直线的方程

合集下载

直线方程百度百科

直线方程百度百科

直线方程百度百科直线方程是描述平面上一条直线的数学表达式,它是数学中的重要概念之一。

直线方程可以通过多种方法推导和表示,包括点斜式、斜截式、一般式等等。

在本文中,我们将介绍直线方程的基本定义、常见表示方法以及相关概念。

直线方程的基本定义直线方程是通过点和直线的关系来表示的。

在平面几何中,我们知道一条直线可以由两个不同的点唯一确定。

因此,直线方程的基本定义可以简单描述为:给定直线上两个不同的点,通过这两个点可以得到直线方程。

点斜式直线方程点斜式直线方程是直线方程中最常见的一种表示方式。

它利用直线上的一个点的坐标和直线的斜率来表示直线方程。

点斜式直线方程的一般形式为:y - y1 = m(x - x1)在上述方程中,(x1, y1)表示直线上的某一点,m表示直线的斜率。

斜率表示了直线在平面上的倾斜程度,可以通过两个点的坐标来计算得到。

斜截式直线方程斜截式直线方程是直线方程中的另一种常见表示方法。

它通过直线的斜率和截距来表示直线方程。

斜截式直线方程的一般形式为:y = mx + b在上述方程中,m表示直线的斜率,b表示直线在 y 轴上的截距。

斜截式直线方程更加简洁,易于理解和计算。

一般式直线方程一般式直线方程是直线方程中的一种标准形式,它通过直线的一般系数来表示。

一般式直线方程的一般形式为:Ax + By + C = 0在上述方程中,A、B和C都是实数,且A和B不同时为 0。

一般式直线方程可以通过将斜截式直线方程或点斜式直线方程进行变换得到。

直线方程的应用直线方程在数学和实际应用中有着广泛的应用。

在几何学中,直线方程被用于计算直线的斜率、交点等性质。

在物理学和工程学中,直线方程被用于描述物体的运动、电路的行为等。

直线方程也常常和其他数学概念结合使用,比如与曲线方程相结合来求解方程组等。

总结通过本文,我们了解了直线方程的基本定义以及常见的表示方法。

点斜式直线方程、斜截式直线方程和一般式直线方程是直线方程中常用的表示形式。

直线方程百度百科

直线方程百度百科

直线方程直线是一条无限延伸的线段,由无数个点组成。

在平面几何中,直线可以由其斜率(斜率是直线上两个点之间的垂直距离与水平距离的比)和截距(直线与纵轴的交点)来描述。

1. 直线方程的一般形式直线方程的一般形式可以表示为:Ax + By + C = 0其中,A、B和C是实数,且A和B不能同时为零。

2. 直线方程的斜截式斜截式是直线方程的一种常见形式,可以表示为:y = mx + b其中,m是直线的斜率,b是直线与纵轴的交点。

3. 直线方程的点斜式点斜式也是直线方程的一种形式,可以表示为:y - y1 = m(x - x1)其中,m是直线的斜率,(x1, y1)是直线上的一个已知点。

4. 直线方程的法线斜截式法线斜截式是直线方程的一种特殊形式,可以表示为:y = -1/m x + b其中,m是直线的斜率,b是直线与纵轴的交点。

5. 直线方程的横截式横截式是直线方程的另一种常见形式,可以表示为:x = a其中,a是直线与横轴的交点。

6. 直线方程的解析几何意义直线方程的解析几何意义非常丰富。

斜率可以表示直线的倾斜程度,当斜率为正值时,直线向右上方延伸;当斜率为负值时,直线向右下方延伸;当斜率为零时,直线水平;当斜率不存在时,直线垂直。

截距表示直线与纵轴的交点,可以用来确定直线在纵轴上的位置。

点斜式可以通过一个已知点和直线的斜率来确定直线方程。

直线方程还可以用于求解直线与直线之间的交点、直线的平行与垂直关系等几何问题。

7. 直线方程的应用直线方程在几何学、物理学、工程学等领域中有广泛的应用。

例如,在几何学中,直线方程可以用来求解直线的性质,如与其他直线的交点、平行关系等;在物理学中,直线方程可以用来描述物体的运动轨迹;在工程学中,直线方程可以用来建立模型,分析和解决实际问题。

结论直线方程是研究平面几何中直线性质的重要工具。

通过直线方程,我们可以描述直线的斜率、截距、倾斜程度等性质,进一步推导出直线的交点、平行与垂直关系等几何问题。

直线方程的四种形式

直线方程的四种形式

03
然后,将斜率k代入一般 形式的直线方程 y=kx+b中,得到yy1=k*(x-x1)。
04
最后,将k的具体值代入 上式,得到两点式方程。
谢谢观看
04
法线式
法线式的定义
法线式方程是形如 (y - y_1 = m(x x_1)) 的直线方程,其中 (m) 是直线 的斜率,((x_1, y_1)) 是直线上的一 点。
VS
法线式方程表示的是通过点 ((x_1, y_1)) 且斜率为 (m) 的直线。
法线式的应用场景
当已知直线上的一点和斜率时,可以使用法线式方程来表示该直线。
进一步变形,得到 (y - y_1 = frac{A}{B}(x - x_1)),这就是法
线式方程。
05
点向式
点向式的定义
点向式是指通过直线上的一点和直线的方向 向量来表示直线方程的一种形式。具体地, 点向式方程可以表示为 (x - x_1 = m(y y_1)),其中 ((x_1, y_1)) 是直线上的一个点, (m) 是直线的方向向量。
详细描述
在几何问题中,如果已知直线上的一点和斜率,就可以使用点斜式来求解直线的方程。 例如,在解析几何、物理和工程领域中,点斜式被广泛应用于解决与直线相关的问题。
点斜式的推导过程
要点一
总结词
点斜式可以通过直线上两点的坐标来推导得出。
要点二
详细描述
设直线上的两点为 (x1, y1) 和 (x2, y2),其中 x1 ≠ x2。根据 两点式,直线的斜率 m = (y2 - y1) / (x2 - x1)。将这个斜率 和一点 (x1, y1) 代入点斜式方程,即可得到直线的方程为 y y1 = m(x - x1)。

直线的方程(解析版)

直线的方程(解析版)

第6讲直线的方程新课标要求根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式)。

知识梳理1.直线的点斜式方程2.直线的斜截式方程3.直线的两点式方程和截距式方程4.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22.5.直线的一般式方程6.直线的一般式与点斜式、斜截式、两点式、截距式的关系3.2.1 直线的点斜式方程名师导学【例1-1】(南京校级模拟)根据条件写出下列直线的点斜式方程: (1)过点A (-4,3),斜率k =3; (2)经过点B (-1,4),倾斜角为135°; (3)过点C (-1,2),且与y 轴平行; (4)过点D (2,1)和E (3,-4). 【分析】求直线的点斜式方程的思路【解答】 (1)由点斜式方程可知,所求直线方程为:y -3=3[x -(-4)].(2)由题意知,直线的斜率k =tan 135°=-1,故所求直线的方程为y -4=-(x +1).(3)∵直线与y 轴平行,斜率不存在,∴直线的方程不能用点斜式表示,由于直线上所有点的横坐标都是-1, 故这条直线的方程为x =-1. (4)∵直线过点D (2,1)和E (3,-4), ∴斜率k =-4-13-2=-5.由点斜式得y -1=-5(x -2).【变式训练1-1】(蜀山区校级月考)根据条件写出下列直线的点斜式方程: (1)经过点A (2,5),斜率是4; (2)经过点B (2,3),倾斜角是45°; (3)经过点C (-1,-1),与x 轴平行.【解析】 (1)由点斜式方程可知,所求直线方程为y -5=4(x -2); (2)∵直线的斜率k =tan 45°=1, ∴直线方程为y -3=x -2; (3)y =-1.【例2-1】(菏泽调研)根据条件写出下列直线的斜截式方程. (1)斜率为2,在y 轴上的截距是5; (2)倾斜角为150°,在y 轴上的截距是-2;(3)倾斜角为60°,与y 轴的交点到坐标原点的距离为3. 【分析】直线的斜截式方程的求解策略:(1)求直线的斜截式方程只要分别求出直线的斜率和在y 轴上的截距,代入方程即可. (2)当斜率和截距未知时,可结合已知条件,先求出斜率和截距,再写出直线的斜截式方程.【解答】 (1)由直线方程的斜截式可知, 所求直线方程为y =2x +5.(2)∵倾斜角α=150°,∴斜率k =tan 150°=-33. 由斜截式可得方程为y =-33x -2. (3)∵直线的倾斜角为60°,∴其斜率k =tan 60°= 3.∵直线与y 轴的交点到原点的距离为3, ∴直线在y 轴上的截距b =3或b =-3. ∴所求直线方程为y =3x +3或y =3x -3.【变式训练2-1】(宁波校级月考)写出下列直线的斜截式方程: (1)直线斜率是3,在y 轴上的截距是-3; (2)直线倾斜角是60°,在y 轴上的截距是5; (3)直线在x 轴上的截距为4,在y 轴上的截距为-2.【解析】 (1)由直线方程的斜截式可知,所求方程为y =3x -3. (2)∵k =tan 60°=3,∴y =3x +5.(3)∵直线在x 轴上的截距为4,在y 轴上的截距为-2, ∴直线过点(4,0)和(0,-2). ∴k =-2-00-4=12,∴y =12x -2.【例3-1】(新华区校级期末)(1)当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行? (2)当a 为何值时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直?【分析】在解决有关直线位置关系的问题时,常常用到数形结合思想和待定系数法.数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法.而待定系数法是解析几何中求直线方程或其他曲线方程的重要方法.【解答】(1)∵l 1∥l 2,∴a 2-2=-1, 又2a ≠2,解得a =-1.(2)∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.【变式训练3-1】(黄冈期末)求证:不论m 为何值,直线l :y =(m -1)x +2m +1总过第二象限. 【证明】 法一 直线l 的方程可化为y -3=(m -1)(x +2), ∴直线l 过定点(-2,3),由于点(-2,3)在第二象限,故直线l 总过第二象限. 法二 直线l 的方程可化为m (x +2)-(x +y -1)=0.令⎩⎪⎨⎪⎧x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3. ∴无论m 取何值,直线l 总经过点(-2,3). ∵点(-2,3)在第二象限,∴直线l 总过第二象限.【变式训练3-2】(赤峰期末)是否存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5? 【解析】 假设存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5.由题意可知,直线l 的斜率一定存在且不为零,设直线的斜率为k (k ≠0),则直线方程为y +4=k (x +5),则分别令y =0,x =0,可得直线l 与x 轴的交点为(-5k +4k ,0),与y 轴的交点为(0,5k -4).因为直线l 与两坐标轴围成的三角形的面积为5,所以12|-5k +4k |·|5k -4|=5,所以-5k +4k ·(5k -4)=±10,即25k 2-30k +16=0(无解)或25k 2-50k +16=0,所以k =85或k =25,所以存在直线l 满足题意,直线l 的方程为y +4=85(x +5)或y +4=25(x +5).名师导练A 组-[应知应会]1.(宣城期末)过点()3,2,斜率是23的直线方程是( ) A .243y x =+ B .223y x =+ C .230x y -=D .320x y -=【答案】C【解析】∵直线过点()3,2且斜率为23, 由直线方程的点斜式得:22(3)3y x -=-, 整理得:230x y -=. 故选C.2.(绵阳期末)已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B 直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1【答案】C【解析】方程可化为y -(-2)=-[x -(-1)],所以直线过点(-1,-2),斜率为-1.选C. 3.(上饶期末)直线y =3(x -3)的斜率与在y 轴上的截距分别是( ) A .3,3 B .3,-3 C .3,3 D .-3,-3 【答案】B【解析】由直线方程知直线斜率为3,令x =0可得在y 轴上的截距为y =-3.故选B. 4.(通州区期末)直线y =kx +b 经过第一、三、四象限,则有( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0D .k <0,b <0【答案】 B【解析】 ∵直线经过第一、三、四象限,∴图形如图所示,由图知,k >0,b <0.5.(龙凤区校级期末)过点()2,0且与直线25y x =+垂直的直线l 的方程是( )A .24y x =-B .24y x =-+C .112y x =- D .112y x =-+ 【答案】D【解析】因为所求直线与直线25y x =+垂直,所以其斜率为12k =-, 又所求直线过点()2,0, 因此,所求直线方程为:()122y x =--,即112y x =-+. 故选D.6.(南关区校级期末)已知直线l 过点()2,0,且与直线21y x =-+平行,则直线l 的方程为( )A .24y x =-B .24y x =+C .24y x =-+D .24y x =--【答案】C 【解析】直线l 与直线21y x =-+平行,∴直线l 的斜率与21y x =-+的斜率相等,即直线l 的斜率:2k =-;又直线l 过点()2,0,则由点斜式可知直线方程为()022y x -=-- 整理可得:24y x =-+ 故选C.7.(兴庆区校级期末)直线y =2x -5在y 轴上的截距是________. 【答案】 -5【解析】 ∵令x =0,则y =-5, ∴直线y =2x -5在y 轴上的截距是-5.8.(无锡期末)在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是________. 【答案】 y =3x -6或y =-3x -6【解析】 与y 轴相交成30°角的直线方程的斜率为: k =tan 60°=3,或k =tan 120°=-3,∴y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是:y =3x -6或y =-3x -6.9.(金牛区校级期末)与直线l :y =34x +1平行,且在两坐标轴上截距之和为1的直线l 1的方程为________.【答案】 y =34x -3【解析】 根据题意知直线l 的斜率k =34,故直线l 1的斜率k 1=34.设直线l 1的方程为y =34x +b ,则令y =0,得它在x 轴上的截距a =-43b .∵a +b =-43b +b =-13b =1,∴b =-3.∴直线l 1的方程为y =34x -3.10.(南岗区校级期末)斜率为34,且与坐标轴所围成的三角形的周长是12的直线方程是________.【答案】 y =34x ±3【解析】 设所求直线方程为y =34x +b ,令y =0得x =-4b3.由题意得:|b |+⎪⎪⎪⎪-43b +b 2+16b 29=12, 即|b |+43|b |+53|b |=12,即4|b |=12,∴b =±3, ∴所求直线方程为y =34x ±3.11.(金华校级月考)写出下列直线的斜截式方程: (1)直线的倾斜角为45°且在y 轴上的截距是2; (2)直线过点A (3,1)且在y 轴上的截距是-1.【解析】 (1)斜率k =tan 45°=1,可得斜截式:y =x +2. (2)k =-1-10-3=23,可得斜截式方程:y =23x -1.12.(洛龙区校级期末)(1)求经过点(1,1),且与直线y =2x +7平行的直线的点斜式方程; (2)求经过点(-2,-2),且与直线y =3x -5垂直的直线的斜截式方程. 【解析】 (1)∵所求直线与直线y =2x +7平行, ∴所求直线斜率为2, 由点斜式方程可得 y -1=2(x -1).(2)∵所求直线与直线y =3x -5垂直, ∴所求直线的斜率为-13,由点斜式方程得:y +2=-13(x +2),即y =-13x -83.故所求的直线方程为y =-13x -83.B 组-[素养提升]1.(诸暨市校级期中)已知三角形的顶点坐标是A (-5,0),B (3,-3),C (0,2),试求这个三角形的三条边所在直线的斜截式方程.【解析】 直线AB 的斜率k AB =-3-03-(-5)=-38,又过点A (-5,0),∴直线AB 的点斜式方程为y =-38(x+5),即所求边AB 所在直线的斜截式方程为y =-38x -158.同理,直线BC 的方程为y -2=-53x ,即y =-53x +2.直线AC 的方程为y -2=25x ,即y =25x +2.∴边AB ,BC ,AC 所在直线的斜截式方程分别为y = -38x -158,y =-53x +2,y =25x +2. 3.2.2 直线的两点式方程名师导学知识点1 直线的两点式方程【例1-1】(武侯区校级期末)已知三角形的顶点是A (1,3),B (-2,-1),C (1,-1),求这个三角形三边所在直线的方程.【分析】当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件,若满足即可考虑用两点式求方程.在斜率存在的情况下,也可以先应用斜率公式求出斜率,再用点斜式写方程. 【解答】直线AB 过A (1,3),B (-2,-1),其两点式方程为y -3-1-3=x -1-2-1,整理,得4x -3y +5=0,这就是直线AB 的方程.直线AC 垂直于x 轴,其方程为x =1.直线BC 平行于x 轴,其方程为y =-1.【变式训练1-1】(开江县校级开学考)过(1,1),(2,-1)两点的直线方程为 ( ) A .2x -y -1=0 B .x -2y +3=0 C .2x +y -3=0 D .x +2y -3=0 【答案】C【解析】∵直线过两点(1,1)和(2,-1),∴直线的两点式方程为y -(-1)1-(-1)=x -21-2,整理得2x +y -3=0,故选C.知识点2 直线的截距式方程【例2-1】(诸暨市校级期中)求过点A (3,4),且在两坐标轴上的截距互为相反数的直线l 的方程. 【分析】如果题目中出现直线在两坐标轴上的“截距相等”、“截距互为相反数”、“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,采用截距式求直线方程,一定要注意考虑“零截距”的情况. 【解答】(1)当直线l 在两坐标轴上的截距互为相反数且不为0时,可设直线l 的方程为x a +y-a =1.又l 过点A (3,4),所以3a +4-a =1,解得a =-1.所以直线l 的方程为x -1+y1=1,即x -y +1=0.(2)当直线l 在两坐标轴上的截距互为相反数且为0时,即直线l 过原点时,设直线l 的方程为y =kx ,因为l 过点A (3,4),所以4=k ·3,解得k =43,直线l 的方程为y =43x ,即4x -3y =0.综上,直线l 的方程为x -y +1=0或4x -3y =0.【变式训练2-1】若将例2-1中“截距互为相反数”改为“截距相等”呢? 【解析】(1)当截距不为0时,设直线l 的方程为x a +ya =1,又知l 过(3,4),∴3a +4a =1,解得a =7, ∴直线l 的方程为x +y -7=0.(2)当截距为0时,直线方程为y =43x ,即4x -3y =0.综上,直线l 的方程为x +y -7=0或4x -3y =0. 知识点3 直线的综合应用【例3-1】(沭阳县校级期中)已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),求BC 边所在直线的方程,以及该边上中线所在直线的方程.【分析】(1)已知一点的坐标,求过该点的直线方程,一般选取点斜式方程,再由其他条件确定直线的斜率. (2)若已知直线的斜率,一般选用直线的斜截式,再由其他条件确定直线的一个点或者截距. (3)若已知两点坐标,一般选用直线的两点式方程,若两点是与坐标轴的交点,就用截距式方程.(4)不论选用怎样的直线方程,都要注意各自方程的限制条件,对特殊情况下的直线要单独讨论解决. 【解答】如图,过B (3,-3),C (0,2)的两点式方程为y -2-3-2=x -03-0,整理得5x +3y -6=0.这就是BC 边所在直线的方程.BC 边上的中线是顶点A 与BC 边中点M 所连线段,由中点坐标公式可得点M 的坐标为(3+02,-3+22),即(32,-12).过A (-5,0),M (32,-12)的直线的方程为y -0-12-0=x +532+5,即x +13y +5=0. 这就是BC 边上中线所在直线的方程.【变式训练3-1】(天心区校级期末)求过点A (4,2),且在两坐标轴上的截距的绝对值相等的直线l 的方程. 【解析】当直线过原点时,它在x 轴、y 轴上的截距都是0,满足题意. 此时,直线的斜率为12,所以直线l 的方程为y =12x ,即x -2y =0.当直线不过原点时,由题意可设直线方程为x a +yb =1.又因为过点A ,所以4a +2b =1. ①因为直线在两坐标轴上的截距的绝对值相等, 所以|a |=|b |. ② 由①②联立方程组,解得⎩⎪⎨⎪⎧a =6,b =6或⎩⎪⎨⎪⎧a =2,b =-2. 所以所求直线的方程为x 6+y 6=1或x 2+y-2=1,化简得直线l 的方程为x +y =6或x -y =2, 即直线l 的方程为x +y -6=0或x -y -2=0,综上,直线l 的方程为x -2y =0或x +y -6=0或x -y -2=0.名师导练A 组-[应知应会]1.(锡山区校级期中)过两点(-2,1)和(1,4)的直线方程为 ( ) A .y =x +3 B .y =-x +1 C .y =x +2D .y =-x -2【解析】 代入两点式得直线方程y -14-1=x +21+2,整理得y =x +3.【答案】 A2.(红桥区期中)经过P (4,0),Q (0,-3)两点的直线方程是 ( ) A.x 4+y3=1 B.x 3+y 4=1 C.x 4-y3=1D.x 3-y 4=1 【解析】 由P ,Q 两点坐标知直线在x 轴、y 轴上的截距分别为4,-3,所以直线方程为x 4+y -3=1,即x4-y3=1. 【答案】 C3.(江宁区校级月考)过点P (4,-3)且在坐标轴上截距相等的直线有 ( ) A .1条B .2条C .3条D .4条【解析】 当直线过原点时显然符合条件;当直线不过原点时,设所求直线的方程为x a +ya =1,把点P (4,-3)代入方程得a =1.因而所求直线有2条. 【答案】 B4.(临泉县校级月考)经过两点(5,0),(2,-5)的直线方程为 ( ) A .5x +3y -25=0 B .5x -3y -25=0 C .3x -5y -25=0D .5x -3y +25=0【解析】 经过两点(5,0),(2,-5)的直线方程为: y -0-5-0=x -52-5,整理,得5x -3y -25=0. 故选B. 【答案】 B5.(朝阳区校级月考)已知直线l :ax +y -2=0在x 轴和y 轴上的截距相等,则实数a 的值是( ) A .1B .-1C .-2或-1D .-2或1【解析】 显然a ≠0.把直线l :ax +y -2=0化为x 2a +y2=1.∵直线l :ax +y -2=0在x 轴和y 轴上的截距相等, ∴2a =2,解得a =1,故选A. 【答案】 A6.(庐江县校级期末)点M (4,m )关于点N (n ,-3)的对称点为P (6,-9),则 ( ) A .m =-3,n =10 B .m =3,n =10 C .m =-3,n =5D .m =3,n =5【解析】 ∵M (4,m )关于点N (n ,-3)的对称点为P (6,-9),∴4+62=n ,m -92=-3;∴n =5,m =3,故选D. 【答案】 D7.(海淀区校级期末)已知A (2,-1),B (6,1),则在y 轴上的截距是-3,且经过线段AB 中点的直线方程为________.【解析】 由于A (2,-1),B (6,1),故线段AB 中点的坐标为(4,0), 又直线在y 轴上的截距是-3,∴直线方程为x 4-y3=1,即3x -4y -12=0.【答案】 3x -4y -12=08.(红岗区校级期末)过点P (3,2),且在坐标轴上截得的截距相等的直线方程是________. 【解析】 当直线过原点时,斜率等于2-03-0=23,故直线的方程为y =23x ,即2x -3y =0.当直线不过原点时,设直线的方程为x +y +m =0,把P (3,2)代入直线的方程得m =-5, 故求得的直线方程为x +y -5=0,综上,满足条件的直线方程为2x -3y =0或x +y -5=0. 【答案】 2x -3y =0或x +y -5=09.(兴庆区校级期末)求经过点A (-2,3),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 【解】 (1)当横截距、纵截距都是零时,设所求的直线方程为y =kx ,将(-2,3)代入y =kx 中,得k =-32,此时,直线方程为y =-32x ,即3x +2y =0.(2)当横截距、纵截距都不是零时, 设所求直线方程式为x 2a +ya=1,将(-2,3)代入所设方程,解得a =2,此时,直线方程为x +2y -4=0. 综上所述,所求直线方程为x +2y -4=0或3x +2y =0.10.(城关区校级期末)求经过点A (-2,3),B (4,-1)的直线的两点式方程,并把它化成点斜式、斜截式和截距式.【解】 过A ,B 两点的直线的两点式方程是y +13+1=x -4-2-4.点斜式为:y +1=-23(x -4),斜截式为:y =-23x +53,截距式为:x 52+y53=1.B 组-[素养提升]1.(鼓楼区校级期末)两条直线l 1:x a -y b =1和l 2:x b -ya=1在同一直角坐标系中的图象可以是( )【解析】 化为截距式x a +y -b =1,x b +y-a=1.假定l 1的位置,判断a ,b 的正负,从而确定l 2的位置,知A 项符合. 【答案】 A2.(秦州区校级期末)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是 ( ) A.⎝⎛⎭⎫-1,15B.⎝⎛⎭⎫-∞,12∪(1,+∞) C .(-∞,1)∪⎝⎛⎭⎫15,+∞D .(-∞,-1)∪⎝⎛⎭⎫12,+∞【解析】 设直线的斜率为k ,如图,过定点A 的直线经过点B (3,0)时,直线l 在x 轴上的截距为3,此时k =-1;过定点A 的直线经过点C (-3,0)时,直线l 在x 轴的截距为-3,此时k =12,满足条件的直线l的斜率范围是(-∞,-1)∪⎝⎛⎭⎫12,+∞.【答案】 D3.(金湖县校级期中)垂直于直线3x -4y -7=0,且与两坐标轴围成的三角形的面积为6的直线在x 轴上的截距是________.【解析】 设直线方程是4x +3y +d =0,分别令x =0和y =0,得直线在两坐标轴上的截距分别是-d 3,-d4,∴6=12×|-d 3|×|-d 4|=d 224,∴d =±12,则直线在x 轴上的截距为3或-3.【答案】 3或-34.(启东市校级月考)已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 【解析】 直线AB 的方程为x 3+y 4=1,设P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3,即当P 点坐标为⎝⎛⎭⎫32,2时,xy 取得最大值3. 【答案】 35.(杨浦区校级期末)在△ABC 中,已知A (5,-2),B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标;(2)直线MN 的方程. 【解】 (1)设C (x 0,y 0),则AC 边的中点为M ⎝⎛⎭⎫x 0+52,y 0-22,BC 边的中点为N ⎝⎛⎭⎫x 0+72,y 0+32.因为M 在y 轴上,所以x 0+52=0,得x 0=-5.又因为N 在x 轴上,所以y 0+32=0,所以y 0=-3.所以C (-5,-3). (2)由(1)可得M ⎝⎛⎭⎫0,-52,N (1,0),所以直线MN 的方程为x 1+y-52=1,即5x -2y -5=0.3.2.3 直线的一般式方程名师导学知识点1 直线的一般式方程与其他形式的转化【例1-1】(水富市校级期末)(1)下列直线中,斜率为-43,且不经过第一象限的是( )A .3x +4y +7=0B .4x +3y +7=0C .4x +3y -42=0D .3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A.3B .-5C.95D .-33【分析】(1)当A ≠0时,方程可化为x +B A y +C A =0,只需求B A ,C A 的值;若B ≠0,则方程化为A B x +y +CB =0,只需确定A B ,CB的值.因此,只要给出两个条件,就可以求出直线方程.(2)在求直线方程时,设一般式方程有时并不简单,常用的还是根据给定条件选用四种特殊形式之一求方程,然后可以转化为一般式.【解答】(1)将一般式化为斜截式,斜率为-43的有:B 、C 两项.又y =-43x +14过点(0,14)即直线过第一象限,所以只有B 项满足要求. (2)令y =0,则x =-3 3.【变式训练1-1】(包河区校级期末)根据下列条件分别写出直线的方程,并化为一般式方程. (1)斜率是3,且经过点A (5,3); (2)斜率为4,在y 轴上的截距为-2; (3)经过A (-1,5),B (2,-1)两点; (4)在x ,y 轴上的截距分别是-3,-1.【解析】(1)由点斜式方程可知,所求直线方程为:y -3=3(x -5),化为一般式为:3x -y +3-53=0. (2)由斜截式方程可知,所求直线方程为:y =4x -2,化为一般式为:4x -y -2=0.(3)由两点式方程可知,所求直线方程为:y -5-1-5=x -(-1)2-(-1).化为一般式方程为:2x +y -3=0.(4)由截距式方程可得,所求直线方程为x -3+y-1=1,化成一般式方程为:x +3y +3=0.知识点2 直线的一般式方程的应用【例2-1】(上虞区期末)(1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足________. (2)已知方程(2m 2+m -3)x +(m 2-m )y =4m -1表示直线.当m =____________时,直线的倾斜角为45°;当m =____________时,直线在x 轴上的截距为1.【解析】(1)若方程不能表示直线,则m 2+5m +6=0且m 2+3m =0.解方程组⎩⎪⎨⎪⎧m 2+5m +6=0,m 2+3m =0,得m =-3,所以m ≠-3时,方程表示一条直线. (2)因为已知直线的倾斜角为45°, 所以此直线的斜率是1,所以-2m 2+m -3m 2-m =1,所以⎩⎪⎨⎪⎧m 2-m ≠0,2m 2+m -3=-(m 2-m ),解得⎩⎪⎨⎪⎧m ≠0且m ≠1,m =-1或m =1.所以m =-1.因为已知直线在x 轴上的截距为1, 令y =0得x =4m -12m 2+m -3,所以4m -12m 2+m -3=1,所以⎩⎪⎨⎪⎧2m 2+m -3≠0,4m -1=2m 2+m -3,解得⎩⎨⎧m ≠1且m ≠-32,m =-12或m =2.所以m =-12或m =2.【例2-2】(柳南区校级期末)已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直. 【解析】l 的方程可化为y =-34x +3,∴l 的斜率为-34.法一 (1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.法二 (1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9. ∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0. 将(-1,3)代入上式得n =13. ∴所求直线的方程为4x -3y +13=0.【变式训练2-1】(佛山校级月考)已知直线l 经过点P (2,1),且与直线2x -y +2=0平行,那么直线l 的方程是( ) A .2x -y -3=0B .x +2y -4=0C .2x -y -4=0D .x -2y -4=0【解析】 由题意可设所求的方程为2x -y +c =0(c ≠2), 代入已知点(2,1),可得4-1+c =0,即c =-3, 故所求直线的方程为:2x -y -3=0,故选A. 【答案】 A【变式训练2-2】(西湖区校级月考)设直线l 1:(a +1)x +3y +2=0,直线l 2:x +2y +1=0.若l 1∥l 2,则a =________;若l 1⊥l 2,则a =________.【解析】 直线l 1:(a +1)x +3y +2=0,直线l 2:x +2y +1=0,分别化为:y =-a +13x -23,y =-12x -12.若l 1∥l 2,则-a +13=-12,解得a =12.若l 1⊥l 2,则-a +13×(-12)=-1,解得a =-7.【答案】 12-7名师导练A 组-[应知应会]1.(芜湖校级月考)已知ab <0,bc <0,则直线ax +by =c 通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限【解析】 由题意可把ax +by =c 化为y =-a b x +c b .∵ab <0,bc <0,∴直线的斜率k =-ab >0,直线在y 轴上的截距cb<0.由此可知直线通过第一、三、四象限. 【答案】 C2.(南岸区校级期末)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0【解析】 由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y =12(x -1),即x -2y -1=0.【答案】 A3.(辽源期末)若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A .-1B .1C.12D .-12【解析】 由两直线垂直,得1×2+(-2)m =0,解得m =1. 【答案】 B4.(宜兴县校级期中)直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )【解析】 将l 1与l 2的方程化为斜截式得: y =ax +b ,y =bx +a ,根据斜率和截距的符号可得选C. 【答案】 C5.(城关区校级期末)直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角45°,则m 的值为( ) A .-2 B .2C .-3D .3 【解析】∵直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角45°,当m 2=4时,与题意不符,∴2m 2-5m +2m 2-4=tan 45°=1,解得m =3或m =2(舍去). 故选D. 【答案】 D6.(金凤区校级期末)若直线ax +2y +1=0与直线x +y -2=0互相平行,那么a 的值等于________. 【解析】 ∵直线ax +2y +1=0与直线x +y -2=0分别化为y =-a 2x -12,y =-x +2,则-a2=-1,解得a =2. 【答案】 27.(越秀区校级期末)已知过点A (-2,m ),B (m ,4)的直线与直线2x +y -1=0互相垂直,则m =________. 【解析】 因为两条直线垂直,直线2x +y -1=0的斜率为-2,所以过点A (-2,m ),B (m ,4)的直线的斜率4-m m +2=-12,解得m =2.【答案】 28.(凯里市校级期末)已知两条直线a 1x +b 1y +4=0和a 2x +b 2y +4=0都过点A (2,3),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程为________________.【解析】 由条件知⎩⎪⎨⎪⎧2a 1+3b 1+4=0,2a 2+3b 2+4=0,易知两点P 1(a 1,b 1),P 2(a 2,b 2)都在直线2x +3y +4=0上,即2x +3y +4=0为所求. 【答案】 2x +3y +4=09.(和平区校级期中)若方程(m 2-3m +2)x +(m -2)y -2m +5=0表示直线. (1)求实数m 需满足的条件;(2)若该直线的斜率k =1,求实数m 的值.【解】 (1)由题意知⎩⎪⎨⎪⎧m 2-3m +2≠0,m -2≠0,解得m ≠2.(2)由题意知,m ≠2,由-m 2-3m +2m -2=1,解得m =0. 10.(如东县期中)(1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值;(2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?【解】 法一 (1)由l 1:2x +(m +1)y +4=0,l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行.②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2. 解得m =2或m =-3,∴m 的值为2或-3.(2)由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直.②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直. ③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3. 当l 1⊥l 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1, ∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2.法二 (1)令2×3=m (m +1),解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0,显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0,显然l 1与l 2不重合,∴l 1∥l 2.∴m 的值为2或-3.(2)由题意知直线l 1⊥l 2,∴(a +2)(a -1)+(1-a )(2a +3)=0,解得a =±1,将a =±1代入方程,均满足题意.故当a =1或a =-1时,直线l 1⊥l 2.B 组-[素养提升]1.(昌江区校级期末)若三条直线x +y =0,x -y =0,x +ay =3能构成三角形,则a 满足的条件是________.【解析】 由直线x +y =0与x -y =0都过(0,0)点,而x +ay =3不过(0,0)点,故只需满足x +ay =3不与x +y =0与x -y =0平行即可,故a ≠±1.【答案】 a ≠±12.(河南校级月考)已知直线l :5ax -5y -a +3=0.(1)求证:不论a 为何值,直线l 总经过第一象限;(2)为使直线不经过第二象限,求a 的取值范围.(1)【证明】 将直线l 的方程整理为y -35=a (x -15),∴l 的斜率为a ,且过定点A (15,35),而点A (15,35)在第一象限,故不论a 为何值,l 恒过第一象限.(2)【解】 当a =0时,直线l 的方程为5y -3=0,不符合题意,故要使l 不经过第二象限,需a >0且l 在y 轴上的截距不大于零,即⎩⎪⎨⎪⎧a >0,-a -35≤0,∴a ≥3. 3.(镜湖区校级期中)已知平面内两点A (8,-6),B (2,2).(1)求AB 的中垂线方程;(2)求过点P (2,-3)且与直线AB 平行的直线l 的方程;(3)一束光线从B 点射向(2)中的直线l ,若反射光线过点A ,求反射光线所在直线的方程.【解】 (1)因为8+22=5,-6+22=-2, 所以AB 的中点坐标为(5,-2).因为k AB =-6-28-2=-43, 所以AB 的中垂线的斜率为34, 故AB 的中垂线的方程为y +2=34(x -5) 即3x -4y -23=0.(2)由(1)知k AB =-43, 所以直线l 的方程为y +3=-43(x -2), 即4x +3y +1=0.(3)设B (2,2)关于直线l 的对称点为B ′(m ,n ),由⎩⎪⎨⎪⎧n -2m -2=34,4×m +22+3×n +22+1=0,解得⎩⎨⎧m =-145,n =-85,所以B ′(-145,-85),k B ′A =-6+858+145=-1127, 所以反射光线所在直线方程为y +6=-1127(x -8). 即11x +27y +74=0.。

高中数学-直线的方程

高中数学-直线的方程

直线的方程1.直线的点斜式方程2.直线的斜截式方程3.直线的两点式方程和截距式方程4.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22.5.直线的一般式方程6.直线的一般式与点斜式、斜截式、两点式、截距式的关系直线的点斜式方程知识点1 求直线的点斜式方程【例1-1】(南京校级模拟)根据条件写出下列直线的点斜式方程: (1)过点A (-4,3),斜率k =2; (2)经过点B (-1,4),倾斜角为45°; (3)过点C (-1,2),且与x 轴平行; (4)过点D (2,1)和E (3,-4).【变式训练1-1】(蜀山区校级月考)根据条件写出下列直线的点斜式方程: (1)经过点A (2,5),斜率是4; (2)经过点B (2,3),倾斜角是135°; (3)经过点C (-1,-1),与x 轴平行.知识点2 直线的斜截式方程【例2-1】(菏泽调研)根据条件写出下列直线的斜截式方程.(1)斜率为2,在y轴上的截距是-5;(2)倾斜角为150°,在y轴上的截距是-8;(3)倾斜角为60°,与y轴的交点到坐标原点的距离为8.【变式训练2-1】(宁波校级月考)写出下列直线的斜截式方程:(1)直线斜率是3,在y轴上的截距是-3;(2)直线倾斜角是45°,在y轴上的截距是5;(3)直线在x轴上的截距为4,在y轴上的截距为-2.知识点3 点斜式、斜截式方程的综合应用(1)当a为何值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行?(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?【变式训练3-1】求证:不论m为何值,直线l:y=(m-1)x+2m+1总过第二象限.【变式训练3-2】(赤峰期末)是否存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5?课堂练习1.过点()3,2,斜率是23的直线方程是( ) A .243y x =+ B .223y x =+ C .230x y -=D .320x y -=2.已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B 直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为13.直线y =3(x -3)的斜率与在y 轴上的截距分别是( )A .3,3B .3,-3C .3,3D .-3,-3 4.直线y =kx +b 经过第一、三、四象限,则有( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0D .k <0,b <05.过点()2,0且与直线25y x =+垂直的直线l 的方程是( )A .24y x =-B .24y x =-+C .112y x =- D .112y x =-+ 6.已知直线l 过点()2,0,且与直线21y x =-+平行,则直线l 的方程为( )A .24y x =-B .24y x =+C .24y x =-+D .24y x =--7.直线y =2x -5在y 轴上的截距是________.8.在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是________.9.与直线l :y =34x +1平行,且在两坐标轴上截距之和为1的直线l 1的方程为________.10.斜率为34,且与坐标轴所围成的三角形的周长是12的直线方程是________.11.写出下列直线的斜截式方程:(1)直线的倾斜角为45°且在y 轴上的截距是1; (2)直线过点A (3,1)且在y 轴上的截距是-1.12.(1)求经过点(1,1),且与直线y =2x +7平行的直线的点斜式方程; (2)求经过点(-2,-2),且与直线y =3x -5平行的直线的斜截式方程.直线的两点式方程知识点1 直线的两点式方程【例1-1】已知三角形的顶点是A (1,3),B (-2,-1),C (1,-2),求这个三角形三边所在直线的方程.【变式训练1-1】(开江县校级开学考)过(1,1),(2,-1)两点的直线方程为 ( ) A .2x -y -1=0 B .x -2y +3=0 C .2x +y -3=0 D .x +2y -3=0知识点2 直线的截距式方程【例2-1】(诸暨市校级期中)求过点A (3,4),且在两坐标轴上的截距互为相反数的直线l 的方程.【变式训练2-1】若将例2-1中“截距互为相反数”改为“截距相等”呢?知识点3 直线的综合应用【例3-1】(沭阳县校级期中)已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程.【变式训练3-1】(天心区校级期末)求过点A(4,2),且在两坐标轴上的截距的绝对值相等的直线l的方程.课堂练习1.(锡山区校级期中)过两点(-2,1)和(1,4)的直线方程为()A.y=x+3 B.y=-x+1C.y=x+2 D.y=-x-22.(红桥区期中)经过P(4,0),Q(0,-3)两点的直线方程是()A.x4+y3=1 B.x3+y4=1C.x4-y3=1 D.x3-y4=13.(江宁区校级月考)过点P(4,-3)且在坐标轴上截距相等的直线有()A.1条B.2条C.3条D.4条4.(临泉县校级月考)经过两点(5,0),(2,-5)的直线方程为()A.5x+3y-25=0 B.5x-3y-25=0C.3x-5y-25=0 D.5x-3y+25=05.(朝阳区校级月考)已知直线l:ax+y-2=0在x轴和y轴上的截距相等,则实数a的值是() A.1 B.-1C.-2或-1 D.-2或16.(庐江县校级期末)点M(4,m)关于点N(n,-3)的对称点为P(6,-9),则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=57.(海淀区校级期末)已知A(2,-1),B(6,1),则在y轴上的截距是-3,且经过线段AB中点的直线方程为________.8.(红岗区校级期末)过点P(3,2),且在坐标轴上截得的截距相等的直线方程是________.9.(兴庆区校级期末)求经过点A(-2,3),且在x轴上的截距等于在y轴上截距的2倍的直线方程.10.(城关区校级期末)求经过点A(-2,3),B(4,-1)的直线的两点式方程,并把它化成点斜式、斜截式和截距式.能力提升1.(鼓楼区校级期末)两条直线l1:xa-yb=1和l2:xb-ya=1在同一直角坐标系中的图象可以是()2.(秦州区校级期末)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是 ( ) A.⎝⎛⎭⎫-1,15B.⎝⎛⎭⎫-∞,12∪(1,+∞) C .(-∞,1)∪⎝⎛⎭⎫15,+∞D .(-∞,-1)∪⎝⎛⎭⎫12,+∞3.(金湖县校级期中)垂直于直线3x -4y -7=0,且与两坐标轴围成的三角形的面积为6的直线在x 轴上的截距是________.4.(启东市校级月考)已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 5.(杨浦区校级期末)在△ABC 中,已知A (5,-2),B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求: (1)顶点C 的坐标; (2)直线MN 的方程.直线的一般式方程知识点1 直线的一般式方程与其他形式的转化【例1-1】(水富市校级期末)(1)下列直线中,斜率为-43,且不经过第一象限的是( )A .3x +4y +7=0B .4x +3y +7=0C .4x +3y -42=0D .3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A.3B .-5C.95D .-33【变式训练1-1】(包河区校级期末)根据下列条件分别写出直线的方程,并化为一般式方程.(1)斜率是3,且经过点A (5,3); (2)斜率为4,在y 轴上的截距为-2; (3)经过A (-1,5),B (2,-1)两点; (4)在x ,y 轴上的截距分别是-3,-1.知识点2 直线的一般式方程的应用【例2-1】(上虞区期末)(1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足________. (2)已知方程(2m 2+m -3)x +(m 2-m )y =4m -1表示直线.当m =____________时,直线的倾斜角为45°;当m =____________时,直线在x 轴上的截距为1.【例2-2】(柳南区校级期末)已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直.【变式训练2-1】(佛山校级月考)已知直线l 经过点P (2,1),且与直线2x -y +2=0平行,那么直线l 的方程是( ) A .2x -y -3=0 B .x +2y -4=0 C .2x -y -4=0D .x -2y -4=0【变式训练2-2】(西湖区校级月考)设直线l 1:(a +1)x +3y +2=0,直线l 2:x +2y +1=0.若l 1∥l 2,则a =________;若l 1⊥l 2,则a =________.课堂练习1.(芜湖校级月考)已知ab <0,bc <0,则直线ax +by =c 通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限2.(南岸区校级期末)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=03.(辽源期末)若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A .-1B .1C.12D .-124.(宜兴县校级期中)直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )5.(城关区校级期末)直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角45°,则m 的值为( ) A .-2B .2C .-3D .36.(金凤区校级期末)若直线ax +2y +1=0与直线x +y -2=0互相平行,那么a 的值等于________. 7.(越秀区校级期末)已知过点A (-2,m ),B (m ,4)的直线与直线2x +y -1=0互相垂直,则m =________. 8.(凯里市校级期末)已知两条直线a 1x +b 1y +4=0和a 2x +b 2y +4=0都过点A (2,3),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程为________________.9.(和平区校级期中)若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m需满足的条件;(2)若该直线的斜率k=1,求实数m的值.10.(如东县期中)(1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求m的值;(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?能力提升1.(昌江区校级期末)若三条直线x+y=0,x-y=0,x+ay=3能构成三角形,则a满足的条件是________.2.(河南校级月考)已知直线l:5ax-5y-a+3=0.(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线不经过第二象限,求a的取值范围.3.(镜湖区校级期中)已知平面内两点A(8,-6),B(2,2).(1)求AB的中垂线方程;(2)求过点P(2,-1)且与直线AB平行的直线l的方程;(3)一束光线从B点射向(2)中的直线l,若反射光线过点A,求反射光线所在直线的方程.11/ 11。

直线的方程

直线的方程
式Ax + By + C=0, 其中 A、B 不同时为 零.
(1)当B 0时,方程可化为: y A x C ,为直线方程的斜截式 .
BB
(1)当B 0时,方程可化为: y A x C ,为直线方程的斜截式 .
BB
(2)当B 0时,由于A、B不同时为零, 必有A 0,方程可化为:x C ,
《步步高》
作业:
51-53面
; / 红包群 ;
么了?”每次有热闹看都是他值班,因为他是纯老外去了会添乱,命苦.而那群年轻人回来买单时说了一些,看他们一副不够尽兴の遗憾劲,说话多半有失偏颇,信不过.“好像说陆陆在外边抹黑她?”陆易望向柏少君.“嗯,她就是这么说の,”柏少君相当气愤,“自从在我们店订菜,陆陆几乎连 门都没出过,她向谁抹黑何玲?现在の人都不长脑子?问都不问就上门骂人打人实在太过分!”说得义愤填膺,柏少君瞪着陆易,“你们警察管不管の?管の话我报警.”一定要报,不然还有下次呢?按何玲の吨位与手劲,陆陆绝对挨不了一拳.陆易忙劝阻,“别别别,华夏是个人情社会,你这样 做让陆陆以后在老村长面前很难做人,想解决问题得找到源头.”“怎么找?”“可以问今晚到餐厅吃饭の人,”德力一边清洗杯碟一边留心听着,“坐窗边の那个小莲最先看见何玲去找陆陆,如果是寻常の来访,她干嘛那么兴奋?里边肯定有原因.”柏少君愣了愣,“你の意思是...有人从中 挑拔离间?!”卧槽,现实版の心计大戏?!而且主谋就在今晚那群人当中?“不对呀!陆陆跟他们不熟几乎没说过话,为什么欺负她?”德力望着单纯の男孩笑嘿嘿,“嘿嘿,欺负人の乐趣你难道不懂?还需要其他理由吗?”这话很真实,真实得让人难受.柏少君嘴巴动了动,说不出话 来.“好了,当事人不急,你们急什么?”一直旁听の柏少华终于开口,“少君,陪我走走.”说罢拿过拐杖起身.“哦.”尽管他心中忿忿不平,仍然跟随柏少华一同出了门.目送两人离开,陆易也来到铁板烧旁边清洗碗碟.“有人の地方就有江湖,”德力在另一边擦干杯子の水渍,啧啧叹道,“昌 叔那老家伙果然睿智.”不得不佩服,连个小山村都这么热闹.陆易笑了笑,专注洗碗不再谈论此事.人活一辈子哪能无是非?造谣张张嘴,辟谣跑断腿,一有风吹草动就顾着四处洗脱洗白,那么人生当中很多重要の事这辈子都只能搁置,来生再议了.下次再发生这种事便交给执法部门去查去处理, 他们普通小市民则继续生活,不能因为小人作祟耽误自己の计划与前程.君子坦荡荡,小人长戚戚,命运会优待认真生活の人.至于小人,他们饿不死也吃不饱,只能躲在黑暗中继续搞小动作,继续怨天尤人,一辈子就这么过了.下场如何,生活最终会明确地告诉大家,如果还记得他の话...夜幕下, 梅林村の路两旁依旧梅花盛开,花香浮动,街道上の小情侣或者三朋五友一起走着,格外の有情趣.身边の嬉笑声不断,热闹非常,余薇走在他们中间,抬头仰望,一轮不够圆满の明月高高挂在天上,像极了今晚那张望向自己の冷淡面孔,顿时一股难以描绘の孤独涌上心头.“哈哈哈,小薇,我一想 起今晚何玲那张脸就...哈哈哈...”身边の朋友们乐不可支,连一句正经话都说不全.余薇跟着笑了笑,内心の失落与苦涩旁人一无所知.不知道怎么回事,在这一刻,她突然好寂寞.第90部分今晚の一切如她所愿,可她一点都不开心.当他冲出来张开双臂の那一刻,往日青涩の面孔、不耐烦の性 情一扫而空,一贯轻松の神情瞬间变得冷酷异常,很有成熟男人の魅力,活像西方传说中威风凛凛の一尊战神降临在身旁,只为牢牢守护身后の小女人.那一刻,她の心像被扔进了绞肉机,一点一点地被绞碎成泥.“小薇,你去哪儿?不回家吗?”小伙伴们正聊得开心,却见余薇往另一个方向走, 纷纷扬声问.“我去姐姐那儿.”余薇头也不回.不管身后如何叫嚷,她开始一路小跑.家里早没人了,母亲常在厂里住,继父长住省城盯着公司の运营状况,他最关心の人是弟弟,因为儿子才是他の亲生骨肉.尽管平时表现得对两个继女一视同仁,但小孩子是非常敏感の,她们知道谁是真心待自己 好.家里只有爷奶在住,两个老东西动不动就说她俩这不好那不好,警告她们别把国外の坏习惯带回家败坏梅家声誉.梅家有个屁声誉!没有母亲,他们屁都不是.尽管如此,母亲依旧叮嘱姐妹俩要敬重长辈.可是这种长辈有什么好敬重の?这个家是母亲一个人撑起来の,她才是一家之主,搞不懂 凭啥要看他们の脸色.姐姐每次回来都住在小农场,说喜欢那里の清静.自己听不惯虫鸣声喜欢住在别墅里,心境不快才去小农场住几天.来到农场路口,余薇刷卡打开大门铁闸.“小薇?怎么这么晚?”门卫の大叔正在听收音机,闻声出来看个究竟,门卫室里咿咿呀呀の不知道在唱什么,年代很 老旧の歌.今天心境不好,余薇对门卫の话不加理睬,径自跑向姐姐居住の那一栋雅致木屋.农场里住着三户人家,只有姐姐家是她和未婚夫汤力搭建の.院里の一草一木一秋千,屋里一针一线一家具,全部是自己の手工.院里の花架、和篱笆边缘种满了玫瑰花直达屋门口,汤力种の,代表他对姐 姐那颗永远火热跳动の心.听着很肉麻,对当事人来说却很幸福.余岚对院里の花草一向精心培育,哪怕回校读书也要拜托别人花同样の心思照顾它们,千叮万嘱,惟恐出现一点纰漏.姐姐跟汤力在十八岁那年开始确定关系,至今四年了,两人感情一直很好.算算日期,这几天他也该来了.等他来了 以后姐姐将不再属于她,这小农场也不再是自己可以任性撒娇の地方.她一直羡慕姐姐,能遇到一位全心全意の男人.她希望自己有一天也能像姐姐那样拥有一份至真至纯の爱情,对方眼里只有她の存在,完全不受外界诱惑.可惜,她遇人不淑,碰上の男人要么整天想着法子哄她上.床, 要么整天想着花光她の钱,要么打赌撩拔看她春心荡漾,要么纯粹恶作剧想看她出尽洋相.东、西方の男人都一副贱样,唯一可以分高低の是衣着品味.余薇来到木屋の矮栏栅前,姐姐の屋里透出明亮の灯光,她睡眠浅,稍微有些心事就彻夜难眠.轻轻拉动门拴,吱丫地推开走了进去.院里很安静, 屋里の人听到声音,在余薇走进石子路时,紧闭の木门打开了,一道无比亲切又熟悉の身影出现在眼前.刚和男友通完电筒の余岚刚洗完澡,裸露在衫外の肌肤被水气蒸腾得异常白皙,宛若出水芙蓉般剔透美丽.她站在门口,对妹妹の到来感到意外:“小薇?怎么这么晚过来?来也不打个电筒万 一路上出...”话未说完,余薇往前一扑,双手搂住她の脖子然后开始浑身颤抖.“怎么了?出了什么事?是不是爷爷奶奶又说你了?”余岚轻拍她の后背,温声安慰,“实在受不了就回这儿住,别勉强自己.”“姐,”伏在肩膀上の余薇终于放开心扉,泣不成声,“我讨厌他,我很讨厌讨厌他,怎 么办啊姐...”余岚听罢,立马意识到妹妹这番没头没脑の话是什么意思,不禁闭了闭眼,轻拍项背给予安慰.很讨厌の背面就是很喜欢,是呀,怎么办呢?姐姐无言の安慰,让余薇哭得愈发伤心.“姐,我难过,真の好难过.我明明是为他好,他却那样看我,像从来不认识我,为什么要这样对我?为 什么要在我面前待她那么好?为什么...”一连串の为什么导致眼前一片模糊,止不住の眼泪像决堤の水挡也挡不住.为什么是他?一个高校没毕业の洋diao丝,也就一张脸能看得顺眼;为什么他保护の人是她?那个矫揉造作の女人,除了脸蛋身段妖娆之外一无是处.为什么自己总是眼瞎看上 不该爱の人?为什么她喜欢の人都眼瞎看上那种女人?甘心为她们挺身而出,肝脑涂地,哪怕最后受伤の总是他.那女人一巴掌将何玲打趴下,根本用不着他来充英雄平白无辜挨顿打.这是为什么?...夜半时分,余家姐妹坐在庭院の秋千里说着悄悄话,像小时候那样,围在四周の轻纱幔帐给她 们围出一方小世界.跟前有一张小圆桌,木头雕の,上面摆着装满果酒の酒壶和两个质地一样の小酒杯,整套の,余岚自己找瓷窑帮忙烧制而成,质朴雅致,与她本人一样.“何玲找陆陆麻烦?”余岚疑惑地看着妹妹,“为什么?”“我哪儿知道.”酣畅淋漓地哭了一场,余薇の心境稍有好转,但对 今晚发生の一切矢口否认,“反正她俩都不是好东西,狗咬狗是早晚の事.”妹妹の话让余岚の心境起伏很大,随着年龄の增长,小薇の思想跟以前大不相同.不再像小时候那样天真单纯,事事以姐姐马首是瞻,她真の很害怕妹妹为了情感失去理智.为了一个男人赔上自己一生,不值得.“小薇,你 老实说,”余岚紧盯着余薇追问,“这件事真の跟你无关?”“当然无关!”余薇惊讶地回瞪姐姐,“姐,你不信?你就这么看你妹妹?”“相处二十年我还不知道你?”妹妹故作无知,余岚疾言厉色,“小薇,你在国外那些小打小闹就算了,回到国内给我收起你の小脾气.这里是咱们の家,妈辛 辛苦苦扎稳の根,出了什么差池损失最大の是我们.”第91部分老调重弹了,余薇有些不耐烦.“能出什么差池?就凭一个小小の外来户?她谁呀?老爸是李刚吗?”余薇一贯の伶牙利齿给予反驳,“姐,你连个外来户都怕怎么帮妈打天下?我看你不如跟汤力回国好了,免得自寻烦恼.”她烦, 自己也烦.小小の外来户?余岚不敢相信地看着妹妹一脸の轻蔑,眼里含着一丝隐痛.“小薇,你忘了?我们也是外来户.”在这个村子,在这个家里,她姐妹俩一直是外来户.不管妈有多么努力始终无法改变这个事实,改变不了她俩与村民们格格不入处处受欺の尴尬处境.只好努力赚钱送她俩出 国读书,希望女儿们能在国外成家立室过上自在安稳の日子.要不是母亲遭受各方质疑与刁难,她不会回来.回来是为了帮妈保住心血,替弟弟保住家业,不是为了跟外来户斗气和炫耀财力权势の.打压一个外地来の女生,跟当年那些欺负她们の村霸有什么区别?一旦事发经有心人大肆渲染,母 亲在当地の威信将一落千丈,神仙来也救不了.道理谁都懂,可是...“可我受不了,他们天天在我眼前晃...”余薇再一次被触动伤心之处,“姐,要不你帮帮我,帮我把她撵走,我真の不想看到他俩在一起.”姓陆の走了,她一定能取而代之成为他身后の小女人.她将拼尽全力支持他,鼓励他,同 时享受他全心全意の守护.余岚头一次对妹妹板起脸,神色清冷,“我不可能帮你,小薇,他不是合适の对象.”在外边看得太多,知道嫁给一个在朋友家蹭吃蹭喝の无业游民有多累.哪怕是天仙下凡,也会在三十岁前熬成四五十岁の肥婆娘,或者骨瘦如柴受尽折磨被吸尽血汗の小可怜.她妹妹如 花似玉,不能落得那种下场.“你有两个选择,要么继续回校把高校读完,要么去京大和小弟作伴.明天开始我让妈停掉你所有の卡,直到你想清楚为止.”余岚起身,“汤力和他の朋友后天就到,我很忙,你在家好好布置一番别丢了我和妈の脸.”余岚深深看了妹妹一眼,只见她环抱双膝,两眼无 神.“多想想我学姐の下场,想想那些吸.毒躺在街头の无业游民,那

直线的方程与性质

直线的方程与性质

直线的方程与性质直线是数学中的基础图形之一,它在几何学和代数学中有着重要的地位。

本文将介绍直线的方程以及与直线相关的一些性质。

一、直线的方程直线的方程表达了直线上点的坐标与一些常数之间的关系。

根据直线的特点,我们可以使用不同的方程形式来表示直线。

1. 一般形式方程直线的一般形式方程可表示为Ax + By + C = 0,其中A、B和C是常数,A和B不同时为0。

例如,2x + 3y - 5 = 0就是一个直线的一般形式方程。

2. 斜截式方程斜截式方程是直线的另一种常用表达方式。

它的形式为y = mx + b,其中m是斜率,b是直线与y轴的截距。

斜率表示了直线上两点之间的垂直高度与水平距离的比值。

例如,y = 2x + 3就是一个直线的斜截式方程,其斜率为2,截距为3。

3. 点斜式方程点斜式方程通过一个已知点的坐标以及直线的斜率来表示直线。

它的形式为y - y₁ = m(x - x₁),其中m是斜率,(x₁, y₁)是已知点的坐标。

例如,如果直线通过点(1, 2),斜率为3,则其点斜式方程为y - 2 = 3(x - 1)。

二、直线的性质直线具有许多特性和性质,这些性质是解决直线问题的关键。

1. 斜率斜率是直线最重要的性质之一。

它表示了直线在水平方向上的变化量与垂直方向上的变化量的比值。

斜率可以通过直线的两个已知点的坐标来计算,公式为m = (y₂ - y₁) / (x₂ - x₁)。

斜率可以为正、负、零或不存在。

2. 平行和垂直直线的平行性和垂直性是另外两个重要的性质。

直线A和直线B平行的条件是它们的斜率相等,而直线B和直线C垂直的条件是它们的斜率乘积为-1。

3. 距离和中点直线与点之间的距离也是直线的一个重要性质。

可以使用点到直线距离公式来计算,该公式为d = |Ax₁ + By₁ + C| / √(A² + B²),其中(x₁, y₁)是点的坐标。

此外,直线的中点是直线上任意两点连线的中点。

直线的方程

直线的方程

已知过原点 O 一直线与
y = log8 x 交于A、B 两点,分别过
A、B 作 y 轴平行线交 y = log2 x 于
C、D两点.
(1) 求证:C、O、D
三点共线; (2) 当 BC 平行于 x 轴 时,求 A 点的坐标 .
《步步高》
作业:
51-53面
; https:///20977.html 泡妞秘籍
关于 x 和 y 的一次方程都表示一 条直线 . 我们把方程 Ax + By + C = 0, ( 其中 A、B 不同时为零 ) 叫做直线方
程的一般式 .
三、初 步 理 解 应 用 :
三、初 步 理 解 应 用 :
[例1] 把直线 l 的方程 x- 2y + 6=0 化成斜截式,求出直线 l 的斜率和 在 x 轴与 y 轴上的截距,并画图 .
直线的方程
一、复习旧知,以旧悟新:
一、复习旧知,以旧悟新:
直线方程的四种形式以及存在的条件:
一、复习旧知,以旧悟新:
直线方程的四种形式以及存在的条件:
1. 点斜式: y y1 k ( x x1 )
直线不平行于 y 轴
一、复习旧知,以旧悟新:
直线方程的四种形式以及存在的条件:
1. 点斜式: y y1 k ( x x1 )
A
yห้องสมุดไป่ตู้
P
o
B
直线 PB 的方程 .
x
四、深化理解,内化回味 :
四、深化理解,内化回味 :
[例3] 已知两定点 A ( 2,5), B ( 2,1) . 直线 y x 上有两点 P、Q,且 PQ 2 2 ,又直线 AP 与 BQ 的交点 M在 y 轴上,求点 M 及点 P,Q 的坐标 .

直线方程

直线方程

直线方程直线方程的几种形式:点斜式、斜截式、两点式、截距式、一般式 (一)点斜式:已知点A ),(00y x ,斜率k ,则k=),(0x xy x x y ≠--直线方程为)(00x yx k y -=-(二)斜截式:已知斜率k ,直线经过点A (0,b )即y 轴上的截距为b , 直线方程为y=kx+b(三)两点式:已知两个点),(),,(2211y x y x B A 且xx 21≠,)(112121x yy yx y ---=-,直线方程为x x x yy y x y 121121--=--(四)截距式:过(a ,0),(0,b )即直线在x 、y 轴的截距分别为a ,b (a ≠0,b ≠0),直线方程为1bya x =+(五)一般式:Ax+By+C=0(A ,B 不全为0) k=BA-点斜式例1求过点(2,1)的倾斜角α满足54cos =α的直线方程练习 1.直线经过点(-1,2)且与直线2x-3y+4=0垂直,求直线方程2.直线经过点(-1,1)且斜率是直线222-=x y 的斜率的2倍,求直线方程3.已知一条直线与y 轴交于点(0,2),它的倾斜角的正弦值是54,求这条直线的直线方程例2已知过一点(-4,3)的直线,与两坐标轴围城的三角形的面积为3,求这条直线的直线方程练习1.已知直线的斜率为6,且被两坐标轴截得的线段长为37,求直线的方程2.直线的倾斜角为45度,且过点(4,-1),则这条直线被坐标轴所截得的线段长是例3求过点(2,-1)且倾斜角为直线x-3y+4=0的倾斜角的2倍的直线方程练习1.求过点(2,-1)且倾斜角是直线4x-3y+4=0的倾斜角的一半的直线方程斜截式例4已知直线0322=++y x ,求直线的斜率及直线在y 轴的截距练习1.方程aax y 1+=表示的直线可能为下图中的( )A . B. C.例5求经过点P(3,2)且在两坐标轴上截距相等的直线方程练习1. 直线2x-3y+6=0在x,y两轴的截距分别为2.求经过(2,-1),在坐标轴上的截距分别为a,b,且满足a=3b的直线方程3.经过点A(1,4)且在两坐标轴上的截距的绝对值相等的直线共有多少条?4.直线经过(-2,3),且与两坐标轴围成的三角形的面积为4,求直线方程两点式例6已知直线经过(1,1)和(m,2)两点,求直线方程练习1.已知三角形三个顶点的坐标为A(-3,0)B(2,1)C(-2,3)(1)求BC边所在的直线方程(2)求BC边上的中线AD所在的直线方程(3)求BC边上的垂直平分线DE的方程例7(1)当a为何值时,直线x+2ay+1=0和直线(3a-1)x-ay+1=0平行?(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?例8已知直线kx-y+1+2k=0(k为实数)(1)求证直线恒过定点(2)若直线与x轴负半轴交于点A,交于y轴正半轴于点B,三角形AOB 的面积为S,求S的最小值,并求出此时直线的方程练习1.直线x+2ay-1=0与直线(a-1)x-ay+1=0平行,则a的值为2.已知直线l1的倾斜角为43 ,直线l1经过点A(3,2)和B(a,-1),且直线l1与直线l垂直,直线l2:2x+by+1=0有直线l1平行,则a+b的值为3.直线x-2y+2k=0与两坐标轴围成的三角形的面积不小于1,则实数k的取值范围是4.已知直线的方程为(2+m)x+(1-2m)y+4-3m=0(1)求证直线过定点(2)若直线分别与x,y轴的负半轴交于A,B两点,求三角形AOB面积的最小值及此时直线的方程平行直线系和垂直直线系与Ax+By+C=0平行的直线为Ax+By+c1=0(C≠c1)与Ax+By+C=0垂直的直线为Bx-Ay+c1=0A.y=-2x+4B.y=x+4C.y=-2x-D.y=x-A.2B.C.-2D.--2 D.( ) A.- B.1 C.1- D.-1一、点关于点的对称问题点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解,熟练掌握和灵活运用中点坐标公式是处理这类问题的关键例1求点A(2,4)关于点B(3,5)对称的点二、点关于直线的对称问题点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方面:①两点连线与已知直线斜率乘积等于-1,②两点的中点在已知直线上例2求点A(1,3)关于直线l:x+2y-3=0的对称点A′的坐标三、直线关于某点对称的问题直线关于点的对称问题,可转化为直线上的点关于某点对称的问题,这里需要注意到的是两对称直线是平行的.我们往往利用平行直线系去求解.例3求直线2x+11y+16=0关于点P(0,1)对称的直线方程四、直线关于直线的对称问题直线关于直线对称问题,包含有两种情形:①两直线平行,②两直线相交. 对于①,我们可转化为点关于直线的对称问题去求解;对于②,其一般解法为先求交点,再用“到角”,或是转化为点关于直线对称问题.例4求直线l1:x-y-1=0关于直线l2:x-y+1=0对称的直线l的方程例5 试求直线l1:x-y-2=0关于直线l2:3x-y+3=0对称的直线l的方程.。

直线的方程

直线的方程
11 16 A 的坐标为 3 , 3
由两点式得 l 的方程为 8x-y-24=0.
例7. 设直线 l 的方程为(m2-2m-3)x+(2m2+m-1)y +6-2m=0,根据下列条件分别确定实数 m 的值. (1)l 在 x 轴上的截距是-3; (2)斜率是-1.
解:(1)在(m2-2m-3)x+(2m2+m-1)y+6-2m=0 中,令
即x-y+1=0或x+y-1=0
跟踪练习 1、已知A(0,3),B(-1,0),C(3,0), 求D点的坐标,使四边形ABCD为直角梯形(A、 B、C、D按逆时针方向排列)。
y A
.
O
D D
B
.
.
C
x
3、直线的两点式方程:
已知直线l经过已知点P1(x1,y1), P2(x2,y2) , 求直线l的方程。 l
3 A.k=-2,b=3 3 C.k=-2,b=-3 2 B.k=-3,b=-2 2 D.k=-3,b=-3
6、已知直线l过A(3,-5)和B(-2,5),求直线l的 方程。 解:∵直线l过点A(3,-5)和B(-2,5)
5 5 kl 2 23
将A(3,-5),k=-2代入点斜式,得 y-(-5) =-2 ( x-3 ) 即2x + y -1 = 0
2A x x0 2 ( Ax0 By0 C ) 2 A B y y 2 B ( Ax By C ) 0 0 0 2 2 A B
Q(x,y)
P(x0,y0)
特别地:点P(x0,y0)关于直线x± y+C=0对称的点Q(x,y)的 坐标直接由对称轴方程解得x,y值。
已知直线l的斜率是k,与y轴的交点是 y P(0,b),求直线方程。

直线的方程

直线的方程
A
y
P
o
Hale Waihona Puke Bx四、深化理解,内化回味 :
四、深化理解,内化回味 :
[例3] 已知两定点 A ( 2,5), B ( 2,1) . 直线 y x 上有两点 P、 Q,且 PQ 2 2 ,又直线 AP 与 BQ 的交点 M在 y 轴上,求点 M 及点 P,Q 的坐标 .
[练 习 ]
已知过原点 O 一直线与
直线不平行于 y 轴
2. 斜截式:y kx b
直线不平行于 y 轴
y y1 x x1 3. 两点式: y2 y1 x2 x1
直线不平行于 y 轴且不平行于 x 轴
y y1 x x1 3. 两点式: y2 y1 x2 x1
直线不平行于 y 轴且不平行于 x 轴
直线的方程
一、复习旧知,以旧悟新:
一、复习旧知,以旧悟新:
直线方程的四种形式以及存在的条件:
一、复习旧知,以旧悟新:
直线方程的四种形式以及存在的条件:
1. 点斜式:y y1 k ( x x1 )
直线不平行于 y 轴
一、复习旧知,以旧悟新:
直线方程的四种形式以及存在的条件:
1. 点斜式:y y1 k ( x x1 )
x y 4. 截距式: 1 a b
直线不平行于 y 轴,不平行于 x 轴
且不过原点
二、提出问题,归纳概念:
二、提出问题,归纳概念: 1. 直线的方程都可以写成关于 x、
y的一次方程 .
二、提出问题,归纳概念: 1. 直线的方程都可以写成关于 x、
y的一次方程 .
2. 对于 x、y 的一次方程的一般形 式Ax + By + C=0, 其中 A、B 不同时为 零.

直线方程的五种形式推导

直线方程的五种形式推导

直线方程的五种形式推导一条直线可以用不同的方式来表示,其中最基本的方式是用一般式方程表示,即Ax + By + C = 0。

但是,如果已知直线上的某些点以及直线的斜率,我们还可以用点斜式、斜截式、截距式和两点式来表示直线。

下面将分别介绍这五种形式的推导过程:一、一般式方程:Ax + By + C = 0我们先假设有两个点A(x1,y1)、B(x2,y2)在同一条直线上,根据两点式可得直线的斜率k=(y2-y1)/(x2-x1)。

然后,我们将斜率带入点斜式方程y-y1=k(x-x1)中,将得到y-kx+(kx1-y1)=0,此时我们将-y+kx+(y1-kx1)=0改写为Ax+By+C=0的形式即可。

二、点斜式方程:y-y1=k(x-x1)点斜式方程通常用于已知直线上的某个点(x1,y1)和直线的斜率k的情况下表示直线。

对于斜率k,我们可以利用斜率公式k=(y2-y1)/(x2-x1)来求解。

然后,将点(x1,y1)和斜率k带入点斜式方程y-y1=k(x-x1)中即可。

三、斜截式方程:y=kx+b斜截式方程通常用于已知直线的斜率k和截距b的情况下表示直线。

其中截距b表示直线与y轴的交点,我们可以利用截距公式b=y-kx 来求解。

然后,将斜率k和截距b带入斜截式方程y=kx+b中即可。

四、截距式方程:x/a+y/b=1截距式方程通常用于已知直线在x轴和y轴上的截距a和b的情况下表示直线。

其中,我们可以将截距式方程改写为y=-b/a*x+b,然后将斜率k=-b/a和截距b带入斜截式方程y=kx+b中即可。

五、两点式方程:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)两点式方程通常用于已知直线上的两个点(x1,y1)和(x2,y2)的情况下表示直线。

将两点式方程变形可得(y2-y1)x+(x1-x2)y+x2y1-x1y2=0,此时我们将-y+(y2-y1)/(x2-x1)x+(x2y1-x1y2)/(x2-x1)=0改写为Ax+By+C=0的形式即可。

直线方程的五种形式

直线方程的五种形式

直线方程的五种形式直线方程是描述平面上直线位置的数学表达式。

直线方程通常由直线的斜率和截距组成,但也可以通过其他方式来表示。

在这篇文章中,我们将讨论直线方程的五种形式及其特点。

1.截距式方程:截距式方程形如 y = mx + c,其中 m 是直线的斜率,c 是直线与 y 轴的截距。

这种形式的方程常用来描述直线在 y 轴上截取的长度。

截距式方程非常直观,可以直接读出直线在 y 轴上截取的长度。

2.一般式方程:一般式方程形如Ax+By+C=0,其中A、B和C是常数,且A和B不同时为0。

一般式方程通常用于直线的代数运算,如求直线的交点等。

一般式方程的形式较为复杂,但它可以表示所有直线。

3.点斜式方程:点斜式方程形如y-y₁=m(x-x₁),其中(x₁,y₁)是直线上一点的坐标,m是直线的斜率。

点斜式方程常用于已知直线上一点和斜率的情况下求直线方程。

这种形式的方程比较直观,可以直接读出直线上一点和斜率。

4.两点式方程:两点式方程形如(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁),其中(x₁,y₁)和(x₂,y₂)是直线上两个不同点的坐标。

两点式方程常用于求直线经过两点的情况下的方程。

两点式方程形式较为复杂,但可以通过给定两点的坐标直接写出方程。

5.斜截式方程:斜截式方程形如 y = mx + b,其中 m 是直线的斜率,b 是直线与 y 轴的截距。

斜截式方程常用于已知直线的斜率和截距的情况下求直线方程。

这种形式的方程比较直观,可以直接读出直线的斜率和截距。

以上是直线方程的五种常见形式。

它们各有适用的场景和特点,可以根据不同的情况选择适合的形式来表示直线方程。

直线方程可以通过不同形式的转换相互转化,因此了解和理解这些不同形式的方程对于解决直线相关问题非常重要。

直线方程的一般式

直线方程的一般式

直线方程的一般式1 直线方程直线方程是代数学中的一类常见方程,用于表示直线的位置和形状,与圆、椭圆等等曲线的方程一样,直线的几何型也是经典几何学中的主要概念,它也用于代数学和几何学中的诸多领域。

直线方程的一般式表示为y=ax+b(a!=0),其中a和b是两个实数系数,x和y为两个变量,即在坐标平面上的横坐标和纵坐标,它们可以代表直线上的任意一个点。

即:2 直线与坐标轴上的点直线上每一点都有一个唯一的坐标,一般形式上一条直线可以由两个不共线的两个点A(X1, Y1)和B(X2, Y2)表示,直线方程就是用两个点构成的直线表示方法。

又如,当上图中的直线与坐标轴交点相应的横坐标分别为-3和3,纵坐标为4和-4,即A(-3,4),B(3,-4),可以推出直线的斜率为1/-1:3 直线方程的斜率斜率是指一条直线与水平坐标轴的夹角,用其倒数或斜率系数表示,斜率系数可由以下公式推出:斜率k= (y2-y1)/(x2-x1)又如,上例中A(-3,4),B(3,-4),由上式可推出斜率系数k= (-4-4)/(3+3)= -1/1 = -1。

因此用直线的两个点的坐标配合斜率系数,可以推出原直线方程的一般式表示:y=ax+b4 直线方程的特殊形式当a=1时,直线方程的一般式可简化为y=x+b,又称斜率系数为1的直线方程;当a=0时,直线方程的一般式可以变为y=b,两侧没有变量,此直线方程又称斜率系数为0的变量表达式,这类方程表示的是一条垂直于X轴的直线;5 直线方程的求解由直线方程的一般式表示可知:a的解可以从斜率系数获得,b的解可以从坐标点求出。

求解流程:(1)根据坐标点及斜率系数算出斜率;(2)由斜率系数求a;(3)由一个点求出b;(4)将a和b代入直线方程的一般式即可。

6 直线方程的应用直线方程在日常生活当中具有重要应用,可以用来解决很多实际问题,比如图像图案的设计、统计曲线的拟合分析、科学计算等等。

此外,直线方程还可以用来求解一些变量之间的关系,可以运用曲线拟合的方法去求解两组数据之间的联系,这样就可以从中了解数据是否存在规律。

直线方程的几种形式

直线方程的几种形式
知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为
x/a+y/b=1
4:斜截式: Y=KX+B (K≠0) 当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减ຫໍສະໝຸດ 。两直线平行时 K1=K2
两直线垂直时 K1 X K2 = -1
5:两点式
x1不等于x2 y1不等于y2
两点式
(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
直线方程的几种形式
1:一般式:适用于所有直线
Ax+By+C=0 (其中A、B不同时为0)
2;点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为
y-y0=k(x-x0)
当k不存在时,直线可表示为:x=x0
当k为0时,直线可表示为:y=y0
3:截距式:不适用范围:任意坐标轴垂直的直线和过原点的直线
法线式
[1]
6:法线式x·cosα+ysinα-p=0
7:点向式:知道直线上一点(x0,y0)和方向向量(u,v)
(x-x0)/u=(y-y0)/v (u≠0,v≠0)

直线方程的七种基本形式

直线方程的七种基本形式

直线方程的七种基本形式直线是数学中的基本概念之一,它在几何学和代数学中都是非常重要的对象。

直线方程描述了直线上所有点的数学关系。

在代数学中,直线可以通过不同的形式来表示,而本文将介绍直线方程的七种基本形式。

1. 一般式直线的一般式方程是形如Ax + By + C = 0的方程,其中A、B、C是实数,并且同时不为零。

这种形式的方程可以表示任何直线,例如2x + 3y - 6 = 0。

2. 截距式截距式方程是形如x/a + y/b = 1的方程,其中a和b是正实数,且不等于零。

这种形式的方程描述了直线与x轴和y轴的交点。

例如,2x + 3y = 6是一个截距式方程。

3. 斜截式斜截式方程是形如y = mx + c的方程,其中m是斜率,c是直线在y轴上的截距。

斜截式方程是描述直线的最常见形式之一。

例如,y = 2x + 3是一个斜截式方程。

4. 两点式两点式方程是通过直线上的两个已知点来表示的。

设直线上的两个点为(x1, y1)和(x2, y2),则两点式方程可以写作(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1)。

这种形式的方程可以用于计算直线的斜率。

例如,已知两点为(2, 3)和(4, 5),则两点式方程为(y - 3)/(x - 2) = (5 - 3)/(4 - 2)。

5. 垂直截距式垂直截距式方程是形如x = a的方程,其中a是直线与y轴的交点。

这种形式的方程对于垂直于x轴的直线非常有用。

例如,x = 4是一个垂直截距式方程。

6. 水平截距式水平截距式方程是形如y = b的方程,其中b是直线与x轴的交点。

这种形式的方程对于水平于x轴的直线非常有用。

例如,y = -5是一个水平截距式方程。

7. 法线式法线式方程是直线斜率的负倒数形式。

设直线的斜率为m,法线式方程可以写作y = -1/m * x + c,其中c是直线与y轴的截距。

这种形式的方程可以用于描述与给定直线垂直的直线。

直线方程的公式

直线方程的公式

直线方程的公式直线是数学中的一个重要概念,它是由无数个点无限延展而成的几何图形。

在平面直角坐标系中,直线可以用数学公式来表示。

本文将介绍直线方程的公式及其应用。

一、直线的斜率和截距为了表示直线上的各个点,我们需要引入直线的斜率和截距的概念。

斜率是描述直线倾斜程度的一个量,记作m。

对于平面上的直线,它的斜率可以通过直线上两个点的纵坐标和横坐标的差值求得。

假设直线上的两个点分别为(x₁, y₁)和(x₂, y₂),则直线的斜率m可以用以下公式表示:m = (y₂ - y₁) / (x₂ - x₁)截距是指直线与纵轴(y轴)相交的点的纵坐标,记作b。

截距可以通过直线上一点的坐标和斜率求得。

假设直线上一点的坐标为(x, y),则直线的截距b可以用以下公式表示:b = y - mx二、直线的一般式方程一般来说,直线可以通过斜率和截距来表示。

直线的一般式方程为:y = mx + b其中,m表示直线的斜率,b表示直线的截距。

这个方程可以将直线上的任意一点的坐标代入,并满足这个关系式。

三、点斜式方程除了一般式方程外,直线还可以用点斜式方程表示。

点斜式方程是通过直线上一点的坐标和直线的斜率来表示的。

设直线上一点的坐标为(x₁, y₁),直线的斜率为m,则直线的点斜式方程为:y - y₁ = m(x - x₁)这个方程可以通过直线上一点的坐标和斜率唯一确定一条直线。

四、两点式方程另一种表示直线的方式是两点式方程。

两点式方程是通过直线上的两个点的坐标来表示的。

假设直线上的两个点分别为(x₁, y₁)和(x₂, y₂),直线的两点式方程为:(y - y₁)/(y₂ - y₁) = (x - x₁)/(x₂ - x₁)两点式方程也可以唯一确定一条直线。

五、应用实例直线方程的公式在数学中有广泛的应用。

例如,在几何学中,我们可以通过斜率来计算两个直线的夹角。

在物理学中,直线方程的公式可以用来描述物体的运动轨迹。

在工程学中,直线方程的公式可以用来表示电路中的导线。

初中数学直线方程

初中数学直线方程

初中数学直线方程数学中的直线方程是初中数学中的一项基础知识,通过研究直线方程,我们可以描述和解决与直线相关的问题。

本文将介绍初中数学中直线方程的相关知识以及求解直线方程的方法。

直线的一般方程直线的方程可以使用一般方程来表示:Ax + By + C = 0,其中A、B、C是常数,x和y是直线上的坐标点。

具体来说,如果直线的斜率为k,且经过点(x1, y1),则直线方程可以表示为:y - y1 = k(x - x1)。

相应地,我们可以将该直线方程转化为一般方程的形式:kx - y + y1 - kx1 = 0,也就是Ax + By + C = 0。

根据A、B、C的具体值,我们可以进一步得到直线方程的数值表达式。

直线方程的斜率在求解直线方程时,斜率是一个重要的概念。

斜率可以描述直线的倾斜程度,它等于直线上任意两点的纵坐标差与横坐标差的比值。

假设直线上有两个不同的点P(x1, y1)和Q(x2, y2),则直线的斜率k可以表示为:k = (y2 - y1)/(x2 - x1)。

当直线为垂直线时,斜率不存在。

斜率可以帮助我们确定直线方程中的A、B和C的具体数值。

具体来说,斜率为k且经过点(x1, y1)的直线方程的A、B和C的数值可以表示为:A = -k,B = 1,C = kx1 - y1。

求解直线方程的具体步骤下面,我们将介绍求解直线方程的具体步骤。

步骤一:确定直线上的两个点为了求解直线方程,我们需要确定直线上的至少两个点。

这些点可以通过给定条件、图形或坐标等方式确定。

例如,我们可以通过一个点和直线的斜率来确定直线方程。

步骤二:计算直线的斜率使用斜率公式,计算直线经过的两个点的斜率。

根据斜率的具体数值,我们可以求解直线方程中的A、B和C。

步骤三:转化为一般方程将直线方程转化为一般方程的形式:Ax + By + C = 0。

确定A、B、C的数值,得到直线的具体方程。

步骤四:化简方程(可选)如果需要,可以化简直线方程的一般方程形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线的方程
课题:7.2直线的方程(一)
教学目的:
1. 掌握由一个点和斜率导出直线方程的方法,掌握直线方程的点斜式、斜截式,并能根据条件熟练地求出满足已知条件的直线方程
2.通过让学生经历直线方程的发现过程,以提高学生分析、比较、概括、化归的数学能力,使学生初步了解用代数方程研究几何问题的思路,培养学生综合运用知识解决问题的能力
3.在教学中充分揭示“数”与“形”的内在联系,体会数、形的统一美,激发学生学习数学的兴趣,对学生进行对立统一的辩证唯物主义观点的教育,培养学生勇于探索、勇于创新的精神
教学重点:直线方程的点斜式的推导及运用
教学难点:直线与方程对应关系的说明以及运用各种形式的直线方程时,应考虑使用范围并进行分类讨论
授课类型:新授课
课时安排:1课时
内容分析:
从教材整体来看,直线方程既是初中二元一次方程知识的延续(数与形相互转化),又与一次函数的知识相吻合,并且通过集合与对应的数学思想,构建了平面上的直线与y
x,的一次方程的一一对应关系.它与圆的方程同属解析几何学的基础知识,不但是进一步学习圆锥曲线以及曲线方程的基础,也是学习导数、微分、积分等的基础,在解许多实际问题中有着广泛的应用。

从本章内容看,直线方程是建立在“直线的倾斜角和斜率”的知识上,但直线的方程是研究两条直线的位置关系的基础,同时也是讨论圆的方程的基础,为进一步学习“曲线与方程”作铺垫,故直线的方程是本章的重点内容之一.
另外,通过本节的学习,不仅有利于培养学生分析、讨论问题能力,而且有利于学生强化渗透集合与对应、数形结合的数学思想方法,初步掌握解析几何的基本思想.因此,本节知识的教学,无论是在学习数学知识,不是培养学生的能力,都显得地位重要,作用非同寻常
本小节所介绍的直线方程的几种形式中,点斜式、斜截式给出了根据常见的条件求直线方程的方法和途径,在求直线方程中,直线方程的点斜式是基本的,直线方程的截距式是由点斜式导出.
由于利用集合对应的数学思想,构建平面上直线与关于y
x,的二元一次方程的一一对应,这需要从正反两方面阐述,且这里的二元一次方程都是字母系数,需要结合分类讨论的数学思想加以阐述,因而,这段内容比较抽象,学生难于理解.另外,直线方程的四种特殊形式也有不完备之处,它们都有一定的应用范围.
众所周知,“数学教学就是数学活动的教学”,也就是说,应在教学中充分安排观察、回忆、讨论、尝试和发言,使之参与到数学知识的实验、发现过程中去,体验知识的形成过程教学过程:
一、复习引入:
1.直线方程的概念:
2.直线的倾斜角与斜率:
3.概念辨析:
4.斜率公式:
二、讲解新课:
1. 直线的点斜式方程--已知直线的斜率及直线经过一已知点,求直线的方程 问题一:已知直线l 经过点),(y x p ,且斜率为k ,如何求直线的方程?
此问题难度较小,可由学生自行推导,得出结论:)(11x x k y y -=- 请同学们集思广益,给这个方程取一个贴切、易记的名字 根据直线的几何特征,确定命名为直线方程的点斜式.
在学生推导直线方程的点斜式时,教师可帮助启发学生作如下分析:
建立点斜式的主要依据是,经过直线上一个定点与这条直线上任意一点的直线是惟一的,其斜率都等于k . 在得出方程11
x x y y k --=后,要把它变成方程)(11x x k y y -=-.因为前者表示的直
线上缺少一个点1p ,而后者才是整条直线的方程.
直线的斜率0=k 时,直线方程为1y y =;当直线的斜率k 不存在时,不能用点斜
式求它的方程,这时的直线方程为1x x =.
问题二:平面上的所有直线是否都可以用点斜式表示?
答:不能,因为斜率可能不存在.
点斜式方程推导对学生来说是容易接受的,因此,本环节通过问题的讨论,力求使学生对直线方程的点斜式有一个全方位的认识,以建立起完整、准确的知识结构。

同时,通过讨论,使学生切实掌握点斜式并不能把平面上所有的直线都表示在内,它受到斜率存在性的影响,因此,在具体运用时应根据情况分类讨论,避免遗漏.
2.直线的斜截式方程
问题三:已知直线l 经过点P (0,b ),并且它的斜率为k ,求直线l 的方程.
启发学生用直线方程的点斜式自行推导,得出结论:b kx y +=
再次请同学们集思广益,给这个方程取一个贴切、易记的名字,根据已知直线的几何特征,确定为斜截式
深化理解:
⑴斜截式与点斜式存在什么关系?斜截式是点斜式的特殊情况,某些情况下用斜截式比用点斜式更方便.
⑵斜截式b kx y +=在形式上与一次函数的表达式一样,它们之间有什么差别?只有当0≠k 时,斜截式方程才是一次函数的表达式.
⑶斜截式b kx y +=中,k ,b 的几何意义是什么?
三、讲解范例:
例1 一条直线经过点)3,1(-p ,倾斜角︒=45α,求这条直线的方程.
(分析与解答详见教材)
例2 写出下列直线的斜截式方程,并画出图形: ⑴斜率是23
,在y 轴上的距截是-2;
⑵斜角是︒135,在y 轴上的距截是3
四、课堂练习:
五、小结 :
设问:已知直线l 经过点A (3,-5),B (-2,5),如何求直线l 的方程.
(此问题先让学生思考,再提问.)
设计意图:小结采用学生看课本及填表的形式,目的是为了让学生更加重视教科书的作
用,并通过填表对比两种形式的直线方程的异同,尤其是它们适用范围要引起注意。

另外,应用点斜式求通过两点的直线方程,主要是达到承前启后的作用,以引起学生“且听下回分解”的悬念
六、课后作业:
七、板书设计(略)
八、课后记:
本节课的教学设计主要考虑了如下几个方面:
在教法上力求通过创设问题情境,层层递进,揭示知识的形成发展过程,不仅让学生知其然,更应让学生知其所以然,帮助学生把研究的对象从复杂的背景中分离出来,讲清知识的来龙去脉,突出知识的本质特征,从而使学生对所学的知识理解得更加深刻.
全课以化归思想为主线,达到化未知为已知,化难为易,化几何问题为代数问题的目的。

通过数形结合思想的应用,帮助学生变抽象为具体,从而体现解析几何的基本思想.
本设计力求符合“特殊――一般――特殊”的认知规律,即由特殊导出点斜式,再应用点斜式推导出特殊的斜截式.
在教学过程中按照“教、学、研同步协调原则”,要充分发挥教师的主导作用和学生的主体地位。

例如借助提问,给学生营造一个思维情境,给每个学生提供思考、创造、表现及获得成功的机会,使学生在民主开放、和谐愉悦的教学氛围中获取新知识,提高能力,发展自找。

相关文档
最新文档