高中数学人教新课标A版必修3 第二章 统计 2.1.3分层抽样(I)卷

合集下载

高中数学人教A版必修3目录_doc

高中数学人教A版必修3目录_doc

必修3
第一章算法初步
1.1算法与程序框图
1.1.1算法的概念(1课时)
1.1.2程序框图与算法的基本逻辑结构(3课时)
(程序框图与顺序结构,条件结构,循环结构与程序框图的画法)1.2基本算法语句
1.2.1输入语句、输出语句与赋值语句(1课时)
1.2.2条件语句(1课时)
1.2.3循环语句(1课时)
1.3算法案例(2课时)
(辗转相除法与更相减损术,秦九韶算法与进位制)
第二章统计
2.1 随机抽样
2.1.1 简单随机抽样(1课时)
2.1.2 系统抽样(1课时)
2.1.3 分层抽样(2课时)
(分层抽样,三种抽样方法的联系)
2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布(2课时)
(频率分布表与频率分布直方图,频率分布折线图与茎叶图)
2.2.2 用样本的数字特征估计总体的数字特征(2课时)
(众数、中位数、平均数,标准差)
2.3 变量间的相关关系(2课时)
(变量间的相关关系与散点图,线性回归方程)
第三章概率
3.1 随机事件的概率
3.1.1 随机事件的概率(1课时)
3.1.2 概率的意义(1课时)
3.1.3 概率的基本性质(1课时)
3.2 古典概型
3.2.1 古典概型(2课时)
(古典概型的定义,古典概型的计算)
3.2.2 (整数值)随机数(random numbers)的产生(1课时)
3.3 几何概型
3.3.1 几何概型(1课时)
3.3.2 均匀随机数的产生(1课时)。

2024_2025学年高中数学第二章统计章末复习检测卷课时作业含解析新人教A版必修3

2024_2025学年高中数学第二章统计章末复习检测卷课时作业含解析新人教A版必修3

章末复习检测卷(二) 统计(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是() A.500名学生是总体B.每个被抽查的学生是样本C.抽取的60名学生的体重是一个样本D.抽取的60名学生是样本容量解析:答案:2.某考察团对全国10大城市进行职工人均工资水平x(元)与居民人均消费水平y(元)统计调查,y与x具有相关关系,线性回来方程为y=0.66x+1562,若某城市居民人均消费水平为7675元,估计该城市人均消费额占人均工资收入的百分比约为()A.83% B.72%C.67% D.66%解析:将y=7675代入回来方程,可计算得x≈9262,所以该城市人均消费额占人均工资收入的百分比约为7675÷9262≈0.83,即约为83%.答案: A3.对于数据3,3,2,3,6,3,10,3,6,3,2,有以下结论:①这组数据的众数是3.②这组数据的众数与中位数的数值不等.③这组数据的中位数与平均数的数值相等.④这组数据的平均数与众数的数值相等.其中正确的结论有()A.1个B.2个C.3个D.4个解析: 由题意知,众数与中位数都是3,平均数为4.只有①正确,故选A. 答案: A4.某商品销售量y (件)与销售价格x (元/件)负相关,则其回来方程可能是( ) A .y =-10x +200 B .y =10x +200 C .y =-10x -200D .y =10x -200解析: ∵商品销售量y (件)与销售价格x (元/件)负相关, ∴b <0,解除B ,D.又∵x =0时,y >0,∴故选A. 答案: A5.“互联网+”时代,全民阅读的内涵已然多元化,提倡读书成为一种生活方式.某校为了解中学学生的阅读状况,从该校1 600名高一学生中,采纳分层抽样方法抽取一个容量为200的样本进行调查.若抽到的男生比女生多10人,则该校高一男生共有( )A .760人B .840人C .860人D .940人解析: 本题考查分层抽样.设所抽取的男生、女生分别有x 人、y 人,则⎩⎪⎨⎪⎧x +y =200,x -y =10解得⎩⎪⎨⎪⎧x =105,y =95所以该校高一男生共有105200×1 600=840(人),故选B.答案: B6.(2024·山东日照一中期中考试)对某商店四月内每天的顾客人数进行统计,所得数据的茎叶图如图所示,则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53解析: 由茎叶图,可知中位数为45+472=46,众数为45,极差为68-12=56.答案: A7.为探讨某药品的疗效,选取若干名志愿者进行临床试验,全部志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的依次分别编号为第一组,其次组,…,第五组.如图是依据试验数据制成的频率分布直方图.已知第一组与其次组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .1B .8C .12D .18解析: 由图知,样本总数为N =200.16+0.24=50.设第三组中有疗效的人数为x ,则6+x50=0.36,解得x =12.答案: C8.假如在一次试验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回来直线方程是( )A .y =x +1.9B .y =1.04x +1.9C .y =0.95x +1.04D .y =1.05x -0.9解析: x =14(1+2+3+4)=2.5,y =14(3+3.8+5.2+6)=4.5.因为回来方程过点(x ,y ),代入验证知,应选B.答案: B9.若样本数据x 1,x 2,…,x 2 018的标准差为3,则数据4x 1-1,4x 2-1,…,4x 2 018-1的方差为( )A .11B .12C .143D .144解析: 本题考查数据方差的求解.因为样本数据x 1,x 2,…,x 2 018的标准差为3,所以方差为9,所以数据4x 1-1,4x 2-1,…,4x 2 018-1的方差为42×9=144,故选D.答案: D10.某学校随机抽取20个班,调查各班中有网上购物经验的人数,所得数据的茎叶图如下图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )解析: 借助已知茎叶图得出各小组的频数,再由频率=频数样本容量求出各小组的频率,进一步求出频率组距并得出答案.法一:由题意知样本容量为20,组距为5. 列表如下:分组频数频率 频率组距 [0,5) 1 120 0.01 [5,10) 1 120 0.01 [10,15) 4 15 0.04 [15,20) 2 110 0.02 [20,25) 4 15 0.04 [25,30) 3 320 0.03 [30,35)33200.03[35,40] 2 110 0.02 合计201视察各选择项的频率分布直方图知选A.法二:由茎叶图知落在区间[0,5)与[5,10)上的频数相等,故频率、频率组距也分别相等.比较四个选项知A 正确,故选A.答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.有A ,B ,C 三种零件,分别为a 个、300个、200个,采纳分层抽样法抽取一个容量为45的样本,A 种零件被抽取20个,则a =________.解析: 依据题意得45a +300+200=20a ,解得a =400.答案: 40012.如图是依据某中学为地震灾区捐款的状况而制作的统计图,已知该校共有学生3 000人,由统计图可得该校共捐款________元.解析: 由扇形统计图可知,该中学高一、高二、高三分别有学生960人、990人、1 050人,由条形统计图知,该中学高一、高二、高三人均捐款分别为15元、13元、 10元,所以共捐款15×960+13×990+10×1 050=37 770(元).答案: 37 77013.某校开展“爱我母校,爱我家乡”摄影竞赛,9位评委为某参赛作品给出的分数的茎叶图如图,记分员去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发觉有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应当是________.解析: 平均分为91分,∴总分应为637分.由于须要去掉一个最高分和一个最低分,故须要分类探讨:①若x ≤4,则89+89+92+93+92+91+90+x =637,∴x =1;②若x >4,则89+89+92+93+92+91+94=640≠637,不符合题意.故填1. 答案: 114.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这56号打6小时篮球的投篮命中率为________.解析: 平均命中率y =15×(0.4+0.5+0.6+0.6+0.4)=0.5,而x =3,∑i =15x i y i =7.6,∑i =15x2i =55,由公式得b ∧=0.01,a ∧=y -b ∧x =0.5-0.01×3=0.47,∴y ∧=0.01x +0.47.令x =6,得y∧=0.53.答案: 0.5 0.53三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知一组数据按从小到大的依次排列为-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.解析: 由于数据-1,0,4,x,7,14的中位数为5,所以4+x2=5,x =6.设这组数据的平均数为x ,方差为s 2,由题意得 x =16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743. 16.(本小题满分12分)为了让学生了解更多有关“一带一路”的信息,某中学实行了一次“丝绸之路学问竞赛”,共有800名学生参与了这次竞赛.为了解本次竞赛成果状况,从中抽取了部分学生的成果(得分均为整数,满分为100分)进行统计.请你依据尚未完成的频率分布表,解答下列问题:分组频数频率60.5~70.50.1670.5~80.51080.5~90.5180.3690.5~100.5合计(1)若用系统抽样的方法抽取50个样本,现将全部学生的成果随机地编号为000,001,002,…,799,试写出其次组第一名学生成果的编号;(2)填充频率分布表中的空格(将答案干脆填在表格内),并作出频率分布直方图;(3)若成果在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约有多少名?解析:(1)依据系统抽样法则,要从总体中抽取50个样本,需将总体分为50组,则每组的学生数为800÷50=16,故其次组第一名学生成果的编号为016.(2)频率分布表如下表所示,频率分布直方图如图所示.分组频数频率60.5~70.580.1670.5~80.5100.2080.5~90.5180.3690.5~100.5140.28合计50 1(3)在被抽到的学生成果中在85.5~95.5分的个数是9+7=16,占样本的比例是1650=0.32,即获得二等奖的概率约为32%,所以获得二等奖的学生约有800×32%=256(名).17.(本小题满分12分)为了让学生了解环保学问,增加环保意识,某中学实行了一次环保学问竞赛,共有900名学生参与了这次竞赛.为了了解本次竞赛的成果状况,从中抽取了部分学生的成果(得分为正整数,满分为100分)进行统计.请你依据下面尚未完成的频率分布表和频率分布直方图(下图),解答下列问题:组号 分组 频数 频率 1 [50,60) 4 0.08 2 [60,70) 8 0.16 3 [70,80) 10 0.20 4 [80,90) 16 0.32 5 [90,100]合计(1)填充频率分布表中的空格;(2)不详细计算频率组距,补全频率分布直方图;(3)估计这900名学生竞赛的平均成果(同一组中的数据用该组区间的中点值作代表). 解析: (1)40.08=50,即样本容量为50.第5组的频数为50-4-8-10-16=12, 从而第5组的频率为1250=0.24.又各小组频率之和为1,所以频率分布表中的四个空格应分别填12,0.24,50,1.(2)依据小长方形的高与频数成正比,设第一个小长方形的高为h 1,其次个小长方形的高为h 2,第五个小长方形的高为h 5.由等量关系得h 1h 2=12,h 1h 5=13,补全的频率分布直方图如图所示.(3)50名学生竞赛的平均成果为x =4×55+8×65+10×75+16×85+12×9550=79.8≈80(分).利用样本估计总体的思想可得这900名学生竞赛的平均成果约为80分.18.(本小题满分14分)某部门为了了解用电量y (单位:千瓦时)与气温x (单位:℃)之间的关系,随机统计了某4天的用电量与当天气温,因某天统计的用电量数据丢失,用t 表示,如下表:(1)(2)若用电量与气温之间具有较好的线性相关关系,回来直线方程为y ∧=-2x +b ∧,且预料气温为-4 ℃时,用电量为2t 千瓦时.求t ,b 的值.解析: (1)x =14(18+13+10-1)=10,s =14[(18-10)2+(13-10)2+(10-10)2+(-1-10)2]=1942. (2)y =14(24+t +38+64)=t +1264,∴t +1264=-2×10+b ,即4b -t =206.①又2t =-2×(-4)+b ,即2t -b =8.② 由①②得,t =34,b =60.。

(完整版)人教版高中数学必修3各章知识点总结,推荐文档

(完整版)人教版高中数学必修3各章知识点总结,推荐文档

高中数学必修3知识点第一章算法初步i.i.i 算法的概念算法的特点:(i)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的^(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题^(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法^(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。

2、框图一般按从上到下、从左到右的方向画。

3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。

判断框具有超过一个退出点的唯一符号。

4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。

5、在图形符号内描述的语言要非常简练清楚。

(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若1个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。

人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测

人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。

2022版优化方案高一数学人教版必修三学案 第二章 统计 2.1.3分层抽样

2022版优化方案高一数学人教版必修三学案 第二章 统计 2.1.3分层抽样

2.1.3分层抽样问题导航(1)什么叫分层抽样?(2)分层抽样适用于什么状况?(3)分层抽样时,每个个体被抽到的机会是相等的吗?1.分层抽样的概念一般地,在抽样时,将总体分成互不交叉的层,然后依据肯定的比例,从各层独立地抽取肯定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所把握的各种信息,并充分考虑保持样本结构与总体结构的全都性,这对提高样本的代表性格外重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.1.推断下列各题.(对的打“√”,错的打“×”)(1)系统抽样时,将总体分成均等的几部分,每部分抽取一个,符合分层抽样,故系统抽样就是一种特殊的分层抽样;()(2)在分层抽样时,每层可以不等可能抽样;()(3)在分层抽样的过程中,每个个体被抽到的可能性是相同的,与层数及分层有关.()解析:(1)由于分层抽样是从各层独立地抽取个体,而系统抽样各段上抽取时是按事先定好的规章进行的,各层编号有联系,不是独立的,故系统抽样不同于分层抽样.(2)分层抽样时,每层仍旧要等可能抽样.(3)与层数及分层无关.答案:(1)×(2)×(3)×2.某地区为了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽取1100的居民家庭进行调查,这种抽样是()A.简洁随机抽样B.系统抽样C.分层抽样D.分类抽样解析:选C.符合分层抽样的特点.3.一个班共有54人,其中男、女比为5∶4,若抽取9人参与教改调查会,则每个男同学被抽取的可能性为________,每个女同学被抽取的可能性为________.解析:男、女每人被抽取的可能是相同的,由于男同学共有54×59=30(人),女同学共有54×49=24(人),所以每个男同学被抽取的可能性为530=16,每个女同学被抽取的可能性为424=16.答案:16164.分层抽样的操作步骤是什么?解:总体分层;依据比例独立抽取.1.分层抽样的特点(1)适用于总体由有明显差别的几部分组成的状况.(2)抽取的样本更好地反映了总体的状况.(3)是等可能性抽样,每个个体被抽到的可能性都是nN.2.分层抽样的公正性假如总体中个体的总数是N,样本容量为n,第i层中个数为N i,则第i层中要抽取的个体数为n i=n·N iN.每一个个体被抽取的可能性是n iN i=1N i·n·N iN=nN,与层数无关.所以对全部个体来说,被抽取的可能性是一样的,与层数及分层无关,所以分层抽样是公正的.3.分层抽样需留意的问题(1)分层抽样中分多少层、如何分层要视具体状况而定,总的原则是每层内样本的差异要小,不同层之间的样本差异要大,且互不重叠.(2)抽取比例由每层个体占总体的比例确定.(3)各层抽样按简洁随机抽样或系统抽样进行.分层抽样的概念某中学有老年老师20人,中年老师65人,青年老师95人.为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,则合适的抽样方法是()A.抽签法B.系统抽样C.分层抽样D.随机数法[解析]各部分之间有明显的差异是分层抽样的依据.[答案] C方法归纳各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是机敏的,可用简洁随机抽样,也可接受系统抽样.分层抽样中,无论哪一层的个体,被抽中的机会均等,体现了抽样的公正性.1.(1)某市有四所重点高校,为了解该市高校生的课外书籍阅读状况,则接受下列哪种方法抽取样本最合适(四所高校图书馆的藏书有肯定的差距)( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法解析:选D. 由于学校图书馆的藏书对同学课外书籍阅读影响比较大,因此实行分层抽样.(2)某校高三班级有男生800人,女生600人,为了解该班级同学的身体健康状况,从男生中任意抽取40人,从女生中任意抽取30人进行调查.这种抽样方法是( )A .简洁随机抽样法B .抽签法C .随机数表法D .分层抽样法解析:选D.总体中个体差异比较明显,且抽取的比例也符合分层抽样.分层抽样的应用(2022·高考湖北卷)甲、乙两套设备生产的同类型产品共4 800件,接受分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.[解析] 设乙设备生产的产品总数为x 件,则甲设备生产的产品总数为(4 800-x )件.由分层抽样特点,结合题意可得5080=4 800-x4 800,解得x =1 800.[答案] 1 800[互动探究] 将本例条件“若样本中有50件产品由甲设备生产”换为“已知甲、乙两套设备生产的同类型产品数量之比为5∶3”,求样本中抽取的由甲、乙设备生产的数量分别是多少件?解:设样本中抽取的由甲、乙设备生产的数量分别是x ,y 件,则x =80×55+3=50,y =80×35+3=30.故样本中抽取的由甲、乙设备生产的数量分别是50,30件. 方法归纳在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .2.(1)为了调查城市PM 2.5的状况,按地域把48个城市分成大型、中型、小型三组,相应的城市数分别为8,16,24.若用分层抽样的方法抽取12个城市,则应抽取的中型城市数为( )A .3B .4C .5D .6解析:选B.依据分层抽样的特点可知,抽样比例为1248=14,则应抽取的中型城市数为16×14=4.(2)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,则应抽取超过45岁的职工________人.解析:抽样比为25∶200=1∶8,而超过45岁的职工有80人,则从中应抽取的个体数为80×18=10.答案:10三种抽样方法的考查选择合适的抽样方法抽样,并写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取10个入样; (2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样; (3)有甲厂生产的300个篮球,抽取10个入样; (4)有甲厂生产的300个篮球,抽取30个入样. [解] (1)总体容量较小,用抽签法.①将30个篮球编号,编号为00,01, (29)②将以上30个编号分别写在完全一样的一张小纸条上,揉成小球,制成号签. ③把号签放入一个不透亮 的袋子中,充分搅拌均匀. ④从袋子中逐个抽取10个号签,并记录上面的号码. ⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样.①确定抽取个数.由于1030=13,所以甲厂生产的应抽取213=7(个),乙厂生产的应抽取93=3(个).②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本. (3)总体容量较大,样本容量较小,宜用随机数表法. ①将300个篮球用随机方式编号,编号为001,002, (300)②在随机数表中随机地确定一个数作为开头,如(教材P 103附表)第8行第29列的数“7”开头.任选一个方向作为读数方向,比如向右读.③从数“7”开头向右读,每次读三位,凡不在001~300中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大,宜用系统抽样.①将300个篮球用随机方式编号,编号为000,001,002,…,299,并分成30段,其中每一段包含30030=10个个体.②在第一段000,001,002,…,009这十个编号中用简洁随机抽样抽出一个(如002)作为起始号码.③将编号为002,012,022,…,292的个体抽出,即可组成所要求的样本.方法归纳(1)简洁随机抽样、系统抽样和分层抽样是三种常用的抽样方法,在实际生活中有着广泛的应用.(2)三种抽样的适用范围不同,各自的特点也不同,但各种方法间又有亲密联系.在应用时要依据实际状况选取合适的方法.(3)三种抽样中每个个体被抽到的可能性都是相同的.扫一扫进入91导学网()三种抽样方法的比较3.(1)某饮料公司在华东、华南、华西、华北四个地区分别有200个、180个、180个、140个销售点.公司为了调查产品销售的状况,需从这700个销售点中抽取一个容量为100的样本,记这项调查为①;在华南地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务状况,记这项调查为②.则完成①、②这两项调查宜接受的抽样方法依次是()A.分层抽样法、系统抽样法B.分层抽样法、简洁随机抽样法C.系统抽样法、分层抽样法D.简洁随机抽样法、分层抽样法解析:选B. 当总体中个体较多时宜接受系统抽样;当总体中的个体差异较大时,宜接受分层抽样;当总体中个体较少时,宜接受简洁随机抽样.依题意,第①项调查应接受分层抽样法、第②项调查应接受简洁随机抽样法.故选B.(2)调查某班同学的平均身高,从50名同学中抽取5名,抽样方法是________,假如男女身高有显著不同(男生30人,女生20人),抽样方法是________.解析:从50名同学中抽取5名,总体中个体数不多,接受简洁随机抽样;总体中个体差异比较明显,接受分层抽样.答案:简洁随机抽样分层抽样(3)下列问题中,接受怎样的抽样方法较为合理?①从10台电冰箱中抽取3台进行质量检查;②某学校有160名教职工,其中老师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.解:①抽签法,由于总体容量较小,宜用抽签法.②分层抽样,由于学校各类人员对这一问题的看法可能差异较大,用分层抽样.易错警示分层抽样的应用某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本,假如接受系统抽样和分层抽样方法抽取,不用剔除个体;假如样本容量增加1个,则在接受系统抽样时,需要在总体中先剔除1个个体,则样本容量为________.[解析]总体容量N=36.当样本容量为n时,系统抽样间隔为36n∈N+,所以n是36的约数;分层抽样的抽样比为n36,求得工程师、技术员、技工的抽样人数分别为n6,n3,n2,所以n应是6的倍数,所以n=6或12或18或36.当样本容量为n+1时,总体中先剔除1人时还有35人,系统抽样间隔为35n+1∈N+,所以n只能是6.[答案] 6[错因与防范]由36n,n6,n3,n2∈N+求n时,n的值有遗漏;35n+1∈N+易错写成36n+1∈N+.为猎取各层入样数目,需先正确计算出抽样比k=样本容量总体容量,若k与某层个体数的积不是整数时,可先将该层等可能性剔除多余个体.4.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长状况,接受分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25C.20 D.15解析:选C.抽样比为150∶30 000=1∶200,则样本中松树苗的数量为4 000×1200=20.故选C.1.某高校共有同学5 600人,其中有专科生1 300人、本科生3 000人、争辩生1 300人,现接受分层抽样的方法调查同学利用因特网查找学习资料的状况,抽取的样本为280人,则应在专科生、本科生与争辩生这三类同学中分别抽取( )A .65人、150人、65人B .30人、150人、100人C .93人、94人、93人D .80人、120人、80人解析:选A.依据分层抽样按比例抽取的特点,有5 600280=1 300x =3 000y =1 300z ,解得x =z =65,y =150,即专科生、本科生与争辩生应分别抽取65、150、65,故选A.2.某地共有10万户居民,从中随机调查了1 000户拥有彩电的调查结果如下表:彩电 城市 农村 有 432 400 无48120若该地区城市与农村住户之比为4∶6,估量该地区无彩电的农村总户数约为( )A .0.923万户B .1.385万户C .1.8万户D .1.2万户 解析:选B.无彩电的农村总户数约为10×610×120520≈1.385万户.3.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2∶3∶5,现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件,那么此样本的容量n =________.解析:由分层抽样的特点,得n ×22+3+5=16,所以n =80.答案:804.某校对全校男、女同学共1 200名进行健康调查,选用分层抽样抽取一个容量为200的样本,已知男生比女生多抽了10人,则该校男生人数为________.解析:入样比例=2001 200=16,则男生应抽105人,设男生为x 人,所以105x =16⇒x =630.答案:630[A.基础达标]1.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100的样本,记作①;某学校高一班级有12名女排运动员,要从中选出3名调查学习负担状况,记作②.那么完成上述两项调查应接受的抽样方法是( )A .①用简洁随机抽样法;②用系统抽样法B .①用分层抽样法;②用简洁随机抽样法C .①用系统抽样法;②用分层抽样法D .①用分层抽样法;②用系统抽样法解析:选B.对于①,总体由高收入家庭、中等收入家庭和低收入家庭差异明显的3部分组成,而所调查的指标与收入状况亲密相关,所以应接受分层抽样法.对于②,总体中的个体数较少,而且所调查内容对12名调查对象是“公平”的,所以应接受简洁随机抽样法.2.已知某单位有职工120人,其中男职工90人,现接受分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为( )A .30B .36C .40D .无法确定解析:选B.分层抽样中抽样比肯定相同,设样本容量为n ,由题意得,n 120=2790,解得n =36.3.(2022·高考重庆卷)某中学有高中生3 500人,学校生1 500人,为了解同学的学习状况,用分层抽样的方法从该校同学中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250解析:选A.法一:由题意可得70n -70=3 5001 500,解得n =100,故选A.法二:由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n =5 000×150=100.4.(2021·中山高一检测)某校选修乒乓球课程的同学中,高一班级有30名,高二班级有40名,现用分层抽样的方法在这70名同学中抽取一个样本,已知在高一班级的同学中抽取了6名,则在高二班级的同学中应抽取的人数为( )A .6B .8C .10D .12解析:选B.设高二班级抽取x 人,则有630=x40,解得x =8,故选B.5.(2021·潍坊高一检测)某学校在校同学2 000人,为了同学的“德、智、体”全面进展,学校进行了跑步和登山竞赛活动,每人都参与而且只参与其中一项竞赛,各班级参与竞赛的人数状况如下表:高一班级高二班级高三班级跑步人数 a b c 登山人数xyz其中a ∶b ∶c =2∶5∶3,全校参与登山的人数占总人数的14.为了了解同学对本次活动的满足程度,从中抽取一个200人的样本进行调查,则高三班级参与跑步的同学中应抽取( )A .15人B .30人C .40人D .45人解析:选D.全校参与登山的人数是2 000×14=500,所以参与跑步的人数是1 500,应抽取1 5002 000×200=150,c =150×310=45(人).6.某学校高一、高二、高三班级的同学人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个班级的同学中抽取一个容量为50的样本,则应从高二班级抽取________名同学.解析:抽取比例与同学比例全都.设应从高二班级抽取x 名同学,则x ∶50=3∶10.解得x =15.答案:157.某公司生产三种型号的轿车,产量分别为1 200辆,6 000辆和2 000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应当抽取________辆,________辆,________辆.解析:由于461 200+6 000+2 000=1200,所以这三种型号的轿车依次应当抽取1 200×1200=6辆,6 000×1200=30辆,2 000×1200=10辆.即这三种型号的轿车依次应当抽取6辆、30辆、10辆进行检验.答案:6 30 108.某地区有农夫、工人、学问分子家庭共计2 015家,其中农夫家庭1 600户,工人家庭303户.现要从中抽出容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法中的________.(将你认为正确的选项的序号都填上)①简洁随机抽样;②系统抽样;③分层抽样.解析:为了保证抽样的合理性,应对农夫、工人、学问分子分层抽样,在各层中接受系统抽样和简洁随机抽样,抽样时还要先用简洁随机抽样剔除多余的个体.答案:①②③ 9.(2021·莱州高一检测)某校高一班级500名同学中,血型为O 的有200人,血型为A 的有125人,B 型的有125人,AB 型的有50人.为了争辩血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出血型为AB 型的抽样过程.解:由于40÷500=225,所以应用分层抽样法抽取血型为O 型的225×200=16(人),A 型的225×125=10(人),B 型的225×125=10(人),AB 型的225×50=4(人).AB 型的4人可以这样抽取:第一步,将50人随机编号,编号为1,2, (50)其次步,把以上50人的编号分别写在大小相同的小纸片上,揉成小球,制成号签. 第三步,把得到的号签放入一个不透亮 的袋子中,充分搅拌均匀. 第四步,从袋子中逐个抽取4个号签,并记录上面的编号. 第五步,依据所得编号找出对应的4人即可得到样本.10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参与其中一组.在参与活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参与活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满足程度,现用分层抽样的方法从参与活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人所占比例分别为a 、b 、c , 则有x ×40%+3xb 4x =47.5%,x ×10%+3xc 4x =10%,解得b =50%,c =10%, 故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人所占比例分别为40%、50%、10%. (2)游泳组中,抽取的青年人人数为200×34×40%=60(人);抽取的中年人人数为200×34×50%=75(人);抽取的老年人人数为200×34×10%=15(人).即游泳组中,青年人、中年人、老年人分别应抽取的人数为60人,75人,15人.[B.力量提升]1.某鱼贩一次贩运草鱼、青鱼、鲢鱼、鲤鱼及鲫鱼各有80条、20条、40条、40条、20条,现从中抽取一个容量为20的样本进行质量检测,若接受分层抽样的方法抽取样本,则抽取的青鱼与鲤鱼共有( )A .6条B .8条C .10条D .12条解析:选A.设抽取的青鱼与鲤鱼共有x 条,依据分层抽样的比例特点有20+4080+20+40+40+20=x 20,所以x=6.2.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x 份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁同学问卷中抽取60份,则在15~16岁同学中抽取的问卷份数为( )A .60B .80C .120D .180解析:选C.11~12岁回收180份,其中在11~12岁同学问卷中抽取60份,则抽样比为13.∵从回收的问卷中按年龄段分层抽取容量为300的样本,∴从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷总数为30013=900(份),则15~16岁回收问卷份数为:x =900-120-180-240=360(份).∴在15~16岁同学中抽取的问卷份数为360×13=120(份),故选C.3.某校高一班级有x 名同学,高二班级有y 名同学,高三班级有z 名同学,接受分层抽样抽取一个容量为45的样本,高一班级被抽取20人,高二班级被抽取10人,高三班级共有同学300人,则此学校共有同学________人.解析:高三班级被抽取了45-20-10=15(人),设此学校共有同学N 人,则45N =15300,解得N =900.答案:900 4.(2021·泰安质检)某企业三月中旬生产A ,B ,C 三种产品共3 000件,依据分层抽样的结果,企业统计员制作了如下的统计表格:由于不当心,表格中A 、C A 产品的样本容量比C 产品的样本容量多10,依据以上信息,可得C 产品的数量是________件.解析:抽样比为130∶1 300=1∶10,又A 产品的样本容量比C 产品的样本容量多10,故C 产品的数量是[(3 000-1 300)-100]×12=800(件).答案:8005.某校有在校高中生共1 600人,其中高一班级同学520人,高二班级同学500人,高三班级同学580人.假如想通过抽查其中的80人来调查同学的消费状况,考虑到不同班级同学的消费状况有明显差别,而同一班级内消费状况差异较小,问应接受怎样的抽样方法?高三班级同学中应抽查多少人?解:因不同班级的同学消费状况有明显差别,所以应接受分层抽样.由于520∶500∶580=26∶25∶29,于是将80分成比例为26∶25∶29的三部分.设三部分各抽个体数分别为26x ,25x ,29x ,由26x +25x +29x =80,解得x =1.所以高三班级同学中应抽查29人.6.(选做题)某中学进行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名学校生、4 000名高中生中进行问卷调查,假如要在全部答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份学校生的答卷中抽取一个容量为48的样本,假如接受简洁随机抽样,应如何操作? (3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取得到所需的样本?解:(1)由于这次活动对教职员工、学校生和高中生产生的影响不相同,所以应当实行分层抽样的方法进行抽样.∵样本容量为120,总体个数为500+3 000+4 000=7 500(名),则抽样比为1207 500=2125.∴500×2125=8(人),3 000×2125=48(人),4 000×2125=64(人),∴在教职员工、学校生、高中生中抽取的个体数分别是8、48、64.分层抽样的步骤是:第一步,分为教职员工、学校生、高中生共三层.其次步,确定每层抽取个体的个数:在教职员工、学校生、高中生中抽取的个体数分别是8、48、64. 第三步,各层分别按简洁随机抽样的方法抽取样本. 第四步,综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简洁随机抽样有两种方法:抽签法或随机数表法.若用抽签法,则要做3 000个号签,费时费劲,因此接受随机数表法抽取样本,步骤是:第一步,编号:将3 000份答卷都编上号码:0 001,0 002,…,3 000. 其次步,在随机数表上随机选取一个起始位置.第三步,规定读数方向:向右连续取数字,以4个数为一组,遇到右边线时接下一行左边线连续向右连续取数,若读取的4位数大于3 000,则去掉,假如遇到相同号码则只取一个,这样始终到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,故应先使用简洁随机抽样法从4 000名同学中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第一部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开头,每隔62个号码抽取一个,这样得到一个容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.。

新课标人教版高中A版数学目录(超详细完美版)

新课标人教版高中A版数学目录(超详细完美版)

人教版高中数学A版目录新课标A版必修1•第一章集合与函数概念•第二章基本初等函数(Ⅰ)•第三章函数的应用•单元测试•综合专栏第一章集合与函数概念• 1.1集合• 1.2函数及其表示• 1.3函数的基本性质•实习作业•同步练习•单元测试•本章综合1.1集合• 1.1.1集合的含义与表示• 1.1.2集合间的基本关系• 1.1.3集合的基本运算•本节综合1.2函数及其表示• 1.2.1函数的概念• 1.2.2函数的表示法•本节综合1.3函数的基本性质• 1.3.1单调性与最大(小)值• 1.3.2奇偶性•本节综合实习作业同步练习单元测试本章综合第二章基本初等函数(Ⅰ)• 2.1指数函数• 2.2对数函数• 2.3幂函数•同步练习•单元测试•本章综合2.1指数函数• 2.1.1指数与指数幂的运算• 2.1.2指数函数及其性质•本节综合2.2对数函数• 2.2.1对数与对数运算• 2.2.2对数函数及其性质•本节综合2.3幂函数同步练习单元测试本章综合第三章函数的应用• 3.1函数与方程• 3.2函数模型及其应用•实习作业•同步练习•单元测试•本章综合3.1函数与方程• 3.1.1方程的根与函数的零点• 3.1.2用二分法求方程的近似解•本节综合3.2函数模型及其应用• 3.2.1几类不同增长的函数模型• 3.2.2函数模型的应用实例•本节综合实习作业同步练习单元测试本章综合单元测试综合专栏新课标A版必修2•第一章空间几何体•第二章点、直线、平面之间的位置关系•第三章直线与方程•第四章圆与方程•单元测试综合专栏第一章空间几何体• 1.1空间几何体的结构• 1.2空间几何体的三视图和直观图• 1.3空间几何体的表面积与体积•复习参考题•实习作业•同步练习•单元测试•本章综合•第二章点、直线、平面之间的位置关系• 2.1空间点、直线、平面之间的位置关系• 2.2直线、平面平行的判定及其性质• 2.3直线、平面垂直的判定及其性质•同步练习•单元测试•本章综合第三章直线与方程• 3.1直线的倾斜角与斜率• 3.2直线的方程• 3.3直线的交点坐标与距离公式•同步练习•单元测试•本章综合第四章圆与方程• 4.1圆的方程• 4.2直线、圆的位置关系• 4.3空间直角坐标系•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修3•第一章算法初步•第二章统计•第三章概率•单元测试•综合专栏第一章算法初步• 1.1算法与程序框图• 1.2基本算法语句• 1.3算法与案例•同步练习•单元测试•本章综合1.1算法与程序框图• 1.1.1算法的概念• 1.1.2程序框图和算法的逻辑结构•本节综合1.2基本算法语句• 1.2.1输入、输出、赋值语句• 1.2.2条件语句• 1.2.3循环语句•本节综合1.3算法与案例同步练习单元测试本章综合第二章统计• 2.1随机抽样• 2.2用样本估计总体• 2.3变量间的相关关系•实习作业•同步练习•单元测试•本章综合2.1随机抽样• 2.1.1简单随机抽样• 2.1.2系统抽样• 2.1.3分层抽样•本节综合2.2用样本估计总体• 2.2.1用样本的频率分布估计总体• 2.2.2用样本的数字特征估计总体•本节综合2.3变量间的相关关系• 2.3.1变量之间的相关关系• 2.3.2两个变量的线性相关•本节综合实习作业同步练习单元测试本章综合第三章概率• 3.1随机事件的概率• 3.2古典概型• 3.3几何概型•同步练习•单元测试•本章综合3.1随机事件的概率• 3.1.1随机事件的概率• 3.1.2概率的意义• 3.1.3概率的基本性质•本节综合3.2古典概型• 3.2.1古典概型• 3.2.2随机数的产生•本节综合3.3几何概型• 3.3.1几何概型• 3.3.2均匀随机数的产生•本节综合同步练习单元测试本章综合单元测试综合专栏新课标A版必修4•第一章三角函数•第二章平面向量•第三章三角恒等变换•单元测试•综合专栏第一章三角函数• 1.1任意角和弧度制• 1.2任意的三角函数• 1.3三角函数的诱导公式• 1.4三角函数的图象与性质• 1.5函数y=Asin(ωx+ψ)• 1.6三角函数模型的简单应用•同步练习•单元测试•本章综合第二章平面向量• 2.1平面向量的实际背景及基本概念• 2.2平面向量的线性运算• 2.3平面向量的基本定理及坐标表示• 2.4平面向量的数量积• 2.5平面向量应用举例•同步练习•单元测试•本章综合第三章三角恒等变换• 3.1两角和与差的正弦、余弦和正切公式• 3.2简单的三角恒等变换•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修5•第一章解三角形•第二章数列•第三章不等式•单元测试•综合专栏第一章解三角形• 1.1正弦定理和余弦定理• 1.2应用举例• 1.3实习作业•探究与发现解三角形的进一步讨论•同步练习•单元测试•本章综合第二章数列• 2.1数列的概念与简单表示法• 2.1等差数列• 2.3等差数列的前n项和• 2.4等比数列• 2.5等比数列的前n项和•同步练习•单元测试•本章综合第三章不等式• 3.1不等关系与不等式• 3.2一元二次不等式及其解法• 3.3二元一次不等式(组)与简单的线性• 3.4基本不等式:•同步练习•单元测试•本章综合单元测试综合专栏新课标A版选修一•新课标A版选修1-1•新课标A版选修1-2新课标A版选修1-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章导数及其应用•月考专栏•期中专栏•期末专栏•单元测试•综合专栏第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•单元测试•本章综合第二章圆锥曲线与方程• 2.1椭圆• 2.2双曲线• 2.3抛物线•同步练习•单元测试•本章综合第三章导数及其应用• 3.1变化率与导数• 3.2导数的计算• 3.3导数在研究函数中的应用• 3.4生活中的优化问题举例•同步练习•单元测试•本章综合月考专栏期中专栏期末专栏单元测试新课标A版选修1-2•第一章统计案例•第二章推理与证明•第三章数系的扩充与复数的引入•第四章框图•月考专栏•期中专栏•期末专栏•单元测试•本章综合点击这里展开-- 查看子节点索引目录,更精确地筛选资料!第一章统计案例• 1.1回归分析的基本思想及其初步应用• 1.2独立性检验的基本思想及其初步应用•实习作业•同步练习•综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明•同步练习•综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•综合第四章框图• 4.1流程图• 4.2结构图•同步练习•综合月考专栏期中专栏期末专栏单元测试本章综合新课标A版选修二•新课标人教A版选修2-1•新课标人教A版选修2-2•新课标人教A版选修2-3新课标人教A版选修2-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章空间向量与立体几何•单元测试•本册综合第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•本章综合第二章圆锥曲线与方程• 2.1曲线与方程• 2.2椭圆• 2.3双曲线• 2.4抛物线•同步练习•本章综合第三章空间向量与立体几何• 3.1空间向量及其运算• 3.2立体几何中的向量方法•同步练习•本章综合单元测试本册综合新课标人教A版选修2-2•第一章导数及其应用•第二章推理与证明•第三章数系的扩充与复数的引入•单元测试•本册综合第一章导数及其应用• 1.1变化率与导数• 1.2导数的计算• 1.3导数在研究函数中的应用• 1.4生活中的优化问题举例• 1.5定积分的概念• 1.6微积分基本定理• 1.7定积分的简单应用•同步练习•本章综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明• 2.3数学归纳法•同步练习•本章综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•本章综合单元测试本册综合新课标人教A版选修2-3•第一章计数原理•第二章随机变量及其分布•第三章统计案例•单元测试•本册综合第一章计数原理• 1.1分类加法计数原理与分步乘法计.• 1.2排列与组合• 1.3二项式定理•同步练习•本章综合第二章随机变量及其分布• 2.1离散型随机变量及其分布列• 2.2二项分布及其应用• 2.3离散型随机变量的均值与方差• 2.4正态分布•同步练习•本章综合第三章统计案例• 3.1回归分析的基本思想及其初步应用• 3.2独立性检验的基本思想及其初步•本章综合•同步练习单元测试本册综合新课标A版选修三•新课标A版选修3-1•新课标A版选修3-3•新课标A版选修3-4新课标A版选修3-1•第一讲早期的算术与几何•第二讲古希腊数学•第三讲中国古代数学瑰宝•第四讲平面解析几何的产生•第五讲微积分的诞生•第六讲近代数学两巨星•第七讲千古谜题•第八讲对无穷的深入思考•第九讲中国现代数学的开拓与发展•单元测试•本册综合第一讲早期的算术与几何•一古埃及的数学•二两河流域的数学•三丰富多彩的记数制度•同步练习•本章综合第二讲古希腊数学•一希腊数学的先行者•二毕达哥拉斯学派•三欧几里得与《原本》•四数学之神──阿基米德•同步练习•本章综合第三讲中国古代数学瑰宝•一《周髀算经》与赵爽弦图•二《九章算术》•三大衍求一术•四中国古代数学家•同步练习•本章综合第四讲平面解析几何的产生•一坐标思想的早期萌芽•二笛卡儿坐标系•三费马的解析几何思想•四解析几何的进一步发展•同步练习•本章综合第五讲微积分的诞生•一微积分产生的历史背景•二科学巨人牛顿的工作•三莱布尼茨的“微积分”•同步练习•本章综合第六讲近代数学两巨星•一分析的化身──欧拉•二数学王子──高斯•同步练习•本章综合第七讲千古谜题•一三次、四次方程求根公式的发现•二高次方程可解性问题的解决•三伽罗瓦与群论•四古希腊三大几何问题的解决•同步练习•本章综合第八讲对无穷的深入思考•一古代的无穷观念•二无穷集合论的创立•三集合论的进一步发展与完善•同步练习•本章综合第九讲中国现代数学的开拓与发展•一中国现代数学发展概观•二人民的数学家──华罗庚•三当代几何大师──陈省身•同步练习•本章综合单元测试本册综合新课标A版选修3-3•第一讲从欧氏几何看球面•第二讲球面上的距离和角•第三讲球面上的基本图形•第四讲球面三角形•第五讲球面三角形的全等•第六讲球面多边形与欧拉公式•第七讲球面三角形的边角关系•第八讲欧氏几何与非欧几何•单元测试•本册综合第一讲从欧氏几何看球面•一平面与球面的位置关系•二直线与球面的位置关系和球幂定理•三球面的对称性•同步练习•本章综合第二讲球面上的距离和角•一球面上的距离•二球面上的角•同步练习•本章综合第三讲球面上的基本图形•一极与赤道•二球面二角形•三球面三角形•同步练习•本章综合第四讲球面三角形•一球面三角形三边之间的关系•二、球面“等腰”三角形•三球面三角形的周长•四球面三角形的内角和•同步练习•本章综合第五讲球面三角形的全等•1.“边边边”(s.s.s)判定定理•2.“边角边”(s.a.s.)判定定理•3.“角边角”(a.s.a.)判定定理•4.“角角角”(a.a.a.)判定定理•同步练习•本章综合第六讲球面多边形与欧拉公式•一球面多边形及其内角和公式•二简单多面体的欧拉公式•三用球面多边形的内角和公式证明欧拉公式•同步练习•本章综合第七讲球面三角形的边角关系•一球面上的正弦定理和余弦定理•二用向量方法证明球面上的余弦定理•三从球面上的正弦定理看球面与平面•四球面上余弦定理的应用──求地球上两城市间的距离•同步练习•本章综合第八讲欧氏几何与非欧几何•一平面几何与球面几何的比较•二欧氏平行公理与非欧几何模型──庞加莱模型•三欧氏几何与非欧几何的意义•同步练习•本章综合单元测试本册综合新课标A版选修3-4•第一讲平面图形的对称群•第二讲代数学中的对称与抽象群的概念•第三讲对称与群的故事•综合专栏•单元测试第一讲平面图形的对称群•平面刚体运动•对称变换•平面图形的对称群•同步练习•本章综合第二讲代数学中的对称与抽象群的概念•n元对称群S•多项式的对称变换•抽象群的概念•同步练习•本章综合第三讲对称与群的故事•带饰和面饰•化学分子的对称群•晶体的分类•伽罗瓦理论•同步练习•本章综合综合专栏单元测试新课标A版选修四•新课标人教A版选修4-1•选修4-2•新课标A版选修4-4•新课标A版选修4-5新课标人教A版选修4-1•第一讲相似三角形的判定及有关性质•第二讲直线与圆的位置关系•第三讲圆锥曲线性质的探讨•单元测试•本册综合第一讲相似三角形的判定及有关性质•一平行线等分线段定理•二平行线分线段成比例定理•三相似三角形的判定及性质•四直角三角形的射影定理•同步练习•本章综合第二讲直线与圆的位置关系•一圆周角定理•二圆内接四边形的性质与判定定理•三圆的切线的性质及判定定理•四弦切角的性质•五与圆有关的比例线段•同步练习•本章综合第三讲圆锥曲线性质的探讨•一平行射影•二平面与圆柱面的截线•三平面与圆锥面的截线•同步练习•本章综合单元测试本册综合选修4-2•第一讲线性变换与二阶矩阵•第二讲变换的复合与二阶矩阵的乘法•第三讲逆变换与逆矩阵•第四讲变换的不变量与矩阵的特征向量•单元测试•本册综合第一讲线性变换与二阶矩阵•一线性变换与二阶矩阵•二二阶矩阵与平面向量的乘法•三线性变换的基本性质•同步练习•本章综合第二讲变换的复合与二阶矩阵的乘法•一复合变换与二阶短阵的乘法•二矩阵乘法的性质•同步练习•本章综合第三讲逆变换与逆矩阵•一逆变换与逆矩阵•二二阶行列式与逆矩阵•三逆矩阵与二元一次方程组•同步练习•本章综合第四讲变换的不变量与矩阵的特征向量•一变换的不变量---矩阵的特征向量•二特征向量的应用•同步练习•本章综合单元测试本册综合新课标A版选修4-4•第一章坐标系•第二章参数方程•单元测试•本册综合第一章坐标系• 1.1直角坐标系、平面上的伸缩变换• 1.2极坐标系• 1.3曲线的极坐标方程• 1.4圆的极坐标方程• 1.5柱坐标系与球坐标系•同步练习•本章综合第二章参数方程• 2.1曲线的参数方程• 2.2直线和圆的参数方程• 2.3圆锥曲线的参数方程• 2.4一些常见曲线的参数方程•同步练习•本章综合单元测试本册综合新课标A版选修4-5•第一讲不等式和绝对值不等式•第二讲讲明不等式的基本方法•第三讲柯西不等式与排序不等式•第四讲数学归纳法证明不等式•单元测试•本册综合第一讲不等式和绝对值不等式•一不等式•二绝对值不等式•单元测试•本章综合第二讲讲明不等式的基本方法•一比较法•二综合法与分析法•三反证法与放缩法•单元测试•本章综合第三讲柯西不等式与排序不等式•一二维形式的柯西不等式•二一般形式的柯西不等式•三排序不等式•单元测试•本章综合第四讲数学归纳法证明不等式•一数学归纳法•二用数学归纳法证明不等式•单元测试•本章综合单元测试本册综合。

高中数学必修3第二章:2.1.3 分层抽样

高中数学必修3第二章:2.1.3 分层抽样
解:抽样比是5268000=210,则应在专科生中抽取 1 300 ×210=65(人),在本科生中抽取 3 000×210=150(人),在 研究生中抽取 1 300×210=65(人).
归纳升华 一个总体中有 N 个个体,用分层抽样的方法从中
抽取一个容量为 n(n<N)的样本,某层的个体数为 Nk,该 层应抽取的个体数为 nk,则 nk=总样体本个容体量数nN×Nk.
A.抽签法
B.系统抽样法
C.分层抽样法
D.随机数法
(2)下列问题中,最适合用分层抽样抽取样本的是 ()
A.从 10 名同学中抽取 3 人参加座谈会 B.某批零件共 120 个,其中一级品 35 个,二级品 65 个,三级品 20 个,从中抽取一个容量为 40 的样本 C.从 1 000 名工人中,抽取 100 名调查上班途中所 用时间 D.从生产流水线上,抽取样本检查产品质量
类型 2 确定各层抽取的个体数 [典例 2] 某全日制大学共有学生 5 600 人,其中专 科生有 1 300 人,本科生有 3 000 人,研究生有 1 300 人, 现采用分层抽样的方法调查学生利用因特网查找学习资 料的情况,抽取的样本为 280 人,则应在专科生、本科 生与研究生这三类学生中分别抽取多少人?
[变式训练] 某校老年、中年和青年教师的人数见下
表.采用分层抽样的方法调查教师的身体状况,在抽取
的样本中,青年教师有 320 人,则该样本中的老年教师
人数为(
)
类别 老年教师 中年教师 青年教师
合计
人数/人 900 1 800 1 600 4 300
A.90
B.100
C.180
D.300
解析:设该样本中的老年教师人数为 x,由题意及分 层抽样的特点得90x0=1362000,故 x=180.

高中数学 2.1.1简单随机抽样练习 新人教A版必修3

高中数学 2.1.1简单随机抽样练习 新人教A版必修3

2.1.1简单随机抽样(练)一、选择题1.下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,用随机抽取的方式确定号码的后四位为270 9的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,检验其质量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签法从10件产品中抽取3件进行质量检验[答案] D2.某校有40个班,每班50人,每班选派3人参加“学代会”,在这个问题中样本容量是( ) A.40 B.50C.120 D.150[答案] C3.关于简单随机抽样的特点,有以下几种说法,其中不正确的是( )A.要求总体中的个体数有限B.从总体中逐个抽取C.这是一种不放回抽样D.每个个体被抽到的机会不一样,与先后顺序有关[答案] D[解析]简单随机抽样,除具有A、B、C三个特点外,还具有:是等可能抽样,各个个体被抽取的机会相等,与先后顺序无关.4.简单随机抽样的结果( )A.完全由抽样方式所决定B.完全由随机性所决定C.完全由人为因素所决定D.完全由计算方法所决定[答案] B[解析]据简单随机抽样的定义,总体中每个个体被抽到的机会相等,因此抽样结果只与随机性有关,∴选B.5.某工厂的质检人员对生产的10件产品,采用随机数表法抽取3件检查,对10件产品采用下面的编号方法:①1,2,3,…,10;②01,02,…,10;③00,01,02,…,09;④001,002,…,009,10.其中正确的是( )A.②③④B.③④C.②③D.①②[答案] C[解析]根据随机数表法的步骤可知,①④编号位数不统一.6.下列抽样方法是简单随机抽样的是( )A.某工厂按老年、中年、青年职工的比例选取职工代表B.用抽签的方法产生随机数表C.福利彩票用摇奖机摇奖D.规定凡买到明信片最后的几位号码是“6637\”的人获三等奖[答案] C[解析]简单随机抽样要求总体个数有限,从总体中逐个不放回地进行抽样,每个个体有相等的机会被抽到.故选C.7.从某批零件中抽取50个,然后再从这50个中抽取40个进行合格检查,发现合格品有36个,则这批产品的合格率为( )A.36% B.72%C.90% D.25%[答案] C[解析]3640=0.9,故选C.8.采用不重复抽取样本的方法,从一个含有5个个体的总体中抽取一个容量为2的样本,可能的样本共有( )A.10个B.7个C.9个D.20个[答案] A[解析]假设5个个体分别记为a,b,c,d,e,容量为2的样本分别为a,b;a,c;a,d;a,e;b,c;b,d;b,e;c,d;c,e;d,e,共10个.故选A.二、填空题9.采用简单随机抽样时,常用的方法有________、________.[答案]抽签法随机数法10.下列调查方式正确的是________.①为了了解炮弹的杀伤力,采用普查的方式②为了了解全国中学生的睡眠状况,采用普查的方式③为了了解人们保护水资源的意识,采用抽样调查的方式④对载人航天器“神舟飞船”零部件的检查,采用抽样调查的方式[答案]③[解析]由于①中的调查具有破坏性,则①不正确;由于全国中学生太多,则②不正确;③正确;④中考虑到安全性,④不正确.11.某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组.用抽签法设计抽样方案如下:第一步将18名志愿者编号,号码为1,2, (18)第二步将号码分别写在一张纸条上,揉成团,制成号签;第三步将号签放入一个不透明的袋子中,并充分搅匀;第四步____________________________________________;第五步所得号码对应的志愿者就是志愿小组的成员.则第四步步骤应为____________________________________.[答案]从袋子中依次抽出6个号签,记录下上面的编号.12.2010年3月,山西曝出问题疫苗事件,山西药监局对某批次疫苗进行检验,现将从800支疫苗中抽取60支,在利用随机数表抽取样本时,将800支疫苗按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检验的5支疫苗的编号是________(下面摘取了随机数表的第7行至第9行).84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 217633 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 8673 58 07 44 39 52 38 7933 2112 34 29 78 64 56 07 82 52 42 07 44 38 15 5100 13 42 99 66 02 79 54[答案]785,567,199,507,175[解析]从第8行第7列的数7开始向右读数,得到一个三位数785,因为785<799,所以将785取出,再向右读数,得到一个三位数916.因为916>799,所以将它去掉,再向右读数,得到一个三位数95 5.因为955>799,所以将它去掉,再向右读数,得到一个三位数567.因为567<799,所以将567取出.按照这种方法再向右读数,又取出199,507,175,这就找出最先检验的5支疫苗的编号,即785,567,199,507,175.三、解答题13.(2012~2013.上海高一检测)2011年5月,西部志愿者计划开始报名,上海市闸北区共有50名志愿者参与了报名,现要从中随机抽出6人参加一项活动,请用抽签法进行抽样,并写出过程.[解析]第一步,将50名志愿者编号,号码为1,2,3, (50)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将所有号签放入一个不透明的箱子中,充分搅匀.第四步,一次取出1个号签,连取6次,并记录其编号.第五步,将对应编号的志愿者选出即可.14.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?[分析] 重新编号,使每个号码的位数相同.[解析]第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,与以上这6个号码对应的6个元件就是所要抽取的样本.15.上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,则摸到红球的学生成为啦啦队成员.试问:这两种选法是否都是抽签法?为什么?这两种选法有何异同?[解析]选法一满足抽签法的特征,是抽签法;选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中的39个白球无法相互区分.这两种选法相同之处在于每名学生被选中的可能性都相等,均为1 40 .16.为制定本市初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高进行调查,现有三种调查方案:A.测量少年体校中180名男子篮球、排球队员的身高;B.查阅有关外地180名男生身高的统计资料;C.在本市的市区和郊县各任选一所完全中学、两所初级中学,在这所学校有关的年级(1)班中,用抽签的方法分别选出10名男生,然后测量他们的身高.为了达到估计本市初中这三个年级男生身高分布的目的,你认为采用上述哪一种调查方案比较合理,为什么?[分析] 根据每种调查方案所提供的资料逐一分析,看哪一种调查方案合理.[解析]A中少年体校的男子篮球、排球运动员的身高一定高于一般的情况,因此测量的结果不公平,无法用测量的结果去估计总体的结果;B中用外地学生的身高也不能准确的反映本地学生身高的实际情况;而C中的抽样方法符合随机抽样,因此用C方案比较合理.。

高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)

高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)

高中数学必修三第二章《统计》学案2.3.变量间的相关关系(学生专用)(A版)普通高中数学必修3(A版)学案 2.3. 变量间的相关关系2.3.1变量之间的相关关系授课时间:年月日【学习目标】通过收集现实问题中两个有关联变量的数据认识变量间的相关关系。

【重点难点】1. 通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系。

2. 变量之间相关关系的理解。

【学习过程】一、学习引导在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?二、合作交流(教师可做点拨)相关关系的概念:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。

当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。

相关关系是一种非确定性关系。

(分析:两个变量→自变量取值一定→因变量带有随机性→相关关系)三、随堂练习思考1:考察下列问题中两个变量之间的关系:(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.这些问题中两个变量之间的关系是函数关系吗?思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:商品销售收入与广告支出经费之间的关系。

(还与商品质量,居民收入,生活环境等有关)四、能力提升1. 上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?2. 对于一个变量,可以控制其数量大小的变量称为可控变量,否则称为随机变量,那么相关关系中的两个变量有哪种类型?3. 相关关系与函数关系的异同点?【小结反思】1. 变量具有不确定性,需要通过收集大量的数据(通过调查或试验)在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系做出正确的判断。

第二章 2.1 2.1.3 分层抽样

第二章  2.1  2.1.3 分层抽样

人教A版数学 ·必修3
返回导航
上页
下页
2.某城市有 210 家百货商店,其中大型商店 20 家,中型商店 40 家,小型商店 150 家.为了掌握各商店的营业情况,计划抽取一个容量为 21 的样本,按照分层抽样方 法抽取时,各种百货商店分别要抽取多少家?写出抽样过程. 21 1 解析:(1)样本容量与总体的个体数的比为 = ; 210 10
答案:5
人教A版数学 ·必修3
返回导航
上页
下页
探究一
分层抽样的概念
[典例 1] 某企业共有 3 200 名职工,其中青、中、老年职工的比例为 3∶5∶2.若 从所有职工中抽取一个容量为 400 的样本,则采用哪种抽样方法更合理?青、中、 老年职工应分别抽取多少人?每人被抽到的可能性相同吗?
人教A版数学 ·必修3
人教A版数学 ·必修3
返回导航
上页
下页
课时作业
返回导航
上页
下页
2.某单位有职工 160 人,其中业务员 104 人,管理人员 32 人,后勤服务人员 24 人,现用分层抽样法从中抽取一容量为 20 的样本,则抽取管理人员( A. 3 人 C. 7 人 B.4 人 D.12 人 )
20 1 x 1 解析:由 = ,设取管理人员 x 人,则 = ,得 x=4. 160 8 32 8
人教A版数学 ·必修3
返回导航
上页
下页
01 课前 自主梳理
0A版数学 ·必修3
返回导航
上页
下页
[自主梳理]
一、分层抽样的概念 在抽样时,将总体分成 互不交叉 的层,然后按照 一定比例 ,从各层 独立地 抽取 一定数量的个体, 将各层取出的个体合在一起作为样本, 这种抽样方法是一种分层抽 样.

高中数学人教A版必修三 第二章《统计》 2.1.1 随机抽样 简单随机抽样

高中数学人教A版必修三 第二章《统计》 2.1.1 随机抽样 简单随机抽样

第二章 2.1 随机抽样2.1.1简单随机抽样1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.知识梳理自主学习题型探究重点突破当堂检测自查自纠知识梳理自主学习知识点一统计的相关概念名称定义总体所要考察对象的全体叫做总体样本从总体中抽取出的若干个个体组成的集合叫做总体的一个样本个体总体中的每一个考察对象叫做个体样本容量样本中个体的数目叫做样本容量思考样本与样本容量有什么区别?答样本与样本容量是两个不同的概念.样本是从总体中抽取的个体组成的集合,是对象;样本容量是样本中个体的数目,是一个数.答案知识点二简单随机抽样1.简单随机抽样的定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的特点特点说明个体数有限要求总体的个体数有限,这样便于通过随机抽取的样本对总体进行分析逐个抽取从总体中逐个进行抽取,这样便于在抽取过程中进行操作不放回抽样由于抽样试验中多采用不放回抽样,使其具有广泛的应用性,而且所抽取的样本中没有被重复抽取的个体,便于进行有关的分析和计算等可能抽样在整个抽样过程中,各个个体被抽取的机会都相等,从而保证了这种抽样方法的公平性知识点三最常用的简单随机抽样的方法1.抽签法(1)抽签法(抓阄法):抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(2)抽签法的步骤:①编号:对总体中的N个个体进行编号(号码可以是1~N,也可以使用已知的号码);②制签:将1~N这N个编号写在大小、形状都相同的号签上(号签可以是纸条、卡片或小球等);③均匀搅拌:将写好的号签放入一个不透明的容器中,搅拌均匀;④抽签:从容器中每次不放回地抽取一个号签,连续抽取n次,并记录其编号;⑤确定样本:从总体中找出与号签上的号码所对应的个体,组成样本.2.随机数法(1)随机数法:利用随机数表、随机数骰子或计算机产生的随机数进行抽样.(2)随机数表法的一般步骤:①编号:将总体中的每个个体进行编号;②选定初始值(数);为保证所选数字的随机性,在面对随机数表之前就指出开始数字的位置;③选号:从选定的数字开始按照一定的方向读下去,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止;④确定样本:从总体中找出按步骤③选出的号码所对应的个体,组成样本.3.抽签法与随机数法的异同点抽签法随机数表法不同点①抽签法比随机数法简单;②抽签法适用于总体中的个体数相对较少的情况①随机数法要求编号的位数相同;②随机数法适用于总体中的个体数相对较多的情况相同点①都是简单随机抽样,并且要求被抽取样本的总体的个数有限;②都是从总体中逐个不放回地抽取思考(1)简单随机抽样是不放回抽样,对于放回的抽样可以是简单随机抽样吗?答不可以.简单随机抽样是从总体逐个抽取的,是一种不放回抽样,也就是每次从总体中取出元素后不放回总体,若放回,则一定不是简单随机抽样.(2)采用抽签法抽取样本时,为什么将编号写在形状、大小相同的号签上,并且将号签放在同一个箱子里搅拌均匀?答为了使每个号签被抽取的可能性相等,保证抽样的公平性.题型探究重点突破题型一简单随机抽样的判断例1下列5个抽样中,简单随机抽样的个数是()①从无数个个体中抽取50个个体作为样本;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴青海参加抗震救灾工作;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.⑤箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.A.0B.1C.2D.3跟踪训练1在简单随机抽样中,某一个体被抽到的可能性()BA.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽到的可能性要大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一定解析在简单随机抽样中,每一个个体被抽到的可能性都相等,与第几次抽样无关,故A,C,D不正确,B正确.题型二抽签法的应用例2为迎接2016年里约热内卢奥运会,奥委会现从报名的某高校20名志愿者中选取5人组成奥运志愿小组,请用抽签法设计抽样方案.解(1)将20名志愿者编号,号码分别是01,02, (20)(2)将号码分别写在20张大小、形状都相同的纸条上,揉成团儿,制成号签;(3)将所得号签放在一个不透明的袋子中,并搅拌均匀;(4)从袋子中依次不放回地抽取5个号签,并记录下上面的编号;(5)所得号码对应的志愿者就是志愿小组的成员.跟踪训练2从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.解第一步,将20架钢琴编号,号码是01,02, (20)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号.第五步,所得号码对应的5架钢琴就是要抽取的对象.题型三随机数法例3为了检验某种药品的副作用,从编号为1,2,3,…,120的服药者中用随机数法抽取10人作为样本,写出抽样过程.解第一步,将120名服药者重新进行编号,分别为001,002,003, (120)第二步,在随机数表(教材P)中任选一数作为初始数,如选第9行第7103列的数3;第三步,从选定的数3开始向右读,每次读取三位,凡不在001~120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092;第四步,以上这10个号码所对应的服药者即是要抽取的对象.跟踪训练3总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08B.07C.02D.01编号不一致致错易错点例4某工厂的质检人员对生产的100件产品,采用随机数法抽取10件进行检查,对100件产品采用下面的编号方法:①1,2,3, (100)②001,002,003,…,100;③00,01,02,03,…,99.其中最恰当的序号是________.当堂检测 1 2 3 4 5 1.某学校为了解高一800名新入学同学的数学学习水平,从中随机抽取100名同学的中考数学成绩进行分析,在这个问题中,下列说法正确的是()DA.800名同学是总体B.100名同学是样本C.每名同学是个体D.样本容量是100解析据题意,总体是指800名新入学同学的中考数学成绩,样本是指抽取的100名同学的中考数学成绩,个体是指每名同学的中考数学成绩,样本容量是100,故只有D正确.B2.抽签法确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析若样本具有很好的代表性,则每一个个体被抽取的机会相等,故需要对号签搅拌均匀.3.对于简单随机抽样,下列说法正确的是()D①它要求总体中的个体数有限,以便对其中各个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的机会相等,而且在整个抽样过程中,各个个体被抽取的机会也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④解析由简单随机抽样的概念,知①②③④都正确.4.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该产品的合格率约为( )A.36%B.72%C.90%D.25% 解析 ×100%=90%. 3640C5.某总体共有60个个体,并且编号为00,01,…,59. 现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11、12列的18开始.依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39 90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 35 46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 79 20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30 71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60课堂小结1.要判断所给的抽样方法是不是简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点:总体有限、逐个抽取、无放回抽样、等可能抽取.2.一个抽样试验能否用抽签法,关键看两点:一是制作号签是否方便,二是号签是否容易被搅拌均匀.一般地,当总体容量和样本容量都较少时可用抽签法.3.利用随机数法抽取个体时,关键是先确定以表中的哪个数(哪行哪列)作为起点,以哪个方向作为读数的方向.需注意读数时结合编号特点进行读取,编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.本课结束。

人教A版必修3 第二章 2.1 2.1.3 分层抽样 作业

人教A版必修3 第二章  2.1  2.1.3  分层抽样 作业

2019-2020学年人教A 版必修3 第二章 2.1 2.1.3 分层抽样 作业A 级:基础巩固练一、选择题1.将A ,B ,C 三种性质的个体按1∶2∶4的比例进行分层抽样调查,若抽取的样本容量为21,则A ,B ,C 三种性质的个体分别抽取( )A .12,6,3B .12,3,6C .3,6,12D .3,12,6答案 C解析 由分层抽样的概念,知A ,B ,C 三种性质的个体应分别抽取21×17=3,21×27=6,21×47=12. 2.共享单车为人们提供了一种新的出行方式,有关部门对使用共享单车人群的年龄分布进行了统计,得到的数据如下表所示:200的样本进行调查,那么应抽取20~30岁的人数为( )A .12B .28C .69D .91 答案 D解析 由分层抽样的定义得应抽取20~30岁的人数为200×45.5%=91.3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .7答案 C解析 分层抽样中,分层抽取时都按相同的抽样比n N来抽取,本题中抽样比为2040+10+30+20=15,因此植物油类应抽取10×15=2(种),果蔬类食品应抽20×15=4(种),因此从植物油类和果蔬类食品中抽取的种数之和为2+4=6. 4.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性是( )A.124B.136C.160D.16答案 D解析在分层抽样中,每个个体被抽取的可能性都相等,且为样本容量总体容量,所以每个个体被抽取的可能性是20120=16.5.分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带多少的比例进行交税,问三人各应付多少税?则下列说法错误的是( )A.甲应付5141 109钱B.乙应付3224 109钱C.丙应付1656 109钱D.三者中甲付的钱最多,丙付的钱最少答案 B解析由分层抽样可知,抽样比为100560+350+180=10109,则甲应付10109×560=5141109(钱);乙应付10109×350=3212109(钱);丙应付10109×180=1656109(钱).故选B.二、填空题6.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.答案1800解析设乙设备生产的产品总数为x件,则甲设备生产的产品总数为(4800-x)件.由题意,得5080=4800-x4800,解得x=1800.7.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取的辆数为________.答案 6,30,10解析 设三种型号的轿车依次抽取x 辆,y 辆,z 辆,则有⎩⎨⎧ x 1200=y 6000=z 2000,x +y +z =46,解得⎩⎨⎧ x =6,y =30,z =10.故填6,30,10.8.某高中针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取________人. 答案 6解析 解法一:因为“泥塑”社团的人数占两个社团总人数的35,故“剪纸”社团的人数占两个社团总人数的25, 所以“剪纸”社团的人数为800×25=320. 因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310, 所以“剪纸”社团中高二年级人数为320×310=96. 由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6. 解法二:因为“泥塑”社团的人数占两个社团总人数的35,故“剪纸”社团的人数占两个社团总人数的25, 所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20. 又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310, 所以从高二年级“剪纸”社团中抽取的人数为20×310=6. 三、解答题9.某单位有技师18人、技术员12人、工程师6人.需要从这些人中抽取一个容量为n (n ∈N *)的样本,如果采用系统抽样的方法抽取,不用剔除个体;如果采用分层抽样的方法抽取,各层抽取结果都是整数;如果样本容量增加1,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量.解 依题意,知总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的抽样比是n 36,抽取工程师的人数为n 36×6=n 6,技术员的人数为n 36×12=n 3,技工的人数为n 36×18=n 2, ∴n 应是36的约数且是6的倍数,即n 的可能取值是6,12,18.当样本容量为n +1时,系统抽样的间隔为35n +1. ∵35n +1必须为正整数,∴n 只能取6,即样本容量n =6. B 级:能力提升练10.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3000名初中生、4000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?解 (1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.因为样本容量为120,总体个数为500+3000+4000=7500,则抽样比120 7500=2 125,所以有500×2125=8,3000×2125=48,4000×2125=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.分层抽样的步骤是①分层:分为教职员工、初中生、高中生,共三层;②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64;③各层分别按简单随机抽样或系统抽样的方法抽取样本;④综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3000个号签,费时费力,因此采用随机数法抽取样本,步骤是①编号:将3000份答卷都编上号码:0001,0002,0003, (3000)②在随机数表上随机选取一个起始位置;③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.(3)由于4000÷64=62.5不是整数,则应先使用简单随机抽样从4000名学生中随机剔除32个个体,再将剩余的3968个个体进行编号:1,2, (3968)然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,...,62.从中随机抽取一个号码,若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457, (3929)。

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案

⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N

常用的简单随机抽样方法有抽签法和随机数表法.

高中数学必修3:第2章统计 2.1 随机抽样(含高考真题演练)

高中数学必修3:第2章统计 2.1 随机抽样(含高考真题演练)

6. 简单随机抽样的结果( ) A.完全由抽样方式所决定 B.完全由随机性来决定 C.完全由人为因素所决定 D.完全由计算方法所决定 解析:简单随机抽样的结果完全由随机性来决定. 答案:B
7. 为了了解某县中考学生数学成绩的情况,从中抽取20本密封
试卷,每本30份试卷,这个问题中的样本容量是( )
最常用的简单随机抽样方法有两种:
抽签法 随机数法
随机数表法
抽签法
(1)对总体的N个个体进行编号 (2)把N个号码写在同样的号签上 (3)将号签放在一个容器中,搅拌均匀 (4)每次从中抽取一个号签,连续抽取n次 (5)得到一个容量为n的样本 步骤:编号→制签→搅匀→抽签→定样.
例1 某班有50名学生,要从中随机地抽出6人参加一项活动, 请用抽签法进行抽选,并写出过程.
简记为:编号;分段;在第一段确定起始号;加间隔获取样本。
例1 某中学有高一学生322名,为了了解学生的身体状况,要 抽取一个容量为40的样本,用系统抽样法如何抽样?
第一步,随机剔除2名学生,把余下的320名学生编号为1,2 ,3,…320. 第二步,把总体分成40个部分,每个部分有8个个体.
例1 某中学有高一学生322名,为了了解学生的身体状况,要 抽取一个容量为40的样本,用系统抽样法如何抽样?
系统抽样的特点:
(1) 总体容量较大 (2) 属于不放回抽样 (3) 每个个体被抽到的可能性相同(公平性)
系统抽样的步骤
(1)对总体的N个个体进行编号; (2)确定分段间隔k,对编号进行分段,当N/n是整数时, 取k=N/n;当N/n不是整数时,从总体中随机剔除一些个体, 使剩下的总体中个体的个数N′能被n整除,并将剩下的总体重 新编号、分段; (3)在第一段中用简单随机抽样确定起始的个体编号l; (4)将编号为l+k, l+2k, …, l+(n-1)k的个体抽出。

第二章 2.1.3 分层抽样

第二章  2.1.3 分层抽样

题型2 三种抽样方法的比较
10.① 某学校高二年级共有 526 人,为了调查学生每天用于休息的时间,决定抽取 10% 的学生进行调查;
② 一次数学月考中,某班有 10 人在 100 分以上,32 人在 90 至 100 分之间,12 人低于 90 分,现从中
抽取 9 人了解有关情况;③ 运动会工作人员为参加 4 × 100 m 接力赛的 6 支队伍安排跑道.
解析 由分层抽样的定义知,总体中每个个体被抽到的概率都相等,故每名学生被抽到的概率相等,故选 D .
2.1.3 分层抽样 刷基础
题型1 分层抽样
3.[广西钦州高二2019期末]某中学共有 1 000 名学生,其中高一年级 350 人,该校为了了解本校学生
视力情况,用分层抽样的方法从该校学生中抽出一个容量为 100 的样本进行调查,则应从高一年级抽取
2.1.3 分层抽样 刷基础
题型1 分层抽样
6.[四川内江2019高二期末]某工厂生产甲、乙、丙三种型号的产品,产品数量之比为 3∶5∶7.
现用分层抽样的方法抽出容量为 n 的样本,其中甲种产品有 18 件,则样本容量 n=( C )
A.45
B.54
C.90
D.126
解析
甲种型号产品所占的比例为
3 3+5+7
8.简单随机抽样、系统抽样、分层抽样之间的共同点是( C )
A.都是从总体中逐个抽取
B.将总体分成几部分,按事先确定的规则在各部分抽取
C.抽样过程中每个个体被抽取的机会相同
D.将总体分成几层,分层进行抽取
解析 三种抽样方法的共同点就是抽样过程中每个个体被
题型1 分层抽样
2.[甘肃庆阳2019高二期中]某校有高一学生 850 人,高二学生 900 人,高三学生 1 200 人,

2.1.3 分层抽样(人教A版必修3)

2.1.3 分层抽样(人教A版必修3)

(1)这三种抽取方式中,其总体都是指该校高三
全体学生本年度的考试成绩,个体都是指高三年级每个学生 本年度的考试成绩.其中第一种抽取方式中样本为所抽取的 14名学生本年度的考试成绩,样本容量为14;第二种抽取方 式中样本为所抽取的14名学生本年度的考试成绩,样本容量 为14;第三种抽取方式中样本为所抽取的100名学生本年度 的考试成绩,样本容量为100.
10
高效学习 快乐成长
对112名业务人员按系统抽样分成14个部分,其中每个 部分包括8个个体,对每个部分利用简单随机抽样抽取个 体.若将160名人员依次编号为1,2,3,…,160.那么在1~112 名业务人员中第一部分的个体编号为1~8.从中随机取一个号 码,如它是4号,那么可以从第4号起,每隔8个抽取1个号 码,这样得到112名业务人员被抽出的14个号码依次为 4,12,20,28,36,44,52,60,68,76,84,92,100,108.
28
高效学习 快乐成长
规律总结:抽样方法的选择要结合三种抽样方法的特 点去比较,明确它们各自的特点以及在抽样过程中的可操作 性,由明显差异的几部分组成时,要选用分层抽样.
29
高效学习 快乐成长
பைடு நூலகம்
名师辩误做答
30
高效学习 快乐成长
[例4]
某单位有老、中、青年人各32人,50人,20人,
现用分层抽样从三个群体中共抽取20人进行某项调查,问: 老、中、青每组应各抽取多少人?每人被抽中的机会是否相 等? [错解] 按分层抽样的要求,可先从老年人中用随机抽
6
高效学习 快乐成长
建模应用引路
7
高效学习 快乐成长
命题方向
分层抽样的操作步骤
[例2]

【优化方案】2012高中数学 第2章2.1.3分层抽样课件 新人教A版必修3

【优化方案】2012高中数学 第2章2.1.3分层抽样课件 新人教A版必修3

思路点拨】 【思路点拨】 根据三种抽样方式的定义和 性质进行判断. 性质进行判断. 上面三种抽取方式中, 【 解 】 (1)上面三种抽取方式中 , 其总体 上面三种抽取方式中 都是高三全体学生本年度的考试成绩, 都是高三全体学生本年度的考试成绩,个体 都是指高三年级每个学生本年度的考试成 第一种抽取方式中,样本为所抽取的20 绩.第一种抽取方式中,样本为所抽取的 名学生本年度的考试成绩,样本容量为20; 名学生本年度的考试成绩,样本容量为 ; 第二种抽取方式中,样本为所抽取的20名学 第二种抽取方式中,样本为所抽取的 名学 生本年度的考试成绩,样本容量为20; 生本年度的考试成绩,样本容量为 ;第三 种抽取方式中, 样本为所抽取的100名学生 种抽取方式中 , 样本为所抽取的 名学生 本年度的考试成绩,样本容量为100. 本年度的考试成绩,样本容量为
师30名, 中年教师 名 中年教师150名, 青年教师 名 青年教师122名. 为 名 调查他们对新课程改革的看法,从中抽取一个 调查他们对新课程改革的看法, 60人的样本.请写出抽样过程. 人的样本.请写出抽样过程. 人的样本
① 名青年教师编号, 解: 把 122 名青年教师编号, 利用随机数表法 个个体. 剔除 2 个个体. 1 1 1 60 1 ②因为 = , 30× = 6,150× = 30,120× = × × × 5 5 5 300 5 24, , 所以可将老年教师 30 名, 中年教师 150 名, 名编号后, 运用随机数表法, 青年教师 120 名编号后, 运用随机数表法, 分别 个个体, 从中抽取 6,30,24 个个体,合在一起即为要抽取 人的样本. 的 60 人的样本.
2.1.3 .
分层抽样
学习目标 1.了解分层抽样的概念,比较三种抽样方法. 1.了解分层抽样的概念,比较三种抽样方法. 了解分层抽样的概念 2.利用分层抽样从总体中抽取样本. .利用分层抽样从总体中抽取样本.

高中数学人教版A版必修三课时作业习题及答案:第二章2-2 用样本估计总体

高中数学人教版A版必修三课时作业习题及答案:第二章2-2 用样本估计总体

第二章统计2.2 用样本估计总体2.2.1用样本的频率分布估计总体分布课时目标 1.理解用样本的频率分布估计总体分布的方法.2.会列频率分布表,画频率分布直方图,频率分布折线图,茎叶图.3.能够利用图形解决实际问题.1,用样本估计总体的两种情况(1)用样本的____________估计总体的分布.(2)用样本的____________估计总体的数字特征.2,数据分析的基本方法(1)借助于图形分析数据的一种基本方法是用图将它们画出来,此法可以达到两个目的,一是从数据中____________,二是利用图形________信息.(2)借助于表格分析数据的另一方法是用紧凑的________改变数据的排列方式,此法是通过改变数据的____________,为我们提供解释数据的新方式.3,频率分布直方图在频率分布直方图中,纵轴表示____________,数据落在各小组内的频率用________________来表示,各小长方形的面积的总和等于____.4,频率分布折线图和总体密度曲线(1)频率分布折线图连接频率分布直方图中各小长方形__________,就得到了频率分布折线图.(2)总体密度曲线随着样本容量的增加,作图时所分的____增加,组距减小,相应的频率分布折线图就会越来越接近于一条________,统计中称之为总体密度曲线,它反映了总体在各个范围内取值的百分比.5,茎叶图(1)适用范围:当样本数据较少时,用茎叶图表示数据的效果较好.(2)优点:它不但可以____________,而且可以__________,给数据的记录和表示都带来方便.(3)缺点:当样本数据______时,枝叶就会很长,茎叶图就显得不太方便.一、选择题1,下列说法不正确的是()A,频率分布直方图中每个小矩形的高就是该组的频率B,频率分布直方图中各个小矩形的面积之和等于1C,频率分布直方图中各个小矩形的宽一样大D,频率分布折线图是依次连接频率分布直方图的每个小矩形上端中点得到的2,一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] 频数12 13 24 15 16 13 7 则样本数据落在(10,40]上的频率为()A,0.13 B.0.39 C.0.52 D.0.643,100辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,则时速在[60,70)的汽车大约有()A.30辆B.40辆C,60辆D.80辆4,如图是总体密度曲线,下列说法正确的是()A,组距越大,频率分布折线图越接近于它B,样本容量越小,频率分布折线图越接近于它C,阴影部分的面积代表总体在(a,b)内取值的百分比D,阴影部分的平均高度代表总体在(a,b)内取值的百分比5,一个容量为35的样本数据,分组后,组距与频数如下:[5,10),5个;[10,15),12个;[15,20),7个;[20,25),5个;[25,30),4个;[30,35),2个.则样本在区间[20,+∞)上的频率为()A,20% B.69%C,31% D.27%6,某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A,90 B.75 C.60 D.45题号 1 2 3 4 5 6答案二、填空题7,将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________. 8,在如图所示的茎叶图中,甲,乙两组数据的中位数分别是________.9.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a,b)是其中的一组,抽查出的个体在各组上的频率为m,该组上直方图的高为h,则|a-b|=________.三、解答题10,抽查100袋洗衣粉,测得它们的重量如下(单位:g):494498493505496492485483508 511495494483485511493505488 501491493509509512484509510 495497498504498483510503497 502511497500493509510493491 497515503515518510514509499 493499509492505489494501509 498502500508491509509499495 493509496509505499486491492 496499508485498496495496505 499505496501510496487511501496(1)列出样本的频率分布表:(2)画出频率分布直方图,频率分布折线图;(3)估计重量在[494.5,506.5]g的频率以及重量不足500 g的频率.能力提升11,在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22(1)将这两组数据用茎叶图表示;(2)将这两组数据进行比较分析,你会得到什么结论?12,某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表.(2)作出频率分布直方图.(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.答案: 2.2.1 用样本的频率分布估计总体分布 知识梳理1,(1)频率分布 (2)数字特征 2.(1)提取信息 传递 (2)表格 构成形式 3.频率/组距 小长方形的面积 1 4.(1)上端的中点 (2)组数 光滑曲线5,(2)保留所有信息 随时记录 (3)较多作业设计1,A 2,C [样本数据落在(10,40]上的频数为13+24+15=52,故其频率为52100=0.52.] 3,B [时速在[60,70)的汽车的频率为:0,04×(70-60)=0.4,又因汽车的总辆数为100, 所以时速在[60,70)的汽车大约有0.4×100=40(辆).]4,C5,C [由题意,样本中落在[20,+∞)上的频数为5+4+2=11,∴在区间[20,+∞)上的频率为1135≈0.31.]6,A [∵样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36, ∴样本总数为360.3=120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.] 7,60解析 ∵n·2+3+42+3+4+6+4+1=27, ∴n =60.8,45,46解析 由茎叶图及中位数的概念可知x 甲中=45,x 乙中=46. 9.m h解析频率组距=h ,故|a -b|=组距=频率h =m h . 10,解 (1)在样本数据中,最大值是518,最小值是483,它们相差35,若取组距为4,由于354=834,要分9组,组数合适,于是决定取组距为4 g ,分9组,使分点比数据多一位小数,且把第一组起点稍微减小一点,得分组如下:[482.5,486.5),[486.5,490.5),…,[514.5,518.5). 列出频率分布表:分组 个数累计 频数 频率 累积频率 [482.5,486.5) 正 8 0.08 0.08 [486.5,490.5) 3 0.03 0.11[490.5,494.5) 正正正 17 0.17 0.28 [494.5,498.5) 正正正正- 21 0.21 0.49 [498.5,502.5) 正正 14 0.14 0.63 [502.5,506.5) 正 9 0.09 0.72[506.5,510.5) 正正正 19 0.19 0.91 [510.5,514.5) 正- 6 0.06 0.97[514.5,518.5] 3 0.03 1.00合计 100 1.00(2)频率分布直方图与频率分布折线图如图.(3)重量在[494.5,506.5]g 的频率为:0.21+0.14+0.09=0.44.设重量不足500 g 的频率为b ,根据频率分布表,b -0.49500-498.5≈0.63-0.48502.5-498.5,故b ≈0.55.因此重量不足500 g 的频率约为0.55. 11,解 (1)(2)电脑杂志上每个句子的字数集中在10~30之间;而报纸上每个句子的字数集中在20~40之间.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少.说明电脑杂志作为科普读物需要通俗易懂、简明.12,解 (1)(2)(3)答对下述两条中的一条即可:①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的115;有26天处于良的水平,占当月天数的1315;处于优或良的天数为28,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的1730,超过50%;说明该市空气质量有待进一步改善.2.2.2用样本的数字特征估计总体的数字特征课时目标 1.会求样本的众数,中位数,平均数,标准差,方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1,众数,中位数,平均数(1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数.(2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数.②当数据个数为偶数时,中位数为排列的最中间的两个数的________.(3)平均数①平均数的定义:如果有n个数x1,x2,…,x n,那么x=____________,叫做这n个数的平均数.②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数.样本平均数:________所有个体的平均数叫样本平均数.2,标准差,方差(1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s表示.s=________________________________________________________________________.(2)方差的求法:标准差的平方s2叫做方差.s2=________________________________________________________________________.一、选择题1,下列说法正确的是()A,在两组数据中,平均值较大的一组方差较大B,平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C,方差的求法是求出各个数据与平均值的差的平方后再求和D,在记录两个人射击环数的两组数据中,方差大的表示射击水平高2,已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a,中位数为b,众数为c,则有()A,a>b>c B.a>c>bC,c>a>b D.c>b>a3,甲,乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲,乙两同学在这次篮球比赛活动中,发挥得更稳定的是()A,甲B.乙C,甲,乙相同D.不能确定4,一组数据的方差为s2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是()A.13s2B.s2C,3s2D.9s25,如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为()A,84,4.84 B.84,1.6C,85,1.6 D.85,0.46,如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B则()A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B题号 1 2 3 4 5 6答案二、填空题7,已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.8,甲,乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲10 8 9 9 9乙10 10 7 9 9如果甲,乙两人只能有1人入选,则入选的应为________.9,若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差为________.三、解答题10,甲,乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:平均数方差中位数命中9环及9环以上的次数甲乙(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11,下面是一家快餐店所有工作人员(共7人)一周的工资表:总经理大厨二厨采购员杂工服务员会计3 000元450元350元400元320元320元410元(1)计算所有人员一周的平均工资;(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12,1,平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3,极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2,2.2用样本的数字特征估计总体的数字特征知识梳理1,(1)最多 (2)中间 ①中间位置的 ②平均数 (3)①x 1+x 2+…+x n n ②总体中 样本中2,(1)1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2] 作业设计1,B [A 中平均值和方差是数据的两个特征,不存在这种关系;C 中求和后还需取平均数;D 中方差越大,射击越不平稳,水平越低.]2,D [由题意a =110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,即b =16,c =18,∴c>b>a.]3,B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B .]4,D [s 20=1n [9x 21+9x 22+…+9x 2n -n(3x )2]=9·1n(x 21+x 22+…+x 2n -n x 2)=9·s 2(s 20为新数据的方差).]5,C [由题意x =15(84+84+86+84+87)=85.s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.]6,B [样本A 数据均小于或等于10,样本B 数据均大于或等于10,故x A <x B , 又样本B 波动范围较小,故s A >s B .] 7,91解析 由题意得8,甲解析 x 甲=9,2S 甲=0.4,x 乙=9,2S 乙=1.2,故甲的成绩较稳定,选甲.9,0.19 解析 这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19. 10,解 由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为: 2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x 甲=110×(5+6×2+7×4+8×2+9)=7010=7(环), x 乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s 2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s 2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2] =110×(25+9+1+0+2+8+9)=5.4. 根据以上的分析与计算填表如下:平均数 方差 中位数 命中9环及9环以上的次数甲 7 1.2 7 1乙 7 5.4 7.5 3 (2)①∵平均数相同,2S 甲<2S 乙,∴甲成绩比乙稳定. ②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11,解 (1)平均工资即为该组数据的平均数 x =17×(3 000+450+350+400+320+320+410)=17×5 250=750(元).(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x ′=16×(450+350+400+320+320+410)=16×2 250=375(元).这个平均工资能代表一般工作人员一周的收入水平.12,解 设第一组20名学生的成绩为x i (i =1,2,…,20),第二组20名学生的成绩为y i (i =1,2,…,20), 依题意有:x =120(x 1+x 2+…+x 20)=90,y =120(y 1+y 2+…+y 20)=80,故全班平均成绩为:140(x 1+x 2+…+x 20+y 1+y 2+…+y 20)=140(90×20+80×20)=85;又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 21=120(x 21+x 22+…+x 220-20x 2),s 22=120(y 21+y 22+…+y 220-20y 2) (此处,x =90,y =80),又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s 2=140(x 21+x 22+…+x 220+y 21+y 22+…+y 220-40z 2) =140(20s 21+20x 2+20s 22+20y 2-40z 2) =12(62+42+902+802-2×852)=51. s =51.所以全班同学的平均成绩为85分,标准差为51.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学人教新课标A版必修3 第二章统计 2.1.3分层抽样(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共8题;共16分)
1. (2分) (2015高二上·海林期末) 某学校共有老、中、青教职工215人,其中青年教职工80人,中年教职工人数是老年教职工人数的2倍.为了解教职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工16人,则该样本中的老年教职工人数为()
A . 6
B . 8
C . 9
D . 12
2. (2分) (2018高一下·伊通期末) 某公司现有职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20个人进行身体健康检查,如果采用分层抽样的方法,则职员、中级管理人员和高级管理人员各应该抽取()人
A . 8,15,7
B . 16,2,2
C . 16,3,1
D . 12,3,5
3. (2分) (2019高二上·尚志月考) 某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()
A . 8号学生
B . 200号学生
C . 616号学生
D . 815号学生
4. (2分) (2016高二上·临川期中) 某校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一,高二,高三各年级抽取的人数分别为()
A . 45,75,15
B . 45,45,45
C . 30,90,15
D . 45,60,30
5. (2分) (2016高二上·芒市期中) 某大学有A、B、C三个不同的校区,其中A校区有4000人,B校区有3000人,C校区有2000人,采用按校区分层抽样的方法,从中抽取900人参加一项活动,则A、B、C校区分别抽取()
A . 400人、300人、200人
B . 350人、300人、250人
C . 250人、300人、350人
D . 200人、300人、400人
6. (2分)一个年级有12个班,每个班的同学从1至50排学号,为了交流学习经验,要求每班学号为14的同学留下进行交流,这里运用的是()
A . 系统抽样
B . 分层抽样
C . 抽签抽样
D . 随机抽样
7. (2分)(2017·绵阳模拟) 某校共有在职教师200人,其中高级教师20人,中级教师100人,初级教师80人,现采用分层抽样抽取容量为50的样本进行职称改革调研,则抽取的初级教师的人数为()
A . 25
B . 20
C . 12
D . 5
8. (2分)要完成下列3项抽样调查:
①从某班10名班干部中随机抽取3人进行一项问卷调查.
②科技报告厅的座位有60排,每排有50个,某次报告会恰好坐满听众,报告会结束后,为了解听众意见,需要随机抽取30名听众进行座谈.
③某高中共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了解教职工的文化水平,拟随机抽取一个容量为40的样本.
较为合理的抽样方法是()
A . ①简单随机抽样,②分层抽样,③系统抽样
B . ①简单随机抽样,②系统抽样,③分层抽样
C . ①系统抽样,②简单随机抽样,③分层抽样
D . ①分层抽样,②系统抽样,③简单随机抽样
二、填空题 (共3题;共3分)
9. (1分)(2017·盐城模拟) 某高级中学高一、高二、高三年级的学生人数分别为600人、700人、700人,为了解不同年级学生的眼睛近视情况,现用分层抽样的方法抽取了容量为100的样本,则高三年级应抽取的学生人数为________.
10. (1分) (2016高三上·无锡期中) 某工厂生产甲、乙、丙、丁4类产品共计1200件,已知甲、乙、丙、丁4类产品的数量之比为1:2:4:5,现要用分层抽样在方法从中抽取60件,则乙类产品抽取的件数为________.
11. (1分) (2019高一下·蛟河月考) 若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是________
三、解答题 (共3题;共35分)
12. (15分) (2018高三上·大连期末) 随机抽取100名学生,测得他们的身高(单位:),按照区间

分组,得到样本身高的频率分布直方图(如图).
(1)求频率分布直方图中的值及身高在以上的学生人数;
(2)将身高在区间内的学生依次记为三个组,用分层抽样的方法从这三个组中抽取6人,求从这三个组分别抽取的学生人数;
(3)在(2)的条件下,要从6名学生中抽取2人.用列举法计算组中至少有1人被抽中的概率.
13. (5分)为了研究某种农作物在特定温度下(要求最高温度t满足:27℃≤t≤30℃)的生长状况,某农学家需要在十月份去某地进行为期十天的连续观察试验.现有关于该地区10月份历年10月份日平均最高温度和日平均最低温度(单位:℃)的记录如下:
(Ⅰ)根据本次试验目的和试验周期,写出农学家观察试验的起始日期.
(Ⅱ)设该地区今年10月上旬(10月1日至10月10日)的最高温度的方差和最低温度的方差分别为D1 , D2 ,估计D1 , D2的大小?(直接写出结论即可).
(Ⅲ)从10月份31天中随机选择连续三天,求所选3天每天日平均最高温度值都在[27,30]之间的概率.
14. (15分) (2017高二下·吉林期末) 某校高三(1)班全体女生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图所示,据此解答如下问题:
(1)求高三(1)班全体女生的人数;
(2)求分数在[80,90)之间的女生人数,并计算频率分布直方图中[80,90)之间的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析女生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
参考答案一、单选题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共3题;共3分)
9-1、
10-1、
11-1、
三、解答题 (共3题;共35分)
12-1、
12-2、
12-3、
13-1、14-1、14-2、
14-3、。

相关文档
最新文档