七年级下数学《多边形》检测试题有答案
2022学年华东师大版七年级数学下册第九章《多边形》测试卷附答案解析
2022-2023学年七年级数学下册第九章《多边形》测试卷【全卷满分120分考试时间120分钟】一、选择题(本大题共12个小题,每小题4分,共48分.)1、只用同一种正多边形铺满地面,不可以选择()A 、正六边形B 、正五边形C 、正四边形D 、正三角形2、如图,AD ,AE ,AF 分别是ABC ∆的中线,角平分线,高,下列各式中错误的是()A 、CDBC 2=B 、BAC BAE ∠=∠21C 、︒=∠90AFB D 、CEAE =DF第2题图BE ACD F第3题图BEA CE D 第4题图BD AC3、如图,D 、E 、F 分别为BC 、AD 、BE 的中点,若BFD ∆的面积为6,则ABC ∆的面积等于()A 、36B 、18C 、48D 、244、如图,在ABC ∆中,AD 是高,AE 是中线,若3=AD ,12=∆ABC S ,则BE 的长为()A 、1B 、23C 、2D 、45、把一块直尺与一块三角板如图放置,若︒=∠1342,则1∠的度数为()A 、34°B 、44°C 、54°D 、64°21第5题图DB EAC第7题图ADBEC 第8题图6、有三根小棒,它们长度分别如下,以下列各组小棒的长度为边,能构成三角形的是()A 、10cm ,10cm ,8cmB 、5cm ,6cm ,14cmC 、4cm ,8cm ,12cmD 、3cm ,9cm ,5cm7、如图,DE AB //,︒=∠80ABC ,︒=∠140CDE ,则BCD ∠的度数为()A 、30°B 、40°C 、60°D 、80°8、如图,在ABC ∆中,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,︒=∠15D ,则A ∠的度数为()A 、30°B 、45°C 、20°D 、22.5°9、如图,在ABC ∆中,α=∠+∠C B ,按图进行翻折,使BC G C D B ////'',FG E B //',则FE C '∠的度数是()A 、2αB 、290α-︒C 、︒-90αD 、︒-1802αC ′B ′GF A D BEC第9题图ABOC第10题图FADBEC第12题图10、如图,︒=∠70A ,︒=∠40B ,︒=∠20C ,则=∠BOC ()A 、130°B 、120°C 、110°D 、100°11、从正多边形一个顶点出发共有7条对角线,则这个正多边形每个外角的度数为()A 、36°B 、40°C 、45°D 、60°12、如图,ACB ABC ∠=∠,BD 、CD 、AD 分别平分ABC ∆的内角ABC ∠,外角ACF ∠,外角EAC ∠,以下结论:①BC AD //;②ADB ACB ∠=∠;③BAC BDC ∠=∠21;④︒=∠+∠90ABD ADC .其中正确的结论有()A 、1个B 、2个C 、3个D 、4个二、填空题(本大题共4个小题,每小题4分,共16分)13、已知三角形的三边长分别为1,1-a ,3,则化简|5||3|-+-a a 的结果为;14、如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是BD A 1∠的角平分线,2CA 是CD A 1∠的角平分线,3BA 是BD A 2∠的角平分线,3CA 是CD A 2∠的角平分线,若α=∠1A ,则2021A ∠为;A 3D第14题图BAC A 1A 2EF 第16题图ACB DA ′21第15题图B A CED 15、如图,将ABC ∆纸片沿DE 折叠,使点A 落在点A '处,且A B '平分ABC ∠,A C '平分ACB ∠,若︒='∠115C A B ,则21∠+∠的度数为;16、如图,F E D C B A ∠+∠+∠+∠+∠+∠的度数是.三、解答题(本大题6个小题,共56分。
华师大七年级下册《第9章多边形》单元测试卷(含答案)
2022年春华师版数学七年级下册单元测试卷班级姓名第9章多边形[时间:90分钟分值:120分]一、选择题(每题3分,共30分)1.[2022·黔东南]如图,∠ACD=120°,∠B=20°,则∠A 的度数是()A.120°B.90°C.100°D.30°2.[2022·乌鲁木齐]如果正n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4B.5C.6D.73.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案中,不能铺满地面的是()A B C D4.在下列条件中:①∠A+∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=12∠B=13∠C;④∠A=∠B=2∠C;⑤∠A=∠B=12∠C.能确定△ABC为直角三角形的条件有()A.5个B.4个C.3个D.2个5.已知三角形的三边长分别为3、x、14.若x为正整数,则这样的三角形共有()A.2个B.3个C.5个D.7个6.如图,在△ABC中,点D在边BA的延长线上,∠ABC 的平分线和∠DAC的平分线相交于点M.若∠BAC=80°,∠C =60°,则∠M的大小为()A.20°B.25°C.30°D.35°7.如图,点P是△ABC三条角平分线的交点.若∠BPC =108°,则下列结论中正确的是()A.∠BAC=54°B.∠BAC=36°C.∠ABC+∠ACB=108°D.∠ABC+∠ACB=72°8.[2021·郴州校级期中]如图,在△ABC中,∠A=∠ACB,CD是△ABC的角平分线,CE是△ABC的高.若∠DCE=48°,则∠ACB的度数为()A.∠ACB=28°B.∠ACB=29°C.∠ACB=30°D.∠ACB=31°9.[2021·无棣模拟]如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)10. 如图,AB∥CD,∠A=30°,则∠A+∠B+∠C+∠D +∠E=()A. 240°B. 270°C. 300°D.360°二、填空题(每题4分,共24分)11.已知三角形的三边长分别为2、a-1、4,那么a的取值范围是________.13.如图,以CD为高的三角形的个数是____.14.一个n边形的每个内角为108°,那么n=____.15.[2021春·单县期末]将一副三角板如图放置,使点A 在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为______.16.如图,在△ABC中,∠A=42°,∠ABC和∠ACB 的三等分线分别交于点D、E,则∠BDC=____.17.(8分)[2021春·迁安市期末]如图,把一副三角板摆放在△ABC中,点E在BC上,点D、F在AB上.(1)CD与EF平行吗?请说明理由;(2)如果∠GDC=∠FEB,且∠B=30°,∠A=45°,求∠AGD的度数.18.(8分)已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个三角形,符合上述条件的第三边长;(2)若符合上述条件的三角形共有a个,求a的值.19.(8分)如图,在锐角△ABC中,若∠ABC=40°,∠ACB =70°,点D、E在边AB、AC上,CD与BE交于点H.(1)若BE⊥AC,CD⊥AB,求∠BHC的度数;(2)若BE,CD平分∠ABC和∠ACB,求∠BHC的度数.20.(8分)[2021春·兴化市期末]如图,点D在AB上,点E在AC上,BE、CD相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数;(2)试猜想∠BOC与∠A+∠B+∠C之间的关系,并证明你猜想的正确性.21.(10分)[2021春·灵石县期末]如图,△ABC中,AD 平分∠BAC交BC于点D,AE⊥BC,垂足为E,CF∥AD.(1)若∠B=30°,∠ACB=70°,求∠CFE的度数;(2)若(1)中的∠B=α,∠ACB=β,求∠CFE的度数.(用α、β表示)22.(12分)如图,BE与CD相交于点A,CF为∠BCD 的平分线,EF为∠BED的平分线.(1)试探求∠F与∠B、∠D之间的关系;(2)若∠B∶∠D∶∠F=2∶4∶x,求x的值.23.(12分)(1)如图1,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY、XZ分别经过点B、C.在△ABC中,∠A=30°,求∠ABC+∠ACB、∠XBC +∠XCB的值.(2)如图2,改变直角三角板XYZ的位置,使三角板XYZ 的两条直角边XY、XZ仍然分别经过B、C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.图1图2参考答案1.C2.C【解析】设该正多边形的外角为x°,则相邻的内角为2x°.根据“外角与相邻的内角互补”,得x+2x=180,解得x=60.根据多边形的外角和是360°,有n=36060=6.3.C【解析】用一种正多边形瓷砖铺满地面的条件是:正多边形的一个内角是360°的约数.由此可判断正五边形瓷砖不能铺满地面.4.B5.C【解析】由题可得11<x<17.∵x为正整数,∴x的可能取值是12、13、14、15、16,共5个,故这样的三角形共有5个.6.C【解析】∵∠BAC=80°,∠C=60°,∴∠ABC=40°.∵∠ABC的平分线和∠DAC的平分线相交于点M,∴∠ABM=20°,∠CAM=12×(180°-80°)=50°,∴∠M=180°-20°-50°-80°=30°.7.B【解析】设∠A为2x,则∠ACB=2x,∠ACD=x,∴∠CBE=∠A+∠ACB=4x,∠CDB=∠A+∠ACD=3x,∴∠CDB=3∠DCB.∵∠DCE=48°,∴∠CDB=90°-48°=42°,∴∠DCB=14°,∴∠ACB=28°.9.B【解析】2∠A=∠1+∠2.理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°-∠2+180°-∠1=360°,∴2∠A=∠1+∠2.10. A【解析】如答图,∵AB∥CD,∠A=30°,∴∠C=∠A =30°,∠B=∠1.又∵∠1+∠D+∠E=180°,∴∠A+∠B +∠C+∠D+∠E=30°+30°+180°=240°.11.3<a<7【解析】根据三角形的三边关系,有4-2<a-1<4+2,解得3<a<7.12.270°【解析】CD分别是△ABC,△CEB,△CDB,△ADC,△CED,△AEC的高,共6个三角形.14.5【解析】根据多边形的内角和公式可知(n-2)×180°=108°n,解得n=5.15.15°【解析】∵Rt△ABC中,∠C=45°,∴∠ABC=45°.∵BC∥DE,∠D=30°,∴∠DBC=30°,∴∠ABD=45°-30°=15°.16.88°【解析】∵∠A=42°,∴∠ABC+∠ACB=180°-42°=138°,∴∠DBC+∠DCB=23×138°=92°,∴∠BDC=180°-92°=88°.17.解:(1)CD∥EF.理由:∵∠CDF=∠EFB=90°,∴CD∥EF.(2)∵∠B=30°,∠A=45°,∴∠FEB=60°,∠ACD=45°.∵∠GDC=∠FEB,∴∠GDC=60°.∵∠AGD=∠GDC+∠ACD,∴∠AGD=60°+45°=105°.18.解:两边长分别为9和7,设第三边是n,则9-7<n<7+9,即2<n<16.(1)第三边长是4(答案不唯一).(2)∵2<n<16,且n为偶数,∴n的值为4、6、8、10、12、14,共6个,∴a=6. 19.解:(1)∵BE⊥AC,∠ACB=70°,∴∠EBC=90°-70°=20°.∵CD⊥AB,∠ABC=40°,∴∠DCB=90°-40°=50°,∴∠BHC=180°-20°-50°=110°.(2)∵BE平分∠ABC,∠ABC=40°,∴∠EBC=20°.∵DC平分∠ACB,∠ACB=70°,∴∠DCB=35°,∴∠BHC=180°-20°-35°=125°. 20.解:(1)∵∠A=50°,∠C=30°,∴∠BDO=∠A+∠C=80°.∵∠BOD=70°,∴∠B=180°-∠BDO-∠BOD=30°. (2)∠BOC=∠A+∠B+∠C.证明:∵∠BEC=∠A+∠B,∴∠BOC=∠BEC+∠C=∠A+∠B+∠C. 21.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°-∠B-∠ACB=80°.∵AD平分∠BAC,∴∠BAD=40°.∵AE⊥BC,∴∠AEB=90°,∴∠BAE=60°,∴∠DAE =∠BAE -∠BAD =60°-40°=20°. ∵CF ∥AD ,∴∠CFE =∠DAE =20°,(2)∵∠BAE =90°-∠B ,∠BAD =12∠BAC =12(180°-∠B -∠BCA ),∴∠CFE =∠DAE =∠BAE -∠BAD =90°-∠B -12(180°-∠B -∠BCA )=12(∠BCA -∠B )=12β-12α. 22.解:(1)如答图,∵CF 为∠BCD 的平分线, EF 为∠BED 的平分线,∴∠1=∠2,∠3=∠4.∵∠D +∠1=∠F +∠3,∠B +∠4=∠F +∠2,∴∠B +∠D +∠1+∠4=2∠F +∠3+∠2,∴∠F=12(∠B+∠D).(2)当∠B∶∠D∶∠F=2∶4∶x时,设∠B=2a(a≠0),则∠D=4a,∠F=ax.∵2∠F=∠B+∠D,∴2ax=2a+4a,∴2x=2+4,∴x=3.23.解:(1)∵∠A=30°,∴∠ABC+∠ACB=150°.∵∠X=90°,∴∠XBC+∠XCB=90°.(2)不变化.∵∠A=30°,∴∠ABC+∠ACB=150°.∵∠X=90°,∴∠XBC+∠XCB=90°,∴∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.。
七年级数学下册《多边形》练习题及答案(华师大版)
七年级数学下册《多边形》练习题及答案(华师大版)一、选择题1.下面图形是用木条钉成的支架,其中不容易变形的是( )A. B. C. D.2.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.如图,为了估计池塘岸边A,B两点间的距离,小玥同学在池塘一侧选取一点O,测得OA=12米,OB=7米,则A,B间的距离不可能是()A.5米B.7米C.10米D.18米4.将一个n边形变成n+1边形,内角和将( )A.减少180°B.增加90°C.增加180°D.增加360°5.小明家装修房屋,用同样的正多边形瓷砖铺地,顶点连着顶点,为铺满地面而不重叠,瓷砖的形状可能有( )A.正三角形、正方形、正六边形B.正三角形、正方形、正五边形C.正方形、正五边形D.正三角形、正方形、正五边形、正六边形6.已知三角形三边分别为2,a-1,4,那么a的取值范围是( )A.1<a<5B.2<a<6C.3<a<7D.4<a<67.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )A.43°B.47°C.30°D.60°8.小明同学把一个含有450角的直角三角板在如图所示的两条平行线m,n上,测得,则的度数是( )A.450B.550C.650D.7509.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是( )A. B.C. D.10.△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( )A.4B.4或5C.5或6D.611.记n边形(n>3)的一个外角的度数为p,与该外角不相邻的(n﹣1)个内角的度数的和为q,则p与q的关系是( )A.p=qB.p=q﹣(n﹣1)•180°C.p=q﹣(n﹣2)•180°D.p=q﹣(n﹣3)•180°12.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°二、填空题13.过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是边形.14.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是.15.在△ABC中,∠A=60°,∠B=2∠C,则∠B= .16.将一副直角三角板如图摆放,点C在EF上,AC经过点D,已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF= .17.如图,在一个正方形被分成36个面积均为1的小正方形,点A与点B在两个格点上.在格点上存在点C,使△ABC的面积为2,则这样的点C有个.18.如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .三、作图题19.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.四、解答题20.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.21.小王准备用一段长30m的篱笆围成一个三角形形状的场地,用于饲养家兔,已知第一条边长为am,由于受地势限制,第二条边长只能是第一条边长的2倍多2m.(1)请用a表示第三条边长.(2)问第一条边长可以为7m吗?请说明理由.22.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.23.在△ABC中,AB=AC,AC上的中线把三角形的周长分为18cm和24cm两个部分,求三角形各边长.24.现实生活中,各种各样的图形随处可见.我们知道,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.由三角形定义可知,在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形.如图1,若有三条边的叫做三角形,有四条边的叫做四边形,有五条边的叫做五边形…通过学习,我们知道三角形三个内角的和为180°,现在我们类比三角形内角和来研究其他多边形图形的内角和问题.探究:猜想并验证四边形的内角和.猜想:四边形内角和为360°验证:在四边形ABCD中,连接AC,则四边形ABCD被分为两个三角形(图2).所以,四边形ABCD的内角和=△ABC的内角和+△ACD的内角和=180°+180°=360°请类比上述方法探究下列问题.(1)探究:猜想并探究五边形ABCDE的内角和.(图3)猜想:验证:(2)根据上述探究过程,可归纳出n边线内角和为.(3)证明:①已知一个多边形的内角和为1800°,那么这是个边形.②一天小明爸爸给小明出了一道智力题考考他.将一个多边形截去一个角后(没有过顶点),得到的多边形内角和将会( )A.不变B.增加180°C.减少180°D.无法确定.25.如图1,在平面直角坐标系中,已知A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB 交y轴于F点.(1)求点A、B的坐标;(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图 2,求∠AMD的度数;(3)如图 3,(也可以利用图 1)①求点F的坐标;②坐标轴上是否存在点P,使得△ABP和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案1.【答案】B2.【答案】B3.【答案】B4.【答案】C5.【答案】A6.【答案】C7.【答案】B.8.【答案】D.9.【答案】A.10.【答案】B.11.【答案】D.12.【答案】B.13.【答案】八.14.【答案】3或4.15.【答案】80°.16.【答案】25°17.【答案】5;18.【答案】180°.19.【答案】解:(1)(2)(3)题如图所示.(4)△A′B′C′的面积为:8.故答案为:8.20.【答案】解:设这个多边形的边数是,则(n﹣2)×180=360×4,n﹣2=8,n=10.答:这个多边形的边数是10.21.【答案】解:(1)第三边为:30﹣a﹣(2a+2)=(28﹣3a)m. (2)第一条边长不可以为7m.理由:a=7时,三边分别为7,16,7∵7+7<16∴不能构成三角形,即第一条边长不可以为7m.22.解:∵在△ABC中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°∴∠A=×180°=40°,∠ACB=×180°=80°∵CD是∠ACB平分线,∴∠ACD=0.5∠ACB=40°∴∠CDB=∠A+∠ACD=40°+40°=80°23.【答案】解:设AD=CD=x,则AB=2x①当AB+AD=24时,得:3x=24,x=8AB=AC=16∵BC+x=18∴BC=10;②当AB+AD=18时3x=18,x=6AB=AC=12又BC+x=18∴BC=6.24.【答案】解:(1)探究:猜想:五边形ABCDE的内角和为540°.理由:如图3中,连接AD、AC.由图可知,五边形的内角和=△ADE的内角和+△ADC的内角和+△ACB的内角和=180°+180°+180°=540°,故答案为540°.(2)因为:三角形内角和为180°=(3﹣2)×180°四边形内角和为360°=(4﹣2)×180°五边形内角和=(5﹣2)×180°,…所以可以推出n边形的内角和=(n﹣2)•180°故答案为(n﹣2)•180°.(3)①设是n边形,由题意(n﹣2)•180°=1800,解得n=12∴这个多边形是12边形.故答案为12.②因为一个多边形切去一个角后形成的多边形边数有三种可能:比原多边形边数小1、相等、大1,所以将一个多边形截去一个角后(没有过顶点),得到的多边形内角和可能不变,可能增加180°,也可能减少180°,不能确定,故选D.25.【答案】。
七年级数学《多边形》专项训练试卷及答案解析
七年级数学《多边形》专项训练试卷及答案解析时间:120分钟 满分:120分班级______ 姓名______ 得分______一、选择题(每小题3分,共30分)1.一个正多边形的每个外角都等于36°,那么它是( ) A .正五边形 B .正六边形 C .正八边形 D .正十边形 2.如图,∠1=∠2,∠3=∠4,下列结论中错误的是( ) A .BD 是△ABC 的角平分线 B .CE 是△BCD 的角平分线 C .∠3=12∠ACB D .CE 是△ABC 的角平分线第2题图 第3题图3.如图,下列说法中错误的是( ) A .∠1不是△ABC 的外角 B .∠B <∠1+∠2C .∠ACD 是△ABC 的外角 D .∠ACD >∠A +∠B4.下列长度的三条线段不能组成三角形的是( ) A .5,5,10 B .4,5,6 C .4,4,4 D .3,4,5 5.只用下列图形中的一种,能够铺满地面的是( ) A .正十边形 B .正八边形 C .正六边形 D .正五边形6.已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x ,则x 的取值范围是( ) A .0<x <52 B .x ≥52C .x >52D .0<x <107.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( ) A .13 B .14 C .15 D .16 8.如图,把一块含有30°角(∠A =30°)的直角三角板ABC 的直角顶点放在长方形桌面CDEF 的一个顶点C 处,桌面的另一个顶点F 在三角板的斜边上,如果∠1=40°,那么∠AFE 的度数是( )A .50°B .40°C .20°D .10°第8题图9.如图,已知在△ABC中,∠B=∠C,D是BC边上任意一点,DF⊥AC于点F,E在AB边上,ED⊥BC于点D,∠AED=155°,则∠EDF等于( )A.50° B.65° C.70° D.75°第9题图第10题图10.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域.设正八边形与其内部小正方形的边长都为a,M为正八边形内部的小正方形的一个顶点,则∠ABM的度数及阴影部分的面积分别为( )A.45°,2a2 B.60°,3a2 C.30°,4a2 D.75°,2a2二、填空题(每小题3分,共24分)11.在△ABC中,如果∠B=45°,∠C=72°,那么与∠A相邻的一个外角等于________度.12.如果三角形的三边长度分别为3a,4a,14,则a的取值范围是____________.13.如图,AD,BE分别是△ABC的角平分线和高,∠BAC=40°,则∠AFE=________.第13题图第14题图14.如图,在△ABC中,AD是BC边上的中线,已知AB=5cm,AC=7cm,则△ACD与△ABD 的周长差为________cm.15.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2=________.第15题图第16题图第18题图16.维明公园的一段小路是由型号相同的五边形地砖平铺而成的,如图所示,是平铺图案的一部分,如果每一个五边形中有3个内角相等,那么这三个内角的度数都等于________.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为________.18.如图,A,B,C分别是线段A1B,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积是________。
七年级数学下册多边形的综合练习题
七年级数学下册多边形的综合练习题(注意:由于文字限制的要求,下文所展示的综合练习题,只会呈现题干和部分解答。
)一、选择题1. 具有4条边的多边形是()。
A. 三角形B. 四边形C. 五边形D. 六边形解析:根据定义,具有4条边的多边形为四边形,因此正确答案是B。
2. 下列四边形中,不是平行四边形的是()。
A. 矩形B. 菱形C. 正方形D. 反方形解析:反方形不是常见的四边形,因此不是平行四边形,所以正确答案是D。
二、填空题3. 一个边长为5cm的正方形的周长是()cm。
解析:正方形的周长等于四边长之和,因此 5cm × 4 = 20cm,所以答案是20cm。
4. 若两条边长分别为7cm、9cm的矩形的周长是20cm,那么另外两边的边长分别是()cm。
解析:设矩形的另外两边长分别为x和y,则由周长的定义可得 2x + 2y = 20。
由此可知,x + y = 10,代入x和y的值得方程组为 x + y = 10,7 + 9 - x - y = 10。
解得 x = 6,y = 4 或 x = 4,y = 6。
所以答案可以是 6cm 和 4cm,或者 4cm 和 6cm。
三、计算题5. 一个菱形的周长为24cm,其长对角线长为10cm,求其短对角线长。
解析:菱形的周长等于4倍的短边长,因此短边长为24cm ÷ 4 =6cm。
利用菱形的性质,长对角线的垂直平分线也是短对角线,且两个对角线相互平分对方。
所以两个对角线的长度相等,即短对角线长为10cm。
6. 一个正五边形的内角和为()°。
解析:根据公式,正五边形的内角和 = (5 - 2) × 180° = 3 × 180° = 540°。
所以答案是540°。
四、解答题7. 证明:三角形的内角和等于180°。
解答:设三角形的三个内角为A、B、C。
利用直线的角平分线性质,在∠BAC 上作角平分线AD,使其与边BC相交于点D。
华师大版七年级数学下册《多边形》单元试卷检测练习及答案解析
华师大版七年级数学下册《多边形》单元试卷检测练习及答案解析一、选择题1、若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3C.4 D.52、等腰三角形的周长为16,其一边长为6,那么它的底边长为()A.4或6 B.4C.6 D.53、下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm4、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.135° B.150°C.270°D.90°5、如果一个多边形的边数由8边变成10边,其内角和增加了()A.90°B.180°C.360°D.540°6、若正多边形的一个外角是40°,则这个正多边形是()A.正七边形B.正八边形C.正九边形D.正十边形7、一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.对角线增加一条D.内角和增加180°8、一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7C.8 D.99、只用一种完全相同的正多边形地板砖镶嵌地面,该地板砖的形状不能是()A.正三角形B.正方形C.正六边形D.正八边形10、一个多边形内角和是1080°,则这个多边形的对角线条数为()A.27 B.25C.22 D.20二、填空题11、已知△ABC 的两条边长分别为 5 和 8,那么第三边长 x 的取值范围____________-.12、已知,,是的三边长,,满足,为奇数,则__________.13、已知a、b、c是一个三角形的三条边长,则化简|a-b+c|-|a-b-c|=_________ .14、在△ABC中,∠A=∠B+∠C,则∠A=______.15、已知一个等腰三角形的两边长分别为3和5,则这个三角形的周长为_____________.16、小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此反复,小林共走了108米回到点P,则角α的度数为____.17、若多边形的每一个内角均为108°,则这个多边形的边数为___________18、一个多边形的内角和等于外角和,则这个多边形是_________边形 .19、(题型三)已知一个多边形的每个外角都相等,一个内角与其外角的度数之比为9∶2,则这个多边形的边数为_____.20、把边长相同的正三角形和正方形组合镶嵌,若用2个正方形,则还需要____个正三角形才可以镶嵌.三、解答题21、一个多边形切去一个角后,形成的另一个多边形的内角和为1 080°,求原多边形的边数.22、如图,在△ABC中,∠A=62°,∠B=74°,∠ACB的平分线交AB于D,DE∥BC交AC于E,求∠EDC的度数.23、如图,在△ABC中,CD平分∠ACB,DE∥AC,∠B=50°,∠EDC=30°.求∠ADC的度数.24、如图所示模板,按规定AB,CD的延长线相交成80°的角,因交点不在板上不便测量,工人师傅测得∠BAE=122°,∠DCF=155°,此时AB,CD的延长线相交所成的角是否符合规定?为什么?25、如果两个多边形的边数之比为1∶2,这两个多边形的内角之和为1 440°,请你确定这两个多边形的边数.参考答案1、D2、A3、B4、C5、C6、C7、D8、D9、D10、D11、12、713、2a-2b14、90°15、11或13 16、40°17、5; 18、四19、1120、3个.21、原多边形的边数可能为7、8或9.22、22°23、∠ADC =80°.24、不符合25、这两个多边形的边数分别为4,8.答案详细解析【解析】1、【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边即可解答.【详解】设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,∴只有选项D符合要求.故选D.【点睛】本题考查三角形三边关系定理,熟记两边之和大于第三边,两边之差小于第三边是解题的关键.2、分析:此题分为两种情况:6是等腰三角形的底边或6是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.详解:当腰为6时,则底边4,此时三边满足三角形三边关系;当底边为6时,则另两边长为5、5,此时三边满足三角形三边关系;故选A.点睛:本题考查了等腰三角形的性质及三角形的三边关系,解题的关键是能够分类讨论,难度不大.3、分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交与第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.4、分析:由∠1、∠2分别是△CEF的外角可知,∠1=∠C+∠CFE、∠2=∠C+∠CEF,于是有∠1+∠2=2∠C+∠CFE+∠CEF.已知∠C=90°,从而可求∠1+∠2的度数.详解:如图所示,对图形进行点标注.∵∠C=90°,∴∠CEF+∠CFE=90°.∵∠1、∠2分别是△CEF的外角,∴∠1=∠C+∠CFE,∠2=∠C+∠CEF.∴∠1+∠2=∠C+∠CFE+∠C+∠CEF=90°+90°+90°=270°.故选C.点睛:本题主要考查了三角形外角的性质以及直角三角形的性质,根据三角形外角的性质将∠1与∠2之和转化为求∠C+∠CFE+∠C+∠CEF的和是解题的关键.解答这类题时,要注意直角三角形的性质:在直角三角形中,两锐角互余.5、∵n边形的内角和为(n−2)⋅180°,∴边数增加2它的内角和增加2×180°=360°.故选:C.6、多边形的外角和是360°,已知该多边形是正多边形,所以每个外角的度数是一样的,即可得这个多边形的边数就是360°÷40°=9.故选C.7、多边形的内角和公式:,故一个多边形的边数每增加一条,这个多边形的内角和增加180°.故选D.8、试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.9、试题分析:分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.解:A、正三角形的每个内角是60°,能整除360°,能镶嵌地面;B、正方形的每个内角是90°,4个能镶嵌地面;C、正六边形的每个内角是120°,能整除360°,能镶嵌地面;D、正八边形的每个内角为:180°﹣360°÷8=135°,不能整除360°,不能镶嵌地面.故选:D.点评:此题主要考查了能作为镶嵌的条件,判断一种正多边形能否镶嵌,要看周角360°能否被一个内角度数整除,若能整除,则能进行平面镶嵌,若不能整除,则不能进行平面镶嵌.10、设多边形为n边形,180°(n-2)=1080°,n=8,=.所以选D.11、分析: 根据三角形三边关系:任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值范围.详解:∵此三角形的两边长分别为5和8,∴第三边长的取值范围是:8-5=3<第三边<5+8=13.即:3<x<13,故答案为:3<x<13.点睛: 此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.12、分析:根据非负数的性质直接求出,,根据三角形的三边关系可直接求出边长详解:,满足,根据三角形的三边关系,得即:为奇数,则7.故答案为:7.点睛:此题主要考查了非负数的性质以及三角形的三边关系,三角形任意两边之和大于第三边.13、分析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,得到a﹣b+c>0,a﹣b﹣c<0,再根据绝对值的性质进行化简计算.详解:根据三角形的三边关系,得:a﹣b+c>0,a﹣b﹣c<0.|a﹣b+c|-|a﹣b﹣c|=a﹣b+c+(a﹣b﹣c)=2a-2b.故答案为:2a-2b.点睛:本题主要考查了三角形的三边关系和绝对值的化简,关键是根据三角形的三边关系判断出a﹣b+c,a﹣b﹣c的正负性.14、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,故答案为:90°.15、因为没有确定哪条边是底边,所以需要分类讨论:当底边为3时,三边长是3,3,5,能构成三角形,则周长是3+3+5=11;当底边为5时,三边长是3,5,5,能构成三角形,则周长是3+5+5=13.故答案为11或13.16、∵108÷12=9,∴小林从P点出发又回到点P正好走了一个九边形,∴α=360°÷9=40°.故答案为:40°.【点睛】本题主要考查多边形的外角和定理.熟记定理的内容是解题的关键。
七年级数学多边形试卷答案
一、选择题(每题2分,共20分)1. 下列图形中,属于多边形的是()A. 圆B. 正方形C. 矩形D. 抛物线答案:B2. 一个正多边形的边数为n,则它的内角和为()A. 180°nB. 360°nC. 540°nD. 720°n答案:D3. 一个等边三角形的周长为24cm,则它的边长为()A. 4cmB. 6cmC. 8cmD. 12cm答案:B4. 在一个矩形中,如果对角线相等,那么这个矩形一定是()A. 正方形B. 长方形C. 平行四边形D. 等腰梯形答案:A5. 下列关于多边形对角线的说法正确的是()A. 任何多边形都可以作对角线B. 对角线相交于一点C. 对角线互相垂直D. 对角线长度相等答案:B6. 一个正多边形的每个内角是108°,则它的边数为()A. 4B. 5C. 6D. 7答案:C7. 一个四边形的对角线相等,那么这个四边形一定是()A. 矩形B. 菱形C. 正方形D. 等腰梯形答案:A8. 一个正多边形的边长为a,则它的面积S为()A. S = (n-2)a²/4B. S = na²/4C. S = (n-2)a²/2D. S = na²/2答案:A9. 一个等腰三角形的底边长为8cm,腰长为6cm,则这个三角形的周长为()A. 14cmB. 16cmC. 18cmD. 20cm答案:C10. 下列关于多边形面积的说法正确的是()A. 任何多边形都可以作面积B. 面积越大,边数越多C. 面积与边长成正比D. 面积与边长成反比答案:A二、填空题(每题2分,共20分)11. 一个四边形的内角和为360°,则它的每个内角为________°。
答案:90°12. 一个正六边形的边长为10cm,则它的周长为________cm。
答案:60cm13. 一个等腰梯形的上底为4cm,下底为8cm,高为6cm,则它的面积为________cm²。
华师大版数学七年级下册第9章多边形 达标测试卷(含答案)
第9章多边形达标测试卷一、选择题(每题3分,共24分)1.下列图形中,具有稳定性的是()2.如图所示,∠B=35°,∠C=y°,∠BAD=x°,y与x的关系式为() A.y=145-x B.y=x-35C.y=x+55 D.y=x+35(第2题)(第4题)(第5题)3.下列长度的三条线段,能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.6,6,13 4.如图,在六边形ABCDEF中,若∠1+∠2=90°,则∠3+∠4+∠5+∠6=() A.180°B.240°C.270°D.360°5.如图,BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=()A.30°B.40°C.50°D.60°6.如图所示,图中共有三角形()A.5个B.6个C.7个D.8个(第6题)(第7题)7.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积为6 cm2,则阴影部分的面积为()A.1 cm2 B.32cm2C.2 cm2 D.52cm28.小飞家房屋装修时,选中了一种漂亮的正八边形地砖,建材店老板告诉他,只用一种八边形地砖是不能铺满地面的,但可以与另外一种形状的地砖混合使用,你认为要使地面铺满,小飞应选择另一种地砖的形状是()A.正三角形B.正方形C.正五边形D.正六边形二、填空题(每题3分,共18分)9.如果一个三角形的一个内角等于相邻的外角,这个三角形是________三角形.10.△ABC中,∠A比∠B大10°,∠C=50°,则∠A=________.11.一个多边形外角和是内角和的29,则这个多边形的边数为________.12.△ABC中,∠A=x,∠B、∠C的角平分线的夹角为y,则y与x之间的关系可以表示为________.13.如图,直线AB∥CD,∠B=70°,∠D=30°,则∠E的度数是________.(第13题)14.在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC=________°.三、解答题(共58分)15.(8分)如图,试说明“三角形的外角和等于360°”.(第15题)16.(9分)已知△ABC的三边长分别为a,b,c.(1)若a,b,c满足(a-b)2+(b-c)2=0,试判断△ABC的形状;(2)若a=5,b=2,且c为整数,求△ABC的周长的最大值及最小值.17.(9分)看对话答题:小梅:“这个多边形的内角和等于1125°.”小红:“不对,你少加了一个角.”问题:她们在求几边形的内角和?少加的那个内角是多少度?18.(9分)如图,△ABC中,AE,CD是△ABC的两条高,AB=4,CD=2.(第18题)3(1)请画出AE,CD;(2)求△ABC的面积;(3)若AE=3,求BC的长.19.(11分)如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E,∠ABC=∠ACE.(第19题)(1)试说明:AB∥CE;(2)若∠A=50°,求∠E的度数.20.(12分)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下空隙,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格.正多边形边数3456…n正多边形每个内角的度数…(2)如图所示,如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)不能用正五边形的材料铺满地面的理由是什么?(4)从正三角形、正四边形、正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.(第20题)5答案一、1.D 2.B 3.A 4.C 5.A 6.A7.B8.B二、9.直角10.70°11.1112.y=90°+12x13.40°14.80或40点拨:当△ABC为锐角三角形时,如图①,(第14题)∠BAD=180°-∠B-∠ADB=180°-30°-90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°;当△ABC为钝角三角形时,如图②,∠BAD=180°-∠B-∠ADB=180°-30°-90°=60°,∠BAC=∠BAD-∠CAD=60°-20°=40°.综上所述,∠BAC=80°或40°.三、15.解:∵∠BAE+∠1=180°,∠CBF+∠2=180°,∠ACD+∠3=180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°.∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3),∵在△ABC中,∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°-180°=360°.16.解:(1)∵(a-b)2+(b-c)2=0,∴a-b=0,b-c=0,∴a=b=c,∴△ABC是等边三角形.(2)∵a=5,b=2,且c为整数,∴5-2<c<5+2,即3<c<7,∴c=4,5,6,∴△ABC周长的最小值为5+2+4=11;△ABC周长的最大值为5+2+6=13.17.解:设少加的那个内角为x°,多边形的边数为n,则1125+x=(n-2)180,x=(n-2)180-1 125,7 ∵0<x <180,∴0<(n -2)180-1 125<180, 解得8.25<n <9.25,∵n 为整数,∴n =9, 所以x =(9-2)×180-1 125=135,∴她们在求九边形的内角和,少加的那个内角为135度. 18.解:(1)如图.(第18题)(2)∵AB =4,CD =2,∴S △ABC =12 AB ·CD =12×4×2=4; (3)∵S △ABC =12AB ·CD =12 BC ·AE , ∴12BC ×3=4,∴BC =83.19.解:(1)∵CE 平分∠ACD ,∴∠ECD =∠ACE ,∵∠ABC =∠ACE ,∴∠ABC =∠ECD ,∴AB ∥CE . (2)∵∠ACD 是△ABC 的一个外角, ∴∠ACD =∠ABC +∠A ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠E =∠ECD -∠EBC =12∠ACD -12∠ABC =12∠A =25°. 20.解:(1)60°;90°;108°;120°;(n -2)·180°n(2)设这个正多边形的边数为n , 当360°÷(n -2)·180°n为正整数时,求出的n 值符合题意.360°÷(n -2)·180°n =2n n -2=2+4n -2,要使2+4n -2为正整数,则4为n -2的倍数 因此,n -2=1或2或4,即n =3或4或6.故如果限于用一种正多边形镶嵌,正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形.(3)由(2)知,当n =5时,360°÷(5-2)×180°5=103不为整数,故不能用正五边形的材料铺满地面.(4)(答案不唯一)选正方形和正八边形,画图结果如下所示:(第20题)设在一个顶点周围有m 个正方形,n 个正八边形,则m ,n 应是方程m ·90+n ·135=360即2m +3n =8的正整数解,解只有⎩⎨⎧m =1,n =2一组,故符合条件的图形只有一种.。
华东师大版七年级数学下册《第九章多边形》单元检测试题(含答案)
七年级数学下册第九章多边形单元检测试题姓名:__________班级:__________一、单项选择题〔共10题;共30分〕.△ABC中,∠B是∠A的2倍,∠C比∠A大20°,那么∠A等于()A.40°B.60C.80°D°.90°2.如图,在△ABC中,BC边上的高是〔〕A.CEB.ADC.CFD.AB3.假如一个正多边形的一个外角为30°,那么这个正多边形的边数是〔〕A.6B.11C.12D.184.〕如图,矩形 ABCD,一条直线将该矩形 ABCD切割成两个多边形,那么所得任一多边形内角和度数不行能是〔〕A.720°B.540°C.360°D.180°5.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为〔〕A.5B.5或6C.5或7D.5或6或76.以下列图方格纸中的三角形是〔〕A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形7.如图,在△ABC中,E是BC上的一点,EC2BE D是AC的中点,设△ABC△ADF△BEF=,点,,的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,那么S△ADF-S△BEF=()A.1B.2C.3D.4,BD是AC边上的高,8.如图,在△ABC中,AB=AC,∠A=36那么∠DBC的度数是〔〕°°°°9.AD是△ABC的中线,BE是△ABD的中线,假定△ABC的面积为20,那么△ABE的面积为〔〕A.5B.10C.15D.1810.如图,那么∠A+∠B+∠C+∠D+∠E=〔〕度A.90B.180C.200D.360二、填空题〔共8题;共24分〕11.如图,在△ABC中,AB=AC,AD⊥BC于点D,假定AB=6,CD=4,那么△ABC的周长是________12.如图,墙上钉了根木条,小明想查验这根木条能否水平,他拿来一个以下列图的测平仪,再这个测平仪中,AB=AC,BC边的中点D处有一个重锤,小明建BC边与木条重合,察看此重锤能否经过A点,如经过A点,那么是水平的,此中的道理是________.113.三角形片ABC中,∠A=55°,∠B=75°,将片的一角折叠,使点C落在△ABC内〔如〕,∠1+∠2的度数________度.14.在△ABC中,AB=13cm,AC=20cm,BC上的高12cm,△ABC的面________cm2.15.在△ABC中,AB=AC=17,BC=16,AD⊥BC于点D,AD=________.16.假定一个四形的四个内角度数的比3∶4∶5∶6,个四形的四个内角的度数分________.17.假定+=0,以的等腰三角形的周.18.如,∠MON=30°,点A1,A2,A3,⋯在射ON上,点B1,B2,B3,⋯在射OM上,△A1B1A2,△A2B2A3,△A3B3A4,⋯均等三角形,假定OA1=2,△A5B5A6的________.三、计算题〔共4题;共24分〕19.如,假定∠B=28°,∠C=22°,∠A=60°,求∠BDC.20.如,AB⊥BC,DC⊥BC,假定∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.21.如,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=152°,求∠A的度数.22.如所示,在△ABC中,D是BC上一点,∠1=∠2,∠3=∠4,∠BAC=78°,求∠DAC的度数.2((((((((((((((四、解答题〔共4题;共34分〕(23.以下列图,AD,AE是三角形A BC的高和角均分线,∠B=36°,∠C=76°,求∠DAE的度数.((((((((((((24.如图,在△ABC中,BD是∠ABC的均分线,CD是外角∠ACE的均分线.求证:∠D=∠A.(((((((((((((〔1〕等腰三角形的一边长等于8cm,一边长等于9cm,求它的周长;〔2〕等腰三角形的一边长等于6cm,周(长等于28cm,求其余两边的长.((((((((((((26.如图,AD为△ABC的中线,BE为△ABD的中线.(1〕∠ABE=15°,∠BAD=40°,求∠BED的度数;(2〕作图:在△BED中作出BD边上的高EF;BE边上的高DG;3〔3〕假定△ABC的面积为40,BD=5,那么△BDE中BD边上的高EF为多少?假定BE=6,求△BED中BE边上的高DG为多少?答案分析局部一、单项选择题1.【答案】A2.【答案】B3.【答案】C4.【答案】A5.【答案】D6.【答案】A7.【答案】B 8.【答案】A 9.【答案】A 10.【答案】B二、填空题2021.等腰三角形底边上的中线与底边上的高相互重合13.100 14.126或66 15.15 16.60o,80o,100o,18.32.三、计算题19.解:以下列图:连接BC.∵∠A=60°,∴∠ABC+ACB=120°.∵∠B=28°,∠C=22°,∴∠DBC+∠DCB=70°.∴∠BDC=180°﹣70°=110°.20.解:∵DC⊥BC,∠DBC=45°,∴∠D=90°﹣∠DBC=90°﹣45°=45°;AB⊥BC,DC⊥BC,∴AB∥CD,∴∠AED=∠A=70°;在△DEF中,∠BFE=∠D+∠AED=45°+70°=115°.21.解:∵DF⊥BC,∴∠FDC=90°,∵∠AFD=152°,∴∠C=∠AFD﹣∠FDC=152°﹣90°=62°,4∵∠B=∠C,∴∠A=180°﹣∠B﹣∠C=180°﹣62°﹣62°=56°22.解:∠3=∠1+∠2,∠1=∠2,∴∠3=2∠1,∵∠3=∠4,∴∠4=2∠1,∴180°﹣4∠1+∠1=78°,解得,∠1=34°,∴∠DAC=78°﹣∠1=44°.四、解答题23.解:∵∠B=36°,∠C=76°∴∠BAC=68°∵AE均分∠BAC∴∠EAC=68°÷2=34°∵AD是高线∴∠DAC=90°-76°=14°∴∠DAE=∠EAC-∠DAC=34°-14°=20°24证明:依据三角形外角性质有∠3+∠4=∠1+∠2+∠A.由于BD、CD是∠ABC和∠ACE的均分线,因此∠1=∠2,∠3=∠4.进而2∠4=2∠1+∠A,即∠4=∠1+∠A①在△BCD中,∠4是一个外角,因此∠4=∠1+∠D,②由①、②即得∠D=∠A.25.〔1〕解:8cm是腰长时,三角形的三边分别为8cm、8cm、9cm,能构成三角形,周长=8+8+9=25cm,8cm是底边时,三角形的三边分别为8cm、9cm、9cm,能构成三角形,周长=8+9+9=26cm,综上所述,周长为25cm或26cm〔2〕解:6cm是腰长时,其余两边分别为6cm,16cm,6+6=12<16,∴不可以构成三角形,6cm是底边时,腰长为〔28-6〕=11cm,三边分别为6cm、11cm、11cm,能构成三角形,因此,其余两边的长为11cm、11cm26.〔1〕解:∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°2〕解:绘图以下:3〕解:∵AD为△ABC的中线,BE为△ABD的中线,∴△ABD的面积=△ABC的面积=20,△BDE的面积=△ABD的面积=10,BD·EF=10,×5EF=10,解得EF=4,BE·DG=10,×6DG=10,5华东师大版七年级数学下册《第九章多边形》单元检测试题(含答案) EF=6。
七年级下数学《多边形》检测试题有答案
七年级下数学《多边形》检测试题有答案(时间:90分钟,满分:100分)一、选择题(每小题2分,共12分)1.能把三角形的面积分为相等的两部分的是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上都不对2.已知从多边形的一个顶点引出的对角线把多边形划分为10个三角形,则此多边形的内角和是()A.1440°B.1800°C.2160°D.1620°3.某人到瓷砖商店去购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形B.正四边形C.正五边形C.正六边形4.能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形5.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.86.设一个多边形的一个内角为x°,其余内角之和为1740°,则x的值为()A.30B.60C.90D.120二、填空题(每小题2分,共18分)7.已知一个多边形的内角和是2340°,则这个多边形是边形.8.一个正多边形的每个外角都是24°,则这个多边形的边数为.9. 4条线段的长度分别为2,3,4,5,任选3条线段可以组成个三角形.10.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有个正三角形和个正四边形。
11.在△ABC中,∠A+∠B=∠C,∠B=2∠A,则∠C= ,∠A=12.三角形的三边长分别为5,1+2x,8,则x的取值范围是13.如图,AC⊥BD于点C,已知∠A=40°,∠AEF=70°,则∠D=14.如图,已知∠1=20°,∠2=25°,∠A=50°,则∠BDC等于15.如图,小兰在操场上散步。
她从O点出发,面向正东方向走5m,然后向左转45°,再向前走5m,又向左转45°,再向前走5m.这样一直走下去,第一次回到出发点O时,她共走了m三、解答题(共70分)16.(8分)已知△ABC的周长是24cm,三边a,b,c满足c+a=2b,c-a=4cm,求a,b,c的长。
精品试题华东师大版七年级数学下册第9章多边形达标测试试题(含答案解析)
七年级数学下册第9章多边形达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于( )A .20°B .50°C .70°D .110°2、如图,点B 、G 、C 在直线FE 上,点D 在线段AC 上,下列是△ADB 的外角的是( )A .∠FBAB .∠DBC C .∠CDBD .∠BDG3、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是( )A .7B .8C .9D .104、下列叙述正确的是()A.三角形的外角大于它的内角B.三角形的外角都比锐角大C.三角形的内角没有小于60°的D.三角形中可以有三个内角都是锐角5、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为()A.15°B.20°C.25°D.30°6、如图,在ABC中,AD、AE分别是边BC上的中线与高,4AE ,CD的长为5,则ABC的面积为()A.8 B.10 C.20 D.407、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为()A .180°B .360°C .540°D .不能确定8、已知ABC 的三边长分别为a ,b ,c ,则a ,b ,c 的值可能分别是( )A .1,2,3B .3,4,7C .2,3,4D .4,5,109、已知三条线段的长分别是4,4,m ,若它们能构成三角形,则整数m 的最大值是( )A .10B .8C .7D .410、一把直尺和一块三角板ABC (含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D 、点E ,另一边与三角板的两直角边分别交于点F 、点A ,且45CDE ∠=︒,那么BAF ∠的大小为( )A .35°B .20°C .15°D .10°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知ABC 中,AB =5,AC =7,BC =a ,则a 的取值范围是 ___.2、边长为1的小正方形组成如图所示的6×6网格,点A ,B ,C ,D ,E ,F ,G ,H 都在格点上.其中到四边形ABCD 四个顶点距离之和最小的点是_________.3、如图,BE ,CD 是△ABC 的高,BE ,CD 相交于点O ,若BAC α∠=,则BOC ∠=_________.(用含α的式子表示)4、如果三角形的三条边长分别为26x 、、,那么x 的取值范围是______. 5、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).三、解答题(5小题,每小题10分,共计50分)1、求下列图中的x 的值(1)(2)2、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.3、(1)在图1中,已知△ABC中,∠B>∠C,AD⊥BC于D,AE平分∠BAC,∠B=70°,∠C=40°,求∠DAE的度数.(2)在图2中,∠B=x,∠C=y,其他条件不变,若把AD⊥BC于D改为F是AE上一点,FD⊥BC于D,试用x、y表示∠DFE=:(3)在图3中,当点F是AE延长线上一点,其余条件不变,则(2)中的结论还成立吗?若成立,请说明为什么;若不成立,请写出成立的结论,并说明为什么.(4)在图3中,分别作出∠BAE和∠EDF的角平分线,交于点P,如图4.试用x、y表示∠P=.4、如图,点E为直线AB上一点,∠CAE=2∠B,BC平分∠ACD,求证:AB∥CD.5、概念学习 :已知△ABC ,点P 为其内部一点,连接PA 、PB 、PC ,在△PAB 、△PBC 和△PAC 中,如果存在一个三角形,其内角与△ABC 的三个内角分别相等,那么就称点P 为△ABC 的等角点. 理解应用(1)判断以下两个命题是否为真命题,若为真命题,则在相应横线内写:“真命题”;反之,则写“假命题”①内角分别为30°、60°、90°的三角形存在等角点;②任意的三角形都存在等角点.(2)如图①中,点P 是锐角三角形△ABC 的等角点,若∠BAC =∠PBC ,探究图中么∠BPC 、∠ABC 、∠ACP 之间的数量关系,并说明理由.-参考答案-一、单选题1、C【解析】【分析】由AC CE ⊥与20A ∠=︒,即可求得ABC ∠的度数,又由AB DF ∥,根据两直线平行,同位角相等,即可求得CED ∠的度数.【详解】解:∵AC CE ⊥,∴90C ∠=︒,∵20A ∠=︒,∴70ABC ∠=︒,∵AB DF ∥,∴70CED ABC ∠=∠=︒.故选:C .【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.2、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA 是△ABC 的外角,故不符合题意;B. ∠DBC 不是任何三角形的外角,故不符合题意;C.∠CDB 是∠ADB 的外角,符合题意;D. ∠BDG 不是任何三角形的外角,故不符合题意;故选:C .【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.3、D【解析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数=36036=10.故选:D.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.4、D【解析】【分析】结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.【详解】解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;三角形的内角可以小于60°,一个三角形的三个角可以为:20,70,90,故C不符合题意;三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;故选D【点睛】本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.5、A【分析】先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.【详解】解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,∴∠EFD=60°,∠ABC=45°,∵BC∥AD,∴∠EFD=∠FBC=60°,∴∠ABF=∠FBC-∠ABC=15°,故选A.【点睛】本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.6、C【解析】【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD 是边BC 上的中线,CD 的长为5,∴CB =2CD =10, ABC 的面积为111042022BC AE ⨯=⨯⨯=, 故选:C .【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.7、B【解析】【分析】设BE 与DF 交于点M ,BE 与AC 交于点N ,根据三角形的外角性质,可得,BMD B F CNE A E ∠=∠+∠∠=∠+∠ ,再根据四边形的内角和等于360°,即可求解.【详解】解:设BE 与DF 交于点M ,BE 与AC 交于点N ,∵,BMD B F CNE A E ∠=∠+∠∠=∠+∠ ,∴A B C D E F BMD CNE C D ∠+∠+∠+∠+∠+∠=∠+∠+∠+∠ ,∵360BMD CNE C D ∠+∠+∠+∠=︒,∴360A B C D E F ∠+∠+∠+∠+∠+∠=︒ .故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.8、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.9、C【解析】【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则<<m4444-<<+,即08m又m为整数,则整数m的最大值是7故选C本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键. 10、C 【解析】 【分析】先根据直角三角形两锐角互余求出45DEC ∠=︒ ,由DE ∥AF 即可得到∠CAF =45°,最后根据∠BAC =60°,即可得出∠BAF 的大小. 【详解】解:∵45CDE ∠=︒,90C ∠=︒, ∴45CED ∠=︒, ∵DE ∥AF ,∴∠CAF =∠CED =45°, ∵∠BAC =60°,∴∠BAF =60°-45°=15°, 故选:C 【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等. 二、填空题 1、2<a <12 【解析】 【分析】直接利用三角形三边关系得出a 的取值范围.解:∵△ABC 中,AB =5,AC =7,BC =a , ∴7﹣5<a <7+5, 即2<a <12. 故答案为:2<a <12. 【点睛】本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边. 2、E 【解析】 【分析】到四边形ABCD 四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可. 【详解】如图所示,连接BD 、AC 、GA 、GB 、GC 、GD , ∵GD GB BD +>,GA GC AC +>,∴到四边形ABCD 四个顶点距离之和最小是AC BD +,该点为对角线的交点, 根据图形可知,对角线交点为E , 故答案为:E .【点睛】本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.3、180°-α【解析】【分析】根据三角形的高的定义可得∠AEO=∠ADO=90°,再根据四边形在内角和为360°解答即可.【详解】解:∵BE,CD是△ABC的高,∠=,∴∠AEO=∠ADO=90°,又BACα∴∠BOC=∠DOE=360°-90°-90°-α=180°-α,故答案为:180°-α.【点睛】本题考查三角形的高、四边形的内角和、对顶角相等,熟知四边形在内角和为360°是解答的关键.x4、48【解析】【分析】根据三角形的三边关系列出不等式组,解不等式组即可求解 【详解】解:根据题意得:6262x -<<+, 即48x.故答案为:48x.【点睛】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围. 5、4,5,6(写出一个即可) 【解析】 【分析】由构成三角形三边成立的条件可得第三条边的取值范围. 【详解】 设第三条长为x ∵2+5=7,5-2=3 ∴3<x <7.故第三条边的整数值有4、5、6. 故答案为:4,5,6(写出一个即可) 【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系. 三、解答题1、(1)65;(2)60. 【解析】【分析】(1)根据四边形内角和等于360°,列方程即可求出x的值;(2)根据五边形内角和等于(5-2)⨯180°,列方程即可求出x的值.【详解】解:(1)∵四边形内角和等于360°,∴x+x+140+90=360,解得:x=65;(2)∵五边形内角和等于(5-2)⨯180°=540°,∴x+2x+150+120+90=540,解得:x=60.【点睛】本题考查了四边形和五边形的内角和,熟练掌握n边形的内角和等于(n-2)⨯180°是解题的关键.①几何计算题中,如果依据题设和相关的几何图形的性质列出方程(或方程组)求解的方法叫做方程的思想;②求角的度数常常要用到“n边形的内角和等于(n-2)⨯180°”这一隐含的条件.2、∠AFE=50°.【解析】【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=11804022ACB∠=⨯︒=︒,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB=11804022ACB∠=⨯︒=︒,∵AD 是△ABC 边BC 上的高,AD ⊥BC , ∴∠ADC =90°,∴∠DFC =180°-∠ADC -∠ECB =180°-90°-40°=50°, ∴∠AFE =∠DFC =50°. 【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键. 3、(1)15°;(2)1122x y -;(3)结论应成立.1122x y -(4)3144x y -. 【解析】 【分析】(1)根据三角形内角和公式得出∠BAC =180°-∠B -∠C =180°-70°-40°=70°,根据AE 平分∠BAC ,得出∠BAE =11703522BAC ∠=⨯︒=︒,利用AD ⊥BC ,得出∠BAD =90°-∠B =90°-70°=20°,然后用角的差计算即可;(2)根据三角形内角和得出∠BAC =180°-∠B -∠C =180°- x -y ,根据AE 平分∠BAC ,得出∠EAC =()1111180902222BAC x y x y ∠=⨯︒--=︒--,利用FD ⊥BC ,可得∠DFE +∠FED =90°,根据∠FED 是△AEC 的外角,可求∠FED =∠C +∠EAC =111190902222y x y x y +︒--=︒-+,利用余角求解即可; (3)结论应成立.过点A 作AG ⊥BC 于G ,根据三角形内角和得出∠BAC =180°-∠B -∠C =180°- x -y ,根据AE 平分∠BAC ,得出∠BAE =()1111180902222BAC x y x y ∠=⨯︒--=︒--,根据AG ⊥BC ,得出∠BAG =90°-∠B =90°-x ,可求∠GAE =∠BAE -∠BAG =()11909022x y x ︒---︒-=1122x y -,根据FD ⊥BC ,AG ⊥BC ,可证AG∥FD ,利用平行线性质即可求解;(4)设AF 与PD 交于H ,根据FD ⊥BC ,PD 平分∠EDF ,得出∠HDF =11904522EDF ∠=⨯︒=︒,根据PA 平分∠BAE ,∠BAE =()1111180902222BAC x y x y ∠=⨯︒--=︒--,得出∠PAE =1111119045222244BAE x y x y ⎛⎫∠=︒--=︒-- ⎪⎝⎭,根据对顶角性质∠AHP =∠FHD ,结合三角形内角和得出∠P +∠PAE =∠HDF +∠EFD ,即∠P +114544x y ︒--=45°+1122x y -,求出∠P 即可. 【详解】解:(1)∵∠B =70°,∠C =40°,∴∠BAC =180°-∠B -∠C =180°-70°-40°=70°, ∵AE 平分∠BAC ,∴∠BAE =11703522BAC ∠=⨯︒=︒, ∵AD ⊥BC , ∴∠BDA =90°, ∴∠B +∠BAD =90°,∴∠BAD =90°-∠B =90°-70°=20°, ∴∠DAE =∠BAE -∠BAD =35°-20°=15°; (2)∵∠B =x ,∠C =y ,∴∠BAC =180°-∠B -∠C =180°- x -y , ∵AE 平分∠BAC ,∴∠EAC =()1111180902222BAC x y x y ∠=⨯︒--=︒--, ∵FD ⊥BC , ∴∠EDE =90°, ∴∠DFE +∠FED =90°, ∵∠FED 是△AEC 的外角,∴∠FED =∠C +∠EAC =111190902222y x y x y +︒--=︒-+,∴∠DFE =90°-∠FED =1122x y -, 故答案为:1122x y -; (3)结论应成立. 过点A 作AG ⊥BC 于G , ∵∠B =x ,∠C =y ,∴∠BAC =180°-∠B -∠C =180°- x -y , ∵AE 平分∠BAC ,∴∠BAE =()1111180902222BAC x y x y ∠=⨯︒--=︒--, ∵AG ⊥BC , ∴∠AGB =90°, ∴∠B +∠BAG =90°, ∴∠BAG =90°-∠B =90°-x , ∴∠GAE =∠BAE -∠BAG =()11909022x y x ︒---︒-=1122x y -, ∵FD ⊥BC ,AG ⊥BC , ∴AG∥FD , ∴∠EFD =∠GAE =1122x y -(4)设AF 与PD 交于H , ∵FD ⊥BC ,PD 平分∠EDF , ∴∠HDF =11904522EDF ∠=⨯︒=︒,∵PA 平分∠BAE ,∠BAE =()1111180902222BAC x y x y ∠=⨯︒--=︒--, ∴∠PAE =1111119045222244BAE x y x y ⎛⎫∠=︒--=︒-- ⎪⎝⎭,∵∠AHP =∠FHD ,∠EFD =1122x y -∴∠P +∠PAE =∠HDF +∠EFD ,即∠P +114544x y ︒--=45°+1122x y -, ∴∠P =1111314545224444x y x y x y ⎛⎫︒+--︒--=- ⎪⎝⎭,故答案为:3144x y -.【点睛】本题考查三角形内角和,角平分线定义,直角三角形两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质,掌握三角形内角和,角平分线定义,直角三角形两锐角互余,三角形外角性质,对顶角性质,平行线的判定与性质是解题关键. 4、见解析 【解析】 【分析】根据三角形外角的性质,可得∠B=∠ACB,再由BC平分∠ACD,可得∠B=∠DCB,即可求证.【详解】证明:∵∠CAE=∠ACB+∠B,∠CAE=2∠B,∴∠B=∠ACB,又∵BC平分∠ACD,∴∠ACB=∠DCB,∴∠B=∠DCB,∴AB∥CD(内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.5、(1)①真命题;②假命题;(2)∠BPC=∠ABC+∠ACP【解析】【分析】(1)①根据等角点的定义,可知内角分别为30°、60°、90°的三角形存在等角点,从而可作出判断;②等边三角形不存在等角点,故可作出判断;(2)根据∠BPC=∠ABP+∠BAC+∠ACP以及∠BAC=∠PBC,即可得出三个角间的数量关系.【详解】(1)①作内角分别为30°、60°、90°的三角形斜边的中线,取中线的中点,则此点就是此直角三角形的等角点,故为真命题;故答案为:真命题;②任意三角形都存在等角点是假命题,如等边三角形不存在等角点,故为假命题;故答案为:假命题;(2)∠BPC=∠ABC+∠ACP理由如下:∵∠ABP+∠BAP=180°−∠BPA,∠ACP+∠CAP=180°−∠CPA∴∠ABP+∠BAP+∠ACP+∠CAP=180°−∠BPA+180°−∠CPA=360°−(∠BPA+∠CPA)即∠ABP+∠BAC+∠ACP=360°−(∠BPA+∠CPA)∴∠BPC=360°−(∠BPA+∠CPA)= ∠ABP+∠BAC+∠ACP∵∠BAC=∠PBC∴∠BPC=∠ABP+∠BAC+∠ACP=∠ABP+∠PBC+∠ACP=∠ABC+∠ACP∴∠BPC=∠ABC+∠ACP【点睛】本题主要考查三角形内角和定理的应用,解决问题的关键是理解等角的定义,根据等角的定义及三角形的内角和得出角的关系.。
初一多边形测试题及答案
初一多边形测试题及答案一、选择题(每题3分,共30分)1. 下列关于多边形的描述,不正确的是()。
A. 任意四边形的内角和为360°B. 任意五边形的内角和为540°C. 任意六边形的内角和为720°D. 任意七边形的内角和为900°2. 一个多边形的外角和是360°,那么这个多边形的边数是()。
A. 3B. 4C. 5D. 63. 一个多边形的内角和是1080°,那么这个多边形的边数是()。
A. 4B. 5C. 6D. 74. 一个六边形的每个内角都是120°,那么它的每个外角是()。
A. 60°B. 90°C. 120°D. 150°5. 一个多边形的内角和是外角和的2倍,那么这个多边形的边数是()。
A. 3B. 4C. 5D. 66. 如果一个多边形的每个内角都是150°,那么它的边数是()。
A. 6B. 8C. 10D. 127. 一个多边形的内角和是外角和的3倍,那么这个多边形的边数是()。
A. 3B. 4C. 5D. 68. 一个多边形的内角和是外角和的4倍,那么这个多边形的边数是()。
A. 4B. 5C. 6D. 79. 一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()。
A. 5B. 6C. 7D. 810. 一个多边形的内角和是外角和的6倍,那么这个多边形的边数是()。
A. 6B. 7C. 8D. 9二、填空题(每题5分,共20分)1. 一个五边形的内角和是______°。
2. 一个八边形的内角和是______°。
3. 一个十边形的外角和是______°。
4. 如果一个多边形的每个内角都是120°,那么它的边数是______。
三、解答题(每题10分,共50分)1. 一个多边形的内角和是1440°,求这个多边形的边数。
华师大版 七年级下册《多边形》单元测试题及其答案
华师大版七年级下册《多边形》单元测试题及其答案华师大版-七年级下册《多边形》单元测试题及其答案红岗教育七年级数学下册多边形练习题一、耐心填写:(每个小问题3分,共30分)1。
至少()a、一个锐角b、两个锐角c、一个钝角d、一个直角2.三角形中的最大角度α值范围为()a、0°<α<90°b、60°<α<180°c、60°≤α<90°d、60°≤α<180°3.下列长度的各组线段中,能作为一个三角形三边的是()a、 1,2,3b,2,4,4,C,2,2,4D,a,a-1,a+1(a是一个自然数)4.已知4条线段的长度分别为2、3、4、5,若三条线段可以组成一个三角形,则这四条线段可以组成()个三角形.a、 1b、2c、3d、45.已知a>b>c>0,则以a、b、c为三边组成三角形的条件是()a、b+c>ab、a+c>bc、a+b>cd、以上都不对6.下列正多边形的组合中,能够铺满地面不留缝隙的是()a、规则八角形和三角形;b、正五边形和正八角形;c、正六边形和正三角形;d、正六边形和正五边形7。
如果一个三角形的外角小于与其相邻的内角,则该三角形必须是()a、锐角三角形B、直角三角形C、钝角三角形D、任意三角形8。
下面的陈述是正确的()a.三角形的角平分线、中线和高都在三角形内b.直角三角形的高只有一条c.三角形的高至少有一条在三角形内d.钝角三角形的三条高都在三角形外9.如果多边形的边数加倍,且其内角之和为2160o,则原始多边形的边数为()a、5b、6C、7d和810.用一种正多边形能进行平面图形铺设的条件是()a、内角都是整数度数b、边数是3的整数倍c、内角整除360od、内角整除180o二、谨慎选择:(每个问题3分,共30分)11,等腰?abc的周长为10cm,底边长为ycm,腰长为xcm,则腰长x的取值范围是。
七年级数学下册《第九章多边形》测试卷及答案(华东师大版)
七年级数学下册《第九章多边形》测试卷及答案(华东师大版) 一、选择题(共30分)1.在下列长度的三条线段中,不能组成三角形的是()A.2cm,3cm,4cm B.3cm,3cm,6cmC.2cm,5cm,6cm D.5cm,6cm,7cm2.如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A.B.C.D.3.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线4.已知△ABC的一个外角为50°,则△ABC一定是()A.锐角三角形B.钝角三角形C.直角三角形D.锐角三角形或钝角三角形5.如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°6.当多边形边数增加一条时,多边形的内、外角和的变化情况是()A.内角和、外角和都不变B.内角和、外角和各增加180°C.内角和不变,外角和增加180°D.内角和增加180°,外角和不变7.如图所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为()①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.1B.2C.3D.48.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°9.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,若∠BFC=116°,则∠A=()A.51°B.52°C.53°D.58°10.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F为多少度()A.360°B.720°C.540°D.240°二、填空题(共24分)11.在△ABC中,∠C=100°,∠B=10°,则∠A=.12.八边形内角和度数为.13.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为.14.如图,小陈从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,…,这样一直走下去,他第一次回到出发点O时一共走了米.15.如图,△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠DCB,AE=3,BC=4,则DE =.16.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.17.如图,在△ABC中,AI和CI分别平分∠BAC和∠BCA,如果∠B=58°,那么∠AIC=.18.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=度.三、解答题(共46分)19.用一条长为18cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,求三角形各边的长.(2)能围成有一边的长是4cm的等腰三角形吗?若能,求出其他两边的长;若不能,请说明理由.20.如图,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D,若AP平分∠BAC交BD于P,求∠APB的度数.21.在四边形ABCD中,∠A=140°,∠D=80°(1)如图1,若∠B=∠C,求∠C的度数;(2)如图2,若∠ABC的平分线BE交DC于点E,且BE∥AD,求∠C的度数.22.如图,已知:点P是△ABC内一点.(1)求证:∠BPC>∠A;(2)若PB平分∠ABC,PC平分∠ACB,∠A=40°,求∠P的度数.23.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D;(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.24.(1)已知△ABC中,BO、CO分别是∠ABC、∠ACB的平分线,且BO、CO相交于点O,试探索∠BOC 与∠A之间的数量关系,并说明理由.(2)已知BO、CO分别是△ABC的外角∠DBC、∠ECB的角平分线,BO、CO相交于O,试探索∠BOC 与∠A之间的数量关系,并说明理由.(3)已知:BD为△ABC的角平分线,CO为△ABC的外角平分线,它与BO的延长线交于点O,试探索∠BOC与∠A的数量关系,并说明理由.参考答案一、选择题(共30分)1.解:A、2+3>4,能构成三角形,故此选项不符合题意;B、3+3=6,不能构成三角形,故此选项合题意;C、2+5>6,能构成三角形,故此选项不合题意;D、5+6>7,能构成三角形,故此选项不合题意;故选:B.2.解:因为三角形具有稳定性,只有B构成了三角形的结构.故选:B.3.解:A、锐角三角形的三条高、三条角平分线、三条中线一定在△ABC内部,故本选项正确;B、钝角三角形的三条高有两条在三角形的外部,故本选项错误;C、任意三角形的一条中线、二条角平分线都在三角形内部,但三条高不一定在三角形内部,故本选项错误;D、直角三角形的三条高有两条是直角边,不在三角形内部,故本选项错误.故选:A.4.解:一个外角为50°,所以与它相邻的内角的度数为130°,所以三角形为钝角三角形.故选:B.5.解:∵∠DEC=100°,∠C=40°∴∠D=40°又∵AB∥CD∴∠B=∠D=40°故选:B.6.解:∵多边形内角和为(n﹣2)•180°,外角和为360°∴多边形边数增加一条,内角和增加180°,外角和不变.故选:D.7.解:AD不一定平分∠BAF,①错误;AF不一定平分∠DAC,②错误;∵∠1=∠2,∴AE平分∠DAF,③正确;∵∠1=∠2,∠3=∠4∴∠1+∠3=∠2+∠4,即∠BAE=∠CAE∴AE平分∠BAC,④正确;故选:B.8.解:∵∠A=60°,∠B=40°∴∠ACD=∠A+∠B=100°∵CE平分∠ACD∴∠ECD=∠ACD=50°故选:C.9.解:由题意可知:∠FBC+∠FCB=180°﹣∠BFC=64°∵在△ABC中,∠B、∠C的平分线是BE,CD∴∠ABC+∠ACB=2(∠FBC+∠FCB)=128°∴∠A=180°﹣(∠ABC+∠ACB)=52°故选:B.10.解:如图,根据三角形的外角性质,∠1=∠A+∠C,∠2=∠B+∠D∵∠BOF=120°∴∠3=180°﹣120°=60°根据三角形内角和定理,∠E+∠1=180°﹣60°=120°∠F+∠2=180°﹣60°=120°所以,∠1+∠2+∠E+∠F=120°+120°=240°即∠A+∠B+∠C+∠D+∠E+∠F=240°.故选:D.二、填空题(共24分)11.解:∵在△ABC中,∠C=100°,∠B=10°∴∠A=180°﹣∠B﹣∠C=180°﹣10°﹣100°=70°故答案为:70°.12.解:(8﹣2)•180°=6×180°=1080°.故答案为:1080°.13.解:如图所示,将BE与CD交点记为点F∵AB∥CD,∠B=75°∴∠EFC=∠B=75°又∵∠EFC=∠D+∠E,且∠E=27°∴∠D=∠EFC﹣∠E=75°﹣27°=48°故答案为:48°.14.解:依题意可知,小陈所走路径为正多边形,设这个正多边形的边数为n 则20n=360,解得n=18∴他第一次回到出发点O时一共走了:5×18=90米故答案为:90.15.解:∵CD⊥AB∴∠ADC=90°∵∠ACB=90°∴∠A+∠ACD=∠A+∠B=90°∴∠ACD=∠B∵CE平分∠DCB∴∠DCE=∠BCE∴∠ACD+∠DCE=∠B+∠BCE即∠ACE=∠AEC∴AC=AE∵AE=3∴AC=3∵S△ABC=∴CD=∵AE=3∴DE=AE﹣AD=3﹣=故答案为:.16.解:∵四边形的内角和为(4﹣2)×180°=360°∴∠B+∠C+∠D=360°﹣60°=300°∵五边形的内角和为(5﹣2)×180°=540°∴∠1+∠2=540°﹣300°=240°故答案为:240.17.解:∵AI和CI分别平分∠BAC和∠BCA,∠B=58°∴∠IAC+∠ICA=(180°﹣58°)=×122°=61°∴∠AIC=180°﹣61°=119°.故答案为:119°.18.解:如图所示,∵∠1+∠5=∠8,∠4+∠6=∠7又∵∠2+∠3+∠7+∠8=360°∴∠1+∠2+∠3+∠4+∠5+∠6=360°三、解答题(共46分)19.解:(1)设底边长为xcm,则腰长为2xcm.依题意,得2x+2x+x=18解得x=.∴2x=.∴三角形三边的长为cm、cm、cm.(2)若腰长为4cm,则底边长为18﹣4﹣4=10cm.而4+4<10,所以不能围成腰长为4cm的等腰三角形.若底边长为4cm,则腰长为(18﹣4)=7cm.此时能围成等腰三角形,三边长分别为4cm、7cm、7cm.20.解:因为∠C=90°所以∠ABC+∠BAC=90°所以(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC所以∠BAP+∠ABP=∠BAC+∠ABC=(∠BAC+∠ABC)=45°.所以∠APB=180°﹣45°=135°.21.解:(1)因为∠A+∠B+∠C+∠D=360,∠B=∠C所以∠B=∠C===70°.(2)∵BE∥AD∴∠BEC=∠D=80°∠ABE=180°﹣∠A=180°﹣140°=40°.又∵BE平分∠ABC∴∠EBC=∠ABE=40°∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣40°﹣80°=60°.22.(1)证明:延长BP交AC于D,如图所示:∵∠BPC是△CDP的一个外角,∠1是△ABD的一个外角∴∠BPC>∠1,∠1>∠A∴∠BPC>∠A;(2)在△ABC中,∵∠A=40°∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°∵PB平分∠ABC,PC平分∠ACB∴∠PBC=∠ABC,∠PCB=∠ACB在△ABC中,∠P=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣×140°=110°.23.(1)解:∵∠C=50°,∠B=30°∴∠BAC=180°﹣50°﹣30°=100°.∵AE平分∠BAC∴∠CAE=50°.在△ACE中∠AEC=80°在Rt△ADE中∠EFD=90°﹣80°=10°.(2)∠EFD=(∠C﹣∠B)证明:∵AE平分∠BAC∴∠BAE==90°﹣(∠C+∠B)∵∠AEC为△ABE的外角∴∠AEC=∠B+90°﹣(∠C+∠B)=90°+(∠B﹣∠C)∵FD⊥BC∴∠FDE=90°.∴∠EFD=90°﹣90°﹣(∠B﹣∠C)∴∠EFD=(∠C﹣∠B)(3)∠EFD=(∠C﹣∠B).如图∵AE平分∠BAC∴∠BAE=.∵∠DEF为△ABE的外角∴∠DEF=∠B+=90°+(∠B﹣∠C)∵FD⊥BC∴∠FDE=90°.∴∠EFD=90°﹣90°﹣(∠B﹣∠C)∴∠EFD=(∠C﹣∠B).24.解:(1)∠BOC=90°+∠A.理由如下:延长BO交AC于点D∵BO、CO分别是∠ABC、∠ACB的平分线∴∠A+2∠1+2∠2=180°∠BDC=∠A+∠1∠BOC=∠BDC+∠2∴∠BOC=∠A+∠1+∠2=90°+∠A.(2)∠BOC=90°﹣∠A.理由如下:∵BO、CO分别是△ABC的外角∠DBC、∠ECB的角平分线∴∠DBC=2∠1=∠ACB+∠A∠ECB=2∠2=∠ABC+∠A∴2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°又∵∠1+∠2+∠BOC=180°∴2∠BOC=180°﹣∠A,即∠BOC=90°﹣∠A.(3)∠BOC=∠A.理由如下:∵BD为△ABC的角平分线,CO为△ABC的外角平分线∴∠ACE=2∠2=∠A+2∠1∠2=∠1+∠BOC∴∠BOC=∠A.。
2020年春华东师大版 七年级数学下册 第9章《多边形》单元测试卷 含详解
2020年华师大版第9章《多边形》单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.下面四个图形中,线段BD是△ABC的高的图形是()A.B.C.D.2.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN3.如果三角形的两边长分别为7和9.那么第三边的长可能是下列数据中的()A.2B.13C.16D.184.从十二边形的一个顶点出发,可引出对角线()条.A.9条B.10条C.11条D.12条5.用一批完全相同的正多边形能镶嵌成一个平面图案的是()A.正五边形B.正六边形C.正七边形D.正八边形6.如图,已知∠ACD=130°,∠B=20°,则∠A的度数是()A.110°B.30°C.150°D.90°7.一个多边形的边数每增加一条,这个多边形的()A.内角和增加360°B.外角和增加360°C.内角和增加180°D.对角线增加一条8.如图,点E在四边形ABCD的CD边的延长线上,若∠ADE=120°,则∠A+∠B+∠C 的度数为()A.240°B.260°C.300°D.320°9.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是()A.10°B.12°C.15°D.18°10.如图,多边形ABCDEFG中,∠E=∠F=∠G=108°,∠C=∠D=72°,则∠A+∠B 的值为()A.108°B.72°C.54°D.36°二.填空题(共8小题,满分24分,每小题3分)11.三角形三条中线的交点叫做三角形的.12.赵师傅在做完门框后,为防止变形,如图中所示的那样在门上钉上两条斜拉的木条(即图中的AB,CD两根木条),这其中的数学原理是.13.如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC=4cm,则在△ABD中,BD边上的高是cm.14.如图,AD、CE、BF是△ABC的高,AB=5,BC=4,AD=3,则CE=.15.如图,小华从A点出发,沿直线前进5m后左转24°,再沿直线前进5m,又向左转24°,……照这样走下去,当他第一次回到出发地A点时,一共走过的路程是.16.已知三角形三边长为整数,其中两边的差为5,且周长为奇数,则第三边长的最小值为.17.如图,已知BD为△ABC中∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,与BD交于点D,若∠D=28°,则∠A=.18.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,…,依此递推,则第6层中含有正三角形个数是,第n层中含有正三角形个数是.三.解答题(共7小题,满分64分)19.若一个多边形的外角和比它的内角和的少90°,求多边形的边数.20.正八边形地板砖,能铺满地面,既不留下一丝空白,又不相互重叠吗?请说明理由.21.如图,五边形ABCDE的每个内角都相等,已知EF⊥BC,求证:EF平分∠AED.22.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+y=360,整理得:2x+3y=8,我们可以找到方程的正整数解为.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.23.如图1,AD、BC交于点O,得到的数学基本图形我们称之为‘8’字形ABCD.(1)试说明:∠A+∠B=∠C+∠D;(2)如图2,∠ABC和∠ADC的平分线相交于E,尝试用(1)中的数学基本图形和结论,猜想∠E与∠A、∠C之间的数量关系并说明理由.24.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)25.∠MON=90°,点A,B分别在OM、ON上运动(不与点O重合).(1)如图①,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=°;(2)如图②,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D.①若∠BAO=60°,则∠D=°;②随着点A,B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(3)如图③,延长MO至Q,延长BA至G,已知∠BAO,∠OAG的平分线与∠BOQ 的平分线及其延长线相交于点E、F,在△AEF中,如果有一个角是另一个角的3倍,求∠ABO的度数.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:由三角形的高的定义可知,如果线段BD是△ABC的高,那么BD⊥AC,垂足是点D.四个选项中,只有D选项中BD⊥AC.故选:D.2.解:∵线段AN是△ABC边BC上的高,∴AD⊥BC,由垂线段最短可知,AM≥AN,故选:B.3.解:∵三角形的两边长分别为7和9,∴9﹣7<第三边的长<9+7,即2<第三边的长<16,选项中只有,13符合题意.故选:B.4.解:12﹣3=9,十二边形从一个顶点出发可引出9条对角线.故选:A.5.解:根据密铺的条件可知3个正六边形能密铺,故选:B.6.解:∵∠ACD是△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣20°=110°,故选:A.7.解:根据n边形的内角和可以表示成(n﹣2)•180°,可以得到增加一条边时,边数变为n+1,则内角和是(n﹣1)•180°,因而内角和增加:(n﹣1)•180°﹣(n﹣2)•180°=180°.故选:C.8.解:因为∠ADE=120°,∠ADE+∠ADC=180°,所以∠ADC=180°﹣∠ADE=180°﹣120°=60°,因为∠ADC+∠A+∠B+∠C=360°,所以∠A+∠B+∠C=360°﹣∠ADC=360°﹣60°=300°,故选:C.9.解:∵AE平分∠BAC,∴∠CAE=∠CAB=×76°=38°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣64°=26°,∴∠DAE=∠EAC﹣∠ACD=38°﹣26°=12°,故选:B.10.解:连接CD,五边形CDEFG的内角和为:(5﹣2)×180°=540°,∴∠CDE+∠DCG=540°﹣(∠E+∠F+∠G)=540°﹣108°×3=216°,∴∠ADC+∠BCD=∠CDE+∠DCG﹣(∠BCG+∠ADE)=216°﹣72°×2=72°,∴∠A+∠B=∠ADC+∠BCD=72°,故选:B.二.填空题(共8小题,满分24分,每小题3分)11.解:三角形三条中线的交点叫做三角形的重心.故答案为:重心.12.解:赵师傅这样做是运用了三角形的稳定性.故答案为:三角形的稳定性.13.解:如图,∵AC⊥BC,∴BD边上的高为线段AC.又∵AC=4cm,∴BD边上的高是4cm.故答案是:4.14.解:∵,∴,故答案为:.15.解:由题意可知,当小华回到出发地A点时,行走的路线是正多边形,∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×5=75,故答案为:75m.16.解:∵三角形三边中某两条边长之差为5,∴设其中一边为x,则另一边为x+5,第三边为y,∴此三角形的周长为:x+x+5+y=2x+y+5,∵三角形周长为奇数,∴y是偶数,∵5<y<x+x+5,∴y的最小值为6.故答案为:6.17.解:∵BD为∠ABC的平分线,CD为∠ACE的平分线,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠DCE=∠DBC+∠D,∠ACE=∠ABC+∠A,∴∠DBC+∠D=(∠ABC+∠A),∴∠D=∠A,∴∠A=2∠D=2×28°=56°.故答案为56°.18.解:第1层包括6个正三角形,第2层包括18个正三角形,…,每一层比上一层多12个,故第6层中含有正三角形的个数是6+12×5=66(个),第n层中含有正三角形个数是6+12(n﹣1)=12n﹣6,故答案为:66,12n﹣6.三.解答题(共7小题)19.解:设这个多边形是n边形,,解得:n=2,答:这个多边形是12边形.20.解:不能.∵正八边形每个内角是=135°,不能整除360°,∴不能密铺.21.证明:∵五边形内角和为(5﹣2)×180°=540°且五边形ABCDE的5个内角都相等,∴.∵EF⊥BC,∴∠3=90°.又∵四边形的内角和为360°,∴在四边形ABFE中,∠1=360°﹣(108°+108°+90°=54°,又∵∠AED=108°,∴∠1=∠2=54,∴EF平分∠AED.22.解:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360.整理得:a+2b=6,方程的正整数解为,.所以可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌,在一个顶点周围围绕2个正三角形和2个正六边形或者围绕着4个正三角形和1个正六边形.23.(1)证明:∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,又∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)解:结论:2∠E=∠A+∠C.理由:∵∠ABC和∠ADC的平分线相交于E,∴可以假设∠ABE=∠EBC=x,∠ADE=∠EDC=y,∵∠A+x=∠E+y,∠C+y=∠E+x,∴∠A+∠C=∠E+∠E,∴2∠E=∠A+∠C,24.解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°;(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180°×5+180°=1080°.25.解:(1)∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;故答案为:135°;(2)①∵∠AOB=90°,∠BAO=60°,∴∠ABO=30°,∴∠ABN=150°,∵BC是∠ABN的平分线,∴∠OBD=∠CBN=150°=75°,∵AD平分∠BAO,∴∠DAB=30°,∴∠D=180°﹣∠ABD﹣∠BAD﹣∠AOB=180°﹣75°﹣30°﹣30°=45°,故答案为:45;②∠D的度数不随A、B的移动而发生变化,设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=180°﹣∠ABO=∠AOB+∠BAO=90+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∵∠ABC=180°﹣∠ABD=∠D+∠BAD,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(3)∵∠BAO与∠BOQ的平分线交于点E,∴∠AOE=135°,∴,∵AE、AF分别是∠BAO和∠OAG的平分线,∴,在△AEF中,若有一个角是另一个角的3倍,则①当∠EAF=3∠E时,得∠E=30°,此时∠ABO=60°;②当∠EAF=3∠F时,得∠E=60°,此时∠ABO=120°>90°,舍去;③当∠F=3∠E时,得,此时∠ABO=45°;④当∠E=3∠F时,得,此时∠ABO=135°>90°,舍去.综上可知,∠ABO的度数为60°或45°.。
人教版(数学试卷七年级)多边形及其内角和练习题及答案及答案1
7.3 多边形及其内角和(检测时间50分钟 总分值100分) 一、选择题:(每题3分,共24分) 1.一个多边形的外角中,钝角的个数不可能是( ) A.1个 B.2个 C.3个 D.4个 2.不能作为正多边形的内角的度数的是( ) A.120 B.(128)°C.144 D.145°3.假设一个多边形的各内角都相等,那么一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有( )A.3个 B.4个 C.5个 D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角可能( ) A.都是钝角; B.都是锐角 C.是一个锐角、一个钝角 D.是一个锐角、一个直角 6.假设从一个多边形的一个顶点出发,最多可以引10条对角线,那么它是( ) A.十三边形 B.十二边形 C.十一边形 D.十边形7.假设一个多边形共有十四条对角线,那么它是( ) A.六边形 B.七边形 C.八边形 D.九边形 8.假设一个多边形除了一个内角外,其余各内角之和为2570°,那么这个内角的度数为( ) A.90° B.105° C.130° D.120° 二、填空题:(每题3分,共15分) 1.多边形的内角中,最多有________个直角. 2.从n 边形的一个顶点出发,最多可以引______条对角线, 这些对角线可以将这个多边形分成________个三角形. 3.如果一个多边形的每一个内角都相等,且每一个内角都大于135°, 那么这个多边形的边数最少为________. 4.一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,那么这个多边形的边数为_________. 5.每个内角都为144°的多边形为_________边形. 三、根底训练:(每题12分,共24分) 1.如下图,用火柴杆摆出一系列 三角形图案,当摆到20层(n=20)时,需要多少 根火柴?2.一个多边形的每一个外角都等于24°,求这个多边形的边数.四、提高训练:(共15分)一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n 是互质的正整数,求这个多边形的边数(用m,n 表示)及n 的值.五、探索发现:(共18分) 从n 边形的一个顶点出发,最多可以引多少条条对角线?请你总结一下n 边形共有多少条对角线. 六、中考题与竞赛题:(共4分) (2002·湖南)假设一个多边形的内角和等于1080°,那么这个多边形的边数是( ) A.9 B.8 C.7 D.6 镶嵌47(检测时间50分钟 总分值100分) 一、选择题:(每题3分,共18分) 1.用形状、大小完全相同的图形不能镶嵌成平面图案的是( ) A.等腰三角形 B.正方形 C.正五边形 D.正六边形 2.以下图形中,能镶嵌成平面图案的是( ) A.正六边形 B.正七边形 C.正八边形 D.正九边形 3.不能镶嵌成平面图案的正多边形组合为( ) A.正八边形和正方形 B.正五边形和正十边形 C.正六边形和正三角形 D.正六边形和正八边形 4.如下图,各边相等的五边形ABCDE 中,假设∠ABC=2∠DBE,那么∠ABC 等于( ) A.60° B.120° C.90° D.45° 5.用正三角形和正十二边形镶嵌,可能情况有( ) A.1种 B.2种 C.3种 C.4种6.用正三角形和正六边形镶嵌,假设每一个顶点周围有m 个正三角形、n 个正六边形,那么m,n 满足的关系式是( )A.2m+3n=12B.m+n=8C.2m+n=6D.m+2n=6二、填空题:(每题4分,共12分) 1.用正三角形和正六边形镶嵌,在每个顶点处有_______个正三角形和_____ 个正六边形,或在每个顶点处有______个正三角形和________个正六边形. 2.用正多边形镶嵌,设在一个顶点周围有m 个正方形、n 个正八边形,那么m=_____,n=______.3.用一种正五边形或正八边形的瓷砖_______铺满地面.(填“能〞或“不能〞)三、根底训练:(每题15分,共30分)1.计算用一种正多边形拼成平整、无隙的图案,你能设计出几种方案?画出草图.2.用一个正方形、一个正五边形、一个正二十边形能否镶嵌成平面图案? 说明理由.四、提高训练:(共15分) 请你设计在每一个顶点处由四个正多边形拼成的平面图案, 你能设计出多少种不同的方案?五、探索发现:(共15分)如图2所示的地面全是用正三角形的材料铺设而成的.(1)用这种形状的材料为什么能铺成平整、无隙的地面? (2)像上面那样铺地砖,能否全用正十边形的材料?为什么? (3)你能不能另外想出一种用多边形(不一定是正多边形)的材料铺地面的方案?把你想到的方案画成草图. 六、中考题竞赛题:(共10分) 用黑、白两种颜色的正六边形地砖按如图3所示的规律,拼成假设干个图案.(1)第四个图案中有白色地砖_______块; (2)第n 个图案中有白色地砖________块. 答案:一、1.C 2.A 3.C 4.A 5.A 6.D 二、1.2 2 4 1 2.1 2 3.不能 三、略 四、略 五、(1)每个顶点周围有6个正三角形的内角,恰好组成一个周角.(2)不能,因为正十边形的内角不能组成360°.(3)能(图略) E D C B A六、(1)18 (2)4n+2.答案:一、1.D 2.D 3.D 4.A 5.C 6.A 7.B 8.C 二、1.4 2.(n-3) (n-2) 3.9 4.11 5.十 三、1.630根 2.15四、边数为,n=1或2. 五、(n-3)条 六、B.2()m n n +(3)2n n -。
华东师大版七年级下册第9章《多边形》单元测试卷(含答案)
华东师大版七年级下册第9章《多边形》单元测试卷(含答案)本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。
注意事项:1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。
一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。
)1 2 3 4 5 6 7 8 9 10 11 121、下列几种不同形状的瓷砖中,只有一种不能铺满地面的是( )A 、正六边形B 、正五边形C 、正方形D 、正三角形2、若某三角形的两边长分别为5和9,则该三角形第三边的长可能是( )A 、4B 、5C 、14D 、153、若一个三角形的三个内角的度数之比为4:3:1,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等边三角形4、若一个正边形的每个内角为144°,则这个正n 边形的边数为( )A 、8B 、9C 、10D 、115、将一把直尺与一块三角板如图放置,若︒=∠1301,则2∠的度数为( )A 、︒40B 、︒35C 、︒50D 、︒456、如图,将四边形ABCD 去掉一个60°的角得到一个五边形BCDEF ,则1∠与2∠的和为( )A 、60°B 、108°C 、120°D 、240°7、如图,直线PQ MN //,点A 是MN 上一点,MAC ∠的角平分线交PQ 于点B ,若︒=∠201,︒=∠1162,则3∠的大小为( )A 、136°B 、148°C 、146°D 、138°12 第5题图FEAB CD12 第6题图3 Q PCABNM12 第7题图8、在ABC ∆中,已知点D 、E 、F 分别是BC 、AD 、CE 的中点,且24cm S ABC =∆,则=∆BEF S ( )A 、22cmB 、21cmC 、25.0cm D、225.0cm9、如图,PQ MN //,BCP ∠的角平分线CD 的反向延长线交BAN ∠的角平分线于点E ,︒=∠-∠36E B ,则B ∠为( )A 、︒82B 、︒84C 、︒86D 、︒9610、一个多边形截去一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是( )A 、10B 、11C 、12D 、10或11或1211、如图,在五边形ABCDE 中,︒=∠+∠+∠280E B A ,EDC ∠,BCD ∠的平分线DP 、CP 相交于P 点,则P ∠的度数是( )A 、︒40B 、︒45C 、︒50D 、︒5512、如图,七边形ABCDEFG 中,AB 、CD 的延长线交于点O ,若1∠,2∠,3∠,4∠相邻的外角的和等于︒230,则BOD ∠的度数是( )A 、︒50B 、︒55C 、︒40D 、︒45二、填空题(本大题共4个小题,每小题4分,共16分)13、科技小组制作了一个机器人,它能根据指令要求行走和旋转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下数学《多边形》检测试题有答案
(时间:90分钟,满分:100分)
一、选择题(每小题2分,共12分)
1.能把三角形的面积分为相等的两部分的是()
A.三角形的角平分线
B.三角形的中线
C.三角形的高
D.以上都不对
2.已知从多边形的一个顶点引出的对角线把多边形划分为10个三角形,则此多边形的内角和是()
A.1440°
B.1800°
C.2160°
D.1620°
3.某人到瓷砖商店去购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是()
A.正三角形
B.正四边形
C.正五边形C.正六边形
4.能够铺满地面的正多边形组合是()
A.正六边形和正方形
B.正五边形和正八边形
C.正方形和正八边形
D.正三角形和正十边形
5.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()
A.5
B.6
C.7
D.8
6.设一个多边形的一个内角为x°,其余内角之和为1740°,则x的值为()
A.30
B.60
C.90
D.120
二、填空题(每小题2分,共18分)
7.已知一个多边形的内角和是2340°,则这个多边形是边形.
8.一个正多边形的每个外角都是24°,则这个多边形的边数为.
9. 4条线段的长度分别为2,3,4,5,任选3条线段可以组成个三角形.
10.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有个正三角形和个正四边形。
11.在△ABC中,∠A+∠B=∠C,∠B=2∠A,则∠C= ,∠A=
12.三角形的三边长分别为5,1+2x,8,则x的取值范围是
13.如图,AC⊥BD于点C,已知∠A=40°,∠AEF=70°,则∠D=
14.如图,已知∠1=20°,∠2=25°,∠A=50°,则∠BDC等于
15.如图,小兰在操场上散步。
她从O点出发,面向正东方向走5m,然后向左转45°,再向前走5m,又向左转45°,再向前走5m.这样一直走下去,第一次回到出发点O时,她共走了m
三、解答题(共70分)
16.(8分)已知△ABC的周长是24cm,三边a,b,c满足c+a=2b,c-a=4cm,求a,b,c的长。
17.(8分)一个等腰三角形的周长为18cm,一边长为5cm,求其他两边的长。
18.(8分)如图,以五边形的五个顶点为圆心画图,半径均为2cm,求图中阴影部分的面积之和。
(x取3.14)
19.(8分)如图,BC⊥DE于点O.DE交AB于点E,∠A=27°,∠D=20°,求∠B和∠ACB的度数
20.(8分)如图,AF,AD分别是△ABC的高和角平分线,且∠B=40°,∠C=70°,求∠DAF的度数。
21.(8分)如图,点A,B,C在同一条直线上,点B,D,E在同一条直线上,你能说明∠2>
∠1吗?
22.(10分)如图,在△ABC中,∠B=∠C,∠BMD=40°,且∠ADE=∠AED,求∠CDE的度数。
23.(12分)如图①,△ABC中,∠ABC与∠ACB的平分线交于点I.根据下列条件,求∠BIC的度数。
(1)若∠ABC=60°,∠ACB=70°,则∠BIC=
(2)若∠ABC+∠ACB=130°,则∠BIC=
(3)若∠A=50°,则∠BIC=
(4)若∠A=110°,则∠BIC=
(5)从上述计算中,我们能发现已知∠A,求∠BIC的公式是:∠BIC= .
(6)如图②,BP,CP分别是∠ABC与∠ACB的外角平分线,交于点P.
若已知∠A,则求∠BPC的公式是:∠BPC=
第9章检测题
1.B.
2.B.
3.D.
4.C.
5.C
6.B.
7.十五8.15. 9.3. 10.3,2. l1.90,30. 12.1<x<6. 13.20. 14.95. 15.40.
16.a=6cm,b=8cm,c=l0cm. 17.5cm.8cm或6.5cm,6.5cm. 18.18.84cm2.
19.∠B=43°,∠ACB=110°. 20.15°
21.∵∠2>∠ADB,∠ADB>∠1,∴∠2>∠1.
22.20.
23.(1)115°;(2)115°;(3)115°(4)145°(5)90°+1
2
∠A:(6)90°-
1
2
∠A.。