第十一章荧光分析法复习过程

合集下载

荧光分析法专题知识

荧光分析法专题知识

续前
注:
➢ 处于激发态旳电子,经过振动弛豫和内部能量 转换,均回到第一激发态旳最低振动能级
过程:振动弛豫→内部能量互换→振动弛豫
返回
续前 3、体系间跨越(intersystem crossing)
过程:处于激发态旳电子自旋方向发生变化,而使电子能级旳 多重性发生变化旳过程
特点:激发单重态与激发三重态振动能级重叠时,产生体系间
1.分子产生荧光必须具有旳条件
(1)具有合适旳构造:构造中有共轭π→ π*产生旳K带,
能吸收紫外-可见光
(2)具有一定旳荧光效率(): 荧光效率():
发射的光量子数
吸收的光量子数
➢荧光效率只能为0~1 ➢荧光效率低旳物质可能有强旳紫外吸收,但所吸收旳能量
以无辐射跃迁旳方式释放,不出现荧光发射;
2.分子构造对荧光旳关系 (1)跃迁类型:
三重态:两电子自旋方向相同,自旋量子数分别为 1 和 1
22
triplet state 总自旋量子数 S 1 1 1
22 多重性 M 3
续前 基态单重态S0
π*
激发单重态S*
π* π*
激发三重态T
能量
π
π
π
A
B
C
单重态和三重态电子分布
A:基态单重态 B:激发单重态 C:激发三重态
续前
跃迁类型旳比较
②吸电子基团引入,φ↓(-COOH,-NO2,-Cl 等), 减弱共轭 程度
③影响不大:-SO3H,-NH3+,-R,对共轭体系作用较小
返回
续前

λex=205nm λem=278nm Φf=0.11

2m86n 3m21n 0.29

第十一章 分子发光―荧光、 磷光和化学发光光谱法Molecular .

第十一章 分子发光―荧光、 磷光和化学发光光谱法Molecular .

已逐步形成一支在这个研究领域中的工作队伍,研究内
容2已020从/6/15经典的荧光分析方扩展到新近发展起来的新技术。
返回第一张
上一张幻灯片 下一张幻灯片
§11-1 分子荧光和磷光光谱法
1.产生机理
在一般温度下,大多数分子处在基态的最低振动 能级。处于基态的分子吸收能量(电能、热能、化 学能或光能等到)后天激发为激发态。激发态是很 不稳定的,它得很快地释放出能量又重新跃迁回 基态。若分子返回基态时以发射的电磁辐射(即光) 的形式释放能量,就称为“发光”;如果物质的 分子吸收了光能而被激发,跃迁回基态所发射的 电磁辐射,称为荧光和磷光。现从分子结构理论 来讨论荧光和磷光的产生机理。
进入二十世纪以后,荧光现象被研究得更多了,在理论 或实验技术上都得到极大的发展。特别是随着激光、计 算机和电子学的新成就及技术的引入,大大推动了荧光 分析法在理论上及实验技术的发展,出现了许多新的理 论和新的方法。
在我国,二十世纪五十年代初期仅有极少数的分析工作
者从事荧光分析方面的研究工作。到了 下一张幻灯片
磷光也是某些物质受紫外光照射后产生的光。1944年 Lewis和Kasha提出了磷光与荧光的不同概念,指出磷光 是分子从亚稳的激发三重态跃迁回基态所发射出的光, 它有别于从激发单态跃迁回基态所发射的荧光。磷光分 析法由于其有某些特点,几十年来的理论研究及应用也 不断得到发展。
2020/6/15
返回第一张
上一张幻灯片 下一张幻灯片
处于分子基态单重态的分子轨道上的电子,激发 时不能直接跃迁至第一激发三重态轨道上(不符 合光谱选择定则),但处于单重激发态的轨道上 的电子,可以通过体系跨越(系间窜跃),转移 到三重态轨道上;在这个过程中,处于激发态的 电子自旋发生变化,这个过程需要时间较长,故 处于三重激发态的寿命为10-4~1s;当其由三重激 发态的最低振动能级跃迁回基态时产生磷光。

2014第十一章荧光分析法解析

2014第十一章荧光分析法解析
A. 苯 B. 联苯 C. 萘 D. 芴 E.蒽 (5)下列说法中正确的是( )
A. 长共轭结构使得分子的荧光波长向短波方向移动。 B. 分子的刚性越强,荧光强度越小。 C. 给电子取代基可导致荧光增强。 D. 吸电子取代基可导致荧光增强。
Cx
Fx Fs
F0 F0
C s
31
第三节 荧光分光光度计和分析新技术
滤光片荧光计 滤光片-单色器荧光计 荧光分光光度计
32
一、荧光分光光度计
1. 主要部件
源发光源(氙灯)、激发单色器、样品池、发射单色器、检测系统
荧光分光光度计结构示意图 1.光源
2、4、7、9. 狭缝 3.激发单色器
5.样品池 6.表面吸光物质 8.发射单色器 10.检测器 11.放大器 12.指示器 13.记录器
内部能量转换
当两电子激发态能量相差较小以致其振动能级有重 叠时,受激分子由高电子能级转移致低电子能级的 过程。
(振动失活在同样多重态间进行,如S2* S1*)
5
术语
外部能量转换 激发态分子与溶剂或其它溶质碰撞,以热能的形 式释放能量的过程。
体系间跨越 处于激发态分子的电子发生自旋反转而使分子的 多重性发生变化的过程,如S1* T1*
率即为1/ f。
F t F 0 e Kt F 荧光强度
K 衰减常数
F f F0 / e F0e K f
1 / e e K f
K1 1
K 1 f
F 0 / F t e Kt e t / f ln F 0 t
Ft f
12
荧光效率
发射荧光的光子数
f 吸收激发光的光子数
物质的荧光效率在0~1之间,0.1~1时有分析价值。

第十一章 荧光分析方法

第十一章   荧光分析方法
5
在某些情况下,电子在跃迁过程中还伴随着自 旋方向的改变,这时分子的两个电子的自旋方向 相同,自旋量子数都为1/2,总自旋量子数s等 于1,这时分子处于激发三重态(2s+1=3)。 S0+hν→T1
6
激发单重态与激发三重态的区别:

激发单重态分子是抗磁性分子,激发三重 态分子是顺磁性分子;
激发单重态的平均寿命大约10-8s,激发三 重态的平均寿命大约10-4~1s; 电子由S0→S1,S2等的跃迁较容易,属于允 许跃迁。电子由S0→T1,T2等的跃迁较难发 生,属于禁阻跃迁。
23
(二)有机化合物分子结构与荧光的关系
能够发射荧光的物质同时具备两个条件:即有 强的紫外—可见吸收和一定的荧光效率。 1.长共扼结构 绝大多数能产生荧光的物质都含有芳香环或杂 环、因为芳香环和杂环分子具有长共轭的π—π* 跃迁。π电子共轭程度越大,荧光强度(荧光效率) 越大,而荧光波长也长移。
24
31
5.散射光
当一束平行单色光照射在液体样
品上时,大部分光线透过溶液,小部分由于光
子与物质分子相碰撞,使光子的运功方向发生
改变而向不同角度散射,这种光称为散射光。
光子和物质分子发生弹性碰撞时,发生能量
的交换,仅仅是光子运动方向发生改变,这种
散射光称为瑞利光。其波长与入射光波长相同。
32
光子和物质分子发生非弹性碰撞时.在光子 运动方向发生改变的同时,光子与物质分子发 生能量的交换,光子把部分能量转移给物质分 子或从物质分子获得部分能量,而发射出比入 射光稍长或稍短的光,这种散射光称为拉曼光。 散射光对荧光测定有干扰,尤其是波长比入 射光波长更长的拉曼光。
12
② 磷光(phosphorescence)发射:经过体系间跨越 的分子再通过振动弛豫降至激发三重态的最低振动 能级,分子在激发三重态的最低振动能级可以存活 一段时间,然后返回至基态的各个振动能级而发出 光辐射,这种光辐射称为磷光。 T1→S0+hνp 磷光发射时间较长,约10-4-10s。 激发光停止后,磷光可持续一段时间。 电子由S0→T1为禁阻跃迁,需由S1经过体系间跨越 转化为T1。 同一分子的S1→S0 比T1→S0 的能级差大,磷光 的波长比荧光波长长

第十一章 荧光分析法复习过程

第十一章 荧光分析法复习过程

第十一章荧光分析法一、选择题1.荧光分析法是通过测定( )而达到对物质的定性或定量分析。

A、激发光B、磷光C、发射光D、散射光2.下面( )分析方法不属于分子发射光谱法。

A、紫外一可见分光光度法B、荧光分析法C、磷光分析法D、化学发光分析法3.荧光发射光谱含有( )个发射带。

A、1B、2C、3D、不一定4.下列关于荧光光谱的叙述错误的是()A、荧光光谱的形状与激发光的波长无关B、荧光光谱与激发光谱一般是对称镜像C、荧光光谱属于分子的受激发射光谱D、荧光激发射光谱与紫外吸收光谱重合5.下列叙述错误的是()A、荧光光谱的最长波长和激发光谱的最长波长相对应B、荧光光谱的最短波长和激发光谱的最长波长相对应C、荧光光谱的形状与激发光波长无关D、荧光波长大于激发光波长6.激发态分子经过振动弛豫回到第一电子激发态的最低振动能级后,经系间窜越转移至激发三重态,再经振动弛豫降至三重态的最低振动能级,然后发出光辐射跃迁至基态的各个振动能级,这种光辐射称为( )。

A、分子荧光B、分子磷光C、瑞利散射光D、拉曼散射光7.关于振动弛豫,下列叙述中错误的是( )。

A、振动弛豫只能在同一电子能级内进行B、振动弛豫属于无辐射跃迁C、通过振动弛豫可使处于不同电子激发态的分子均返回到第一电子激发态的最低振动能级D、振动弛豫是产生Stokes位移的原因之一8.荧光寿命指的是( )。

A、从激发光开始照射到发射荧光的时间B、受激分子从第一电子激发态的最低振动能级返回到基态所需的时间C、从除去激发光光源至分子的荧光熄灭所需的时间D、除去激发光源后,分子的荧光强度降低到激发时最大荧光强度的1/e所需的时间9.关于荧光效率,下面叙述不正确的是()A、具有长共轭的π→π﹡跃迁的物质具有较大的荧光效率B、分子的刚性和共平面性越大,荧光效率越大C、顺式异构体的荧光效率大于反式异构体D、共轭体系上的取代基不同,对荧光效率的影响不同10.采用下列( )措施可使物质的荧光效率提高。

仪器分析课件12荧光分析法

仪器分析课件12荧光分析法
f = 0.29
ex = 356nm em = 404nm
f = 0.36
16
2. 分子的刚性
• 同样具有*跃迁的长共轭分子中,刚性分子 增加了共平面性, 越大, 长移。
f = 0.2
-O
O
COO-
C H2
f = 1.0
-O
O
O
COO- 荧光素钠
17
原来不发生荧光的,如:8-羟基喹啉
消除干扰,提高选择性、灵敏度
脉冲激光
样品
干扰 组分
44
3. 同步荧光分析
固定,同时扫描激光光谱和发射光谱 若: = em - ex
Fsp = KcFem Fex 提高灵敏度和选择性
混合物的同步荧光光谱( =3nm)
45
4. 胶束增敏荧光
CH3(CH2)11OSO3-Na+ 非极性疏水基团 极性亲水基团 增加溶解度 增加荧光效率 增加荧光的稳定性
• 荧光分析法的灵敏度高于紫外-可见分光光度法
荧光法
F=Kc
紫外法 A lg T lg I
I0
36
二、定量分析方法
1. 工作曲线法
用空白溶液调零 用标准溶液调满刻度
F cx
c1
c2 c3 c4 c5
20 40 60 80 100%
16 32 48 64 80%
37
2. 比例法(对比法)


荧光光谱 横坐标em, 度
纵坐标 发射光强度

400
500
(nm)
8
溶液荧光光谱通常具有如下特征
斯托克斯位移 荧光光谱的形状与激发波长无关 荧光光谱与激发光谱的镜像关系

第十一章荧光分析法.ppt

第十一章荧光分析法.ppt

散射光干扰及消除
散射光:当一束平行光投射在液体试样上,大部分 被吸收或透过,小部分由于光子和物质分子相碰撞, 使光子的运动方向改变,而向不同方向散射形成的 光。
散射光包括瑞利散射光和拉曼光
瑞利散射光:无能量的交换,λ散射≈λ激发
拉曼光: 有能量转移, λ散射> <λ激发
干扰的消除
1)改变激发光的波长;
单色器1
样品池
单色器2
垂直方向
放大 与
记录
检测器
荧光仪特点
与分光光度计的主要差别
① 垂直测量方式, 消除透射光影响 ② 两个单色器,激发和发射,常用光栅
1 光源 A、白炽灯:钨灯、卤钨灯 B、气体放电灯:氢、氙、汞,
常用氙灯(波长: 250-700nm) C、激光光源 2 单色器
闪耀光栅
3 检测器 光电倍增管
5.弱荧光的芳香族化合物也可与荧光试剂作用生成 强荧光衍生物以提高测量灵敏度。
故药物中的胺类、抗菌素、维生素、甾体类均可 用荧光法测定。该法在体内药物定量分析中应用甚 广。
思考题
• 1.荧光和磷光在产生机制上有什么不同?
• 2.何谓荧光量子效率?哪些结构物质有较高荧光效率?
• 3.以下物质中可能有最强荧光的物质是( )。
6.()荧光光谱形状与激发光的波长无关。
7. 荧光光谱的特征?
1. 所谓荧光,即指某些物质经入射光照射后,吸收了入射光的能量,从而辐射 出比入射光( )。
A. 波长长的光线
B. 波长短的光线
C. 能量大的光线
D. 频率高的光线
2. 下列说法正确的是(
)
A 荧光发射波长永远大于激发波长
B 荧光发射波长永远小于激发波长

第十一章 荧光分析法

第十一章 荧光分析法

第十一章荧光分析法一、选择题1.荧光分析法是通过测定( )而达到对物质的定性或定量分析。

A、激发光B、磷光C、发射光D、散射光2.下面( )分析方法不属于分子发射光谱法。

A、紫外一可见分光光度法B、荧光分析法C、磷光分析法D、化学发光分析法3.荧光发射光谱含有( )个发射带。

A、1B、2C、3D、不一定4.下列关于荧光光谱的叙述错误的是()A、荧光光谱的形状与激发光的波长无关B、荧光光谱与激发光谱一般是对称镜像C、荧光光谱属于分子的受激发射光谱D、荧光激发射光谱与紫外吸收光谱重合5.下列叙述错误的是()A、荧光光谱的最长波长和激发光谱的最长波长相对应B、荧光光谱的最短波长和激发光谱的最长波长相对应C、荧光光谱的形状与激发光波长无关D、荧光波长大于激发光波长6.激发态分子经过振动弛豫回到第一电子激发态的最低振动能级后,经系间窜越转移至激发三重态,再经振动弛豫降至三重态的最低振动能级,然后发出光辐射跃迁至基态的各个振动能级,这种光辐射称为( )。

A、分子荧光B、分子磷光C、瑞利散射光D、拉曼散射光7.关于振动弛豫,下列叙述中错误的是( )。

A、振动弛豫只能在同一电子能级内进行B、振动弛豫属于无辐射跃迁C、通过振动弛豫可使处于不同电子激发态的分子均返回到第一电子激发态的最低振动能级D、振动弛豫是产生Stokes位移的原因之一8.荧光寿命指的是( )。

A、从激发光开始照射到发射荧光的时间B、受激分子从第一电子激发态的最低振动能级返回到基态所需的时间C、从除去激发光光源至分子的荧光熄灭所需的时间D、除去激发光源后,分子的荧光强度降低到激发时最大荧光强度的1/e所需的时间9.关于荧光效率,下面叙述不正确的是()A、具有长共轭的π→π﹡跃迁的物质具有较大的荧光效率B、分子的刚性和共平面性越大,荧光效率越大C、顺式异构体的荧光效率大于反式异构体D、共轭体系上的取代基不同,对荧光效率的影响不同10.采用下列( )措施可使物质的荧光效率提高。

分析化学第11章--荧光分析法

分析化学第11章--荧光分析法
第11章 荧光分析法
概述 基本原理 定量分析方法 荧光分析技术及应用
11.1 概述
1.光致发光:物质受到光照射时,除 吸收某种波长的光之外还会发射出比 原来所吸收光的波长更长的光,这种 现象称为光致发光。
2.荧光(fluorescence):物质分子接受 光子能量被激发后,从激发态的最低 振动能级返回基态时发射出的光。
低一些。 2.荧光的产生 1)激发过程: 基态分子 hv 激发单重态(s1*,s2*)
激发三重态
2)激发态能量传递途径
传递途径
辐射跃迁
无辐射跃迁
荧光 磷光 系间跨越内转换 外转换 振动弛豫
1.无辐射跃迁
a.振动驰豫(vibrational relexation):
处于激发态各振动能级的分子通过 与溶剂分子的碰撞而将部分振动能 量传递给溶剂分子,其电子则返回 到同一电子激发态的最低振动能级 的过程。
2)电子能态的多重性:
M=2S+1
S:总自旋量子数。S=s1+s2 对于 S=1/2 +(-1/2)=0
M=2S+1=1
对应基线单重态;
对于激发态
s1=1/2,s2=1/2,
S=1/2+1/2=1, M=2×1+1=3 三重态
• 单重态与三重态的区别 1)电子自旋方向不同; 2)激发三重态的能量稍
8-羟基喹啉
8-羟基喹啉镁
弱荧光
强荧光
刚性和共面性增加,可以发射荧光或增 强荧光。
c.位阻效应
NaO3S
N(CH3)2
NaO3S
N(CH3)2
1-二甲氨基萘-7-磺酸钠 f=0.75
1-二甲氨基萘-8-磺酸钠 f =0.03

荧光分析法原理

荧光分析法原理

原因1:基态上的各振动能级分布与第一激发态上的各振动能级分布类似;
荧光激发光谱
荧光发射光谱
200
250
300
350
400
450
蒽的激发光谱和荧光光谱
原因2:两谱各小峰的高度与跃迁几率有关。
500 nm
二 荧光与分子结构:
(一) 荧光寿命和荧光效率:荧光寿命和荧光效率是物质的重 要发光参数。 1. 荧光寿命(fluorescence life time):是当除去激发光源后, 分子的荧光强度降低到最大荧光强度的1/e所需的时间,常 用τf表示。 当荧光物质受到一个极其短暂的光脉冲激发后,从激发态 到基态的变化可用指数衰减定律表示:
激发三重态与激发单重态区别:
1)三重态的能量稍低; 2)电子自旋方向不同;
3)三重态的跃迁几率非常小,仅相当于单重态→单重态过 程的 10-6~10-7(因为电子自旋方向的改变在光谱学上一般是 禁阻的)。
2.荧光(紫外-可见荧光)的产生:分子在室温时基本上处 于电子能级的基态。当吸收紫外-可见光后,根据自旋禁阻 选律,基态分子中的电子只能跃迁到激发单重态的各个不 同振动-转动能级,而不能直接跃迁到激发三重态的各个振 动-转动能级。
系间跨越
荧光和磷光体系能级图
(二) 荧光的激发光谱和发射光谱
荧光物质分子都具有两个特征光谱,即激发光谱 (excitation spectrum)和发射光谱或称荧光光谱(fluorescence spectrum)。 1.荧光的激发光谱:将激发荧光的光源用单色器分光,连续 改变激发光波长,固定荧光发射波长,测定不同波长激发 光下物质溶液发射的荧光强度(F),作F—l光谱图称激发光 谱,其形状与吸收光谱相似。表示不同激发波长的辐射引 起物质发射某一波长荧光的相对效率 从激发光谱图上可找到发生荧光强度最强的激发波长 lex,选用 lex可得到强度最大的荧光。

分析化学第十一章荧光分析法

分析化学第十一章荧光分析法
图中最低三重态以符号T1表示,T2代表较高的激 发三重态。
由于自旋平行比自旋配对的状态更稳定,故三重 态的能级比单重态的能量略低。
每个电子能级都有ቤተ መጻሕፍቲ ባይዱ个振动能级,在同一个电子 能级中,最低的线代表该能级的振动基态。
吸收过程发生在10-15s左右的时间内。
分析化学第十一章荧光分析法
分子吸收和发射过程的Jablonski能级能级图
由分子多重性的定义有M=2S+1=1,称之为单
重态。 基态单重态以S0表示,S1和S2则分别代表分
子的第一和第二激发单重态。 当分子处于激发态时,若分子的电子自旋与
基态相同,仍然是单重态,即分子处于S1和S2。
分析化学第十一章荧光分析法
在激发态中,分子的某个电子也有可能改变自 旋,即自旋平行则S=1,所以多重性M=2S+1=3,分子 处于这样的激发态称为三重态,
体系的荧光增强;反之,则使体系的荧光减弱。
分析化学第十一章荧光分析法
三、荧光的激发光谱和发射光谱
任何荧光分子都具有两种特征的光谱,即激 发光谱和荧光光谱。 ⒈荧光激发光谱
激发光谱是通过固定发射波长,扫描激发波
长而获得的荧光强度(F)—激发波长(λex)的关系
分析化学第十一章荧光分析法
㈡荧光效率
荧光效率也称荧光量子效率,是发射荧光的分子数与 总的激发态分子数之比。也可定义为物质吸光后发射的 荧光的光子数与吸收的激发光的光子数之比。
f
发 射 荧 光 的 光 子 数 吸 收 激 发 光 的 光 子 数
荧光的去激发过程:
①发射荧光返回基态(强的荧光物)
②无辐射跃迁回到基态(低荧光物质)
分析化学第十一章荧光分析法
⑹磷光发射 激发态分子经过系间跨越到达激发三重态

第十一章 荧光分析法

第十一章 荧光分析法

(3)系间跨跃(isc) 单线态的较低振动能级(s1)与三重态 T1 的较高振动能 级有重叠,电子有可能发生自旋状态改变而发生系间跨跃。 如含有碘溴等分子系间跨越最常见。 (4)荧光发射: 通过内转换和振动驰豫,较高能级的电子均跃回到第一 电子激发态(S1)的最低振动能级(V0=0)上。处于激发单 重态的最低振动能级的分子,若以 10-9~10-7S 左右时间发射 光子回到基态的各振动能级,这一过程就有荧光发生,称为 荧光发射。 (5)磷光发射(P): 分子经系间跨跃迁后,接着就发生快速振动驰豫而达到 三重激发态 T1 的最低振动能级(V=0)上,再跃迁到基态的 各振动能级就能发磷光。 (T:10-4~10S) (6)激发分子与溶剂分了或其它溶质分子间相互作用, 发生能量转移,使荧光或磷光强度减弱甚至消失,这一现象 称为“淬灭”。 二、激发光谱和发射光谱
波长相同,也可以不同,这一现象我们称为光致发光。最常
见 两 种 光 致 发 光 现 象 是 荧 光 ( Fluorometry ) 和 磷 光
(Phosphorscence)。
这两种过程的机理不同。
10-15s M+hr → M*
hr1→M hr→M
物质分子吸收光子能量而被激发,然后从第一激发态最
低振动能级返回到基态时各振动能级所发射出的光称为荧
10
位阻使共平面下降则荧光减弱。例 P89 顺反异构体分子,顺式分子的两个荃团在同一侧,由于 位阻原因使分子不能共平面而没有荧光。 1-2 一二苯乙烯的反式结构有强烈荧光,而顺式异构体 (b)无荧光。
3.苯环取代基的类型: 芳香化合物的芳香环上,不同取代基对论化合物的荧光 强度和荧光光谱将有很大影响。规律如下: 给电子基团使荧光效率增强:如-OH,-NH2,-NHR,NR2,-OR 等; 吸电子基团:-COOH,-C=0,-NO2,-NO,-N=N-及卤素会 减弱甚至破坏荧光,且卤素随原子序数的增大,会使下 T1 体系的磷光增强,荧光减弱了解物质分子结构和荧光的关系, 可以帮助我们考虑如何将非荧光物质转化为荧光物质,或将 荧光强度不大或选择性不多的荧光物质转化为荧光强度大及 选择性高的荧光物质,以提高分析的效果。对 T1 电子共轭体 系作用小:-R,NH3+,-SO31-1

第十一章 荧光分析法复习过程

第十一章 荧光分析法复习过程

第十一章荧光分析法一、选择题1.荧光分析法是通过测定( )而达到对物质的定性或定量分析。

A、激发光B、磷光C、发射光D、散射光2.下面( )分析方法不属于分子发射光谱法。

A、紫外一可见分光光度法B、荧光分析法C、磷光分析法D、化学发光分析法3.荧光发射光谱含有( )个发射带。

A、1B、2C、3D、不一定4.下列关于荧光光谱的叙述错误的是()A、荧光光谱的形状与激发光的波长无关B、荧光光谱与激发光谱一般是对称镜像C、荧光光谱属于分子的受激发射光谱D、荧光激发射光谱与紫外吸收光谱重合5.下列叙述错误的是()A、荧光光谱的最长波长和激发光谱的最长波长相对应B、荧光光谱的最短波长和激发光谱的最长波长相对应C、荧光光谱的形状与激发光波长无关D、荧光波长大于激发光波长6.激发态分子经过振动弛豫回到第一电子激发态的最低振动能级后,经系间窜越转移至激发三重态,再经振动弛豫降至三重态的最低振动能级,然后发出光辐射跃迁至基态的各个振动能级,这种光辐射称为( )。

A、分子荧光B、分子磷光C、瑞利散射光D、拉曼散射光7.关于振动弛豫,下列叙述中错误的是( )。

A、振动弛豫只能在同一电子能级内进行B、振动弛豫属于无辐射跃迁C、通过振动弛豫可使处于不同电子激发态的分子均返回到第一电子激发态的最低振动能级D、振动弛豫是产生Stokes位移的原因之一8.荧光寿命指的是( )。

A、从激发光开始照射到发射荧光的时间B、受激分子从第一电子激发态的最低振动能级返回到基态所需的时间C、从除去激发光光源至分子的荧光熄灭所需的时间D、除去激发光源后,分子的荧光强度降低到激发时最大荧光强度的1/e所需的时间9.关于荧光效率,下面叙述不正确的是()A、具有长共轭的π→π﹡跃迁的物质具有较大的荧光效率B、分子的刚性和共平面性越大,荧光效率越大C、顺式异构体的荧光效率大于反式异构体D、共轭体系上的取代基不同,对荧光效率的影响不同10.采用下列( )措施可使物质的荧光效率提高。

荧光分析

荧光分析
5
指溶液中的激发态分子与溶剂分子或其它溶质分子之间相 互碰撞,以热能的形式释放能量的过程。外转换常发生在第一 激发单重态或激发三重态的最低振动能级向基态转换的过程中 ,使荧光或磷光强度减弱甚至消失。 5. 体系间跨越 指不同多重态间的无辐射跃迁,例S2→T1就是一种体系 间跨越,电子由S2的较低振动能级转移至T1的较高振动能级 处。在体系间跨越过程中激发态电子的自旋反转,使分子的 多重性发生变化。 6. 磷光发射 当受激电子降到S1的最低振动能级后,未发射荧光, 而是经过体系间跨越到T1振动能级,经振动驰豫到 T1最 低振动能级,从T1最低振动能级回到基态S0的各个振动能 级所发射的光叫磷光。磷光的波长比荧光还要长。 磷光发射的持续时间为10-4 ~10S左右,故外部 6 激发光源停止照射后,磷光还会持续一段时间。
第一节
一、分子荧光的产生
基本原理
(一)分子的激发态 在基态时,分子中的电子成对地填充在能量最低的各 轨道中。
1
一个给定轨道中的两个电子,自旋方向相反,总自旋量 子数S=1/2+(-1/2)=0。此时电子能态的多重性 M=2S+1=1, 称为基态单重态,用符号So表示 。
基态单重态
激发单重态
激发三重态
3
激发单重态
激发三重态
基态单重态
4
2. 内部转换 是两个相同多重态之间的转换。分子由较高电子能级中 的较低振动能级转移到较低电子能级中的较高振动能级。 当两个电子激发态之间的能量相差较小以致于振动能级有 重叠时,内部转换很容易发生,常见S-S转换。 处于各高激发单重态的电子,都可以通过一系列内转 移及振动弛豫,回到第一激发单重态的最低振动能级。 3. 荧光发射 电子从第一激发单重态S1的最低振动能级回到基态 SO各振动能级所产生的光辐射叫做荧光。无论开始电子 被激发至什么高能级,它都经过无辐射跃迁到S1的最低 振动能级,发射荧光,所以荧光波长比激发光波长长。 荧光发射的持续时间为10-8S左右,故外部激发 光源停止照射后,荧光马上熄灭。 4.外部转换

第十一章 原子光谱分析法

第十一章  原子光谱分析法

(2)跃迁几率
跃迁几率是指电子在某两个能级之间每秒跃迁的 可能性的大小,可以通过实验数据计算出来。对 于遵守光谱选律的那些跃迁,一般跃迁几率在 106~109s-1之间。跃迁几率是与激发态寿命成反比 的,即原子处于激发态的时间越长,跃迁几率就 越小,产生的谱线强度就弱。 例如产生NaI330.232nm谱线的跃迁几率比产生 NaI588.996nm谱线的跃迁几率小约22倍,因而谱 线强度也相应弱得多。
(4)离子和电子复合
在光源中离子和电子在复合形成中性原子的过程 中,也会辐射出连续的光谱背景,尤其是在使用 激发能力较强的光源时,例如火花,这种背景尤 为明显。另外像金属一类的固体物质中自由电子 很多,它在与金属离子复合时也是一种非量子化 的能量变化,也会发射出连续的光谱背景。 背景的大小还与狭缝的宽度有关,一般狭缝越宽, 背景越严重,所以为了减小背景,应选择合适的 狭缝宽度。为了保证光谱分析的准确度及灵敏度 等,在选择分析条件时,要尽量降低或消除背景, 必要时必须进行背景扣除。
2.谱线强度
图11-2 能级跃迁示意图级之间的跃迁,只要符合光谱选律就可能发 生,而这种跃迁发生可能性的大小称为跃迁几率。
设电子在某两个能级之间的跃迁几率为A,这两个能级的能量分别为 Ei和E0,发射的谱线频率为v,则一个电子在这两个能级之间跃迁时 所放出的能量,即这两个能级之间的能量差=Ei-E0=hv。因在热力 学平衡条件下,共有Ni个原子处在第i激发态,故产生的谱线强度(I) 为 (11-2)
二、谱线强度
1.玻尔兹曼分布定律
2.谱线强度 3.影响谱线强度的主要因素 4.光谱背景
1.玻尔兹曼分布定律

谱线的产生是由于电子从高能级向低能级跃迁的结果, 即原子或离子由激发态跃迁到基态或低能态时产生的。 在热力学平衡条件下,某元素的原子或离子的激发情况, 即分配在各激发态和基态的原子浓度遵守统计热力学中 的麦克斯韦-玻尔兹曼(Maxwell-Boltzman)分布定律, 即

荧光分析法

荧光分析法

基态时分子中的电子对填充在能量最低的轨道,
且自旋相反,即总自旋量子数s为0
电子能级多重性:M=2s+1 单重态S M=1 自旋相反 三重态T M=3 自旋相同
4
基态
被激发跃迁过程中:

通常电子不发生自旋方向的改变,电子对自旋相反, 电子发生自旋方向的改变,电子对自旋相同,总自旋
总自旋量子数s为0,处于激发单重态。
第十一章 荧光分析法
(Fluorescence)
1

分子发光(molecular luminescence)
某些物质分子吸收能量跃迁到较高的电子激发态后, 返回基态的过程中伴随发光的现象。

概述
M+ 能量 →M*
M
2
分类
原子荧光 荧光 分子荧光 光致发光(PL) 紫外可见荧光 磷光 化学发光(CL) 红外荧光 X射线荧光 电致发光(EL) 生物发光(BL)
19
3)荧光光谱与激发光谱镜像关系 通常荧光发射光谱与它的吸收光谱(与激发光谱
形状一样)成镜像对称关系
基态上的各振动能级分布与第一激发态上的各振 动能级分布类似;
20
镜像关系?
固定em=620nm 固定ex=290nm (MAX)
IF
4 3 2 1
4800 4400
1→ 4 1→ 3
S1
4000
44
4.胶束增敏荧光分析 当单体表面活性剂浓度增大到临界胶束浓度,
会缔合为球状胶束, 利用胶束溶液对荧光物质有
增溶、增敏和增稳的作用,对荧光物质进行保护
45
荧光分析法的应用 1.无机化合物的分析 与有机试剂配合物后测量;可测量约60多种元素。 铍、铝、硼、镓、硒、镁、稀土常采用荧光分析法; 氟、硫、铁、银、钴、镍采用荧光熄灭法测定; 铜、铍、铁、钴、锇及过氧化氢采用催化荧光法测; 铬、铌、铀、碲采用低温荧光法测定; 铈、铕、锑、钒、铀采用固体荧光法测定 2.生物与有机化合物的分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 荧光分析法
、选择题
1.荧光分析法是通过测定 ( ) 而达到对物质的定性或定量分析。

A 、激发光 D 、散射光
2.下面 ( )分析方法不属于分子发射光谱法。

3.荧光发射光谱含有 (
)个发射带。

A 、 1
B 、 2
C 、 3 4.下列关于荧光光谱的叙述错误的是(
)
A 、 荧光光谱的形状与激发光的波长无关
B 、 荧光光谱与激发光谱一般是对称镜像
C 、 荧光光谱属于分子的受激发射光谱
D 、 荧光激发射光谱与紫外吸收光谱重合 5.下列叙述错误的是(
)
A 、 荧光光谱的最长波长和激发光谱的最长波长相对应
B 、 荧光光谱的最短波长和激发光谱的最长波长相对应
C 、 荧光光谱的形状与激发光波长无关
D 、 荧光波长大于激发光波长
6.激发态分子经过振动弛豫回到第一电子激发态的最低振动能级后,经系间窜越转移至激 发三重态, 再经振动弛豫降至三重态的最低振动能级, 然后发出光辐射跃迁至基态的各个振 动能级,这种光辐射称为 (
)。

A 、分子荧光
B 、分子磷光
C 、瑞利散射光
D 、拉曼散射光 7.关于振动弛豫,下列叙述中错误的是
( )。

A 、振动弛豫只能在同一电子能级内进行
B 、振动弛豫属于无辐射跃迁
C 、通过振动弛豫可使处于不同电子激发态的分子均返回到第一电子激发态的最低振动 能级
D 、振动弛豫是产生 Stokes 位移的原因之一 8.荧光寿命指的是 ( )。

A 、 从激发光开始照射到发射荧光的时间
B 、 受激分子从第一电子激发态的最低振动能级返回到基态所需的时间
C 、 从除去激发光光源至分子的荧光熄灭所需的时间
D 、 除去激发光源后,分子的荧光强度降低到激发时最大荧光强度的 1/e 所需的时间
9.关于荧光效率,下面叙述不正确的是(
)
A 、 具有长共轭的 n~ ;跃迁的物质具有较大的荧光效率
B 、 分子的刚性和共平面性越大,荧光效率越大
C 、 顺式异构体的荧光效率大于反式异构体 学习资料
D 、共轭体系上的取代基不同,对荧光效率的影响不同 10.采用下列 (
)措施可使物质的荧光效率提高。

学习资料
B 、磷光
C 、发射光
A 、紫外一可见分光光度法 C 、磷光分析法
B 、荧光分析法 D 、化学发光分析法
D 、不一定
A、适当降低溶液浓度
B、降低溶剂极性
C、加入重氮化合物
D、剧烈搅拌
11.下列化合物中,哪种物质的荧光效率最大( )
A、苯
B、联苯
C、萘
D、蒽
12.萘在下列( )溶剂中的荧光强度最强。

A、1一氯丙烷
B、1一溴丙烷
C、1一碘丙烷
D、1,2一二氯丙烷
13.苯胺在( )条件下荧光强度最强。

A、pH=1
B、pH=3
C、pH=10
D、pH=13
14.荧光素钠的乙醇溶液在( )条件下荧光强度最强。

A、O C
B、-10C
C、-20C
D、-30C
15.一般要在与入射光垂直的方向上观测荧光强度,这是由于( )。

A、只有在与入射光垂直的方向上才有荧光
B、荧光是向各个方向发射的,可减小透射光的影响
C、荧光强度比透射光强度大
D、荧光发射波长比透射光波长长
16.荧光法测定硫酸奎宁时,当激发光波长为320nm时,Raman光波长为360nm;当激发光波长为350nm时,Raman光波长为400nm。

若最大发射波长为448nm,则进行荧光测定时应选择( )。

A、V320m,电m=400nm
B、入=320nm ,
ex 入=360nm em
C、入=350nm, 入=448nm
D、入=320nm ,入=448nm
ex em ex em
17.荧光分光光度计常用的光源是( )。

A、空心阴极灯 B 、氙灯C
、氘灯 D 、硅碳棒
18. 用波长为320nm的入射光激发硫酸奎宁的稀硫酸溶液时,将产生320nm的()。

A、荧光
B、磷光
C、Rayleigh光
D、Raman光
19. 激发光波长和强度固定后,荧光强度与荧光波长的关系曲线称为( )
A、吸收曲线
B、激发光谱
C、荧光光谱
D、工作曲线
20. 采用激光作为荧光光度计的光源,其优点是( )
A、可以有效消除散射光对荧光测定的干扰
B、可以提高荧光法的选择性
C、可以提高荧光法的灵敏度
D、可以避免荧光熄灭现象的产生
二、填空
1 .荧光光谱的特征是------ 、----- 和------ 。

2. 激发态分子经过---- 回到第一电子激发态的最低振动能级后,以发射光量子跃迁回到
基态的任一振动能级,这时所发射的光量子称为荧光。

3. ----------------------- 荧光物质的和是鉴定物质的依据,也是定量测定时最灵敏的条件。

4. ---------------------------------------------------荧光物质的激发光谱可能含有------- 吸收带,但其发射光谱却只含有-----------------------吸收带。

5. 能够发射荧光的物质应具备的两个条件是:物质分子有强的和 ------------------ 。

--- 、。

相关文档
最新文档