13第十三章 排列组合与概率【讲义】
管综数学排列组合和概率
一、排列组合排列组合是管综数学中常见的题型,也是非常重要的知识点。
排列组合主要研究从一组元素中选取一定数量的元素,并按一定顺序排列或组合的数学方法。
排列组合的应用非常广泛,例如在统计学、概率论、计算机科学等领域都有着广泛的应用。
排列组合主要包括排列和组合两种。
排列是指从一组元素中选取一定数量的元素,并按一定顺序排列。
排列的计算公式为:P(n, r) = n(n-1)(n-2)...(n-r+1)其中,n为元素总数,r为选取元素的数量。
组合是指从一组元素中选取一定数量的元素,而不考虑元素的顺序。
组合的计算公式为:C(n, r) = frac{P(n, r)}{r!}其中,n为元素总数,r为选取元素的数量,r!表示r的阶乘。
二、概率概率是管综数学中另一个重要的知识点。
概率主要研究随机事件发生的可能性。
概率的计算公式为:P(E) = frac{n(E)}{n(U)}其中,P(E)表示事件E发生的概率,n(E)表示事件E发生的次数,n(U)表示样本空间中所有可能事件的次数。
概率的应用也非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。
三、排列组合和概率在管综考试中的应用排列组合和概率是管综数学中非常重要的知识点,也是管综考试中经常考查的题型。
排列组合和概率的应用非常广泛,例如在统计学、金融学、保险学等领域都有着广泛的应用。
因此,掌握排列组合和概率的知识对于管综考试的成功非常重要。
排列组合和概率在管综考试中的应用主要包括以下几个方面:* 计算排列和组合的数量。
* 计算事件发生的概率。
* 分析排列和组合的规律。
* 解决排列和组合的应用问题。
四、排列组合和概率的学习方法排列组合和概率是管综数学中比较难的知识点,因此需要掌握一定的学习方法才能学好排列组合和概率。
排列组合和概率的学习方法主要包括以下几个方面:* 理解排列组合和概率的基本概念。
* 掌握排列组合和概率的计算公式。
* 熟悉排列组合和概率的应用场景。
数学中的排列组合与概率计算
数学中的排列组合与概率计算排列组合与概率计算是数学中重要的概念和工具,广泛应用于各个领域,包括统计学、物理学、计算机科学等。
本文将介绍排列组合与概率计算的基本概念和方法,并探讨它们在实际问题中的应用。
一、排列组合的基本概念1.1 排列排列是从一组元素中选取若干元素按一定顺序排列的方式。
对于n 个不同的元素,从中选取m个元素进行排列,可以表示为P(n,m)。
排列的计算公式为:P(n,m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × … × 2 × 1。
1.2 组合组合是从一组元素中选取若干元素不考虑顺序的方式。
对于n个不同的元素,从中选取m个元素进行组合,可以表示为C(n,m)。
组合的计算公式为:C(n,m) = n! / (m! × (n-m)!)二、概率计算的基本原理概率是用来描述事件发生可能性的数值,它的取值范围在0到1之间,0表示不可能发生,1表示一定会发生。
概率计算基于排列组合的概念和原理,通过对事件的样本空间和事件的发生情况进行计数和分析,来得出事件发生的概率。
2.1 样本空间样本空间是指一个随机试验的所有可能结果的集合。
例如,掷一枚普通的硬币,它的样本空间包括正面和反面两个可能的结果。
2.2 事件事件是样本空间的子集,表示我们关心的某种结果。
例如,掷一枚硬币出现正面是一个事件。
2.3 概率概率是事件发生的可能性。
对于一个随机试验和事件,概率的计算公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的发生情况数,n(S)表示样本空间的元素个数。
三、排列组合与概率计算的应用排列组合和概率计算在各个领域都有广泛的应用。
下面以几个具体的例子说明它们的具体应用。
3.1 组合在概率计算中的应用在扑克牌游戏中,计算一个牌型的概率就可以使用组合的概念。
高中数学中的排列组合与概率统计
高中数学中的排列组合与概率统计高中数学是我们学习的重要学科之一,其中排列组合与概率统计是数学中的两个重要概念。
它们在数学中的应用广泛,不仅帮助我们解决实际问题,还培养了我们的逻辑思维和分析能力。
一、排列组合排列组合是数学中的一种方法,用于计算一组对象的不同排列或组合的数量。
在排列中,对象的顺序是重要的,而在组合中,对象的顺序是不重要的。
排列的计算方法可以通过以下例子来理解。
假设有3个球,分别是红球、蓝球和绿球,现在要将这3个球放在一个篮子里。
那么,一共有多少种不同的排列方式呢?首先,我们可以将红球放在篮子的第一个位置,然后将蓝球放在第二个位置,最后将绿球放在第三个位置。
这样的排列方式是一种情况。
同样的,我们可以将红球放在第一个位置,绿球放在第二个位置,蓝球放在第三个位置,这样的排列方式也是一种情况。
根据这个思路,我们可以得出结论,一共有3个球,所以一共有3!(3的阶乘)种不同的排列方式。
组合的计算方法则是通过以下例子来理解。
假设有5个人,我们要从中选出3个人组成一个小组。
那么,一共有多少种不同的组合方式呢?首先,我们可以从5个人中选出一个人作为小组的第一个成员,然后从剩下的4个人中选出一个人作为第二个成员,最后从剩下的3个人中选出一个人作为第三个成员。
这样的组合方式是一种情况。
同样的,我们可以从5个人中选出一个人作为第一个成员,从剩下的4个人中选出一个人作为第二个成员,从剩下的3个人中选出一个人作为第三个成员,这样的组合方式也是一种情况。
根据这个思路,我们可以得出结论,一共有5个人,我们要选出3个人,所以一共有5C3(5的组合数)种不同的组合方式。
二、概率统计概率统计是研究随机事件发生的可能性的一门学科。
它可以帮助我们预测事件发生的概率,并根据概率进行决策和分析。
概率的计算方法可以通过以下例子来理解。
假设有一个装有10个红球和10个蓝球的箱子,现在我们从中随机抽取一个球。
那么,抽到红球的概率是多少呢?首先,我们可以计算出总共有20个球,其中10个是红球。
掌握简单的排列组合和概率计算
掌握简单的排列组合和概率计算排列组合和概率计算是数学中非常重要的概念和方法,它们在实际生活和各个领域中都有广泛的应用。
本文将介绍简单的排列组合和概率计算的概念、原理和应用,并提供一些练习题供读者巩固所学知识。
1. 排列的概念和计算方法排列是指从给定的一组对象中,选取若干个对象按照一定的顺序排列组合的方式。
在排列中,每个对象只能使用一次。
例如,有3个不同的字母A、B、C,从中选取2个字母排列,可以得到以下6种排列:AB、AC、BA、BC、CA、CB。
计算排列的方式为:使用阶乘的方法,即对于给定的n个对象中,选取r个对象排列,计算公式为P(n, r) = n!/(n-r)!,其中n!表示n的阶乘。
2. 组合的概念和计算方法组合是指从给定的一组对象中,选取若干个对象按照任意顺序排列组合的方式。
在组合中,每个对象只能使用一次。
例如,有3个不同的字母A、B、C,从中选取2个字母组合,可以得到以下3种组合:AB、AC、BC。
计算组合的方式为:使用阶乘的方法,即对于给定的n个对象中,选取r个对象组合,计算公式为C(n, r) = n!/(r!(n-r)!)。
3. 概率的概念和计算方法概率是指某个事件发生的可能性大小。
概率的计算方法可以通过排列组合的方式得到。
对于一个随机事件A,其概率的计算公式为P(A) = 事件A发生的总数/总的可能发生的事件数。
例如,从一副扑克牌中取出5张牌,计算其中4张是红心牌的概率。
首先计算红心牌的总数,扑克牌中共有52张牌,其中红心总数为13张,因此红心牌的总数为C(13, 4)。
然后计算总的可能取牌的事件数,即从52张牌中取出5张牌,其计算公式为C(52, 5)。
最后,将红心牌的总数除以总的可能取牌的事件数即可得到概率。
4. 应用案例排列组合和概率计算在现实生活中有许多应用。
以下是几个常见的案例:a. 彩票中奖概率计算:彩票中奖概率的计算就是应用了排列组合和概率计算的原理。
通过计算选中的号码在所有可能的号码组合中所占的比例,得到中奖的概率大小。
排列组合的讲义
万华:公考传奇缔造者!万华:公考培训黄埔军校!排列组合的讲义一、排列组合定义1、什么是C公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
例如:编号1~3的盒子,我们找出2个来使用,这里就是运用组合而不是排列,因为题目只是要求找出2个盒子的组合。
即C(3,2)=32、什么是P或A公式P是指排列,从N个元素取R个进行排列(即排序)。
例如:1~3,我们取出2个数字出来组成2位数,可以是先取C(3,2)后排P22,就构成了C(3,2)×P(2,2)=A(3,2)3、A和C的关系事实上通过我们上面2个对定义的分析,我们可以看出的是,A比C多了一个排序步骤,即组合是排列的一部分且是第一步骤。
4、计算方式以及技巧要求组合:C(M,N)=M!÷(N!×(M-N)!)条件:N<=M排列:A(M,N)=M!÷(M-N)!条件:N<=M为了在做排列组合的过程中能够对速度有必要的要求,我需要大家能够熟练的掌握1~7的阶乘,当然在运算的过程中,我们要学会从逆向思维角度考虑问题,例如C(M,N)当中N取值过大,那么我们可以看M-N的值是否也很大。
如果不大。
我们可以求C(M,[M-N]),因为C(M,N)=C(M,[M-N])二、排列组合常见的恒等公式1、C(n,0)+C(n,1)+C(n,2)+……+C(n,n)=2^n2、C(m,n)+C(m,n+1)=C(m+1,n+1)针对这2组公式我来举例运用(1)有10块糖,假设每天至少吃1块,问有多少种不同的吃法?解答:C(9,0)+C(9,1)+……+C(9,9)=2^9=512(2),公司将14副字画平均分给甲乙筛选出参加展览的字画,按照要求,甲比乙多选1副,且已知甲按照要求任意挑选的方法与乙任意挑选的方法之和为70,求,甲挑选了多少副参加展览?C(8,n)=70 n=4 即得到甲选出了4副。
万华:公考传奇缔造者!万华:公考培训黄埔军校!三、排列组合的基本理论精要部分(分类和分步)(1)、加法原理(实质上就是一种分类原则):一个物件,它是由若干个小块组成的,我们要知道这个物件有多重,实际上可以分来算,比如,我们知道每一个小块的重量,然后计算总和就等于这个物件的重量了,这就是我们要谈的分类原则。
组合数学:排列、组合与概率
组合数学是数学中一门重要的学科,它研究的是“选择”的问题,这种选择可以是排列、组合或者概率中的各种情况。
在组合数学中,排列、组合与概率是三个关键的概念。
首先,我们来看排列。
排列是指从一组元素中,按照一定的顺序选择几个元素进行排列。
例如,有A、B、C三个字母,我们要从中选择两个字母进行排列,那么可能的排列方式就是AB、AC、BA、BC、CA、CB。
排列的数量可以通过阶乘来计算,即 n! = n * (n-1) * (n-2) * … * 2 * 1,其中n表示元素的数量。
接着,我们来看组合。
组合是指从一组元素中,不考虑顺序选择几个元素进行组合。
例如,有A、B、C三个字母,我们要从中选择两个字母进行组合,那么可能的组合方式就是AB、AC、BC。
组合的数量可以通过公式 C(n,r) = n! /(r! * (n-r)!) 进行计算,其中n表示元素的数量,r表示选择的元素个数。
最后,我们来看概率。
概率是指某个事件发生的可能性的大小,它是一个介于0和1之间的实数。
概率可以通过排列和组合的方法来计算。
例如,有一副扑克牌,从中随机抽取一张牌,如果我们想计算摸到黑桃牌的概率,那么可以用排列的方法计算。
黑桃牌的数量为13张,总牌数为52张,所以摸到黑桃牌的概率为 P = 13/52 = 1/4。
又如,有4个红色球和6个蓝色球,从中抽取两个球,如果我们想计算摸到一个红色球和一个蓝色球的概率,那么可以用组合的方法计算。
红色球的数量为4个,蓝色球的数量为6个,总球数为10个,所以摸到一个红色球和一个蓝色球的概率为 P = C(4,1) * C(6,1) / C(10,2) =24/45。
综上所述,组合数学是一门研究“选择”的数学学科,其中排列、组合与概率是三个重要的概念。
通过排列和组合的方法,可以计算出各种“选择”的可能性。
而概率则用来计算某个事件发生的可能性大小。
组合数学在实际应用中有着广泛的应用,例如在概率统计、密码学、图论等领域。
高中数学研究数学中的排列组合与概率
高中数学研究数学中的排列组合与概率在高中数学课程中,排列组合与概率是重要的概念,它们在实际生活中有着广泛的应用。
本文将深入探讨排列组合与概率的概念、性质和应用,并展示它们在解决问题中的实际意义。
一、排列组合1. 排列的概念排列是指从给定的元素中选取一部分进行排列,按照一定的顺序进行排列。
在排列中,元素的顺序是重要的。
对于n个不同的元素,选择r个进行排列的方法数可以用P(n,r)来表示。
排列的计算公式为:P(n,r) = n! / (n-r)!其中,!表示阶乘,即n! = n×(n-1)×(n-2)×...×2×1。
2. 组合的概念组合是指从给定的元素中选取一部分进行组合,元素的顺序不重要。
对于n个不同的元素,选择r个进行组合的方法数可以用C(n,r)来表示。
组合的计算公式为:C(n,r) = n! / (r!(n-r)!)3. 排列组合的性质排列和组合有一些重要的性质,可以利用这些性质简化计算和问题的解决。
(1)互补原则:P(n,r) = n! / (n-r)! = n × (n-1) × (n-2) × ... × (n-r+1),C(n,r) = n! / (r!(n-r)!) = P(n,r) / r!(2)相同元素的排列:如果有n个元素中有m1个相同,m2个相同,...,mk个相同,那么排列的方法数可表示为P(n, n) / (m1! × m2! × ... × mk!)。
(3)0的阶乘:0! 等于1。
二、概率1. 概率的概念概率是研究随机事件发生可能性或可能性大小的数学方法。
概率的范围在0-1之间,事件发生的概率越高,其值越接近于1;事件发生的概率越低,其值越接近于0。
随机事件的概率可以用P(A)来表示,其中A表示随机事件。
2. 概率的计算(1)古典概型:对于有限个样本点的等可能概率试验,事件A发生的概率可以通过计算满足事件A的样本点的数量除以总样本点的数量来计算。
排列组合与概率初步专题讲义
排列组合与概率初步专题讲义排列组合与概率初步专题讲义一、排列组合1、两个基本原理(加法原理与乘法原理)类型一、排数字问题1. 用0、1、2、3、4、5这六个数字(1)可以组成多少个各位数字不重复的三位数?(2)可以组成多少个各位数字允许重复的三位数?(3)可以组成多少个各位数字不允许重复的三位的奇数?(4)可以组成多少个各位数字不重复的小于1000的自然数?(5)可以组成多少个大于3000小于5421且各位数字不重复的四位数?2.从1到9这9个自然数中,任取3个数作数组),,(c b a ,且c ba >>,则不同数组共有()个。
A. 21 B. 28 C. 56 D. 84 E. 343类型二、投信问题(分房问题)3、将3封信投入4个不同的信箱,则不同的投信方法种数是()A.43?B. 43C. 34D. 7E. 以上结论均不正确4、有4名学生参加数、理、化三科竞赛,每人限报一科,则不同的报名情况有() A. 43 B. 34 C. 321 D. 432 E. 以上结论均不正确5、6个人分到3个车间,共有不同的分法() A. 63 B. 36 C. 18D. 747E. 以上结论均不正确6、6个人分工栽3棵树,每人只栽1棵,则共有不同的分工方法() A. 63 B. 3240 C. 36 D. 120 E. 以上结论均不正确类型三、染色问题7、用5种不同的颜色给图中的A,B,C,D 四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则共有多少种不同的涂色方法?8、有6种不同的颜色为下列广告牌着色,要求在①②③④四个区域中相邻(有公共边界)区域中不用同一种颜色,则不同的着色方法有()种A. 64B. 46C. 24D. 240E. 480类型四、较复杂的两个原理的综合问题9、现有高一学生8人,高二学生5人,高三学生10人,组成数学课外活动小组,(1)选其中1个为总负责人,有多少种不同的选法?(2)每一个年级选1名组长,有多少种不同的选法?(3)在一次活动中,推选出其中2人作为中心发言人,要求2人来自不同的年级,有多少种不同的选法?10、某赛季足球比赛计分规则是:胜一场,得3分,平一场,得1分,负一场,得0分,一球队打完15场,积33分,若不考虑顺序,该球队胜、负、平的情况共有()种A. 3B. 4C. 6D. 6E. 711、三边长均为整数,且最大边长为11的三角形的个数为()A. 25B. 26C. 30D. 36E. 3712、若直线方程0a,可以从这五个数字0,1,2,3,4这五个数字中任取两个ax中的b+by=不同的数字,则方程所表示的不同的直线共有()种。
排列组合与概率计算
排列组合与概率计算在概率论和统计学中,排列组合是一种重要的数学工具,用于计算事件发生的可能性。
排列组合问题可以分为排列问题和组合问题两种类型。
本文将分别介绍排列和组合的概念,并探讨如何应用排列组合来计算概率。
一、排列排列是指从一组元素中选取若干个元素按照一定的顺序进行排列的过程。
排列问题中,元素的顺序是关键因素,不同的顺序会产生不同的排列结果。
对于给定的n个元素中选取r个元素进行排列,可以使用以下的排列公式来计算不同的排列可能性:P(n,r) = n! / (n-r)!其中,n! 表示n的阶乘,即n! = n * (n-1) * (n-2) * … * 2 * 1。
举例来说,假设有5个不同的球放入5个不同的盒子中,问有多少种放法?这就是一个排列问题。
根据排列公式可得:P(5,5) = 5! / (5-5)! = 5! / 0! = 120 / 1 = 120所以,共有120种不同的放法。
二、组合组合是指从一组元素中选取若干个元素进行组合的过程。
组合问题中,元素的顺序不是关键因素,只有元素的选择与否才会影响组合结果。
对于给定的n个元素中选取r个元素进行组合,可以使用以下的组合公式来计算不同的组合可能性:C(n,r) = n! / ((n-r)! * r!)举例来说,假设有9个不同的球,选取其中3个球,问有多少种不同的组合?这就是一个组合问题。
根据组合公式可得:C(9,3) = 9! / ((9-3)! * 3!) = 9! / (6! * 3!) = 84所以,共有84种不同的组合方式。
三、排列组合在概率计算中有着广泛的应用。
在计算事件的概率时,可以利用排列组合的原理来计算出事件发生的可能性。
例如,假设有一副标准扑克牌,从中抽取5张牌,问其中恰好有2张红心和3张黑桃的概率是多少?首先,我们需要确定总的样本空间,即抽取5张牌的不同排列数量。
根据排列公式,总共有:P(52,5) = 52! / (52-5)! = 52! / 47! = 2598960其次,我们需要确定符合条件的事件,即恰好有2张红心和3张黑桃的不同排列数量。
排列组合条件概率_概述说明以及解释
排列组合条件概率概述说明以及解释1. 引言1.1 概述: 在概率论中,排列组合条件概率是一种重要的计算方法,它涉及到排列组合的基础知识和条件概率概念。
通过理解排列组合的概念和条件概率的计算方法,我们可以更好地分析事件之间的关系,并作出准确的推断和预测。
1.2 文章结构: 本文将首先介绍排列组合的基础知识,包括什么是排列组合、排列与组合的区别以及其应用领域。
接着将详细阐述条件概率的定义、计算方法和与独立性的关系。
然后将探讨排列组合在条件概率中的具体应用,并通过实例分析展示其计算过程和结果。
最后,文章将总结主要内容和结论,展望未来研究方向,并给出结束语。
1.3 目的: 本文旨在帮助读者深入了解排列组合条件概率的理论知识和实际运用,在学习、工作或研究中能够灵活运用这一方法进行问题求解和决策。
通过阅读本文,读者将能够掌握排列组合条件概率的相关概念、原理和应用技巧,提高数学分析和推理能力。
排列组合是组合数学中的一个重要概念,它涉及到对元素进行有序或无序的排列和选择。
在排列中,我们考虑元素的先后顺序,而在组合中则只考虑元素的选择而不考虑顺序。
例如,假设有三个数字1、2、3,在排列中可能会有123、132、213、231、312和321这六种不同的排列方式;而在组合中只有123这一种选择方式。
排列与组合之间的主要区别在于是否考虑元素的排列顺序。
在实际问题中,通常需要根据具体情况来确定使用排列还是组合。
排列通常用于涉及具体次序或位置信息的问题,如密码锁密码的可能性计算;而组合则更多用于涉及选取对象数量而不考虑次序的问题,比如从一组人员当中选出一个小组成员。
排列和组合都在各种领域得到广泛应用。
在计算机科学和信息技术领域,排列和组合用于数据压缩、加密算法等方面;在统计学和概率论领域,排列和组合是条件概率、事件独立性等问题的基础;在经济学和管理学领域,排列和组合可用于市场调查、产品分析等决策问题。
总之,了解排列与组合知识将有助于我们更好地解决各种实际问题,并为进一步探讨条件概率提供坚实基础。
数学中的排列组合与概率计算
数学中的排列组合与概率计算数学是一门既抽象又具有实际应用的学科,其中排列组合与概率计算是其重要组成部分。
排列组合是研究对象的选择、排列和组合方式,而概率计算则关注于事件的可能性。
本文将从理论与实际应用两方面介绍数学中的排列组合与概率计算。
一、排列组合的基本概念排列和组合是数学中与选择和排序有关的概念。
排列表示从一组对象中选择若干个对象,并按照一定的顺序进行排列;组合则表示从一组对象中选择若干个对象,但不考虑其顺序。
1. 排列在排列中,我们关心的是选取对象的顺序。
例如,从A、B、C三个字母中选取两个字母进行排列,可能的排列结果有AB、AC、BA、BC、CA、CB共计6种情况(记作P(3,2)=6)。
排列的计算公式为:P(n,m) = n! / (n-m)!其中,n代表对象总数,m代表选取的对象数,n!表示n的阶乘。
2. 组合在组合中,我们关心的是选取对象而不考虑其顺序。
例如,从A、B、C三个字母中选取两个字母进行组合,可能的组合结果有AB、AC、BC共计3种情况(记作C(3,2)=3)。
组合的计算公式为:C(n,m) = n! / ((n-m)! * m!)其中,n代表对象总数,m代表选取的对象数。
二、概率计算的基本原理概率是研究事件发生的可能性的数学理论。
利用排列组合的方法,我们可以计算事件发生的概率。
1. 事件与样本空间事件是指我们关注的某种结果,样本空间是指所有可能结果的集合。
例如,投掷一个骰子,事件A可以是出现奇数点数,样本空间S可以是{1, 2, 3, 4, 5, 6}。
2. 概率计算概率是事件发生的可能性。
概率的计算公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A发生的次数,n(S)表示样本空间S中可能事件发生的总次数。
三、排列组合与概率的应用排列组合与概率计算在实际生活中有广泛的应用。
以下以两个具体例子介绍其应用。
1. 抽奖活动假设在一个抽奖活动中,有10位幸运观众,其中要从中抽取3位中奖者。
第十三章排列组合与概率(高中数学竞赛标准教材)
第十三章排列组合与概率(高中数学竞赛标准教材)第十三章排列组合与概率一、基础知识.加法原理:做一件事有n类办法,在第1类办法中有1种不同的方法,在第2类办法中有2种不同的方法,……,在第n类办法中有n种不同的方法,那么完成这件事一共有N=1+2+…+n种不同的方法。
.乘法原理:做一件事,完成它需要分n个步骤,第1步有1种不同的方法,第2步有2种不同的方法,……,第n步有n种不同的方法,那么完成这件事共有N=1×2×…×n种不同的方法。
.排列与排列数:从n个不同元素中,任取个元素,按照一定顺序排成一列,叫做从n个不同元素中取出个元素的一个排列,从n个不同元素中取出个元素的所有排列个数,叫做从n个不同元素中取出个元素的排列数,用表示,=n…=,其中,n∈N,≤n,注:一般地=1,0!=1,=n!。
.N个不同元素的圆周排列数为=!。
.组合与组合数:一般地,从n个不同元素中,任取个元素并成一组,叫做从n个不同元素中取出个元素的一个组合,即从n个不同元素中不计顺序地取出个构成原集合的一个子集。
从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同元素中取出个元素的组合数,用表示:.组合数的基本性质:;;;;;。
.定理1:不定方程x1+x2+…+xn=r的正整数解的个数为。
[证明]将r个相同的小球装入n个不同的盒子的装法构成的集合为A,不定方程x1+x2+…+xn=r的正整数解构成的集合为B,A的每个装法对应B的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。
反之B中每一个解,将xi作为第i个盒子中球的个数,i=1,2,…,n,便得到A的一个装法,因此为满射,所以是一一映射,将r个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n份,共有种。
故定理得证。
推论1不定方程x1+x2+…+xn=r的非负整数解的个数为推论2从n个不同元素中任取个允许元素重复出现的组合叫做n个不同元素的可重组合,其组合数为.二项式定理:若n∈N+,则n=.其中第r+1项Tr+1=叫二项式系数。
2013 高考数学 排列组合与概率知识点 排列组合典型题 基本方法 技巧
排列组合与概率经典教案两个基本原理:1.加法原理(分类计数原理):做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法, 在第二类办法中有2m 种不同的方法, ……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:n m m m m N +⋅⋅⋅+++=321种不同的方法.2.乘法原理(分步计数原理): 做一件事,完成它有n 个步骤,做第一步有1m 种不同的方法, 做第二步有有2m 种不同的方法, ……, 做第n 步有n m 种不同的方法,那么完成这件事共有: n m m m m N ⨯⋅⋅⋅⨯⨯⨯=321种不同的方法.特别注意:分类是独立的、一次性的;分步是连续的、多次的。
三组基本概念:1.排列1)排列:从n 个不同元素中取出m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
2)排列数:从n 个不同元素中取出m(m ≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数。
通常用mn A 表示。
特别地,当n m =时,称为全排列,当n m π时,称为选排列。
2. 组合1)组合:从n 个不同元素中取出m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
2)组合数:从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记作mn C 。
3. 事件与概率1)事件的分类:(1)必然事件:在一定的条件下必然要发生的事件;(2)不可能事件:在一定的条件下不可能发生的事件;(3)随机事件:在一定的条件下可能发生也可能不发生的事件。
2)一些特殊事件:(1)等可能事件:对于每次随机试验来说,只可能出现有限个不同的试验结果;另外,所有不同的试验结果,它们出现的可能性是相等的。
(2)互斥事件:不可能同时发生的两个事件,我们把它称为互斥事件。
如果事件A 1,A 2,…,A n 中的任何两个都是互斥事件,那么就说事件A 1,A 2,…,A n 彼此互斥。
高考数学排列组合与概率统计讲义
高考数学知识归纳分析第一讲 排列组合与概率分析 [排列组合] 一、基本知识点1.加法原理:做一件事有n 类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,……,在第n 类办法中有mn 种不同的方法,那么完成这件事一共有N=m1+m2+........….+mn ...种不同的方法。
2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,……,第n 步有mn 种不同的方法,那么完成这件事共有N=m1×m2×…×mn 种不同的方法。
3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,n n A =n!。
4.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C mn -=+--=6.组合数的基本性质:(1)m n n mnCC -=;(2)11--+=n n m nm n CC C;(3)kn k n C C k n =--11;(4)nnk kn n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn m n m k k n C C C --=。
排列组合的概率
排列组合的概率排列组合是概率论中的一个基础概念。
它描述了从给定的一组元素中选择若干个元素进行排列或组合的方式,并计算出其中某一种结果出现的概率。
在实际生活中,排列组合的概念广泛应用于各个领域,如统计学、计算机科学、工程学等。
本文将就排列组合的概念、原理以及其在实际问题中的应用进行详细介绍。
一、排列和组合的概念排列和组合是数学上描述从给定的一组元素中选择若干个元素的方式。
排列强调元素的顺序,而组合则不考虑元素的顺序。
具体来说:1. 排列排列是从一组不同元素中选择若干个元素,并按照一定的顺序进行排列的方式。
假设有n个元素,要选择r个元素进行排列,那么排列的总数可以用数学符号表示为P(n, r)。
排列的计算公式是:P(n, r) = n! / (n-r)!其中“!”表示阶乘,即将一个数的所有正整数乘积。
我们可以将排列理解为一个假设实验,逐步选取元素的过程。
例如,有5个元素A、B、C、D、E,要选择3个元素进行排列,按顺序选取的过程可以是:先选A,再选B,最后选C;或者先选A,再选C,最后选B,等等。
因此,在这种情况下,排列的总数是5 × 4 × 3 = 60。
2. 组合组合是从一组不同元素中选择若干个元素,并不考虑元素的顺序。
同样假设有n个元素,要选择r个元素进行组合,组合的总数可以用数学符号表示为C(n, r)。
组合的计算公式是:C(n, r) = n! / (r! * (n-r)!)与排列不同,组合的顺序不重要。
例如,还是以有5个元素A、B、C、D、E为例,要选择3个元素进行组合,不考虑顺序的话,组合的总数是5 × 4 × 3 / (3 × 2 × 1) = 10。
二、排列组合的原理排列组合的原理是基于基本计数原理和互异事件的概率等概率原理。
1. 基本计数原理基本计数原理是指若有一个实验可以分成n个步骤完成,每个步骤有m种选择,则该实验一共有n × m种可能的结果。
事件的排列与组合概率
事件的排列与组合概率在概率论中,排列与组合是两个重要的概念。
它们用于描述事件发生的可能性,并有助于我们计算和预测事件发生的概率。
本文将介绍排列与组合的概念及其在概率计算中的应用。
一、排列的概念及计算方法排列是指将若干个元素按一定顺序排列的方式。
假设有n个元素,要从中选取m个元素进行排列,其中m≤n。
那么排列的总数可以通过下式计算得到:P(n,m) = n! / (n - m)!其中,n!表示n的阶乘,即从1到n之间所有正整数的乘积。
排列的计算公式中用到了阶乘的概念,表示从n个元素中选取m个元素进行排列的可能性。
例如,有5个人要从中选出3个人进行排列,那么排列的总数可以计算如下:P(5,3) = 5! / (5-3)! = 5! / 2! = 60因此,从5个人中选取3个人进行排列的总数为60种可能性。
二、组合的概念及计算方法组合是指从若干个元素中选取特定数量的元素,而不考虑元素的顺序。
与排列不同的是,组合只关注元素的选择,而不关注元素的排列顺序。
假设有n个元素,要从中选取m个元素进行组合,其中m≤n。
那么组合的总数可以通过下式计算得到:C(n,m) = n! / (m! * (n - m)!)组合的计算公式中同样用到了阶乘的概念,但是相比排列,组合考虑了元素的选择而不考虑元素的排列顺序。
例如,有5个人要从中选出3个人进行组合,那么组合的总数可以计算如下:C(5,3) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = 10因此,从5个人中选取3个人进行组合的总数为10种可能性。
三、排列与组合的应用排列与组合在概率计算中有着广泛的应用。
它们能够帮助我们计算事件发生的概率,并在实际问题中提供便捷的解决方法。
例如,假设有一副扑克牌,共有52张牌。
我们希望计算从中抽取5张牌,其中包含3张红心牌和2张黑桃牌的概率。
首先,我们可以通过组合的概念计算出满足条件的牌的组合数:C(13,3) * C(13,2) = 286 * 78 = 22308其中,C(13,3)表示从13张红心牌中选取3张牌的组合数,C(13,2)表示从13张黑桃牌中选取2张牌的组合数。
排列组合和概率
排列组合和概率是许多应用程序中重要的概念之一。
概率可以很容易
地计算出一个给定情况发生的概率,而排列组合可以用来研究特定情
况出现的可能性。
什么是排列组合?排列组合是指从一组相同类型的元素中有序选择n
个元素的方法,其中n是所选元素的数量。
排列组合对于应对复杂的
计算问题非常有用。
概率的概念也是重要的。
它可以将不确定性的事件转换成可以预测的
数值。
概率可以用来计算特定事件发生的可能性,并预测特定事件发
生的概率。
排列组合和概率可以应用于很多行业,如健康统计学、生物统计学、
财务预测、电子游戏设计以及许多其他领域。
健康统计学中,可以使
用概率来更好地了解某种疾病发病的可能性,以及给出有效的控制办法。
在生物统计学中,可以使用排列组合来计算细菌的繁殖时间,并
使分子生物学实验更准确有效。
财务会计也可以使用排列组合和概率进行风险评估,以识别特定风险
在某段时间内发生的可能性,然后采取合适的措施来防范或减轻风险。
对于电子游戏设计,可以使用概率来设计不同几率的事件发生,以及
有效地管理游戏内的货币、能力和装备资源等。
总之,排列组合和概率可以应用于许多不同的行业,可以有效地帮助
解决应用程序中的复杂问题。
高中数学排列组合讲义
高中数学排列组合一.基础知识1.分类计数原理:完成一件事情有n 类方法,在第一类办法里有m 1种不同的方法,在第二类办法里有m 2种不同的方法......在第n 类办法中有m n 种不同的方法,那么完成这件事情共有N=m m m n +++...21种不同的方法。
2.分步计数原理:做一件事,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法......做第n 步有m n 种不同的方法,那么完成这件事情共有N=m m m n ...21⨯⨯种不同的方法。
3.(1)排列:一般地,从n 个不同的元素中取出m (n m ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
(2)排列数:一般地,从n 个不同元素中取出m 个元素的所有排列的个数,叫做从n 个不同的元素中取出m 个元素的排列数,用符号A mn 表示(3))1...(2)(1(+---=m n n n n A mn )若m=n ,得123)...2)(1(!••--==n n n n A nn ,左边表示n 个不同元素全部取出的排列数,称为全排列数。
右边表示正整数1到n 的连乘积,称为n 的阶乘。
4.(1)组合:一般地,从n 个不同元素中取出m (n m ≤)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
(2)组合数:一般地,从n 个不同元素中取出m (n m ≤)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示 (3)组合数公式)!(!!m n m n AA C m mm n mn -==(4)常用性质:①C C mn n mn -= ②C C C m n mn mn 11-++=5.相邻问题(捆绑问题)n 个元素排列,其中的m 个元素要求相邻,把这m 个元素看成1个元素与其他n-m 个元素排列,在考虑这m 个元素自身的顺序即可,其结果是!)!1(m m n +- 6.相离问题(插空问题)n 个元素排列,其中的m 个元素要求彼此互不相邻,先排其余的n-m 个元素,这n-m 个元素的每相邻的两个元素之间都有一个空,再加上两端,共有n-m+1个空,从这n-m+1个空中选m 个空去排要求彼此互不相邻的m 个元素就可以了,其结果是A mm n m n 1)!(+--7.定位问题:(1)单定位:n 个元素排列,某个元素要求排在某个指定的位置上,等价于没有这个元素和没有这个位置,其结果是(n-1)!(2)复定位:n 个元素排列,k 个元素要求排在m 个指定的位置上,先从这m 个位置中选出k 个位置去排这k 个元素,再排其余n-k 个元素即可,其结果是)!(k n Ak m-8.平均分组问题:把n 个元素平均分成m 组,每组k (k=mn)个元素,共有不同的分法AC C C mmkkn kk n kn ...2--种9.)(......*222111)(N b C baC baC baC a C b a n n n n rrn r n n n n n nn n∈++++++=---+这个公式叫做二项式定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 排列组合与概率一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。
2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。
3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m nA 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0nA =1,0!=1,nn A =n!。
4.N 个不同元素的圆周排列数为nA nn =(n-1)!。
5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n nmnC C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C kn =--11;(4)n nk k n n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn m n m k k n C C C --=。
7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。
[证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。
反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。
故定理得证。
推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1rr n C -+推论2 从n 个不同元素中任取m 个允许元素重复出现的组合叫做n 个不同元素的m 可重组合,其组合数为.1mm n C -+8.二项式定理:若n ∈N +,则(a+b)n=nn n r r n r n n n n n nn b C b a C b a C b a C aC +++++---222110.其中第r+1项T r+1=rnr rn r n C b aC ,-叫二项式系数。
9.随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。
在大量重复进行同一试验时,事件A 发生的频率nm总是接近于某个常数,在它附近摆动,这个常数叫做事件A 发生的概率,记作p(A),0≤p(A)≤1.10.等可能事件的概率,如果一次试验中共有n 种等可能出现的结果,其中事件A 包含的结果有m 种,那么事件A 的概率为p(A)=.nm 11.互斥事件:不可能同时发生的两个事件,叫做互斥事件,也叫不相容事件。
如果事件A 1,A 2,…,A n 彼此互斥,那么A 1,A 2,…,A n 中至少有一个发生的概率为 p(A 1+A 2+…+A n )= p(A 1)+p(A 2)+…+p(A n ).12.对立事件:事件A ,B 为互斥事件,且必有一个发生,则A ,B 叫对立事件,记A 的对立事件为A 。
由定义知p(A)+p(A )=1.13.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。
14.相互独立事件同时发生的概率:两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
即p(A •B)=p(A)•p(B).若事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率为p(A 1•A 2• … •A n )=p(A 1)•p(A 2)• … •p(A n ).15.独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的.16.独立重复试验的概率:如果在一次试验中,某事件发生的概率为p,那么在n 次独立重复试验中,这个事件恰好发生k 次的概率为p n (k)=kn C •p k(1-p)n-k.17.离散型随机为量的分布列:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫随机变量,例如一次射击命中的环数ξ就是一个随机变量,ξ可以取的值有0,1,2,…,10。
如果随机变量的可能取值可以一一列出,这样的随机变量叫离散型随机变量。
一般地,设离散型随机变量ξ可能取的值为x 1,x 2,…,x i ,…,ξ取每一个值x i (i=1,2,…)的概率p(ξ=x i )=p i ,则称表为随机变量ξ的概率分布,简称ξ的分布列,称E ξ=x 1p 1+x 2p 2+…+x n p n +…为ξ的数学期望或平均值、均值、简称期望,称D ξ=(x 1-E ξ)2•p 1+(x 2-E ξ)2•p 2+…+(x n -E ξ)2p n +…为ξ的均方差,简称方差。
ξD 叫随机变量ξ的标准差。
18.二项分布:如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中,这个事件恰好发生k 次的概率为p(ξ=k)=k n k knq p C -, ξ的分布列为此时称ξ服从二项分布,记作ξ~B(n,p).若ξ~B(n,p),则E ξ=np,D ξ=npq,以上q=1-p.19.几何分布:在独立重复试验中,某事件第一次发生时所做试验的次数ξ也是一个随机变量,若在一次试验中该事件发生的概率为p ,则p(ξ=k)=q k-1p(k=1,2,…),ξ的分布服从几何分布,E ξ=p1,D ξ=2p q (q=1-p).二、方法与例题 1.乘法原理。
例1 有2n 个人参加收发电报培训,每两个人结为一对互发互收,有多少种不同的结对方式?[解] 将整个结对过程分n 步,第一步,考虑其中任意一个人的配对者,有2n-1种选则;这一对结好后,再从余下的2n-2人中任意确定一个。
第二步考虑他的配对者,有2n-3种选择,……这样一直进行下去,经n 步恰好结n 对,由乘法原理,不同的结对方式有 (2n-1)×(2n-3)×…×3×1=.)!(2)!2(n n n⋅ 2.加法原理。
例2 图13-1所示中没有电流通过电流表,其原因仅因为电阻断路的可能性共有几种?[解] 断路共分4类:1)一个电阻断路,有1种可能,只能是R 4;2)有2个电阻断路,有24C -1=5种可能;3)3个电阻断路,有34C =4种;4)有4个电阻断路,有1种。
从而一共有1+5+4+1=11种可能。
3.插空法。
例3 10个节目中有6个演唱4个舞蹈,要求每两个舞蹈之间至少安排一个演唱,有多少种不同的安排节目演出顺序的方式?[解] 先将6个演唱节目任意排成一列有66A 种排法,再从演唱节目之间和前后一共7个位置中选出4个安排舞蹈有47A 种方法,故共有4766A A ⨯=604800种方式。
4.映射法。
例4 如果从1,2,…,14中,按从小到大的顺序取出a 1,a 2,a 3使同时满足:a 2-a 1≥3,a 3-a 2≥3,那么所有符合要求的不同取法有多少种? [解] 设S={1,2,…,14},'S ={1,2,…,10};T={(a 1,a 2,a 3)| a 1,a 2,a 3∈S,a 2-a 1≥3,a 3-a 2≥3},'T ={('3'2'1,,a a a )∈'3'2'1'3'2'1,',,|'a a a S a a a S <<∈},若'),,('3'2'1T a a a ∈,令4,2,'33'22'11+=+==a a a a a a ,则(a 1,a 2,a 3)∈T,这样就建立了从'T 到T 的映射,它显然是单射,其次若(a 1,a 2,a 3)∈T,令4,2,'33'22'11-=-==a a a a a a ,则'),,('3'2'1T a a a ∈,从而此映射也是满射,因此是一一映射,所以|T|=310|'|C T ==120,所以不同取法有120种。
5.贡献法。
例5 已知集合A={1,2,3,…,10},求A 的所有非空子集的元素个数之和。
[解] 设所求的和为x ,因为A 的每个元素a ,含a 的A 的子集有29个,所以a 对x 的贡献为29,又|A|=10。
所以x=10×29.[另解] A 的k 元子集共有kC 10个,k=1,2,…,10,因此,A 的子集的元素个数之和为=+++=+++)(101029919091010210110C C C C C C 10×29。
6.容斥原理。
例6 由数字1,2,3组成n 位数(n ≥3),且在n 位数中,1,2,3每一个至少出现1次,问:这样的n 位数有多少个?[解] 用I 表示由1,2,3组成的n 位数集合,则|I|=3n,用A 1,A 2,A 3分别表示不含1,不含2,不含3的由1,2,3组成的n 位数的集合,则|A 1|=|A 2|=|A 3|=2n,|A 1 A 2|=|A 2 A 3|=|A 1 A 3|=1。
|A 1 A 2 A 3|=0。
所以由容斥原理|A 1 A 2 A 3|=||||||32131A A A A A Aji j i i i+-∑∑≠==3×2n-3.所以满足条件的n 位数有|I|-|A 1 A 2 A 3|=3n-3×2n+3个。