的红外辐射吸收和散射的特性来确定样品分子结构和组成。

红外光谱分析的特点是快速、准确、非破坏性和全面。

样品不受损伤且无需特殊处理,且结果可以快速获得。

此外,红外光谱具有广泛的应用范围,可用于分析多种化学物质的结构和组成。

红外光谱基本原理

红外光谱基本原理

红外光谱基本原理
红外光谱基本原理是通过测量物质对红外辐射的吸收和散射来分析物质的分子结构和化学键信息。

红外辐射是电磁波的一种,其波长范围为0.78-1000微米。

红外光谱仪器由三个主要部分组成:光源、样品室和检测器。

光源发出红外辐射,经过样品室中的样品后,辐射被检测器接收并转换为电信号进行分析。

在红外光谱中,物质分子会吸收特定波长的红外辐射能量,这是由于不同分子之间的化学键具有不同的振动和转动模式。

每个化学键都对应着一定的波数,而波数与波长呈反比关系。

红外光谱图是以波数为横坐标、吸光度为纵坐标的图形,用于描述物质在红外波段的吸光度变化。

图谱中的吸收峰对应着物质中的特定化学键振动或转动模式的吸收。

通过与已知物质的红外光谱对比,可以确定未知物质的组成和结构。

红外光谱广泛应用于有机化学、无机化学、生物化学等领域,用于分析和鉴定物质、检测化学反应、研究分子结构和键的性质。

在红外光谱分析中,需要注意的是样品的制备和处理。

样品应该被均匀地涂布在红外吸收性能良好的基质上,并尽量减少水分和有机溶剂的干扰。

此外,样品的浓度和厚度也会对谱图的强度和形状产生影响,因此需要进行优化和标定。

总之,红外光谱基于物质对特定波数红外辐射的吸收特性,可用于分析物质的结构和化学键信息。

它是一种快速、非破坏性的分析方法,在科学研究和工业应用中有着广泛的应用前景。

红外光谱的原理与应用

红外光谱的原理与应用

红外光谱的原理与应用1. 引言红外光谱是一种常用的分析技术,通过测量物质在红外区域的吸收和散射来获取其结构和组成信息。

本文将介绍红外光谱的原理和应用。

2. 红外光谱的原理红外光谱是利用物质分子在红外区域的振动、转动和伸缩等运动引起的电偶极矩变化与电磁波的相互作用,从而得到的一种谱学分析方法。

2.1 红外辐射红外辐射是电磁辐射的一部分,在电磁波谱中位于可见光谱的红色和微波之间。

具有长波长、低频率和低能量的特点。

2.2 分子振动物质分子通过振动来吸收红外辐射。

分子的振动方式包括对称伸缩振动、非对称伸缩振动、弯曲振动和转动振动等。

2.3 光谱仪与检测技术红外光谱仪通常由光源、样品室、光栅和探测器等部分组成。

检测器可以是光电二极管、热偶或四极检测器等。

3. 红外光谱的应用红外光谱在各个领域都有广泛的应用,包括化学、材料科学、生物医学、环境监测等。

3.1 化学领域在化学研究中,红外光谱可以用于分析化合物的结构和组成。

通过对比已知化合物的红外光谱和待测样品的红外光谱,可以确定物质的成分。

3.2 材料科学领域在材料科学中,红外光谱可以用于研究材料的结构和性质。

例如,可以通过红外光谱来分析聚合物材料中的官能团以及表面组成的变化。

3.3 生物医学领域红外光谱在生物医学领域中具有重要的应用价值。

通过对生物组织样品的红外光谱进行分析,可以识别病变组织并提供诊断信息。

3.4 环境监测领域在环境监测中,红外光谱可以用于分析大气中的气体成分和测量污染物浓度。

由于红外光谱具有高灵敏度和选择性,因此可以用于实时检测和监测大气中的污染物。

4. 红外光谱技术的发展与挑战随着技术的进步,红外光谱技术已经取得了很大的进展。

然而,红外光谱仍然面临着一些挑战,如数据分析和信号处理等方面的问题。

5. 结论红外光谱作为一种常用的谱学分析技术,具有广泛的应用前景。

通过对物质的红外光谱进行分析,可以获得其结构和组成信息,对于化学、材料科学、生物医学和环境监测等领域的研究具有重要意义。

第二节红外光谱法的基本原理

第二节红外光谱法的基本原理
变振动
基频:每一种振动方式都有一个特征频率,叫基频; 基频峰:分子吸收红外光后,E0→E1引起的一个吸收峰。 倍频峰:分子吸收红外光后,E0→ E2,E0→ E3……引起的一系 列吸收峰。倍频峰通常很弱。 注意:理论上有几种振动方式就有几个吸收带。
二、红外光谱仪
两种:色散型红外仪和傅立叶变换型红外仪(FTIR)。 1、色散型红外光谱仪 色散型红外光谱仪的组成元件与紫外可见分光光度计元件相似, 其仪器原理示意图如下:
第二节 红外光谱法的基本原理 一、红外光谱的形成、条件和分子的运动
1、红外光谱的形成和产生条件 物质吸收红外光发生振动和转动能级的跃迁须满足两个条件: (1)红外辐射光量子具有的能量等于分子振动能级的能量差 (2)分子振动时,偶极距的大小和方向必须有一定的变化
当一定波长的红外光照射样品时,如果分子中某个基团 的振动频率和它的一样,二者就会发生共振,此时光的能量通 过分子偶极距的变化传递给分子,这个基团就会吸收该频率的 红外光而发生振动能级的跃迁,产生红外吸收峰。
定,并与样品测定时的溶剂、浓度等有关。
3、峰位与特征形式频率 峰位:吸收峰出现的位置,用波长λ (cm),或波γ (cm-1)表示。 由于分子中各个基团的振动不是孤立的,而是受分子整体以及 邻近基团的影响,还有测试条件的影响,所以即使是同种基团 在不同的化合物中、不同测试条件,其波长或波数也是不固定的。 影响峰位变化的因素: (1)、电子效应 A、诱导效应 由于取代基具有不同的电负性,通过静电诱导作用,引起分子 中电子分布的变化,从而改变了键的力常数(K),使基团的特 征吸收频率(从而使吸收波数)发生位移。
非极性的同核双原子分子在振动过程中偶极距也不发生 变化,无红外活性,如:H2 、N2、 O2、 Cl2 等。

红外光谱分析

红外光谱分析

红外光谱分析简介红外光谱分析(Infrared Spectroscopy)是一种常用的分析技术,用于研究物质的结构和组成。

通过测量物质对红外辐射的吸收和散射情况,可以获取有关分子振动和结构的信息。

红外光谱分析广泛应用于有机化合物的鉴定和定量分析、材料分析、环境和食品安全监测等领域。

原理红外光谱分析基于物质分子的振动和转动产生的谱线。

大部分物质的振动频率位于红外光谱范围内,因此该技术可以用来研究物质的结构和组成。

红外光谱分析的原理可概括为以下几个方面:1.吸收谱线:物质分子在特定波长的红外辐射下,会吸收特定频率的红外光,产生吸收谱线。

不同官能团或结构单位的振动频率不同,因此吸收谱线可以用来识别物质的组成和结构。

2.波数:红外光谱中使用波数来表示振动频率。

波数与波长的倒数成正比,常用的单位是cm-1。

波数越大,振动频率越高。

3.力常数:物质分子中的振动频率受到分子内力的限制,可以通过量化力常数来描述。

力常数与振动能量相关,可以通过红外光谱数据计算得到。

4.傅里叶变换红外光谱(FTIR):FTIR是一种常用的红外光谱仪器,利用傅里叶变换原理将红外辐射的吸收信号转换为频率谱线。

FTIR具有快速、高分辨率和高灵敏度的特点,适用于各种物质的分析。

实验步骤进行红外光谱分析通常需要以下步骤:1.样品制备:将待分析的样品制备成适当形式,如固体样品可以通过压片或混合胶制备成薄片,液体样品可以直接放置在红外吸收盒中。

在制备过程中需要注意去除杂质和保持样品的均匀性。

2.仪器校准:使用已知物质进行仪器校准,确保红外光谱仪的准确性和灵敏度。

校准样品通常是有明确红外光谱特征的化合物,如苯环等。

3.获取红外光谱:将样品放置在红外光谱仪中,启动仪器进行红外辐射的扫描。

扫描过程中,红外光谱仪会记录样品对吸收红外辐射的响应。

得到光谱数据后,可以进行后续的数据处理和分析。

4.数据处理和分析:利用软件工具对得到的光谱数据进行处理和分析。

红外吸收光谱法的原理

红外吸收光谱法的原理

红外吸收光谱法的原理红外吸收光谱法(Infrared absorption spectroscopy)是一种常用的分析方法,通过测量物质对红外辐射的吸收来研究物质的结构和组成。

其原理基于物质分子的振动和转动,当红外辐射通过样品时,与样品分子相互作用并导致红外辐射被吸收或散射。

进一步,通过测量样品吸收的红外辐射强度,可以得到关于样品内部分子结构和组成的信息。

红外辐射是电磁波的一部分,具有比可见光更长的波长。

红外吸收光谱法利用这种波长特性,通过对样品在红外区域的吸收进行定量或定性分析。

红外吸收光谱法可以用于有机物、无机物、聚合物以及生物分子等各种类型的样品分析。

在红外吸收光谱法中,仪器设备包括一个红外光源、分光器、样品室和检测器。

红外光源产生宽频谱的红外辐射,经过分光器将红外辐射按波长分成多个特定范围。

样品室是一个透明的容器,用于容纳样品。

样品与红外辐射相互作用后,部分辐射被吸收,其余的辐射经过样品,最后被检测器接收。

检测器将接收到的辐射转化为电信号,并通过放大和处理,能够得到样品在各个波长下的吸收谱图。

红外吸收光谱图谱展示了样品在红外区域的吸收峰,峰的位置和强度可以提供关于样品中的化学键、官能团以及分子结构的信息。

每个官能团和化学键都有具有特定的频率和振动模式,当红外辐射与样品分子振动模式相吻合时,就会发生吸收。

因此,通过观察吸收峰的位置和形状,可以推断出样品中存在的官能团和化学键的类型。

总之,红外吸收光谱法利用物质对红外辐射的吸收特性,通过测量红外辐射在样品中的吸收程度,可以获得关于样品的结构和组成的信息。

这种分析方法广泛应用于化学、材料科学、生物科学等领域,为研究和分析各种样品提供了有力的工具。

红外光谱的原理及特点应用

红外光谱的原理及特点应用

红外光谱的原理及特点应用一、红外光谱的原理红外光谱是一种物质分析方法,基于不同物质对红外辐射的吸收特性进行分析。

其原理基于物质分子中的化学键振动或分子转动引起的能量吸收。

当物质受到红外光的照射时,会发生分子能级的跃迁,从而产生特定的吸收峰,通过测量这些吸收峰的强度和波数位置,可以确定物质的成分和结构。

红外光谱的原理可以通过以下几个方面来解释:1.分子振动:物质中的原子通过化学键连接,当红外辐射作用于物质时,分子中的原子会发生振动。

不同类型的化学键振动会产生不同的红外光谱特征。

例如,碳氢键、羟基、羧基等都有特定的红外吸收峰。

2.分子转动:除了分子振动外,物质中的分子还可以发生转动。

这些转动也会在红外光谱中产生吸收峰,但通常在较低波数范围内(2-25 cm^-1)。

3.红外光的作用:红外光通常是通过辐射源和光谱仪生成,然后照射到待测物上。

物质吸收红外光的能力与其分子结构和化学键的特性密切相关。

根据不同的红外光谱特点,可以推断物质的组成和结构。

二、红外光谱的特点红外光谱分析具有以下几个特点:1.高分辨率:红外光谱仪可以测量到物质吸收红外光的波数范围。

红外光谱图是一个连续的曲线,可以通过峰的形状和位置来区分不同的化学键。

高分辨率的红外光谱仪可以准确地测量吸收峰的强度和位置,从而提供更准确的分析结果。

2.非破坏性:红外光谱是一种非破坏性的分析方法。

物质在吸收红外光后并不会发生任何变化,可以保留样品的完整性。

因此,红外光谱可以对固体、液体和气体样品进行分析,而无需破坏或改变样品的状态。

3.快速分析:红外光谱分析可以在几分钟内完成,具有快速的分析速度。

这使得红外光谱成为工业生产中的一种常见分析方法,用于了解原材料和成品的组成和结构。

4.宽波段范围:红外光谱在波数范围上具有很大的灵活性,可以用于不同波段的分析。

常见的红外光谱波段有近红外(780-2500 nm)、中红外(2.5-25 µm)和远红外(25-1000 µm)。

红外光谱基本原理

红外光谱基本原理

5
红外光谱与紫外可见光谱的区别
1.光谱产生的机制不同
分子振动和转动能级的跃迁;价电子和分子轨道上的电子在电子能级 上的跃迁。
2. 研究对象不同
在振动中伴随有偶极矩变化的化合物;不饱合有机化合物特别是具有 共轭体系的有机化合物。
3.可分析的试样形式不同,使用范围不同
气、液、固均可,既可定性又可定量,非破坏性分析;既可定性又可 定量,有时是试样破坏性的。
N-O N-N C-F C=N
N-H
C-H,N-H,O-H 3500 3000 2500 2000 1500 1000 指纹区
25
500
特征区
三、影响基团频率的因素
基团频率(谱峰位置)主要由化学键的力常数决定。
但分子结构和外部环境因素也对其频率有一定的影响,相
同基团的特征吸收并不总在一个固定频率上。 影响其吸收峰位置的主要因素分为内部因素和外部因素。
基团所处化学环境不同,特征峰出现位置变化:
-CH2-CO-CH2- -CH2-CO-O- -CH2-CO-NH- 1715 cm-1 1735 cm-1 1680 cm-1 酮 酯 酰胺
21
相关峰:由同一基团的不同振动形式所产生的 一组应同时存在的峰。 如羧基的相关峰包括:羰基伸缩、羟基伸缩、
碳碳氢伸缩、羟基面内弯曲和羟基面外弯曲五个振
H NH cm-1 O 游 离 1 6 9 0 R R -1 cm 1 6 5 0 氢 键 O HN H
HO O C H C 3 缩 OH伸 OCH 3 2 8 3 5 cm-1
伸 缩 伸 缩 变 形 N-H C = O N-H
-1 cm 6 2 0 1 3 5 0 0 1 5 9 0
6 5 0 1 6 2 0 cm-1 1 3 4 0 0

红外光谱知识点总结

红外光谱知识点总结

红外光谱知识点总结一、红外光谱的基本原理1. 红外辐射红外光波长范围为0.78~1000微米,是可见光和微波之间的一部分光谱。

物质在光谱范围内会吸收、散射和发射红外光。

这些过程可以用来获取物质的结构信息。

2. 分子振动分子在吸收红外辐射时,分子内部的振动模式会发生变化,这些振动模式会导致物质对不同波长的红外光有不同的吸收峰。

根据分子结构、键的类型和位置不同,红外吸收峰会出现在不同的波数位置。

3. 红外吸收谱红外吸收谱是将物质对不同波数的红外光的吸收强度绘制成图谱。

在红外吸收谱中,不同的振动模式会对应不同的吸收峰,通过谱图的解析可以得到物质的结构信息。

4. 红外光谱仪红外光谱仪是用于测定物质的红外吸收光谱的仪器,它主要包括光源、分光器、样品室、检测器和数据处理系统等部分。

常见的红外光谱仪有光散射型、光路差型和干涉型等。

二、红外光谱的仪器分析技术1. 光散射型红外光谱仪光散射型红外光谱仪是通过散射光进行分析的,它适用于固态样品和粉末样品的分析。

该仪器操作简单,对样品的要求不高,但是分辨率较低。

2. 光路差型红外光谱仪光路差型红外光谱仪利用干涉光进行分析,可以获得高分辨率的红外光谱。

它适用于高精度的定量分析和结构鉴定,但是对样品的平整度和光路的稳定性要求较高。

3. 干涉型红外光谱仪干涉型红外光谱仪采用光源产生的连续光通过光栅或凸透镜分散成各个不同波数的光线,对于样品吸收光线的强度进行检测,然后通过计算机进行数据处理。

其优点是分辨率高、峰型窄、精确度高,适用于各种样品的定性、定量和成分分析。

4. 远红外光谱和近红外光谱远红外光谱仪可以用于检测液体样品和气态样品,其波数范围在4000~400 cm-1之间。

而近红外光谱则适用于固态和半固态样品的分析,波数范围在12500~4000 cm-1之间。

三、红外光谱的谱图解析1. 物质的结构信息根据红外光谱谱图的解析可以获得物质的结构信息,如键的种类、键的位置、分子的构型等。

红外光谱分析步骤 红外光谱工作原理

红外光谱分析步骤 红外光谱工作原理

红外光谱分析步骤红外光谱工作原理红外光谱法是利用物质分子对红外辐射的吸收,并由其振动或转动运动引起偶极矩的精变化,产生分子振动和转动能级从基态到激发态的跃迁,得到由分子振动能级和转动能级变化产生的振动-转动光谱,又称为红外光谱。

红外光谱法是一种鉴别化合物和确定物质分子结构的常用分析手段,不仅可以对物质进行定性分析,还可对单一组分或混合物中各组分进行定量分析,尤其是在对于一些较难分离并在紫外、可见区找不到明显特征峰的样品,可以方便、迅速地完成定量分析。

红外光谱分析步骤1.首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=(2C+2-H-Cl+N)/2其中:Cl为卤素原子。

例如:比如苯:C6H6,不饱和度=(2*6+2-6)/2=4,3个双键加一个环,正好为4个不饱和度。

2.分析3300~2800cm-1区域C-H伸缩振动吸收;以3000cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收。

3.若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:?炔2200~2100cm-1,烯1680~1640cm-1,芳环1600,1580,1500,1450cm-1泛峰。

若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反;邻、间、对)。

4.碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N 等特征吸收来判定化合物的官能团。

5.解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在。

近红外光谱仪的两种分析方法近红外光谱仪主要是依靠近红外光谱原理来进来一系列的测量,而近红外光谱又是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。

红外吸收光谱法

红外吸收光谱法
中红外光区吸收带(2.5 ~ 25µm )是绝大多数 有机化合物和无机离子的基频吸收带(由基态振动 能级(=0)跃迁至第一振动激发态(=1)时,所 产生的吸收峰称为基频峰)。
2024/7/18
3
由于基频振动是红外光谱中吸收最强的振动, 所以该区最适于进行红外光谱的定性和定量分析。 同时,由于中红外光谱仪最为成熟、简单,而且目 前已积累了该区大量的数据资料,因此它是应用极 为广泛的光谱区。通常,中红外光谱法又简称为红 外光谱法。
例1 水分子
2、峰数 :理论值为 3n-6(3n-5)
2024/7/18 实际峰数不等于此值。(原因?)
18
在红外吸收光谱上除基频峰外,振动能级由基态
( =0)跃迁至第二激发态( =2)、第三激发态( =3),所产生的吸收峰称为倍频峰
由=0跃迁至=2时, △=2,则L=2,产生的 吸收峰称为二倍频峰。
2024/7/18
26
表 几种红外检测器
红外检测器 原理
构成
特点
热电偶
温 差 热 电 涂黑金箔(接受面)连接金属(热接 光谱响应宽且一致性
效应
点)与导线(冷接端)形成温差。 好、灵敏度高、受热噪 音影响大
涂黑金箔(接受面)作为惠斯顿电桥 稳定、中等灵敏度、较
测热辐射计 电桥平衡 的一臂,当接受面温度改变,电阻改 宽线性范围、受热噪音
由度相当于红外光谱图上一个基频吸收带。设分子 由n个原子组成,每个原子在空间都有3个自由度, 原子在空间的位置可以用直角坐标中的3个坐标x、y 、z表示,因此,n个原子组成的分子总共应有3n个 自由度,即3n种运动状态。
但在这3n种运动状态中,包括3个整个分子的质
心沿x、y、z方向平移运动和3个整个分子绕x、y、z

红外光谱测试原理

红外光谱测试原理

红外光谱测试原理红外光谱测试原理是一种利用物质分子之间的振动、转动和形变等运动状态所表现出来的光谱特性,对样品进行检测和定性分析的方法。

红外光谱测试原理可以用来分析有机物、无机物、聚合物、蛋白质等多种物质,具有非破坏性、灵敏度高、快速、准确等特点。

下面将对红外光谱测试原理做出详细介绍。

一、红外光谱测试原理概述红外光谱测试原理是一种光谱技术,其基本原理是将样品暴露在红外光辐射下(4000~400cm-1),光子与样品分子发生作用时,分子的振动和转动状态将会发生变化,从而产生了不同频率的振动波长,这些波长就是所谓的红外光谱特征波长。

通过检测样品反射、透射或者吸收的红外辐射波长,就可以得出样品的成分和结构信息。

二、红外光谱测试的原理与组成红外光谱测试仪由红外光源、样品室、检测器、计算机等部分组成。

红外光源通常采用两种:一是采用氚灯,二是采用红外线电磁辐射器。

样品室一般由样品支架和样品夹组成,它们的设计与制造极其复杂,要求对温度、湿度、气体等多个因素进行精确控制。

检测器目前主要采用的是荧光屏、光电转换器、半导体、透镜等探测器,其作用是将样品室中的红外辐射转化为电信号,进而输入计算机进行处理。

三、红外光谱测试的样品制备红外光谱测试的样品制备至关重要。

通常,红外光谱测试的样品要求比较高,需要对样品进行粉碎或浸泡处理。

其中,粉碎需要根据样品的不同性质进行操作。

浸泡则通常采用氯仿、苯和甲醇等溶剂进行浸泡,处理溶液悬浮于空气,然后将红外辐射直射到悬浮液中,测出光谱图像。

四、红外光谱测试的应用红外光谱测试具有非常广泛的应用领域,主要包括有机化学、物理化学、生物化学、环境科学等多个领域。

在有机化学中,常用于分析各种有机物;在物理化学中,在气体吸收光谱或红外光谱分析等方面得到了广泛应用;在生物化学中,常用于分析DNA,蛋白质,糖等大分子等;在环境科学中,可以用于分析污染水源或污染物质。

总之,红外光谱测试原理是一种非常重要的光谱测试技术,可以用来分析和检测各种复杂物质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外光谱法基本原理
红外光谱是反映分子的振动情况。

当用一定频率的红外光照射某物质分子时,若该物质的分子中某基团的振动频率与它相同,则此物质就能吸收这种红外光,使分子由振动基态跃迁到激发态。

因此,若用不同频率的红外光依次通过测定分子时,就会出现不同强弱的吸收现象。

用T%-λ作图就得到其红外光吸收光谱。

红外光谱具有很高的特征性,每种化合物都具有特征的红外光谱。

用它可进行物质的结构分析和定量测定。

气相色谱法基本原理
气相色谱法是以气体(此气体称为载气)为流动相的柱色谱分离技术。

在填充柱气相色谱法中,柱内的固定相有两类:一类是涂布在惰性载体上的有机化合物,它们和沸点较高,在柱温下可呈液态,或本身就是液体,采用这类固定相的方法称为气液色谱法;另一类是活性吸附剂,如硅胶、分子筛等,采用这类固定相的方法称为气固色谱法。

它的应用远没有气液色普法广泛。

气固色谱法只适用于气体及低沸点烃类的分析。

在毛细管气相色谱法中,色谱柱内径小于lmm,分为填充型和开管型两大类。

填充型毛细管与一般填充柱相同,只是径细、柱长,使用的固定相颗粒在几十到几百微米之间。

开管型固定相则通过化学键组合或物理的方法直接固定在管壁上,因此这种色谱柱又称开管理柱,它的应用日益普遍。

原则上,在填充柱中能够使用的固定液,在毛细管柱中也能使用,但毛细管柱比普通填充柱柱效更高,分离能力更强。

气相色谱法的应用面十分广泛,原则上讲,不具腐蚀性气体或只要在仪器所能承受的气化温度下能够气化,且自身又不分解的化合物都可用气相色谱法分析。

当样品加到固定相上之后,流动相就要携带样品在柱内移动。

流动相在固定相上的溶解或吸附能力要比样品中的组分弱得多。

组分进柱后,就要在固定相和流动相之间进行分配。

组分性质不同,在固定相上的溶解或吸附能力不同,即它们的分配系数大小不同。

分配系数大
的组分在固定相上的溶解或吸附能力强,停留时间也长,移动速度慢,因而后流出柱。

反之,分配系数小的组分先流出柱子。

可见,只要选择合适的固定相,使被分离组分的分配系数有足够差别,再加上对色谱柱和其他操作条件的合理选择,就可得到令人满意的分离。

核磁共振波谱法基本原理
核自旋量子数I≠0的原子核在磁场中产生核自旋能量分裂,形成不同的能级,在射频辐射的作用下,可使特定结构环境中的原子核实现共振跃迁。

记录发生共振时的讯号位置和强度,就可得到核磁共振(NMR)谱。

谱上共振讯号的位置反映样品分子的局部结构(如官能团);讯号的强度往往与有关原子核在分子中存在的量有关。

自旋量子数I=0的核,如12C、16O、32S没有共振跃迁。

I≠0的原子核,原则上都可以得到NMR讯号。

但目前有实用价值的仅限于1H、13C、19F、31P、及15N等核磁共振讯号,而其中氢谱和碳谱应用最广。

电导分析法基本原理
测定溶液的电导以求得溶液中某物质浓度的方法称为电导分析法。

电导分析法具有简单、快速和不破坏被测样品等优点。

由于一种溶液的电导是其中所有离子电导的总和,因此,电导测量只能用来估算离子的总量。

电导分析法可分为电导法和电导滴定法两种,这里讲座前者。

金属、电解质溶液等都是能够传导电荷的物质,故称为导体。

电荷在导体中向一定方向的移动就形成了电流。

在电解质溶液中插入一对平板状铂电极并外加一直流电压,此时正离子向负极迁移,负离子向正极迁移而形成了电流。

通过溶液的总电流是正、负离子在单位时间内各自通过溶液某截面的电量之和。

相关文档
最新文档